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Abstract

Inspired by the ferromagnetic coupling in the cubane model CaMnIV
3O4 of the oxygen-evolving 

complex of photosystem II, 3d–4f mixed-metal DyMn3O4 clusters were prepared for investigation 

of the magnetic properties. For comparison, YMnIV
3O4 and YMnIV

2MnIIIO4 clusters were 

investigated as well and showed ferromagnetic interactions, like the calcium analogue. 

DyMnIV
3O4 displays single-molecule-magnet properties, while the one-electron-reduced species 

(DyMnIV
2MnIIIO4) does not, despite the presence of a MnIII center with higher spin and single-ion 

anisotropy.

Graphical abstract

*Corresponding Authors: m.murugesu@uottawa.ca. agapie@caltech.edu. 

Notes
The authors declare no competing financial interest.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.6b00630.
Crystallographic data in CIF format (CIF)
Crystallographic data in CIF format (CIF)
Crystallographic data in CIF format (CIF)
Experimental procedures and spectroscopic characterization (PDF)

HHS Public Access
Author manuscript
Inorg Chem. Author manuscript; available in PMC 2017 July 14.

Published in final edited form as:
Inorg Chem. 2016 June 20; 55(12): 6095–6099. doi:10.1021/acs.inorgchem.6b00630.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216241293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTRODUCTION

Transition-metal lanthanide (3d–4f) clusters have shown promise as single-molecule-magnet 

(SMM) candidates.1 The combination of high single-ion anisotropy of particular lanthanides 

and the high spin of multinuclear complexes provides a strategy for the synthesis of SMMs 

with large relaxation barriers.2 Although the largest energy barriers of SMMs are found in 

mono- or dinuclear lanthanide complexes because of the weak exchange interactions of 

lanthanide ions,3 coupling with transition metals has also been investigated to increase the 

relaxation barrier.4 Despite the discovery of numerous 3d–4f SMMs, the rational design of 

molecules with improved SMM properties remains challenging, and the study toward a 

detailed understanding of the structural factors that control the SMM behavior is an active 

area of research.

We have reported the preparation of tetranuclear heterometallic MMn3O4 cubanes5 as 

structural models of the oxygen-evolving complex of photosystem II that displays a 

CaMn4O5 cluster.6 The CaMnIV
3O4 cubane, with a diamagnetic Ca2+, displays 

predominantly ferromagnetic coupling between the transition-metal ions, with the higher-

symmetry cubane showing smaller coupling constants.7 The magnetic behavior of these 

clusters was studied computationally, and a high-spin ground state was concluded to be an 

intrinsic characteristic of the CaMnIV
3O4 heterometallic cubane motif because of its 

structural parameters, in particular the acute Mn–O–Mn angles.8 The ferromagnetic 

coupling of the Mn3 motif was envisioned to be a useful design element for the study of the 

magnetism of 3d–4f clusters.9 A CaMnIV
3O4 precursor provides facile synthetic access by 

metal substitution to lanthanide-containing cubanes of interest related to SMMs.5b Access to 

two oxidation states, LnMnIV
3O4 and LnMnIV

2MnIIIO4, allows for evaluation of the impact 

of a single electron transfer on the SMM properties of the clusters. This is of particular 

interest given the potential for facile modulation of the magnetic properties via redox 

chemistry, but its effects on the 3d–4f SMM properties are poorly understood. Although 

manganese-only SMM studies of isostructural clusters with different Mn oxidation states 

have been performed,10 similar investigations of 3d–4f mixed-metal complexes are rare. We 
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report herein on the magnetic properties of the DyIII and YIII versions of heterometallic 

cubanes.

RESULTS AND DISCUSSION

The heteronuclear complexes [LYIIIMnIV
3O4(OAc)3(DMF)2]-[OTf] (1-Y) and 

[LDyIIIMnIV
3O4(OAc)3(DMF)2][OTf] (1-Dy), where DMF = N,N-dimethylformamide 

and −OTf = trifluoromethanesulfonate, have been reported by us, including structural 

characterization for 1-Y.5b,c The reduced species ([LYIIIMnIV
2MnIIIO4(OAc)3(DMF)] (2-Y) 

and [LDyIIIMnIV
2MnIIIO4(OAc)3(DMF)2] (2-Dy)) were prepared by the treatment of a 

tetrahydrofuran (THF) suspension of a cationic precursor (1-Y and 1-Dy, respectively) with 

1 equiv of decamethylferrocene (Figure 1). Single-crystal X-ray diffraction studies were 

performed for compounds 1-Dy, 2-Y, and 2-Dy. The top metal is eight-coordinate in 

compounds 1-Y, 1-Dy, and 2-Dy with three acetates, three oxidos, and two DMF molecules 

completing the coordination sphere (Figure 2). 2-Y displays a single DMF ligand, resulting 

in a seven-coordinate Y center (Figure 3). The Mn–O(oxido) distances are short and similar 

(1.84–1.91 Å) in 1-Y and 1-Dy, consistent with the all-MnIV assignment. Compounds 2-Y 
and 2-Dy (Figures 2 and 3) show elongation of the O5–Mn1 and O4–Mn1 distances (to 

>2.10 Å), consistent with a localized MnIII site with population of a σ-antibonding orbital 

along this axis.

Direct-current (dc) magnetic susceptibility measurements were performed on 1-Y, 2-Y, 1-
Dy, and 2-Dy between 1.8 and 300 K under an external field of 1000 Oe (Figure 4). The 

observed paramagnetic behavior of all four complexes arises from the 3d MnIII and MnIV 

ions and/or 4f LnIII ions. The experimentally obtained χT values are 5.67, 9.02, 20.78, and 

25.02 cm3·K·mol−1 for complexes 1-Y, 2-Y, 1-Dy, and 2-Dy, respectively. According to the 

free-ion approximation of each metal ion [DyIII (6H15/2, S = 5/2, L = 5, g = 4/3, χT = 14.17 

cm3·K·mol−1), MnIII (S = 2; g = 2.00, χT = 3.00 cm3·K·mol−1), and MnIV (S = 3/2; g = 2.00, 

χT = 1.875 cm3·K·mol−1)], the theoretical values for four noninteracting metal ions are 

calculated to be 5.63, 6.75, 19.80, and 20.92 cm3·K·mol−1 for complexes 1-Y, 2-Y, 1-Dy, 

and 2-Dy, respectively. The different χT values between the experimental and theoretical 

values for 2-Y and 2-Dy may be due to residual solvents in the samples that were also 

observed by combustion analysis. The χT values observed for 2-Y and 2-Dy are higher than 

those for 1-Y and 1-Dy, respectively, confirming that one MnIV ion in the cubane was 

reduced. Upon a decrease in the temperature, the χT products remain fairly constant down 

to ~70 K for all complexes. The χT values then increase to a maximum value for 1-Dy and 

1-Y around 6 K because of intramolecular ferromagnetic interactions and then slightly 

decrease at lower temperature likely because of intermolecular antiferromagnetic 

interactions. The χT values of 2-Dy decreasing gradually below 70 K are presumably due to 

the presence of large magnetoanisotropy in the DyIII system, which was not observed in 2-Y. 

Both χT values of 2-Dy and 2-Y increase at lower temperatures to maximum values of 

23.70 cm3·K·mol−1 (at 6 K) and 10.57 cm3·K·mol−1 (at 5.5 K) for 2-Dy and 2-Y, 

respectively, which are indicative of ferromagnetic interactions between the metal ions 

within the LnMn3 unit. A slight decrease at lower temperatures (with values of 21.30 and 
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10.02 cm3·K·mol−1 at 2 K for 2-Dy and 2-Y, respectively) indicates intermolecular 

antiferromagnetic interactions.

The amplitude of the increase of the χT values suggests weak coupling between metal ions 

in the reduced compounds. Considering the number of magnetic exchange pathways 

between metal centers as well as the presence of the highly anisotropic DyIII ion renders 

modeling of 1-Dy and 2-Dy difficult. Therefore, complexes 1-Y and 2-Y containing the 

diamagnetic YIII ion become ideal models for probing the overall exchange interactions 

between the Mn ions.

The magnetic susceptibility data can be fit to obtain the nature and magnitude of the 

magnetic interaction between MnIII and/or MnIV. By using the isotropic spin Hamiltonian Ĥ 
= −2J(Ŝ1·Ŝ2 + Ŝ1·Ŝ3) − 2J′(Ŝ2·Ŝ3) with S1 = S2 = S3 = 3/2 for 1-Y and S1 = 2, S2 = S3 = 3/2 

for 2-Y (Scheme S1), the best-fit parameters obtained are J = 5.35 cm−1, J′ = −0.81 cm−1, g 
= 1.93, and S = 9/2 (1-Y) and J = 0.78 cm−1, J′ = −0.98 cm−1, g = 2.31, and S = 5 (2-Y) 

(Figure S1 and Scheme S1), showing ferromagnetic contributions, similar to experimental 

and computed CaMn3O4 cubane systems, albeit with small coupling constants.7,8 Although 

the fit parameters did not include the anisotropy of the MnIII ions and despite the fitting 

being slightly different from that of the experimental data, it is estimated that the 

ferromagnetic interaction between MnIV ions in 1-Y is slightly larger than the interaction 

between MnIII and MnIV in 2-Y, which agrees well with the values reported for other 

MnIII/MnIV isostructural systems.11 We can further assess the interactions between DyIII and 

MnIII or MnIV by subtracting χT values of 1-Y and 2-Y from 1-Dy and 2-Dy to give 

suitably adjusted plots (green circles, Figure 4 and inset).

The field dependences (up to 7 T) of the magnetization of all four complexes in the 

temperature range of 1.8–7 K were also obtained (Figure 5). The saturation of the 

magnetization suggests the absence of significant magnetic anisotropy, consistent with three 

MnIV ions in compound 1-Y. The magnetization at 1.8 K saturates above 5.5 T at 8.5 μB, 

which is lower than those of the other trinuclear MnIV complexes. The Dy–Mn interactions 

of 1-Dy are much stronger than those of 2-Dy based on the larger maximum χT value and 

the sharper increase at low temperature. This magnetic effect corresponds to shorter Dy–

O(oxido) distances in 2-Dy [2.294(2), 2.385(2), and 2.389(2) Å] compared to those in 1-Dy 
[2.355(1), 2.400(1), and 2.443(1) Å]. The reasons behind this structural change and its 

influence on magnetism are not understood but could include an increase in the electron 

density on the Mn centers due to reduction, leading to weaker Mn–O interactions and 

stronger Dy–O interactions; however, this proposal is not substantiated by a lengthening of 

the Mn–O(oxido Dy) distances in 2-Dy.

In order to probe the possible SMM behavior in 1-Dy, 2-Dy, and 2-Y, the temperature 

dependences of the in-phase (χ′) and out-of-phase (χ″) magnetic susceptibilities were 

measured in the temperature range of 2–5 K. Only 1-Dy exhibited a temperature-and 

frequency-dependent signal indicating slow relaxation of the magnetization under a zero dc 

field and a 3 Oe oscillating field at frequencies between 1 and 1500 Hz as expected for an 

SMM (Figure 6). For 1-Dy, the maxima can be observed for a range of temperatures 

between 3 and 1.8 K. The relaxation time deduced from this data is consistent with an 
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activated behavior (Figure 6, inset), with an anisotropic energy barrier (Ueff) of 27 K and a 

preexponential factor (τ0) of 2.13 × 10−8 s. The peaks of 1-Dy in χ″) versus ν are shifted 

under the various dc fields, but the alternating-current (ac) measurements under the applied 

optimum field of 800 Oe only reveal a slightly higher energy barrier (Figures S2–S4). In 

contrast to 1-Dy, there is no evidence that the one-electron-reduced species 2-Dy is an SMM 

(Figures S5 and S6). The observed frequency-independent χ″ signal with a large applied dc 

field is likely due to an intermolecularly driven relaxation process.12 We also measured the 

ac susceptibility for 2-Y because of the anisotropic nature of the MnIII ion, but no out-of-

phase signals were observed, indicating that the Mn centers alone are not sufficient for SMM 

properties in this geometry.

On the basis of a comparison of the dc and ac data of 1-Dy and 2-Dy, the interaction 

between the Dy and Mn ions is key to the SMM properties in these compounds. Even 

though a MnIII ion has magnetoanisotropy due to Jahn–Teller distortion and one more 

unpaired electron than MnIV, the SMM properties of our 3d–4f cubane system were not 

improved when one MnIV was reduced to MnIII. A significantly higher χT value for 1-Dy 
compared to that of 2-Dy at 6 K indicates a stronger 3d–4f ferromagnetic interaction, with a 

larger spin ground state being likely. Because of the presence of significant spin–orbit 

coupling of the DyIII ion, no fits have been made to date. It is reasonable to assume that, in 

addition to a larger spin ground state, significantly stronger coupling will likely provide a 

well-defined ground state with the first excited state higher in energy, leading to enhanced 

SMM behavior for 1-Dy.

Additionally, the different Dy–ligand interactions and change in the coordination 

environment induced by the reduction could affect the Dy-ion anisotropy. To validate this, 

Magellan magnetic software11 was employed to probe the anisotropy axis direction on the 

DyIII ions. The modeled anisotropy axes of DyIII (Figure 7) give an indication that, in the 

case of 2-Dy, the anisotropy on the Dy center is nearly perpendicular to the anisotropy of the 

MnIII ion (the Jahn–Teller elongation axis highlighted in black); this reduces the overall 

anisotropy of the system. In this case, the addition of anisotropic MnIII ions can have an 

effect on the weaker interactions between DyIII and MnIV/MnIII, which may decrease the 

spin ground state (ST) as well as lower the overall anisotropy of the complex, which reduced 

the Ising-type magnetoanisotropy (D) and thus decreased the SMM performance.

CONCLUSION

In summary, the heterometallic 3d–4f Mn/Dy and Mn/Y clusters LnMnIV
3O4 were reduced 

by one electron to form LnMnIV
2MnIIIO4 species that maintain the cubane motif and show a 

localized MnIII site with corresponding metal–ligand distortions. The YMnIV
3O4 cubane (1-

Y) displays ferromagnetism, supporting the notion that this is a characteristic property of 

MMnIV
3O4 cubanes, as was previously computed for the biologically relevant CaMnIV

3O4 

cluster. The related DyMnIV
3O4 (1-Dy) and DyMnIV

2MnIIIO4 (2-Dy) clusters offer suitable 

models for studying the effect of the oxidation state of Mn in the SMM behavior of 3d–4f 

clusters. 2-Dy is not an SMM despite the presence of an additional electron and of a MnIII 

center with magnetoanisotropy. The ferromagnetic interactions within the Mn3
IV core and 
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the nonnegligible Dy–Mn interactions result in a large spin ground state, contributing to the 

SMM properties of 1-Dy.

EXPERIMENTAL SECTION

Reactions performed under an inert atmosphere were carried out in oven-dried glassware in 

a glovebox under a nitrogen atmosphere. Anhydrous dichloromethane and diethyl ether were 

purified by sparging with nitrogen for 15 min and then passing under nitrogen pressure 

through a column of activated A2 alumina (Zapp’s). CD2Cl2 was purchased from 

Cambridge Isotope Laboratories, dried over calcium hydride, then degassed by three freeze–

pump–thaw cycles, and vacuum-transferred prior to use. 1H NMR spectra were recorded on 

a Varian 300 MHz instrument, with shifts reported relative to the residual solvent peak. 19F 

NMR spectra were recorded on a Varian 300 MHz instrument, with shifts reported relative 

to the internal lock signal. Elemental analyses were performed by Robertson Microlit 

Laboratories. All commercial chemicals were used as received. Dysprosium 

trifluoromethanesulfonate (Dy(OTf)3) and decamethylferrocene were purchased from Strem, 

and yttrium trifluoromethanesulfonate (Y-(OTf)3) was purchased from Aldrich. 

[LDyMn3O4(OAc)3(DMF)2]-[OTf]5b and [LYMn3O4(OAc)3(DMF)2][OTf]5c were prepared 

according to previously published procedures.

Synthesis of [LDyMn3O4(OAc)3(DMF)2] (2-Dy)

A solution of decamethylferrocene (0.007 g, 0.02 mmol, 1 equiv) in THF (2 mL) was added 

to a solution of 1-Dy (0.034 g, 0.02 mmol, 1 equiv) in THF (2 mL). The dark-brown solution 

was stirred overnight. The dark-brown precipitate generated was collected on a fritted glass 

funnel, washed with acetonitrile (4 mL) to remove the remaining decamethylferrocenium 

triflate, and further washed with dichloromethane. The resulting brown powder was 

dissolved in benzene/THF and concentrated in vacuo. Recrystallization from DMF/benzene/

ether yields the product as dark-brown crystals (0.009 g, 29%). 1H NMR (C6D6, 300 MHz): 

δ 7.2, 3.4, 1.6, 1.2, −2.4. Anal. Calcd for C73H63Cl2DyMn3N7O14([2-Dy]·CH2Cl2·C6H6): C, 

52.65; H, 4.07; N, 6.46. Found: C, 52.49; H, 3.72; N, 5.96.

Synthesis of [LYMn3O4(OAc)3(DMF)] (2-Y)

A solution of decamethylferrocene (0.017 g, 0.0527 mmol) in THF (2 mL) was added to a 

solution of 1-Y (0.079 g, 0.0527 mmol, 1 equiv) in THF (8 mL). The mixture was stirred at 

room temperature for 30 min and then filtered through Celite. The filtrate was dried in 

vacuo. Benzene was added, and the mixture was filtered through Celite to remove 

decamethylferrocenium triflate. The benzene filtrate was dried in vacuo to yield the product 

as a red-brown solid (0.063 g, 94%). X-ray-quality crystals were grown by vapor diffusion 

of diethyl ether into a DMF solution of 2-Y. 1H NMR (C6D6, 300 MHz): δ 25.1, 13.1, 11.3, 

10.2, 9.3, 7.8, 5.5, 4.5, −25.3. Anal. Calcd for C66H55Mn3N7O14Y: C, 55.67; H, 3.89; N, 

6.89. Anal. Calcd for C69H62Mn3N8O15Y (one DMF solvate): C, 55.36; H, 4.17; N, 7.49. 

Found: C, 53.96; H, 4.88; N, 7.26.
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Magnetic Measurements

The magnetic susceptibility measurements were obtained using a Quantum Design SQUID 

MPMS-XL7 magnetometer operating between 1.8 and 300 K for dc applied fields ranging 

from −7 to +7 T. dc analyses were performed on polycrystalline samples of 7.3, 13.0, 18.0, 

and 25.0 mg for 1-Dy, 2-Dy, 1-Y, and 2-Y, respectively, restrained in a polyethylene 

membrane and under a field ranging from 0 to 7 T between 1.8 and 300 K. ac susceptibility 

measurements were carried out under an oscillating ac field of 3 Oe and ac frequencies 

ranging from 1 to 1500 Hz. The magnetization data were collected at 100 K to check for 

ferromagnetic impurities that were absent in all samples. A diamagnetic correction was 

applied for the sample holder and the sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Synthesis of reduced cubane complexes.
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Figure 2. 
Left: Cluster thermal ellipsoid plot for 1-Dy (top) and 2-Dy (bottom). H atoms, solvent 

molecules, counteranions, and parts of the ligand are not shown for clarity. The elongated 

Mn–O bonds in 2-Dy are highlighted in orange. Right: Bond distances (Å) in the cubane 

core.
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Figure 3. 
Top: Thermal ellipsoid plot for 2-Y. H atoms, solvent molecules, and counteranions are not 

shown for clarity. The elongated Mn–O bonds in 2-Y are highlighted in orange. Bottom: 

Bond distances (Å) in the cubane core.
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Figure 4. 
Temperature dependence of the χT product at 1000 Oe for 1-Dy (black), 2-Dy (black inset), 

1-Y (red), and 2-Y (red inset). The green dots represent the values of 1-Y and 2-Y subtracted 

from 1-Dy and 2-Dy, respectively. χ is the molar susceptibility per cubane complex defined 

as M/H.
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Figure 5. 
Field dependences of the magnetization at variable temperatures for the reported complexes.
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Figure 6. 
Temperature dependence of the out-of-phase (χ″) ac susceptibility of 1-Dy from 0.1 to 1500 

Hz without an applied dc field. Inset: Arrhenius plot, ln(τ) versus 1/T. The red line indicates 

the fit yielding the energy barrier for spin reversal.
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Figure 7. 
Pictures of 1-Dy (top) and 2-Dy (bottom) containing the anisotropy axis direction for the Dy 

ions. The axes were modeled using Magellan magnetic software.11
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