View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Caltech Authors - Main

MIT-CTP/4789

A QUANTUM VERSION OFSCHONING'SALGORITHM APPLIED
TO QUANTUM 2-SAT

Edward Farht, Shelby Kimmel2 and Kristan Temmk3 4

1Center for Theoretical Physics, Massachusetts InstitéifBeohnology, Cambridge, MA 02139, USA
2Joint Center for Quantum Information and Computer Scier@elCS),
University of Maryland, College Park, MD 20742, USA
SInstitute for Quantum Information and Matter,
California Institute of Technology, Pasadena CA 91125, USA
41BM TJ Watson Research Center, Yorktown Heights, NY 10588, U
(Dated: March 24, 2016)

We study a quantum algorithm that consists of a simple quaiarkov process, and we
analyze its behavior on restricted versions of Quantum 2-8¥e prove that the algorithm
solves this decision problem with high probability foqubits, L clauses, and promise gap
in time O(n2L2c2). If the Hamiltonian is additionally polynomially gappedjraalgorithm
efficiently produces a state that has high overlap with thisfgang subspace. The Markov
process we study is a quantum analogue of Schoning’s pitbiabalgorithm for k-SAT.

I. INTRODUCTION

For then-bit classical constraint satisfaction problérSAT, several algorithms beat the ex-
haustive search runtime bound@f. They provide a runtime with a mildly exponential scaling,
O(r™) with » < 2. One such algorithm is Schoning’s probabilistic algaritthat finds a solution
of 3-SAT in timeO(1.334™) [1]. The algorithm works by exploring the solution space using
simple Markov process. Although variants of the algorithew lheen known for some tim&, [3],
Schoning was the first to prove the runtime boundior 3. For 2-SAT, Papadimitriou earlier
introduced a variant of this algorithm that finds a satigfyassignment (if there is one) in time
O(n?) [3]. While linear-time 2-SAT algorithms exis#[ 5], Papidimitriou’s algorithm is admired
for its simplicity.

Quantumk-SAT is the quantum generalization of the classic&8AT problem. Analogously
to classicak-SAT, Quantum 3-SAT is QMAcomplete ], while Quantum 2-SAT can be solved
in polynomial time []. Interestingly, existing algorithms for Quantum 2-SATvaaaralleled al-
gorithms for classical 2-SAT: Bravyi’s original algorithior Quantum 2-SAT is similar to Krom’s
algorithm for classical 2-SATg] and uses inference rules; and two recent linear-time algos
for Quantum 2-SAT9, 10] use ideas from linear-time classical 2-SAT algorith#sg].

In this work, we describe an algorithm that is a quantum aqeoof Papidimitriou’s classical
algorithm and analyze its behavior on restricted versidn@uantum 2-SAT. Like the classical
algorithm, our quantum version consists of repeated agiubies of a simple (quantum) Markov
process. As with the recent linear-time Quantum 2-SAT atlgars, we apply tools and intuition
from the classical algorithm to analyze the quantum verditmwever, our algorithm is a quantum
algorithm; past algorithms for Quantum 2-SAT have beensatat Since Schoning showed that
the classical version of this algorithm performs well faasgicalk-SAT with £ > 2, there is hope
that the quantum version will have success on Quaritt®AT with £ > 2. Therefore, we think
understanding this quantum Markov process in the cage-o® is of value.

Papidimitriou’s classical algorithm for 2-SAT takes asuhphe number of bits:, a set of
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clause<Z, and a real parametér> 0, whereb is chosen depending on the desired probability of
success. Then the algorithm is as follows:

Classical Algorithnin, Z, b)
e Pick a strings uniformly at random fron{0, 1}".
e Repeabn? times:

— If there exist clauses i that are not satisfied on randomly choose one of the
unsatisfied clauses, and then randomly choose one of thmltitat clause. Flip the
value of that bit and renameto be the new string with the flipped bit.

— If s satisfies all clauses, retusrand terminate.
e If s does not satisfy all clauses, return “No satisfying striogfd.”

If there is no satisfying assignment, the algorithm will aj return “No satisfying string found.”
If a satisfying string exists, this algorithm will return atsfying assignment with probability,
where(1 — p) oc b1

The quantum algorithm that we consider is the natural gdimation of this procedure to the
guantum domain for the problem Quantér$SAT, which is the natural generalization of Classical
k-SAT to the quantum domain. We now give the definition of Quamk-SAT onn qubits as it
was introduced by Bravyi (altered to include only rank-1jgctors) [7]:

Definition [Quantum k-SAT] Letc = Q(n9) with ¢ a positive constant. Given a set bfrank
one projectors (called “clauses™®,, = |¢.)(¢.| €ach supported oh out ofn qubits, define

H = Z P, (1)

One must decide between the following two cases:
1. The YES instance: There existsragubit statep that satisfies {t p] = 0.

2. The NO instance: For any-qubit statep, we have that i p| > c.

We now give a quantum algorithm for QuantdrSAT onn qubits, but in this paper we focus
on k = 2. The quantum algorithm takes as input the number of quhbita set of L clauses
7 = {®,}, and two positive integerd’ and7’, whereN < 7. N and7 are chosen based on
the desired probability of success. The clauses can be gitteer via a classical description, or
operationally, as measurement projectors. Then the dhgois as follows:

Quantum Algorithrtwn, Z, N, T')
¢ Initialize the system in the maximally mixed staterofjubits.
¢ Initialize a counterV, to equal 0.

e Repeatl times:



— Choosea uniformly at random from{1, ..., L}, and measur®,,. If outcome 1 is
measured, choose one of the qubits in the suppo®t,ciit random and apply a Haar
random unitary to that qubit. If outcome 0 is measured)N\set Ny + 1.

e If Ny > N decide you are in a YES instance. Otherwise, decide NO.

One might expect that an algorithm for QuantérSAT first prepares a low energy state, and
then estimates the energy of the state using, for exampésepastimation. In our work we use
the repeated measurements of clauses to fulfill both roles.pkpare the low energy state by
repeatedly measuring clauses and applying random urstatiee clauses are unsatisfied. We test
whether the state has low energy by tracking the number fieat outcomes. We will show that
if, over repeated measurements, most of the outcomes aséexhtthen we have a low energy
state.

Variants of this algorithm have been analyzed previouslgifferent contexts. A similar al-
gorithm was proposed to prepare graph states and MatrixuBt&lates dissipativehi[], and a
variant was used as a tool for the constructive proof of a tymarocal Lovasz lemma for com-
muting projectors12, 13].

Given a YES instance of Quantu2zrSAT, since Quantum 2-SAT is iRf, one might expect that
theQuantum Algorithnwill converge to a satisfying state in polynomial time. Wewtthat this is
indeed the case, at least for a restricted set of clauses €lla. [L4] showed that for every YES
instance of Quantum 2-SAT, there is always a satisfyinggassent that is a product of single- and
two-qubit states. In fact, with the restricted clause sat e consider, there will be a satisfying
single-qubit product state of the form:

[91)1 ® -+ @ [¢hn),, @)

where the ket-), denotes the state of thi& qubit. For ease of notation, for YES instances, we use
the following basis:

|0>i = |¢z>z (3)

Hence, for the rest of this papé)“™ does not refer to the standard basis state, but to an unknown
product state that satisfies all clauses of a Quantum 2-S#&re. In the basis whej@“" is a
satisfying state, all of the clauses are of the form

General Clauses:
Do = [Pa)(Pal, With [¢a) = a4 ‘01>i,j + ba |10>z’,j + Ca ‘11>i,j , (4)

wherei, j label the two qubits in the clausk,. For reasons that we will discuss later, we can
only prove that th&Quantum Algorithnsucceeds in polynomial time if in the YES instance the
clauses are restricted to haye= 0. In the NO case, the clauses have no restrictions. We call thi
problemRestricted Quantum 2-SAT, and we show that thQuantum Algorithntan succeed in
this setting wherl” = O(L*n?/c?). This restriction can be somewhat relaxed, andppendix A

we show that the algorithm succeeds in polynomial time ifhe YES instance every clause
satisfies eithet, = 0 ora, = b, = 0. So for now we work with

Restricted Clauses:

(I)a == |¢a> <¢a| ) Wlth ‘¢a> = Qq ‘01>2,] + ba ‘1O>z,] : (5)



Note that|0)®" and|1)*" are both satisfying states with the restricted clause set.

In addition to solving Restricted Quantum 2-SAT, in the YEBe& theQuantum Algorithm
produces a state that has high overlap with a satisfyingasgnt. In this setting, the smallest
eigenvalue off is 0, and we calk the size of the smallest non-zero eigenvalugfof\We show
that after running thQuantum Algorithnfor T = O(n?L/¢) steps, the resultant state will have
large overlap with a state that has trH p] = 0.

The Quantum Algorithmmay solve arbitrary Quantum 2-SAT instances in polynonimakt
but our analysis can only show that it succeeds in polynotimia¢ on Restricted Quantum 2-
SAT. On the other hand, Bravyi’s algorithm and recent lirtgae quantum algorithms9[ 10
give procedures for deciding all Quantum 2-SAT instancgsolynomial time, but are classical
algorithms. Our algorithm is a quantum algorithm, so ourysia techniques may be of broader
interest. In particular, our approach may have applicattorQuantunk-SAT for k& > 2.

II.  ANALYSIS OF THE QUANTUM ALGORITHM FOR RESTRICTED QUANTU M 2-SAT

On a YES instance, th@uantum Algorithntan be viewed as a quantum Markov process that
converges to a quantum state that is annihilated by all #wgsels. A quantum Markov process
is described by a completely positive trace preserving @PTap [L5]. Call p, the state of
the system at timé. The CPTP mafy describes the update pf at each step of the chain, so
Pevr = T(Py)-

Call 7, the map that describes the procedure of checking whetheseslg, is satisfied, and if
it is not satisfied, applying a random unitary to one of theitgub the support ofb,,. Let: and;
be the two qubits associated with cladse Then

1 1
Ta(p) = (1=Ca) p (1=Pa) + 5Ai(PapPa) + 5 A;(PapPa) (6)
whereA; is the unitary twirl map acting on quhit
1
Mp) = [ dvgvpu] = 5 o), )
andd[U;] is the Haar measure. At each time step, we cheof®m {1,..., L} uniformly and
random and apply the map,. This corresponds to the CPTP update map
1 L
T(p) =7 > _Talp): 8)
a=1

During the measurement step, whens chosen uniformly at random and one measurgs
the probability of obtaining outcomieat timet is

23 ti{up] = TH(Hp ©)

A. Expectation of Total Spin

In analyzing the classical algorithm, Papadimitriou and@ng kept track of the Hamming
distance between the current string and the satisfyingasgnt. Inspired by this idea, we find it
useful to analyze the expectation valueSoiind 52, wheresS is twice the total spin:



N

Z ;oand $°= Zalaj (10)

i,7=1

Note thatS is closely related to the quantum Hamming weight operE@r (1 - 0o3%).

We show that with the restricted clause set, the expectattre of S is constant under the
action of 7, whereas the expectation value$ffcan not decrease under the actioryof

Lemma 1 Given a set of restricted claus¢®,, ..., ®,} (i.e. all of the form ofEq. (5)), with T
defined as irEq. (8) then

tr[ST(p)] — tr[Sp] = 0 (11)
tr[S2T(p)] — tr[S?p] Ztr [@,p] > (12)

PROOF Let 7T be the dual off, so that
tr[ST (p)] =tr[T(S)p] and  tiS*T(p)] = tr[T7(S*)p). (13)
First consider

TH(S) = (1-02) S(1-00) + 5@ i(8) 0 + 3 BuA;(3) 20, 14

wherei, j are the two qubits wher@,, acts. Note that — 07 — 0% is invariant under the action
of 71, so

0; =0+ (1-9,) (0] + 03) (1-D,)
(0 + 05)Ba + L Boly (05 + 05) e (15)
Due to the special properties of the restricted clausestq.f(5) we have
(07 +05) = (07 +05)P, =0, (16)
for all o, which together with\;(07) = 0 andA,(0%) = o7 for i # j gives
TI(S) = 5. (17)
This implies
T(S) =S, (18)

so we see that the expectation valuesdé unchanged by the action @fon a state:

tr[ST(p)] = tr[Sp). (19)



The expectation value cﬁ'z does change under the actionof ¢, acts only on qubit$ andy,
so accordingly we break ug® as

&2 _ [52 —2070% — 2 Z on(o7 + aj-)}
k#i,j

+ {20?0? +2 Z oo+ aj)} . (20)
k#i,j

7. leaves the first term unchanged. Now
z z z z 1 z z 1 z z
THo;0%) = (1-9,)0;075(1-D,) + 5 Pali(0705) @0 + 5 Paj(0707) Do (21)
Because of the special properties of the clauseskqg.f(5) we have
D,070; =0;0;P, = —P,. (22)
UsingEq. (16)and that\;(c?) = 0, we have
Ti(o;0%) = 0707 + . (23)
Now notice

T (0407 +03)) =(1-8a)0i(07 + 075)(1-Da)

2
1 4 z z
+ §®aAj(0k(0,- +07%))®q
=0} (0} 4 07). (24)

where we have again uséd). (16) Putting the pieces together gives
T1(5?) = 5%+ 29,,. (25)

The change in the expectation value®fafter the action of” is thus

WS T(p)] ~ t{S%p] = 7 3" t(ap] > 0 (26)

B. Runtime of the Quantum Algorithnmo Decide Restricted Quantum 2-SAT

TheQuantum Algorithndecides between YES and NO cases based on the numbeabied
outcomes, i.e. satisfied projectors, obtained during tgerdhm. The probability of getting a
0-outcome at stepis

1
1— ztr[Hpt], (27)



and so depends on the expectation valu& oEg. (26)allows us to relate the expectation value of
H to the expectation value ¢. While the expectation value df is not necessarily monotonic
over the course of the algorithm, the expectation valug“ois monotonic (byLemma 3 and is
also bounded, since the maximum eigenvalug“bn n qubits isn>. We use these properties of
S? to track the expectation value éf over the course of the algorithm, and hence to track the
expected number dfvalued outcomes.

We analyze the YES and NO cases seperately.

Result 1 Suppose we have¥ES case of Restricted Quantum 2-SAT, and we runQoantum
Algorithm for time

f2L2n2

T = ,
2

(28)

where
7
f:max{—,l}, (29)
C

then we have at least?/3 probability of observing at leasV measurement outcomes with value
0 over the course of the algorithm, where

3
N:T(fo;l) — fLn. (30)

The choice off = max {Z, 1} is not used in this proof, but is rather important for the siness
analysis. We include it here for concreteness.

PROOF. We start by usind.emma 1to bound the expectation value af over the course of the
algorithm.0 < tr[S?p] < n? for any statep onn qubits and so for any’

n? >tr[ pT]_tr[ 2|

= TZ: (tr A2pt+1 - [SthD

=0

T—

2

Z Z Z tr apt
=0 «

9 T-1

= 2> _ultp) (31)
t=0
LetII; be the projector onto the eigenstategivith eigenvalue less thaty f. We define

Py = tlpp,]. (32)

Inserting the projectar — II; into the last line oEq. (31) we have

2
Z Ez:: H_Hf pt]
9 T-1
> f_L z;(l - puf) (33)



where we used that, has probabilityl — p, , of being in the subspade— 11, and states in this
subspace have expectation valugbéht Ieastl /f. Rearranging terms gives

Zptf>T—an, (34)

and usingeqg. (28)gives

Zptf_fL_l T (35)

By the pigeon hole principle, there is a set of tifiesuch that the following are true:

Diy = fo; ! fort € T, and (36)
> (37)

At any timet, the probability of obtaining outcome 0 is

1—— th aP) =1- —tr[ (I —1y) +1Ly)p,). (38)

SinceH is a sum ofL projectors, its eigenvalues are at mosso we have

tl’[H(H - Hf)pt] < L(l - pt,f)' (39)

11, projects onto states with eigenvalue less thafi so
1
tr[HII;p,] < s (40)
Plugging these in gives

1——2“’ Otpt = fL ptf (41)

Now assume < T, soEq. (36)holds. Then we have for these times that the probability of
obtaining outcome 0O is

2
1——Ztr opy) > (fo;1) (42)

Since we want a large number @outcomes over the course of the algorithm, we will assume
a worst case scenario such that the probability of outconoe 8lftimest € T is

i 2
pworst = <f[./fL 1) : (43)




In this case, the distribution @Foutcomes for times$ € T is given by a binomial distribution.
We can use bounds on the binomial cumulative distributiorction to bound the number of
outcomes in this worst case scenario. GGdie the probability that less thayn outcomes are 0 over
|T| times, wherep, ., is the probability of obtaining outconteat any time. Using Hoeffding’s
bound, we have that

G < o {—2011pwmﬁ-—fvf]7 )
|T|
as long asT|p,,. > N. UsingEq. (37)andEq. (43) we have
3
Mo = (P70 7 (45)
UsingEq. (30) we see that
IT|Pyorss — N > fLn, (46)
so the numerator of the exponenttnq. (44)satisfies
2(|T|Pyorse — N)* = 27 L0, (47)
Finally, the denominator of the exponentii. (44)satisfies
TLST
212,,2
-2 (49)
so we have
G <exp[—4] <1/3. (49)

Thus with probability at least 2/3, we expect to see at Idastutcomes with valu® for times
t € T. Considering times with 1 < ¢ < T rather than only timeg¢ € T only gives more
opportunities for0-outcomes, so we have probability of at leass of seeing/N outcomes with
value0 when the algorithm is run for timé. O

Now we prove an analogous result in the NO case:

Result 2 Recall that in the NO case, the size of the smallest eigeevald is promised to be.
If we run the algorithm for time

212,,2
- T (50)
and choose
f:max{g,l}, (51)

then we have at most B/3 probability of observing more thatv measurement outcomes with
value( over the course of the algorithm, where, asliasult 1

3
N:T(fo;l) — fLn. (52)
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PrROOF. We show that if we have a NO case, we are unlikely to have ninane/ ¥ measurements
with outcome O over the course of tlieapplications of7. In the NO case, the probability of
obtaining outcome 0 at timieis

1 L c
-+ ;tr[%pt] <1-—. (53)

The worst case is when for all timeésthe probability of obtaining outcome 0 is

C

Qorst = 1- Z (54)
This worst case scenario corresponds to a binomial disioibuWe use bounds on the binomial
distribution to bound the probability of at leadt outcomes with valu®. Let G be the proba-
bility of getting at leastV outcomes with valué overT steps, wherg, . is the probability of
obtaining outcomé at any step. Applying Hoeffding’s bound to the binomial dizition, we
have

_2(N B Tgworst)2:| (55)

QSeXp[ T

aslongasv > Tq_..... We now show thag is small.
We first analyze the terny — T'q ... from Eqg. (55) We have, usingq. (52)

3
N—quorst:T<fo;1> —an—T(l—%). (56)

SincefL > 1, we have

N—quorst2T<1—i)—an—T(l—%)

fL
1 3
= §Cf2Ln2 — ianQ - an
> fLn? (;f - g) (57)

where in the second to last line we udegl. (50) and in the last line we used that> 1. Setting
f =max{7/c,1}, we have

N —Tq, .. > fLn?, (58)

where the maximum over the two terms is used to engurel. Then the numerator ikq. (55)
satisfies

2(N = Tq )’ > AT0%. (59)
Plugging intoEq. (55)we have
G < exp[-4n’] < 1/3. (60)

Therefore, the probability of getting at leastoutcomes with value 0 is less thap3. O
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CombiningResult 1landResult 2 to solve Restricted QuantuPaSAT, we set

f:max{g,l} (61)
and run the algorithm for time
212,2
v’ L2 . (62)

We count the number of 0-outcomes over the course of theitlignrand check whether this is
greater than

3
NzT(fL_l) — fLn. (63)

We have shown that for a YES instance, there is at least a @f#apility of observing at leasy
outcomes with valué, but for a NO instance, there is at most a 1/3 probability ehgso.

C. Runtime to Produce a Ground State

Suppose we have a Hamiltonian with restricted clauses thaadditionally polynomi-
ally gapped. In other words, the smallest non-zero eigeevalf the Hamiltonian has size
2(1/poly(n)). Then we show that repeatedly applying the rffaproduces a state that has large
overlap with the ground subspace.

Result 3 Given clauseg®,,} whered,, = |¢,) (¢, | are restricted as irEq. (5) ande is the size
of the smallest non-zero eigenvaluefof= Y ®,, then forT > ﬁ pr = T%(p,) has a
fidelity tr[I1, ] with the ground state subspace that is greater than

PROOFBY CONTRADICTION:
Let I, be the projector onto the satisfying subspace:

tr[HTIo) = 0. (64)

We first show thatl, is a fixed point of the maff’, so once part of the state is in this subspace, it
stays there. That is,

tr[lop,,,] — trlop,] :% ot [Ho (1=%s) p; (1~ o)
+ LIoAi (ap,®a) + %HoAj(fbapt%)] — rlopy]
Z% S (o (As(@0py®0) + Ay (@0p;®))]
o (65)

since tfllp] > 0 for any projectodl and any state.
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Suppose fitl,p,] < p. FromEq. (65) tr[ll,p,] can not decrease with increasihgSo for all
t<T,

trillop,] < p (66)

or equivalently,

tr{(l —1Io)p,] > 1 —p. (67)

Given that the spectral gap éf is ¢, we have

tr[Hp,| > etr[(I — ILy)p,]. (68)
Combining Eqgs. §7-68) gives
tr[Hp,) > e(1 - p) (69)
forallt < T.
CopyingEg. (31) we have
T-1 2
t=0
UsingEq. (69) we have
n? > %. (71)

SettingT > 2(1 glvesacontradlctlon Therefore, for> 2(1
O

) , we must have {fl,p,] >

D. Difficulties with General Clauses

We have only been able to prove tQeiantum Algorithnsolves Quanturd-SAT in polynomial
time when we restrict the form of the clauses. In this sectiwa describe what breaks down
when more general clauses are included in the instanceidiseltion, we assume that for YES
instances, the solution is a product of single-qubit stqfEse instance can be easily pre-processed
to deal with any two-qubit product states in the solutionnd®].) In the YES case, we consider
a basis in which the satisfying assignment takes the fo5fif’, so in this basis clauses are of the
form:

General Clauses:

Do = |¢a) (bl With |da) = aq [01), ; + ba [10), ; + ca [11) (72)

ij)
The restricted clauses never cause the expectatiéR af decrease. However, when we include
General Clauses the expectation$¥ can either increase or decrease under the actigp, of
depending on the state of the system.
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Consider a clause of the ford, = [¢,)(¢a| With [¢,) = [+1), , acting on the statp =
011)(011], , 5. (Here|+) is the eigenvector of the® operator with eigenvalue 1.) One can easily
check that

tr[S2p] = 5, tr[S2T.(p)] = 4.5, (73)

so the expectation value 6f decreases.

When there are sufficiently many General Clauses, but stitl & planted product state solu-
tion, [0)*" is the only satisfying state, so one might guess that a g@otting measure would be
the expectation value &f, which if it always increases, would bring the system claset closer
to |0)*". However, for General ClauseS,can also increase or decrease, and in facpfand®,,
as above,

tr[Sp] = 2, tr[ST.(p)] = 1.75. (74)

While in principle the expectation valug and 52 under the action of” can increase or de-
crease, in numerical experiments, we find that they alwayease. R R

The analysis irSection Ilwas simple because the changes in expectation valseanfd S
did not depend on the details of the state of the system, thetranly on the overlap of the state
with the satisfying subspace. With general clauses, thegdmin expectation value 6fand S?
depend on the specifics of the state of the system, making tierators less useful as tracking
devices.

[ll. CONCLUSIONS

We study a quantum generalization of Schoning’s algorittva show this quantum algorithm
can be used to solve Quantum SAT problems. In particular,hee ghat it can solve, in polyno-
mial time, Quantun2-SAT with certain restrictions on the clauses. It is possthhat this quantum
algorithm succeeds in polynomial time for Quant2+#8AT without any restriction on the clauses,
but we were not able to show it. Inspired by the classicalymms|we track quantities like the total
spin rather than energy. Furthermore, if the Hamiltoniaals® polynomially gapped, the algo-
rithm will produce, in polynomial time, a state that has haylerlap with a satisfying assignment.

There are many open questions related to this work. Is therayao extend our analysis to
unrestricted Quantum 2-SAT? How does the algorithm perfornQuantumk-SAT for £ > 27?
Can the runtime bounds of our algorithm can be improved?
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Appendix A: Analysis with an Extended Clause Set

In Section I} we showed that th®uantum Algorithntan decide Quantum 2-SAT if (in the
YES case) the clauses are of a certain form, which we now gpk T Clauses:

Type | Clauses:
Do = [¢a)(Pal, With |¢a) = aq ‘01>i,j + ba ‘1O>i,j . (A1)

In this appendix, we will show that thQuantum Algorithmalmost matches the performance
demonstrated in the main body of this paper, when the réstiridause set is enlarged to include
both Type | and Type Il clauses:

Type Il Clauses:
Do = [Pa)(Pal, With |pa) = |11>z’,j- (A2)

When all clauses are Type | or Type 0)“" is a satisfying state.
In Section llwe showed that fo®, a Type | clause,

tr[S7a(p)] — [Sp] = 0, (A3)
tr[S*Ta(p)] — tr[S%p] = 2tr[@,p]. (A4)
We observe that Type Il clauses exhibit the following praoipst
(07 +05) = (0] +05)P, = —20,, b,070% = 0;05d, = ®,. (A5)
Applying Eg. (A5)to Eq. (15)and to the analysis in EQR2@-24), we have that for Type Il clauses
T1(S) = S+ 0., (A6)

THS) =82 =20, +2 ) 07, (A7)
k+i,j

Combining the effects of Type | and Type Il clauses, we have

A |
TS =5+7 >, @ (A8)
acType ll
A . 2 2
2\ _ Q2 z
TS =847 2 @atT > (Pt ) 0ida). (A9)
acType | acType ll k#i,j

When only Type | clauses were present, the expectatiéi obuld only increase, but now Type
Il clauses can caus® to decrease. However, wheneygiis not annihilated by all of the clauses,
either the expectation value éfincreases (if a Type Il clause is measured), or the expeantati
value ofS? increases (if a Type | clause is measured). We show that ilbizwtion, these effects
allow us to prove the following result.

Result 4 Given clauseg®,,}, whered,, are Type | or Type |l,

T-1
5n® > = "tr[Hp,). (A10)
t=0

1o
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We first discuss the consequencesefult 4 and then give the proof. Note that. (A10)is
almost identical td=g. (31)andEq. (70) The only difference is the factor 6fthat appears on the
left side ofEqQ. (A10) Thus to determine what happens when, in the YES case, wetés{Type
| and Type Il clauses, we need only repldeg (31)andEq. (70)by Eq. (A10)

In Result 3the number of time steps needed increases by a factértofobtain the same
outcome. InResult 1we use the following transformation, which preserves théestent of the
result:
5f2L27L2
2 )
fL—1

fL
Using this transformation inResult2 the outcome is identical when we chooge =
max{22/(5c), 1}.

We now proofResult 4
PROOF. Sincen? > tr[$%p] > 0, for any statep,

T —

3
N=T ( ) —2fLn. (A11)

n® > tr[S%py] — tr[S°py)
1

~

D||1

(tr[gzptH] o tr[S*zptD
¢
T

0

1%( Y teap)+ Y tr[(—1+ Za;)@aptD, (A12)

t=0 acType | acType ll k#i,j

where we have usdflg. (A9)in the last line.
In the Type Il sum, the ter—1 + 3, _, - 07) has eigenvalues that are larger thafn — 1),
so using thatb, and(—1 + Zk#ivj o) commute (they act on different qubits), we obtain

T-1
2
n2zz ( Yot —(n—1) > tr[@apt]> (A13)
t=0 \acTypel acTypell
We have
wHp) = Y t@.p]+ Y td.p], (A14)
acType ll aeType |

which we can plug int&q. (A13)to obtain

n? > Tif(tr[Hpt]—n > tr[@apt]>. (A15)

t=0 acType ll

e~ o

We now bound the term involving the Type Il clauses. Fieq (A8) we have

T-1 T-1

2 wleap) =Y (WS, - lSp,)

t=0 acType ll t=0
tr[ng] - tr[gpo]
on, (A16)

IA
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where in the last line we have used that for anyve have—n < tr[Sp] < n. PluggingEq. (A16)
into Eq. (A15) we have

2 T—
> = Z [Hp)). (AL7)
t=0

O
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