
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.215.193.135

This content was downloaded on 24/05/2016 at 00:14

Please note that terms and conditions apply.

Light-shift-induced photonic nonlinearities

View the table of contents for this issue, or go to the journal homepage for more

2008 New J. Phys. 10 043010

(http://iopscience.iop.org/1367-2630/10/4/043010)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216240503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/10/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Light-shift-induced photonic nonlinearities

F G S L Brandão 1,2,3, M J Hartmann 1,2 and M B Plenio 1,2

1 Institute for Mathematical Sciences, Imperial College London,
53 Exhibition Road, SW7 2PE, UK
2 QOLS, The Blackett Laboratory, Imperial College London,
Prince Consort Road, SW7 2BW, UK
E-mail: fernando.brandao@imperial.ac.uk

New Journal of Physics 10 (2008) 043010 (14pp)
Received 4 October 2007
Published 10 April 2008
Online athttp://www.njp.org/
doi:10.1088/1367-2630/10/4/043010

Abstract. We propose a new method to produce self- and cross-Kerr photonic
nonlinearities, using light-induced Stark shifts due to the interaction of a cavity
mode with atoms. The proposed experimental set-up is simpler than in previous
approaches, while the strength of the nonlinearity obtained with a single atom
is the same as in the setting based on electromagnetically induced transparency.
Furthermore our scheme can be applied to engineer effective photonic nonlinear
interactions whose strength increases with the number of atoms coupled to the
cavity mode, leading to photon–photon interactions several orders of magnitude
larger than previously considered possible.
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1. Introduction

Quantum properties of light, such as photon anti-bunching [1] and photonic entanglement [2],
can only be produced by nonlinear interactions between photons. Strong nonlinearities are
also important for quantum information processing, with applications ranging from quantum
nondemolition measurements [3] to quantum memories for light [4] and optical quantum
computing architectures [5]. However, photon–photon interactions are usually extremely weak,
and several orders of magnitude smaller than those needed in the above applications. A
possible route towards larger nonlinearities is the use of coherent interaction between light
and matter in high finesse quantum electrodynamics (QED) cavities [6]. The goal here is to
produce large nonlinearities with negligible losses, something which cannot be accomplished
by merely tuning atom–light interactions close to resonance. To the best of our knowledge, the
setting generating the largest nonlinear interactions in this context, proposed by Imamoğlu and
co-workers [7]–[9], uses quantum interference effects related to electromagnetically induced
transparency (EIT) [10] to produce giant Kerr nonlinearities. There nonlinearities were shown
to be essentially absorption free and up to 9 orders of magnitude larger than natural Kerr
interactions (see figure1(a))4 (see e.g. [11, 12] for related experimental implementations).
Another distinctive feature of this scheme is that the ratio nonlinearity strengh over losses can
be kept constant when several atoms interact with the same cavity mode.

Here we propose a new method for producing Kerr nonlinearities in cavity QED systems
which is (i) experimentally less demanding, requiring one atomic level and one coupling to
the cavity mode less than in the EIT setting, (ii) virtually absorption free, and (iii) produces
nonlinearities comparable or even superior to the state-of-art EIT scheme [7]. By applying
suitable laser pulses at the beginning and end of the evolution of the proposed set-up, we obtain
nonlinear interactions whose (iv) strength increases with increasing number of atoms interacting

4 As shown in [8], the EIT setting can produce nonlinearities with a strength ofαβg, whereg is the Rabi frequency
of the atom–cavity interaction andα, β are two parameters which must be much smaller than one.

New Journal of Physics 10 (2008) 043010 (http://www.njp.org/)

http://www.njp.org/


3

(c)(c)

Figure 1. (a) EIT scheme considered in [7, 8], (b) dispersive regime of the
Jaynes–Cummings interaction, (c) large but noisy nonlinearity scheme and
(d) scheme proposed in this paper. Coupling to the cavity mode is shown in
green and to classical lasers in blue.

with the cavity mode, leading to effective nonlinear interactions at least two orders of magnitude
larger than previously considered possible5. This brings closer to reality a number of proposals
for quantum computation and communication based on photonic nonlinearities as well as the
observation of many-body phenomena in systems consisting of arrays of coupled cavities [8, 9],
[13]–[19] where quantum-phase transitions for polaritons and photons [9], [13]–[15], as well
as a photonic Mott-insulator [8]—in which photons would be frozen inside each cavity—
could be observed experimentally provided strong photonic nonlinearities are available. The
estimated strength of our nonlinearity would also suffice for the implementation of quantum
nondemolition measurements [20], a photonic CNOT gate [21], and continuous variable
entanglement distillation [22]. We discuss several possible experimental settings [12], [23]–[30]
and typical as well as predicted parameters in such systems at the end of this paper.

In our approach, the relevant atomic level structure, depicted in figure1(d), is a3 system
with two metastable states and an excited state. The cavity mode couples dispersively only to the
0–2 transition and the levels 0 and 1 are coupled via a far-detuned Raman transition. Finally, the
detuning associated with the lasers and with the cavity mode are assumed to be very different
from each other.

2. Derivation of the effective model

In this section, we show how the effective photonic nonlinearity can be obtained from the set-up
proposed above. In order to gain intuitive understanding why our model works, we first present

5 We note that our figure of merit when comparing one to several atoms schemes is that the total population in the
excited state is kept the same. Therefore we say that more atoms produce a larger nonlinearity in comparison when,
while maintaining the same decoherence rate due to spontaneous emission, the strength of the effective nonlinearity
increases with the number of atoms coupled to the cavity mode.
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two simple schemes to engineer nonlinearities and discuss their drawbacks. We then turn to the
new set-up we propose and show how it overcomes the limitations of the previous ones.

2.1. Dispersive regime nonlinearity

To understand intuitively how our scheme works, let us start with the simplest system producing
a nonlinearity:N two level atoms interacting dispersively with a cavity modea (see figure1(b)).
The system can be described by the Jaynes–Cummings Hamiltonian, which in the interaction
picture with respect toH0 = ωa†a +ω0

∑
k |1k〉〈1k| reads

H = g(e−i 1taS10 + ei1taS01), (1)

whereS10 :=
∑

k |1k〉〈0k|, g is the Rabi frequency of the Jaynes–Cummings interaction, and1

the detuning of the cavity mode frequency to the atomic transition frequency. If
√

Ng/1 � 1,
the system is in the so-called dispersive regime and we can adiabatically eliminate the upper
level, as its population is negligible. Including fourth order terms in the perturbation theory and
neglecting nonenergy preserving terms, we can approximate the Hamiltonian above as

H (1)

eff =
Ng2

1
a†a(S00 − S11) +

Ng4

13
a†aa†a(S00 − S11), (2)

whereSaa :=
∑N

k=1 |ak〉〈ak|. Hence, if all atoms are prepared in their ground states, we obtain a
self Kerr nonlinearityχ = Ng4/13. This scheme has two major drawbacks. Firstly, the obtained
nonlinearities are at least one order of magnitude smaller than in the EIT setting. Secondly,
because of

√
Ng/1 � 1, characterizing the dispersive regime, the nonlinearity decreases

asg/
√

N.

2.2. Extra driving laser field

A simple solution to both these problems is to add a classical laser in resonance to the
transition|0〉 → |1〉 (see figure1(c)). Under the conditions

√
Ng/1 � 1 and

√
Ng2/1 � �,

the dynamics of the system is well described by

H (2)

eff =
Ng2

1
a†aS3 +

√
Ng

1

√
Ng2

1�
ga†aa†aS3, (3)

where S3 :=
∑N

k=1 |+k〉〈+k| − |−k〉〈−k|, with |±〉 = (|0〉 ± |1〉)/
√

2. Hence, preparing the
atomic states in the superposition|−〉, we find a nonlinearity as large as in the EIT setting
which does not decrease with the number of atoms. Unfortunately, this improvement comes at
the price of a large increase in the losses due to spontaneous emission which will destroy the
atomic superpositions, quickly decreasing the effective nonlinearity.

2.3. Stark-shift nonlinearity

In our proposed scheme (see figure1(d)), we have a situation similar to the one discussed
above. Indeed, the effective Hamiltonian will be identical toH (2)

eff . However, now the states
|±〉 are metastable, which makes the system almost decoherence free. The full Hamiltonian of
the system, in the interaction picture with respect toH0 = ωa†a +ω1

∑
k |1k〉〈1k| reads:

H = g
(
e−i11taS20 + ei11ta†S02

)
+

√
23

(
e−i12t S2+ + e−i12t S+2

)
, (4)
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whereS20 :=
∑

k |2k〉〈0k| andS2+ :=
∑

k |2k〉〈+k|. We assume for the moment that all the atoms
interact in the same manner with the cavity mode. As shown in figure1(d), (g, 11) and
(3, 12) are the Rabi frequencies and detunings of the cavity–atom and laser–atom interactions,
respectively. To justify the use of the single mode paradigm we require that11, 12 � κ, where
κ is the cavity decay rate. We are interested in the dispersive regime, characterized by:

√
Ng

11
� 1,

√
N3

12
� 1. (5)

Moreover, we assume that
√

Ng,
√

N3 � |12 − 11|, (6)

so that we can treat the processes driven by the cavity–atom and laser–atom interactions
independently. Under these conditions the dynamics of the system will be described by the
one of a self-Kerr photonic nonlinearity. In the sequel we outline the main steps taken to derive
the effective Hamiltonian for the model. A more in-depth analysis is given in the appendix.

Under the above conditions the excited state will hardly be populated, and we can
adiabatically eliminate it, finding an effective Hamiltonian for the two metastable states and the
cavity mode. In turn, these will experience ac Stark shifts due to the interaction with the upper
level. The effective Hamiltonian, dropping out terms proportional to the identity, is given by

H1 =
g2

11
a†aS00 +

2

2
(S10 + S01), (7)

with 2 := 232/12. If we now go to a second interaction picture with respect toH0 =

(g2/211)a†a we find

H int
1 =

g2

211
a†a (S+− + S−+) +

2

2
S3, (8)

where S+− :=
∑

k |+k〉〈−k|, S−+ = (S+−)†, and, as before,S3 :=
∑N

k=1 |+k〉〈+k| − |−k〉〈−k|. It
follows that in the{|±〉} basis the system can be viewed as an ensemble of two level atoms
driven by a laser with a photon-number-dependent Rabi frequency. If we consider the dispersive
regime of this system, i.e.

√
Ng2

2112
� 1, (9)

the atoms prepared in the|−〉 state will experience a Stark shift proportional to(a†a)2,
which gives rise to the desired Kerr nonlinearity. The effective Hamiltonian will be given by
Heff = (g4/412

12)a†aa†aS3. Therefore, if we prepare all the atomic states in the|−〉 state, one
obtains an essentially absorption free Kerr nonlinearity given by

Hkerr =

√
Ng2

2112︸ ︷︷ ︸
�1

√
Ng

211︸ ︷︷ ︸
�1

ga†aa†a. (10)

In the regime we consider, characterized by equations (5) and (9), the first two terms
(
√

Ng2/2112) and (
√

Ng/211) must be much smaller than one. We can also see that the
strength of the effective Kerr nonlinearity does not depend on the number of atoms, as we can
tune11 and2 independently. As such, the maximum achievable nonlinearity is limited byg,
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which depends on the properties of the cavity and of the atoms employed. A more detailed
derivation of effective Hamiltonian given by equation (10) is presented in the appendix.

We note that under the conditions we impose each atom interacts independently with the
cavity mode. Therefore, if each atom has a different Rabi frequencygi , which is the case when
e.g. an atomic cloud is released in an optical cavity, then the resulting nonlinear coupling term
will be identical to the one given by equation (10), but with g4 replaced by

∑
i g4

i . Moreover,
for the same reason the scheme is robust if some of the atoms are not in the|−〉 state, which is
clear from the form ofHeff.

3. Many atoms regime

We now proceed to show that, in fact, our set-up can be modified to give nonlinear interactions
which increase withN. The joint atomic operatorsS+−, S−+ andS3 satisfysu(2) commutation
relations:

[S+−, S−+] = S3, [S3, S±∓] = ±S±∓. (11)

Defining the canonical transformationU = exp(µa†a(S+− − S−+)), with µ := g2/(112) �

1 [31], we can use the Hausdorff expansion (exp(x A)Bexp(−x A) = B + x[ A, B] +
x2[ A, [ A, B]]/2 + · · ·) to obtain from equation (8)

Hrot := U †(H int
1 )U ≈

2

2
S3 −

(
g2

211

)2 1

2
(a†a)2S3 +

(
g2

211

)3 1

22
(a†a)3(S+− + S−+). (12)

Suppose we had a way of generatingHrot. If we prepared all the atoms in the|−〉 state, the
effective photonic Hamiltonian would be given by the second term in equation (12) as long as(

g2

211

)3 √
N

23
� 1. (13)

The condition above is given by the ratio of the coefficient of the normalized atomic operator
S3/

√
N, given by (

√
N2/2), and the coefficient of the term(a†a)3(S+− + S−+), equal to

(g2/211)
2 1

2
. The former gives the energy spacing between the first and second collective atomic

excitation in the rotated basis, whereas the later is responsible for Rabi oscillations between
these. Condition (13) then ensures that basically no transition from|−〉 to |+〉 happens. Note
that it is much less stringent than the one given by equation (9). In particular, setting2 such
that(g2/211)/2 = N−1/4, equation (13) is satisfied for largeN, and we obtain a nonlinearity of

(
√

Ng/11)N1/4ga†aa†a, (14)

while maintaining the same level of error due to spontaneous emission, dephasing and cavity
decay rate. For instance, withN = 104 and(

√
Ng/11) = 0.1, we obtain a nonlinearity equal to

the Rabi frequencyg, which is at least two orders of magnitude larger than possible in the single
atom case.

It is indeed possible to realize the unitary operatorV(t) = exp(it H rot) for every t. We
have thatV(t) := U † exp(it H int

1 )U , hence it sufficies to show how to create the unitaryU .
Consider the Hamiltonian given by equation (4) when the classical lasers are switched off,
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Figure 2. Sequence of operations generatingV(t). Blue and red areas correspond
to the time the lasers with Rabi frequencies� and3 are on, respectively. The
green area illustrates that the Jaynes–Cummings interaction between the cavity
mode and the atoms is on at all times. The scales do not reproduce reality in
general. For example,t will be much larger than 1/2 in most cases.

i.e. H = g(e−i11taS20 + ei11ta†S02). Suppose we apply to the atoms a fast laser pulse, described
by the unitary operatorM that generates the transformation

|0k〉 → (|0k〉 + i|1k〉)/
√

2, |1k〉 → (|0k〉 − i|1k〉)/
√

2, (15)

let HamiltonianH run for a timet and apply the inverse transformationM†. Then, the total
evolution operator will be given by

M† exp

(
ig

∫ t

0
(e−i11t ′aS20 + ei11t ′a†S02) dt ′

)
M

= exp

(
ig

∫ t

0

√
2g(e−i11t ′a(S20 + iS21) + h.c.) dt ′

)
. (16)

As
√

Ng/11 � 1, we can once more adiabatically eliminate level 2 and approximate the unitary
evolution above by exp(t (g2/11)a†a(S+ − S−)), which isU when t = 1/2. The sequence of
operations executingV(t) is shown in figure2.

4. Error analysis and numerics

In order to check the accuracy of our approach, we simulated it numerically for one and
two atoms. We assume that the unitary evolution given by equation (16) if created by a
π/2 pulse of the HamiltonianHlaser= �(|0〉〈1| + |1〉〈0|). We choose� = 100g, which gives
a tπ/2 = π/(2�). The other parameters areg = 108 s−1, 52 = gN1/3, and11 = 10

√
Ng. With

these values, the quality of the approximation, which is determined by the value of the LHS
of equation (13) and

√
Ng/11, should be constant. A good figure of merit in this respect is

given by X = |〈n| ⊗ 〈−|V(t)|−〉 ⊗ |n〉|, whereV(t) is the total unitary operator formed by
concatenating the steps explained above (see figure2 for a graphic description of the procedure),
|n〉 is the nth Fock state of the photons, and|−〉 := |−1〉 ⊗ · · ·⊗ |−N〉. In the case of an
ideal Kerr nonlinearityX should be equal to one at all instants of time. As can be seen in
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Figure 3. (a) X = |〈n| ⊗ 〈−|V(t)|−〉 ⊗ |n〉| versust for (N, n) = (1, 2) (blue)
and (2, 2) (green), with g = 108 s(−1), 52 = gN1/3, � = 100g, and 11 =

10
√

Ng; (b) Y = Re(〈n| ⊗ 〈−|V(t)|−〉 ⊗ |n〉) versust for (N, n) = (1, 1) (blue
solid line),(1, 2) (blue dashed line),(2, 1) (red solid line) and(2, 2) (red dashed
line), with g = 108 s−1, 11 = 10g, 2 = g, and� = 100g.

figure3(a) we get a good agreement with the ideal case both for 1 and 2 atoms. In particular the
quality of the approximation does not deteriorate with the number of atoms, as expected from
our analytical calculations. In figure3(b) in turn we plotted Re(〈n| ⊗ 〈−|V(t)|−〉 ⊗ |n〉) for
(N, n) = (1, 1), (1, 2), (2, 1), (2, 2), with the parametersg = 108 s−1, 11 = 10g, 2 = g, and
� = 100g. We found a very good agreement with the dynamics of a pure photonic nonlinearity
of strengthκ = Ng4/412

12, for which Re(〈n| ⊗ 〈−|V(t)|−〉 ⊗ |n〉) = cos(κn2t).
The main source of decoherence in the system under analysis is spontaneous emission

from the upper level and cavity decay due to the finite quality factor of the cavity used.
Dephasing can usually be disregarded as its effects are much smaller. The upper level is hardly
populated, so spontaneous emission from it should not play an important role. Indeed, the
effective spontaneous emission rate can be estimated by the product of the population of the
upper level|2〉, given by (g2/12

1), with the spontaneous emission rate. As we work in the
regimeg/11 � 1, the effective spontaneous emission rate can be shown to be several orders of
magnitude smaller than the effective nonlinearity (see section6 for further discussion). The main
source of decoherence is therefore cavity decay. First, as mentioned before, in order to justify
the use of one single mode describing the cavity field, one need to ensure that11, 12 � κ,
whereκ is the cavity decay rate. The derivation can then be carried through independently
of the exact value ofκ. Of course in the end the dynamics will have a contribution from the
effective nonlinear term and from the leaking out of photons from the cavity. In order to have
a good approximation for a pure photonic nonlinearity the strength of the effective interaction
should therefore be much larger thanκ. As shown in section6 this condition can indeed be
achieved in several cavity QED set-ups.

We have numerically checked the effect of decoherence by simulating the full evolution
in the case of one atom, considering the effect of dephasing, spontaneous emission from the
upper level and cavity decay. The parameters used areg = 109 s−1, 3 = 2g, 11 = 103, and
12 = 53. Moreover, we considerκ = 106 s−1, γ = 106 s−1, and θ = 103 s−1 for the cavity
decay rate, spontaneous emission rate, and dephasing rate, respectively. As discussed in
section6, these parameters are within reach in several cavity QEP set-ups. The dynamics of
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Figure 4. X = Re(〈3| ⊗ 〈−|V ′(t)|−〉 ⊗ |1k〉3) versus t for g = 109 s−1, 3 =

2g11 = 103, 12 = 53, κ = 106 s−1, γ = 106 s−1, andθ = 103 s−1. The damping
in the oscillations show the effect of losses due to spontaneous emission from
the excited level, cavity decay rate, and dephasing from all three levels. With
the realistic parameters considered one achieves a good approximation to the
ideal case.

Re(〈3| ⊗ 〈−|V ′(t)|−〉 ⊗ |3〉) is plotted in figure4 where nowV ′(t) is the non-unitary operator
describing the full Hamiltonian and the decoherence sources. It should be contrasted with the
evolution due to an ideal Kerr nonlinearity, given by cos(κ9t).

5. Cross-Kerr nonlinearities

Up to now we have discussed the case of self-Kerr nonlinearities. In a cross-Kerr nonlinearity,
one optical field induces a Stark shift in another field proportional to the intensity of the former.
In terms of two optical modesa andb, the Hamiltonian is given byHcross= va†ab†b. There
are two possible generalizations of the scheme introduced here to produce large cross-Kerr
nonlinearities.

As shown in figure5(a), we may choose settings as in equation (4), but now, we have a
second cavity modeb coupled to the transition|1〉 → |2〉 with Rabi frequencygb and detuning
11b. As shown in [32], this could be achieved using two degenerate cavity modes with orthog-
onal polarization. Carrying over the same analysis we did for the one mode case, we can find in
this case

Heff =
1

2

(
g2

a

211a

a†a −
g2

b

211b

b†b

)2

S3. (17)

Hence, in addition to a self-Kerr nonlinearity for each mode, we find a cross-Kerr nonlinearity
between them.

In the second case, we consider the level structure shown in figure5(b). We have two modes
a andb coupled to the transition|0〉 → |2〉 with detunings11 ± δ, respectively. As discussed
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Figure 5. Level structures for generating cross-Kerr nonlinearities. Coupling to
the cavity mode is shown in green and to classical lasers in blue.

in [25], this set-up could be realized in a toroidal microcavity, wherea andb are the normal
modes of the clockwise and counter-clockwise propagating modes, andδ is the rate of tunnelling
between those two. In this case, the effective Hamiltonian can be found to be

Heff =
1

2

(
g2

a

2(11 − δ)
a†a +

g2
b

2(11 + δ)
b†b

)2

S3. (18)

6. Possible experimental realizations

Our scheme can be applied to a variety of cavity QED settings. This includes single or an ense-
mble of atoms trapped in fibre-based cavities [23] or optical microcavities [12], [24]–[27],
where for the single atom case ratios ofξ/κ ≈ 625 andξ/γ ≈ 245 for the nonlinearity strength
(ξ ) over cavity decay rateκ and effective spontaneous emissionγ , respectively, have been
predicted to be feasible [33], and quantum dots embedded in photonic bandgap structures, where
ratios of ξ/κ ≈ 40 andξ/γ ≈ 12 could be achieved [28]. Cooper-pair boxes coupled to a rf
transmission line [29] could also be a suitable set-up in the longer run, when the problem related
to the absence of two metastable levels is overcome. Even considering the decay between levels
|1〉 and|0〉 in such systems, promising ratios ofξ/κ ≈ 15 andξ/γ ≈ 0.5 could be realized [30]
using the values of the recent experiment [30].

In implementations based on atoms, e.g. [2, 5, 12], [23]–[27], one can safely neglect the
spontaneous emission from the two metastable levels, as their lifetime is several orders of
magnitude larger than the time the photon stays in the cavity. In settings based on quantum dots,
one can also find metastable configurations, whose lifetimes, although much smaller than in the
atomic case, would still be large in comparison to the timescales involved in the experiment (see
e.g. [34]). In such cases, the effective spontaneous emission rate is given by the product of the
population of the upper level|2〉, given byg2/12

1, with the spontaneous emission rate. In the
absence of two metastable levels, as it is the present case of rf cavities interacting with Cooper
pair-boxes,γ is just the spontaneous emission rate from|1〉 to the ground state|0〉.

As an example of the applicability of our scheme to engineer nonlinearities which grow
with the number of atoms, we consider the recent experiment [24] (see also [23]) in which a
Bose–Einstein condensate of 4× 105 87Rb atoms was strongly coupled to a single cavity mode
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of an ultra-high finesse optical cavity, with cavity decay rateκ, spontaneous emission rateγ ′

and Rabi frequencyg of 8, 18 and 70 MHz, respectively. We could apply our scheme to this
set-up using for instance two Zeeman sublevels as the two metastable levels. The estimated
nonlinearityξ could then be as large asg itself, which would allow the realization of ratios
ξ/κ ≈ 11 andξ/γ ≈ 39 for nonlinearity strength (ξ ) over cavity decay rateκ and spontaneous
emission rateγ .

7. Summary

We have presented a new proposal for producing giant Kerr nonlinearities in cavity QED
systems which generates nonlinearities at least two orders of magnitude larger than previously
considered possible. These, in turn, could be applied to the implementation of photonic quantum
information processing, as well as paving a way to the observation of quantum many-body
phenomena in arrays of coupled cavities.
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Appendix. Derivation of the effective dynamics

In this appendix we provide a more explicit derivation of the effective Hamiltonian given by
equation (10) in the hope of giving the reader a better understanding of the steps taken. To
analyse the system Hamilonian given by equation (4) more carefully, let us perform an adiabatic
elimination of the upper atomic level, for the case of one atom in the sake of clarity. We first
consider Dyson’s series for the propagator of Hamlitonian (4) up to third order,

U (t, 0) ≈ 1 − i
∫ t

0
H(t1) dt1 −

∫ t

0

∫ t1

0
H(t1)H(t2) dt1 dt2

+ i
∫ t

0

∫ t1

0

∫ t3

0
H(t1)H(t2)H(t3) dt1 dt2 dt3. (A.1)

We have∫ t

0
H(r ) dr =

igt

11

(
(e−i11t

− 1)|0〉〈2|a†
− (ei11t

− 1)|2〉〈0|a
)

+

√
2i3t

12

(
(e−i12t

− 1)|+〉〈2| − (ei12t
− 1)|2〉〈+|

)
, (A.2)
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and∫ t

0
H(r ) dr

∫ r

0
H(r ′) dr ′

=
ig2

11

(
−t |0〉〈0|a†a +

i e−i11t

11
|0〉〈0|a†a

)

+
i
√

23g

12

(
−

i e−i(11−12)t

11 − 12
|0〉〈+|a† +

i e−i11t

11
|0〉〈+|a†

)
+

ig2

11

(
t |2〉〈2|aa† +

i ei11t

11
|2〉〈2|aa†

)

+
i
√

23g

11

(
i e−i(12−11)t

√
2(12 − 11)

|2〉〈2|a +
i ei11t

√
211

|2〉〈2|a

)

+
i
√

23g

11

(
i ei(11−12)t

11 − 12
|+〉〈0|a +

i e−i12t

12
|+〉〈0|a

)
+

i232

12

(
−t |+〉〈+| +

i e−i12t

12
|+〉〈+|

)
+

ig3

11

(
i e−i(11−12)t

11 − 12
|2〉〈2|a†

−
i ei12t

12
|2〉〈2|a†

)
+

i232

12

(
t |2〉〈2| +

i ei12t

12
|2〉〈2|

)
. (A.3)

The regime we are interested in, as outlined in the main text, is characterized by the following
conditions:

g � 11, 3 � 12, (A.4)

33

(12)2
�

g2

11
�

32

12
. (A.5)

There are two terms in the third-order term of Dyson’s series which might be comparable to
g2/11. Keeping just these, we have∫ t

0
H(r ) dr

∫ r

0
H(r ′) dr ′

∫ r ′

0
H(r ′′) dr ′′

≈
t
√

232g

1112
|+〉〈2|a†

−
2t32g

1112
|2〉〈0|a.

Hence,

U (t, 0) ≈ 1 +
ig2t

11
|0〉〈0|a†a −

ig2t

11
|2〉〈2|aa† +

i232t

12
|+〉〈+| −

i232t

12
|2〉〈2|

+
it
√

232g

1112
|+〉〈2|a†

−
i2t32g

1112
|2〉〈0|a. (A.6)

Thus, we can approximate the propagator as follows

U (t, 0) ≈ exp

(
− it

(
g2

11
|0〉〈0|a†a −

g2

11
|2〉〈2|aa† +

232

12
|+〉〈+|

−
232

12
|2〉〈2| +

√
232g

1112
|+〉〈2|a†

−
232g

1112
|2〉〈0|a

))
. (A.7)

New Journal of Physics 10 (2008) 043010 (http://www.njp.org/)

http://www.njp.org/


13

Defining

H :=
g2

11
|0〉〈0|a†a −

g2

11
|2〉〈2|aa† +

232

12
|+〉〈+| −

232

12
|2〉〈2|

+

√
232g

1112
|+〉〈2|a†

−
232g

1112
|2〉〈0|a, (A.8)

we can go to the interaction picture with respect to

232

12
|+〉〈+| −

(
232

12
−

g2

11

)
|2〉〈2| +

g2

211
a†a (A.9)

and obtain an effective Hamiltonian, which—up to unimportant constants—is given by:

g4

12
12

(S01 + S10)(a
†a)2 +λ|+〉〈+|a†a +µ|2〉〈2|a†aa†a (A.10)

whereµ andν are of the same order as(g4/12
12). If we now prepare the atom into the state

|−〉, we get only the desired Kerr nonlinear term given by equation (10).
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