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I. EXPERIMENTAL SETUP

A schematic of the 2D-TTR experiment is shown in Fig. S1(a). As outlined in the

Methods section of the main text, the heart of the system is a 38 fs Coherent Legend Elite

USP Ti:Sa regenerative amplifier seeded by a 80 MHz Coherent Mantis oscillator. The 3.6

mJ, 800 nm pulses from the amplifier are sent into an optical parametric amplifier (OPA,

Light Conversion Ltd) and downconverted to 1450 nm (signal, 500 µJ) and 1780 nm (idler,

330 µJ). The OPA signal beam is routed through a second delay line (t1, Fig. S1(a))

and used to drive a 3 mm aperture DSTMS (4-N,N-dimethylamino-4-N-methyl-stilbazolium

2,4,6-trimethylbenzenesulfonate) THz generation crystal (Rainbow Photonics). The OPA

idler output is sent directly to a second 3 mm aperture DSTMS crystal. The DSTMS crystals

are optimized for THz generation phase matching near 1450 nm, but we achieve a roughly

equivalent THz power near 1700 nm. The 1450 nm signal/1780 nm OPA setting was chosen

to optimize the THz power of both beams, taking into account the wavelength dependent

conversion efficiency of the OPA and the DSTMS efficiency.

The two separate THz pulses (3 mm beam diameter) from the signal and idler OPA

beams are combined on a knife edge prism mirror, and residual optical light is blocked with

a thin layer of black polyethylene and a roughened TOPAS plate. The THz pulses are run

through a Gaussian telescope with 7.5× magnification (22.5 mm THz beam diameter) and

then focused onto the sample with a 2 inch Effective Focal Length (EFL) 90 degree off axis

parabolic mirror. Both pulses have a peak field strength of ∼300 kV/cm at the sample.

Liquids are held in a 1 mm path length Suprasil quartz cuvette. The transient birefringence

in the sample is probed with a small portion of the 800 nm light (1 mW) that is split off

from the amplifier and sent down a mechanical delay line (t2, Fig. S1(a)). As described in

our previous work, we have implemented heterodyne detection of the transient birefringence

using a 105:1 optical polarizer, an 800 nm λ/4 plate, a Wollaston prism, and a pair of silicon

photodiodes[1]. No nonlinear signal was detected from the empty quartz cuvette.

To isolate the two-pulse 2D-TTR signal we chop the signal beam at frep/6 and the

idler beam at frep/4, where frep = 1 kHz, the repetition rate of the laser. We detect

the birefringence on a lock in amplifier at frep/12=83.3 Hz. The 1 pulse rejection of the

experiment on CS2 is shown in Fig. S2(a). When either the signal or idler is blocked there

is no detectable interference from the single pulse signals, confirming that the experiment is
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FIG. S1. (a) A diagram of the 2D-TTR experiment. See text for details. (b) The pulse sequence

used in 2D-TTR spectroscopy. (c) The measured time domain traces of the THz pulses using

electro-optic sampling in a 200 micron thick GaP crystal. (d) The FFTs of the traces shown in (c).

exclusively sensitive to the two pulse signal. Next, we measured the single pulse signals and

compared their intensity with the two pulse signal (Fig. S2(b)). The two pulse signal is 2×

stronger than the idler response and 4× stronger than the signal response.

The THz fields from both the signal- and idler-driven DSTMS emitters were measured

with electro-optic detection using a 200 micron thick GaP crystal placed at the sample

position (Fig. S1(c)). The bandwidth of the signal pulse extends from 0.5-5 THz, while

that from the idler extends over 0.5-4 THz. The polarization purity of the THz pulses were

measured with a wiregrid polarizer and a Gentec-EO inc. QS3-IL broadband pyroelectric

detector mounted in a QS-I-TEST box at the sample position. The signal THz pulse has

a polarization purity of 80%, while the idler THz pulse has a polarization purity of 90%.

Finally, the peak field strength of both THz fields are ∼300 kV/cm measured with the same

pyroelectric detector and the EO traces. The details of the THz field strength measurement

are given in our previous work[1].
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FIG. S2. (a) The measured single pulse rejection of the 2D-TTR experiment. No interference from

single pulse signals could be detected. (b) The 2- and 1-pulse responses of liquid CS2. The 2-pulse

signal is stronger than either 1-pulse response.
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FIG. S3. Polarization directions relevant to the 2D-TTR experiment.
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FIG. S4. Time domain traces of the total THz electric field, including polarization at (a) t1=0 fs,

(b) t1=150 fs, and (c) t1=250 fs.

II. ORIENTATIONAL MODEL

A schematic of the light polarizations used in the 2D-TTR experiment is shown in Fig.

S3. THz pulse A is polarized vertically, or along the ŷ unit vector, while THz pulse b is

polarized horizontally, or along the x̂ unit vector. When the THz pulses are overlapped

in time, the polarization of the total field is dependent on t1. For example, at t1 = 0 fs

the field is rotated roughly toward the î direction (Fig. S4(a)), while at t1=250 fs the ĵ

direction (Fig. S4(c)). At t1=150 fs the field is roughly circular, with equal components
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along the î and ĵ directions (Fig. S4(b)). The NIR probe pulse is oriented along the ŷ

direction and the balanced detection is sensitive to the difference in the change of refractive

index oriented along î (n1) and along ĵ (n2): S ∝ ∆n(t) = n1(t)− n2(t). In the absence of

an excitation field in an isotropic liquid n1 = n2 so ∆n = 0. When a THz pulse is applied

in the î direction, this leads to a signal given by

∆ni(t) =

∫
dt2R(t2)E

2
1(t− t2), (1)

where R is the response function of the liquid and E1 is the field oriented in the î direction.

For an isotropic medium, excitation along the ĵ direction causes a sign change in ∆n

∆nj(t) = −
∫
dt2R(t2)E

2
2(t− t2), (2)

where E2 is the field oriented in the ĵ direction. The total signal is thus

∆ntot(t) = ∆ni(t) + ∆nj(t). (3)

The total THz field is given by Etot = EAx̂ + EBŷ. Alternatively, we can express this in

the î, ĵ coordinate system

Etot =

√
2

2
(EA + EB)̂i+

√
2

2
(EB − EA)ĵ = E1î+ E2ĵ, (4)

∆ntot(t) =

∫
dt2R(t2)E

2
1(t− t2)−

∫
dt2R(t2)E

2
2(t− t2). (5)

Plugging in our values for E1 and E2 we get (for a given value of t1)

∆ntot(t) = 2

∫
dt2R(t2)EA(t− t2)EB(t− t2). (6)

Now, using the model from our previous work we break the response function into two

components: an instantaneous electronic response and a single exponential orientational

response[1]. We use the measured electric fields to calculate the electronic portion of the

signal, or

Se(t1, t2) = EA(t2 + t1)EB(t2). (7)
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FIG. S5. A comparison of the various 2D pulse sequences that have been used to study low energy

modes of liquids via interactions with a three level system[2–4]. The signals from these techniques

provide different information and are thus complementary[5].

We then calculate the orientational portion of the signal, So, with the discrete time step

equation

So(t1, t2 + ∆t2) = So(t) + [EA(t2 + ∆t2 + t1)EB(t2 + ∆t2)− So(t2)/τ ]∆t2, (8)

where τ is the orientational decay constant[1].

III. PERTURBATIVE DENSITY MATRIX DERIVATION

For the 2D-TTR experiment we have two THz pulses followed by one Raman pulse. If

we assume a third order interaction (the leading order contribution) this limits us to signals

that originate from the interaction of light with a three-level system (triad) and at least one

transition that is forbidden in the harmonic representation (Fig. S5). To understand the

measured signals we start with the nonlinear polarization [6, 7]

P (3)(t) =

∫∫
dt1dt2R

(3)(t1, t2)EB(t− t2)EA(t− t1 − t2)Enir(t), (9)

and the third order response function [6, 7]
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R(3)(t1, t2) = − 1

h̄2
tr〈Π(t1 + t2)[µ(t1)[µ(0), ρeq]]〉 . (10)

where ρeq is the equilibrium density matrix. Expanding commutators yields:

R(3)(t1, t2) =− 1

h̄2
tr〈Π(t1 + t2)µ(t1)µ(0)ρeq − Π(t1 + t2)µ(t1)ρeqµ(0)

+ Π(t1 + t2)ρeqµ(0)µ(t1)− Π(t1 + t2)µ(0)ρeqµ(t1)〉.
(11)

For shorthand, we now designate Π(t1 + t2) as Π, µ(0) as µ0, and µ(t1) as µ1. Any TTR

signal must come from one of four interactions

tr〈Πµ1µ0ρeq〉; tr〈Πµ1ρeqµ0〉; tr〈Πρeqµ0µ1〉; tr〈Πµ0ρeqµ1〉. (12)

This leads to 24 possible interactions plus their complex conjugates, all of which are shown

in Fig. S6 with double-sided Feynman diagrams. From this point forward, we will, by

convention, only consider the 24 terms in Fig. S6 and not their complex conjugates, as the

conjugate terms do not carry any extra information. Adding the 24 terms together yields

12 distinct terms plus their complex conjugates:

R(3)(t1, t2) ∝µabµbcΠac((ρbb − ρaa)e−iωabt1e−iωact2 − (ρcc − ρbb)e−iωbct1e−iωact2)

+ µacµbcΠab(ρcc − ρaa)e−iωact1e−iωabt2 − µabµacΠbc(ρbb − ρaa)e−iωabt1e+iωbct2

+ µbcµacΠab(ρcc − ρbb)e−iωbct1e+iωabt2 − µacµabΠcb(ρcc − ρaa)e−iωact1e−iωbct2 + c.c.

(13)

where ρxx is a diagonal entry in the equilibrium density matrix corresponding to the popu-

lation of state x. We now define the population, px, and population difference, pxy,

ρxx = px, pxy = py − px, (14)

and plug these in the response function:

R(3)(t1, t2) ∝µabµbcΠac(pabe
−iωabt1e−iωact2 − pbce−iωbct1e−iωact2)

+ µacµbcΠabpace
−iωact1e−iωabt2 − µabµacΠbcpabe

−iωabt1e+iωbct2

+ µbcµacΠabpbce
−iωbct1e+iωabt2 − µacµabΠcbpace

−iωact1e−iωbct2 + c.c.

(15)
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The THz pulses used in this work have a modest bandwidth of 0.5-4.0 THz. This is less

than the lowest energy vibration in all three molecules studied. Thus, the THz light contains

sufficient bandwidth to excite ωab and ωbc, but not ωac. Including this assumption, hereafter

called assumption (i), we are left with

R(3)(t1, t2) ∝ µabµbcΠac(pabe
−iωabt1e−iωact2 − pbce−iωbct1e−iωact2) + c.c. (16)

2D-TTR spectra for these interactions are shown in Fig. S7. With assumption (i) we expect

two non-rephasing off-diagonal peaks for each triad, while with no assumptions we expect 4

non-rephasing and 2 rephasing peaks.

If we assume a very small angle between the two THz beams, we can determine the

direction of various Liouville pathways from the Feynman diagrams. In this geometry, all

three beams are in the same plane and the angle between ~kA and ~kB is bisected by ~knir. For

the 8 pathways observed in this work, the direction of the nonlinear signal is ~kA +~kB +~knir

and −~kA − ~kB + ~knir. If we assume |~kA| = |~kB| then these signals will be collinear with

~knir. For the 16 remaining Liouville pathways this is not the case. They will have directions

given by ~kA − ~kB + ~knir and −~kA + ~kB + ~knir. These signals would be slightly offset from

~knir. However, due to the high divergence of THz light, the two THz beams will be nearly

collinear at the sample and these various signals will overlap with ~knir.

IV. SYMMETRY ANALYSIS

Using group-theoretical arguments, one can show that for any transition dipole matrix

element to be non-zero, the following must be true

〈Ψa |µ̂|Ψb〉 6= 0⇔ Γa ⊗ Γµ ⊗ Γb ⊃ A1,

where Ψj are vibrational eigenstates, µ̂ is the dipole operator, Γi denotes the irreducible

representation of these and A1 refers to the totally symmetric representation. In the fol-

lowing, this identity will be used to analyze which transitions in CBr2Cl2 are forbidden in

the isolated molecule limit. The point group of CBr2Cl2 is C2v, for which the irreducible

representations of the dipole operator are A1, B1 and B2. As in C2v all elements are their

own inverse, the direct product of the irreducible representations of any two vibrational

states must also be A1, B1 or B2 to give a non-zero transition probability. Consequently, for
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any two vibrational states where the direct product of the irreducible representations is A2,

there will be zero transition probability. This is the case when the two vibrational states

under consideration transform according to A1 and A2 or B1 and B2, respectively. Thus,

e.g., the transition between |01000〉 and |00010〉 is forbidden.

The same analysis can be done for CCl4 and CHBr3, but none of the transitions between

the excited states considered in this work are forbidden.

V. REDUCED DENSITY MATRIX (RDM) SIMULATION

A reduced density matrix approach [6, 7] is used to qualitatively simulate the 2D-TTR

spectra. The time evolution of the reduced density matrix ρ is given by the Liouville-Von

Neumann equation

ih̄
∂ρ

∂t
= [H ,ρ] , (17)

where H is the matrix representation of the Hamilton operator of the system under con-

sideration. In this work, the time evolution is numerically calculated using a second-order

differencing technique [8]

ρ (t+ ∆t) = ρ (t)− i

h̄
[H (t) , ρ (t)] 2 ∆t− 2Γ ∆t, (18)

where Γi,j = (1 − δi,j) 1
τi,j

defines the off diagonal decay to phenomenologically incorporate

dephasing caused by the surrounding bath with an associated time-scale, τi,j[6, 7].

The time-dependent HamiltonianH (t) can be split into a time-independent Hamiltonian

H0 describing the n-level system under consideration and a time-dependent Hamiltonian

HL(t) describing the interaction of the system with the two THz pulses

H0
i,j = Eiδi,j, (19)

HL
i,j(t) = µi,jF (t), (20)

where Ei is the energy of the i-th system eigenstate, µi,j is the transition dipole moment

between state i and j and the time-dependent laser field F (t) is given as

F (t) = A
∑
i=1,2

e
−(t−τi)

2

2σ2
i cos(ωi(t− τi)), (21)
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where τi, σi, and ωi are the center, the width, and the frequency of the i-th laser pulse,

respectively and A denotes the global field strength.

The final molecular polarizability (see Eq. (1) of the main text) is calculated as

P (t) = tr (D ρ(t))−
∑
j=1,2

tr (Dρj(t)) , (22)

where the matrix D contains transition probabilities for the final Raman interaction and

ρj(t) was propagated under the influence of the j-th laser field only. The last term cancels

any contributions from first-order interactions to the molecular polarizability. The final

spectrum is obtained by fixing one of the THz laser pulses at τ1 = 0.0 fs. This laser

pulse is used to define the experimentally controlled delay times t1 = −τ2 and t2 = t.

Frequency-domain spectra are then obtained applying the same Fourier transform that is

used to process the experimental data. To avoid problems with overlapping laser pulses,

only values of τ2 > σ1 are chosen. This is reasonable as the experimental spectra with the

same constraints are very similar to the full experimental spectra (see Fig. S8), but exhibit

lower signal-to-noise ratio and resolution.

The initial density matrix is thermally populated with a temperature of 300 K and then

propagated from time ts to time te. Eigenstate energies of the systems under consideration

are taken from linear measurements (Fig. S9, [9–11]), and the energies of overtones are

taken by summing the respective contributions, e.g. the energy of a doubly excited state

is twice the energy of the singly excited state. The relative transition dipole moments are

chosen to reproduce the experimental measurements and all IR transitions between states

with more than 4 THz energy difference are forbidden. All other numerical values chosen

are summarized in Tables S1 - S3.

VI. ANALYSIS OF EXPERIMENTAL AND RDM SIMULATED SPECTRA FOR

DIBROMODICHLOROMETHANE

In this section, the robustness of the simulated CBr2Cl2 spectrum is investigated by

studying a set of different coupling patterns. The experimental spectrum is shown in Fig.

S10(a), while several simulated spectra are shown in Fig. S10(b-f). First, we will consider

the case where the ν4 and ν5 states are only coupled to the ν3 state. As detailed in Sec.

IV of the SI, the coupling of the ν3 state to the ν5 state can be excluded due to their
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CHBr3 CCl4 CBr2Cl2

State E State E State E

|00〉, A1 0.0 |00〉, A1 0.0 |00000〉, A1 0.0

|10〉, E 4.76 |10〉, E 6.51 |10000〉, A1 4.62

|01〉, A1 6.68 |01〉, F2 9.29 |01000〉, A2 5.25

|20〉, A1 + A2 + E 9.52 |20〉, A1 + A2 + E 13.0 |00100〉, B1 6.87

— — — — |00010〉, A1 7.25

— — — — |00001〉, B2 7.85

— — — — |20000〉, A1 9.24

— — — — |11000〉, A2 9.86

— — — — |02000〉, A1 10.5

TABLE S1. Eigenstate energies used in the calculations, in THz. (Fig. S9, [9–11]) The notation

is taken from the main text and symmetry labels are given for all states.

CHBr3 CCl4 CBr2Cl2

i, j µi,j i,j Di,j i, j µi,j i,j Di,j i, j µi,j i,j Di,j

|10〉, |01〉 0.01 |00〉, |10〉 1.0 |10〉, |01〉 0.01 |00〉, |10〉 1.0 |10000〉, |00100〉 0.01 |00000〉, |10000〉 1.0

|01〉, |02〉 0.01 |00〉, |01〉 1.0 |01〉, |02〉 0.01 |00〉, |01〉 1.0 |01000〉, |00100〉 0.01 |00000〉, |01000〉 0.5

— — |10〉, |20〉 1.0 — — |10〉, |20〉 1.0 |00100〉, |20000〉 0.01 |00000〉, |00100〉 1.0

— — — — — — — — |00100〉, |11000〉 0.01 |00000〉, |00010〉 1.0

— — — — — — — — |00100〉, |02000〉 0.01 |00000〉, |00001〉 1.0

— — — — — — — — — — |10000〉, |20000〉 1.0

— — — — — — — — — — |10000〉, |11000〉 0.5

— — — — — — — — — — |01000〉, |11000〉 1.0

— — — — — — — — — — |01000〉, |02000〉 0.5

TABLE S2. Non-zero matrix elements for the dipole transition matrices, in Debye.

symmetry, which leaves coupling between the ν4 and the ν5 states. In panel (c) of Fig. S10

the simulated spectrum for this coupling pattern is shown. There is only one peak observed

in this spectrum, which roughly matches the position of the experimentally observed double

peak at (4.9 THz, 3.1 THz) and (4.9 THz, 2.5 THz). However, the four other experimentally
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τ1 in fs 0.0

τ2 in fs -300 – -2000

∆τ2 in fs 50

σ1 in fs 250

σ2 in fs 250

ω1 in THz 3.0

ω2 in THz 2.5

A in MV/cm 0.3

τi,j in fs 1500

ts in fs -4000

te in fs 4000

∆t in fs 1.0

TABLE S3. Summary of general parameters used in the density matrix propagation.

observed peaks are completely missing in this spectrum. It should be noted that ignoring any

symmetry arguments and allowing coupling of the ν3 and ν5 states also results in a spectrum

qualitatively different from the experimentally observed spectrum (see Fig. S10(e)). In this

case, three major peaks are visible in the simulated spectrum. While the peak at (4.9

THz, 2.8 THz) matches one of the experimentally observed peaks, both peaks along f2=5.2

THz do not match the experimentally observed peaks. Furthermore, the relative intensities

between the peaks along f2=4.9 THz and f2=5.2 THz is inverted for this coupling pattern,

as compared to the experimental results.

Next, the case where the ν4 and ν5 states are only coupled to the ν9 state is investigated

(Fig. S10(d)). In this spectrum, three peaks are visible. However, their positions along the

f1 axis do not match the experimental peaks well, and three peaks are missing completely.

Finally, in Fig. S10(f) a calculated spectrum is obtained allowing full coupling of the ν4

and ν5 states to the ν3, ν7 and ν9 states. While this spectrum is closer to the experimen-

tally measured one than the three cases before, several deviations can be seen. First, the

experimental spectrum shows a double peak at (4.9 THz, 3.1 THz) and (4.9 THz, 2.5 THz),

where the simulated spectrum only shows a single, extended peak. This peak is also shifted

towards larger f1 values compared to the double peak in the experimental spectrum. Second,
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the experimentally observed peak around (4.9 THz, 1.9 THz) is split into two peaks which

occur with a very low intensity. Third, there are only two peaks visible in the theoretical

spectrum at f2=5.2 THz, while experimentally three peaks are observed along f2=5.2 THz.

Furthermore, the positions of the peaks in the calculated spectrum along the f1 axis do not

match the experimental peaks.

Thus, based on this analysis the most plausible explanation is that the ν4 and ν5 states

are most strongly coupled to the ν7 state (Fig. S10(b)). More thorough and quantitative

analysis of the couplings between the vibrational states in liquid CBr2Cl2 is desirable; this

is beyond the scope of this work and is left for future investigation.
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𝑅𝑅 3 𝑡𝑡𝑑, 𝑡𝑡𝑑 ∝𝑑μ𝑜𝑜𝑎𝑎μ𝑎𝑎𝑜𝑜𝜫𝜫𝑜𝑜𝑜𝑜(𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡𝑡𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡2 + 𝑒𝑒−𝑖𝑖ω𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡2) + 𝑐𝑐. 𝑐𝑐. 
+𝑑μ𝑜𝑜𝑜𝑜μ𝑎𝑎𝑜𝑜𝜫𝜫𝑜𝑜𝑎𝑎𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡𝑡𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡2 + 𝑐𝑐. 𝑐𝑐. 
+𝑑μ𝑜𝑜𝑎𝑎μ𝑜𝑜𝑜𝑜𝜫𝜫𝑎𝑎𝑜𝑜𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡𝑡𝑒𝑒+𝑖𝑖ω𝑏𝑏𝑏𝑏𝑡𝑡2 + 𝑐𝑐. 𝑐𝑐 
+𝑑μ𝑎𝑎𝑜𝑜μ𝑜𝑜𝑜𝑜𝜫𝜫𝑜𝑜𝑎𝑎𝑒𝑒−𝑖𝑖ω𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑒𝑒+𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡2 + 𝑐𝑐. 𝑐𝑐 
+𝑑μ𝑜𝑜𝑎𝑎μ𝑜𝑜𝑜𝑜𝜫𝜫𝑜𝑜𝑎𝑎𝑒𝑒−𝑖𝑖ω𝑎𝑎𝑏𝑏𝑡𝑡𝑡𝑒𝑒−𝑖𝑖ω𝑏𝑏𝑏𝑏𝑡𝑡2 + 𝑐𝑐. 𝑐𝑐 

 
 
 

Now we consider all pathways of the TTR response. This leads to 16 more Feynman 
diagrams, as shown on the roadmap slide. The total response now has rephasing 
contributions colored in blue. This response represents all possible pathways in any TTR 
experiment: 

ω𝑜𝑜𝑎𝑎 

ω𝑎𝑎𝑜𝑜 ω𝑜𝑜𝑜𝑜 
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−ω𝑎𝑎𝑜𝑜 −ω𝑜𝑜𝑜𝑜 −ω𝑜𝑜𝑎𝑎 

assumption (i) 

FIG. S7. The 2D-TTR spectra possible in the interaction with a three-level system.
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(b) 

(a) 

FIG. S8. (a) The 2D-TTR spectrum of bromoform, with time domain data acquired from -0.85 ps

< t1 < 1.55 ps. (b) The 2D-TTR spectrum of bromoform, here the time window is 0.3 ps < t1 <

1.55 ps. The resolution and sensitivity are accordingly lower, but the doublet is still present.
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ν6 

ν3 

FIG. S9. The linear spectrum of bromoform, taken with a plasma filamentation THz source, and

a 200 micron thick GaP crystal for EO detection.
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(c) RDM 𝒗𝒗𝟑𝟑 coupling – with symmetry 
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(d) RDM 𝒗𝒗𝒗𝒗 coupling 
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(a) Experiment (b) RDM 𝒗𝒗𝒗𝒗 coupling 
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(e) RDM 𝒗𝒗𝟑𝟑 coupling – no symmetry 
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(f) RDM 𝒗𝒗𝒗𝒗,𝒗𝒗𝒗𝒗,𝒗𝒗𝟑𝟑 coupling 

FIG. S10. The experimental and RDM simulated spectra for various couplings in CBr2Cl2.
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