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A b s t r a c t - - T h i s  work describes an unsplit, second-order accurate algorithm for multidimensional 
systems of hyperbolic conservation laws with source terms, such as the compressible Euler equations 
for reacting flows. It is a MUSCL-type, shock-capturing scheme that integrates all terms of the 
governing equations simultaneously, in a single time-step, thus avoiding dimensional or time-splitting. 
Appropriate families of space-time manifolds are introduced, along which the conservation equations 
deeouple to the characteristic equations of the corresponding 1-D homogeneous system. The local 
geometry of these manifolds depends on the source terms and the spatial derivatives of the flow 
variables. Numerical integration of the characteristic equations is performed along these manifolds 
in the upwinding part of the algorithm. Numerical simulations of two-dimensional detonations with 
simplified kinetics are performed to test the accuracy and robustness of the algorithm. These flows are 
unstable for a wide range of parameters and may exhibit chaotic behavior. Grid-convergence studies 
and comparisons with earlier results, obtained with traditional schemes, are presented. @ 2002 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Considerable  amount  of work had been devoted to the  theoret ical  s tudy  of systems of hyperbol ic  

conservation laws. Most  of the  effort was focused in systems with two independent  variables.  
These variables were, usually, a t ime and a space variable.  As a result  of this  effort, it became 

possible to establish the  existence and uniqueness of weak solutions for such systems and to 
der ive  i m p o r t a n t  p r o p e r t i e s  of  these  solut ions ,  such as t he i r  a s y m p t o t i c  behav ior ,  see [1,21 . T h e  

t h e o r e t i c a l  d e v e l o p m e n t s  were  followed by the  des ign of  accu ra t e  a lgo r i t hms  for t h e  numer i ca l  

a p p r o x i m a t i o n  of  t h e s e  so lu t ions ,  such as t he  M U S C L  scheme  [3], t he  E N O  schemes  [4], t h e  P P M  

m e t h o d  [51, and  o thers .  T h e s e  a lgo r i t hms  take  into account  t he  p resence  of d i scon t inu i t i e s  in t h e  

so lu t ion  by solv ing a 1-D R i e m a n n  p r o b l e m  a t  each  c o m p u t a t i o n a l  cell in terface.  T h e  c o n c e p t s  
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of characteristics and Riemann invariants played a significant role in both the theoretical and 
computat ional  developments on the field. 

The extension, however, of theoretical results to systems with more than two independent 
variables proved to be a very difficult task. The complicated topology of the discontinuous 
solutions admit ted by such systems has not allowed, so far, global existence theories. Furthermore, 
general solution for the multidimensional Riemann problem is not yet available. This does not 
allow a straightforward extension of the various shock algorithms in many dimensions. A robust, 
and in many cases efficient, way to overcome this difficulty is to employ dimensional splitting. 
Such schemes advance the solution to the next time-step through a series of one-dimensional 
computat ions on each spatial dimension. 

Algorithms that  do not employ splitting have also been presented by various authors in the 
past. Such algorithms include the characteristic-based schemes of Deconick et al. [6] and others. 
Colella [7] developed an unsplit scheme by considering the characteristic form of the multidi- 
mensional equations at the cell interfaces. LeVeque [8] designed a finite-volume method b ~ e d  on 
one-dimensional normal and tangential Riemann problems. More recently, Dai and \Voodward [9] 
proposed a scheme based on a single-step Eulerian formulation of the discretized equations. 

An alternative approach for solving homogeneous systems in many spatial dimensions was 
introduced by Lappas et al. [10], who developed an unsplit MUSCL-type scheme for tile 2-D 
compressible Euler equations. In their analysis, a general methodology is developed that  defines 
manifolds in space-time, dubbed, "Riemann invariant manifolds", along which the equations are 
decomposed into the same scalar fields as in the one-dimensional case and then solved numerically. 

The problems arising in the numerical solution of nonlinear hyperbolic equations become more 
complicated when source terms are present because of the development of a much larger number 
of spatial and temporal  scales. The source terms are stiff for most practical applications and this 
makes the integration of the equations even more difficult. The conventional method for solving 
such systems is to introduce time splitting for the source terms, i.e., integration of the source 
term ill an intermediate time-step, in addition to dimensional splitting. 

The present work describes the generalization of the algorithm proposed by Papalexandris et 

al. [11] to multidimensional systems with source terms. A new family of space-time manifolds is 
introduced along which the system of equations can be decomposed into the characteristic ODEs 
for the corresponding one-dimensional homogeneous case. These manifolds are the Riemann 
invariant manifolds for the system under consideration, equivalent to the ones defined in [10] 
for the inert case. This particular decomposition is then employed in the upwinding step of a 
MUSCL-type scheme that  integrates all the terms of the equations simultaneously, in a single 
and fully-coupled time-step. Neither time splitting nor dimensional splitting is performed. In 
the first part  of this paper, the construction of the invariant manifolds and a detailed description 
of the proposed unsplit algorithm are presented. The second part contains numerical tests on 
unsteady, two-dimensional detonations. Discussion of the results is included, with emphasis on 
the instability mechanisms of such flows. Comparisons with results in the literature are also 
nlade. 

2. R I E M A N N  I N V A R I A N T  M A N I F O L D S  
O F  T H E  R E A C T I V E  E U L E R  E Q U A T I O N S  

Consider the Euclidean space-time of N spatial dimensions, t x ~N, and tile following system 
of 2Pl equations, satisfied at each point (t ,x) = (t, Z l , . . .  ,:oN) of t X ~N: 

0 u  + Aj(U) 0U 
Ot Oxj = G ,  j = 1 . . . . .  N .  (1) 

In the quasilinear system above, U( t , x )  = ['ul(t,x) . . . .  ,uM(t ,x)]  is the solution vector, and 
G ( U ,  t, x) = [gl(U, t, x ) , . . . ,  gM (U, t, x)] is the vector of the source terms. Aj (U), j =- 1 . . . . .  N ,  
are 2~,I × M matrices. Summation notation is implied for repeated indices. 
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The Cauchy initial value problem for this system amounts to specifying data  (referred to as 
Cauchy data) at points on some initial N-dimensional submanifold of t x ~ N  8,  and determin- 
ing U tha t  satisfies (1) off this manifold. The idea behind the hyperbolicity of a quasi-linear 
system is tha t  the Cauchy problem be well posed for it, i.e., there exists a unique solution that  
depends continuously on the data  specified on 8. It is interesting to see how the terms of sys- 
tem (1) can be rearranged so that  the derivative of U normal to S (exterior derivative) can be 
expressed in terms of the Cauchy data  and its derivatives in 8 (interior derivatives). 

The way to do this is to consider a coordinate transformation and replace (t ,x)  by a new 
vector, ¢ = [~0,. • •, CN]. The components ¢i(t, x), i = 0 . . . .  , N, are assumed to be differentiable 
functions of their arguments. Keep the variable t unchanged, i.e., 40 = t, and assume that  the 
manifold 8 is associated with one particular coordinate, say CN- The following equation is then 
used to define the manifold $ 

CN(t, x) -- 0. (2) 

The other coordinates ¢i(t, x), i = 1 , . . . ,  N -  1, can be selected arbitrarily, provided tha t  the 
Jacobian of the coordinate transformation, 

= O(t, z l , . . . , X N )  
0 ( ¢ 0 , . . . ,  CN) ' (3) 

is nonvanishing at the points of interest, i.e., in the vicinity of $.  Then system (1) becomes 

(4) 

By making the substitutions 

A =- I ~ + Aj  cgxj ' 

R = _ I +Aj  - ~  - G ,  

(5) 

system (4) yields 
A 0 U  

0¢~  + R = 0. (6) 

Given Cauchy data  on S, all tangential derivatives ou ~7,'  i = 0 , . . . , N -  1 are known. Only the 
S-normal  derivative, i.e., the exterior derivative, is not known. It can be evaluated, however, by 
equation (6) provided that  A -1 exists. This condition implies tha t  the following relation must 
hold on a given point P of $: 

Q(P; n, A) =- det (A) ¢ 0. (7) 

Furthermore, let VCN be the spatial gradient of qSN and define 

--04N 
A =-- ot 

iVCN[' (8) 

IVCNl 

Substituting in the expression for Q(P; n, ,k), one finds tha t  

Q(P; n, )~) = det (-)~I + njAj) . (9) 

This is a homogeneous polynomial of degree M in the quantities (,k, nl , . . . ,  nN) and a first-order 
differential equation for ON(t, X). 
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The surfaces along which this polynomial equals zero are the characteristic surfaces. Tile 
differential equation that  holds on a particular characteristic surface can be found by taking the 
inner product  of the original system with the appropriate left eigenvector, 1~., 

04 (A. U ) l k ' - ~ - + l k "  \ ;oqzj - g  = 0 ,  Iv= 1 . . . .  , M .  (10) 

The system of first-order, quasi-linear equations (1) is defined to be hyperbolic at a point P in 
the space-time t x ~m, if real characteristic surfaces pass through this point, i.e., if the zeros Ak 
of Q(P;  n,  A) are all real, and if its right eigenvectors rk, satisfying 

( - - k k I + n j A j ) r k  = O, k = 1 . . . .  , M ,  (11) 

(no summation on k), span the space E M. The property of hyperbolicity as fornmlated above is 
a local property and depends on both the point P and the Cauchy data  prescribed initially. 

Consider now a sinlple model of chemical interaction of two calorically perfect gases, A -+ B, 
assuming one-step, irreversible, Arrhenius kinetics, and the absence of dissipation mechanisms. 
The conservation equations of the reacting system are given by 

Op 
0-7 + V . (pu) = O, (12a) 

0u  
O--t- + u .  V u  + l v p  = 0, (12b) 

P 
Op 
c3--t- + u .  Vp + 7PV ' u = Kq0(7  - 1) p z  e -E~/T,  (12c) 

Oz 
0-7 + u .  V z  = - K  z e  - ~ / T .  (12d) 

The equation of state of the reacting system is 

T = P-. (13) 
P 

In the equations above, u = (u, v) is the velocity vector, T is the gas temperature normalized by 
the gas constant,  and z is the reactant mass fi'action, satisfying 0 < z < 1. The parameters of 
the system are 

7, the specific heat ratio, assumed common for both species, 
qo, the heat-release parameter, 

E~, the activation-energy parameter, and 
K,  a scaling factor. 

In the system under consideration, there are five dependent unknowns, therefore AI = 5, on a 
three-dimensional space-time, therefore N = 2. 

Assume that  the solution is continuous and consider an arbitrary but fixed spatial unit vector, 
n = (hi ,  n2). Then, for the system above, the characteristic polynomial gives 

where 

( u . n -  A) 3 ( ( u . n -  A) 2 -  (a In[) 2) = O, (14) 

/ - 4 g  
a = ~/---'-~. (15) 

This quanti ty is usually referred to as the frozen speed of sound. Relation (14) yields, in view 
of (8), 

- - ' ~  4- u • V~N -~- U ' VqSN -- (a]VCNI) 2 = 0 .  (16) 
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The convective manifold defined by the equation 

0¢N 
0--7- + u .  V¢N = 0 (17) 

has a three-fold degeneracy. The associated triple eigenvalue is A1,2,3 = u • n. The acoustic 
manifold defined by the equation 

OCN 
0---Y + u-  YeN + a IVCNI = 0 (18) 

corresponds to the eigenvalue -~4 =- U' n -- a, while the acoustic manifold defined by the equation 

OCN 
0--7- + u .  vCN - a IVCN[ = 0 (19) 

corresponds to the eigenvalue A5 = u .  n + a. The left eigenvectors of the system are, respectively, 

[ ] 11= 0 , - - - - , 1 , 0 , 0  , 
?Zl 

= [ -a  2, 0, 0, 1, 0], 
13 = [0, 0, 0, 0, 1], 

14 = [0, nlpa, n2pa, I, 0], 

15 = [0, -n lpa ,  -n,2pa, 1, 0]. 

(20a) 

(20b) 

(2oc) 

(20d) 

(20e) 

Applying (10), the original system of equations can be written in characteristic form, 

C~ Z 
0-7 log (pp-~r) + u .  V (log (pp-'r)) = K (7 - 1) q0 P ~ e - G J T ,  (21a) 

Oz 
0-7 + u .  Vz  = - K  z e - E ' / T .  (21b) 

c9 (u .  n ±) + u .  V ( u - n  J-) = - 1 V p .  n J-, (21c) 
8t p 

~7 + p a n -  - ~  + ( u + a n ) . ( V p + o a n .  V u ) = R ,  (21d) 

( o p  Ou)  
- ~ - p a n . - ~  + ( u - a n ) . ( V p - p a n .  V u ) = R ,  (21e) 

where 
R = pa 2 I n - ( V u ) n -  V .  u] + K ( 2 / -  1)qopze -z'~/T. (22) 

In the equations above, n ± stands for the spatial unit vector normal to n. The first three 
equations hold along the fluid stream-lines, while the fourth and fifth equations hold along the 

bicharacteristics. 
The terms on the right-hand side of equations (21) act as forcing terms and do not allow a 

straightforward extension of the method of characteristics, as used for the one-dimensional Euler 
equations of gas dynamics. The splitting approach in the design of shock-capturing schemes, with 
or ~vithout source terms, is to fix n parallel to the grid direction, ignore the velocity component  
normal to n and the terms on the right-hand side of the characteristic equations (21), and finally 
solve for the remaining parts of the equations along the one-dimensional characteristic directions. 
By employing this strategy, however, one disregards information that  is coining from other flow 

directions. 
The idea behind the present design of unsplit, multidimensional schemes is to find manifolds 

in space-time along which the equivalent one-dimensional, homogeneous characteristic equations 
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hold. The immediate advantage of using such manifolds is that these equations can be easily 
discretized and solved numerically. Assume that the solution vector is continuous up to first- 
order derivatives. Then, the convective velocities u0, ur, uz ,  u+, u_ can be defined so that  the 
following relations are satisfied: 

u0 • V log (pp-~) = - K  (7 - 1) qo z e_E~/T 
T 

Ur • Uz = K z e  -E~/T, 

u±. v (u. ~1) : lVp. n ±, 
P 

u+ • ( U p + p a n .  Vu) = - R ,  

u_ • ( U p - p a n .  Uu) • - R .  

(23a) 

(23b) 

(23c) 

(23d) 
(23e) 

Additionally, consider the manifolds $0 ,8+,  S_, Sr, S t ,  defined as the integral surfaces of the 
following equations: 

D .y 
& : - ~  log(m,- ) = o, (24a) 

Dz 
St :  ~ = O, (24b) 

D ( u .  n ±)  = O, (240) S ± : b 7  

Dp D 
S+:  - ~  + pa-~-[(u, n) = 0, (24d) 

Dp D n) 0. (24e) 
S_ : Dt  p a - ~ ( u .  = 

Combining relations (23) and (21), it can be verified that the integral curves of the following 
vector fields lie on the manifolds (24): 

{ dx } (t,x) e t x ~ 2 : ~ - / = u + u 0  EE0, 

( t ,  X) C t × ~}~2 : d~- = u + u r C S r ,  

dx } 
t ,x)  E t x N  ~: d - - / = u + u <  E S ± ,  

{( dx } 
t ' x ) ~ t x ~ e :  dt u + a n + u +  ES+,  

{( dx } 
t ' x )  c t × N 2 :  dt u - a n + u _  ES_ .  

(25a) 

(25b) 

(25c) 

(25d) 

(250) 

The convective velocities u0, ur, u±, u+, u_ depend locally on the spatial gradients of the flow 
and are defined through the inner-product relations (23). These relations must be regarded as the 
necessary compatibility conditions for the integral curves given by (25) to lie on the corresponding 
manifolds. Each of these equations is linear in the components of the corresponding convective 
velocity. This is because each of the ODEs (24) holds on a family of curves that  constitutes a 
two-dimensional manifold on the three-dimensional Euclidean space-time. Every curve on this 
manifold passing through a point P corresponds to a different choice of convective velocity, see 
Figure 1. 

The definition of these manifolds is of local character because it is made under the assumption 
of a smooth solution vector. The existence of discontinuities in the solution or its derivatives does 
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Figure 1. A l~iemann invariant mani%ld in the three-dimensional Euclidean space- 
time. 

not allow construct ion of the  five manifolds, globally. This is not, however, a serious restr ic t ion 
for numerical  purposes. If a discontinui ty is present in the flow-field, each of these manifolds can 

be defined, and used in the computat ions ,  on either side of the discontinuity. The presence of 
shocks, for example,  is accommodated  by supplementing tile equations tha t  hold on the manifolds,  

with the appropr ia te  jump  conditions across the discontinuities. In other  words, an appropr ia te  
Riemann  problem has to be solved. In this case, care nmst be taken so tha t  not both  initial  s ta tes  
are taken fi'om the unshocked region, because then the information carried by the manifolds will 
not  propagate  through the approaching shock. This shock-captur ing s t ra tegy is equivalent to 

the  one used in t rad i t iona l  schemes which trace the  bicharacter is t ic  rays on each side of the  

discontinuity.  
Some numerical ly useful choices of directions on the manifolds of interest  are presented below. 

Fi rs t ,  consider the  invariant manifold 8+.  Let N +  denote the spat ial  unit  vector normal  to this  

fi'ont. Then  one gets 

Vp + p a V ( u  - n) (26) 
N +  = I V p + p a V ( u ' n ) l "  

N +  depends  on the spat ia l  unit  vector n. Actually,  there is a family of manifolds 8+,  each 
manifold corresponding to a different choice of n. The unit vector n, which is assumed to be 
a rb i t r a ry  but  fixed, acts as a "label" for the par t icular  manifold under consideration.  In other  
words, n is the  free paramete r  of the one-parameter  family of manifolds $+.  This is also t rue  for 
the  family of manifolds 8_  and 8±.  I t  is not true, however, for So and &. because the or ienta t ion 

of these manifolds does not depend on n, see equations (25). 
Fur thernlore ,  n gives the  spat ia l  direction along which a one-dimensional  character is t ic  problem 

holds. By keeping u+ fixed and let t ing n ro ta te  a full circle, one gets a conoid of invariant  curves 
passing through the point  P. An example of the relative posit ion of this  conoid with respect  to 
the  conoid tha t  is formed by rota t ion of the bicharacterist ics  (ray conoid) is sketched in Figure  2. 

The  velocity of the  front 8+ is given by 

e + = u + a n + u + .  (27) 
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Figure 2. Relative position of the  invariant conoid (solid line) formed by the  rota- 
tion of n, with respect the  ray eonoid (dotted line) passing through a point P in 
space-t ime.  

A useful choice for u+ is to seek lU+lmin.  T h e  curve on S+ tha t  corresponds to this choice is 
the  curve tha t  lies as close to the equivalent bicharacteris t ic  ray as possible. This means tha t  

among all intersect ion points  of 8+ and the constant- t  plane, the one tha t  belongs to the above 
curve is the closest to the intersection of the bicharacteris t ic  ray and the constant - t  plane. Then 
u+ II N+ ,  and in fact, 

u+ = I V p + p a V ( u ' n ) l  N+.  (28) 

The  velocity of the front S+ can be wri t ten  as 

c+ = u + a2~l+ N+.  (29) 

In the  equat ion above, the expression for ~r+ can be obtained from (28) and (27). The result  is 

R 
M +  = n -  N +  - . (30) 

a [Vp + p a V ( u ,  n)l 

Tile dimensionless pa ramete r  ~I+ is a measure of the  deviat ion of the  surface element around 
the selected curve on the manifold $+ from the bicharacteris t ic  ray u + an.  When  IM+I < 1, 

the  sm'face element is time-like. When  IM+I > 1, the surface element is space-like (and when 
]M+I = 1, it  is characteris t ic) .  When  the surface element of S+ is space-like, it lies outside the  
domain  of dependence  of a given point  P. This might appear  counter- intui t ive but  it has to 
do with the  fact tha t  knowledge of the local spat ial  gradients  of the flow and their  smoothness 
const i tu tes  addi t ional  information about  how the initial da t a  are related. This information can 
p ropaga te  with speeds greater  than  the characteris t ic  speeds, as (30) reveals, and can be used 
for computa t iona l  purposes,  see also relative discussion in [10]. 

The information about  S+ is contained in N +  and 2i$+. These quanti t ies  provide the direct ion 
of this  manifold and its relat ive posi t ion with respect to the character is t ic  manifolds. Both of 
these quanti t ies  depend direct ly  on the spat ial  unit  vector n. This dependence is due to the 
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mult idimensional  character of the problem under consideration. The intersection of a manifold 

in space-time and the local characteristic ray cone can be examined by considering the projection 

vector, Vp, of an arbi trary bicharacteristic direction it, 

V v = u + aft, (31) 

on the manifold of interest. For tile case of S+, one can readily find that  the projection of a curve 

±(t) = W on S+ is the curve ±(t) = Wp such that  the norm IW - wt, I at tains a minimum. This 

occurs if 

( W -  wp)II m+. 

When this condition is satisfied, then W = Vp and wp = c+. Furthermore, one gets tha t  

( W - w p ) = V  v -e+  =a(fl .N+-3`1+)N+. (32) 

The bicharacteristic ray lies locally on the invariant manifold ,5+ if the right-hand side of the 

above expression becomes zero, i.e., if the following relation is satisfied: 

3,.I+ = ft. N+.  (33) 

This equation admits a solution only if IM+I < 1. Since hoth N+  and fl are uni t  vectors, this 

condit ion is satisfied when the surface element of ,5+ lies within the characteristic ray cone. 

This implies that  whenever the invariant manifold S+ is not space-like, there are bicharacteristic 

directions along which an equivalent one-dimensional problem holds. 

Similar relations hold for the invariant manifold S_. The spatial unit  normal to this front is 

given by 

N _  = V p -  p a V ( u ,  n) (34) 
IVp - p a V ( u ,  n)l' 

and the velocity of this front is given by 

c_ = u - a n + u _ .  

Along the curve of 8_ that  lies as close as possible to the equivalent bicharacteristic, the norm 

In-I at ta ins  a minimum. In this case, u_  II N_ ,  and one gets 

u_  = [ V p - p a V ( u . n ) ]  N _ .  (35) 

The velocity of the front 8+ can be writ ten as 

c _  = u - a 3 ` 4 _  N _  (36) 

M_ is the dimensionless parameter that  measures the deviation of the curve fi'om the bicharac- 

teristic u - an.  It is defined as 

R 
M_ = n .  N_  + (37) 

a [ V p -  p a V ( u ,  n)l" 

As in the case of 8+, a surface element on 8_ is time-like, characteristic, or space-like, according 

to whether IM_I < 1, IM_I = 1, or IM_I > 1, respectively. Using arguments similar to the ones 
employed when 8+ was examined, one can find that  the necessary condition for a characteristic 

curve to lie on S_ is 
M_ : f l - N _ .  (38) 
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I t  remains  to invest igate the s t ructure  of the invariant manifolds S0, Sr, $± and de termine  the 

curves along these manifolds tha t  can be used for numerical  purposes. The  spat ia l  unit  normal  

vectors of these manifolds are given by 

Vp - a2Vp 
N 0 -  IVp - a~Vpl ' 

V z  
N r -  

Ivzl '  
v (u.  n ~) 

N ± -  i V ( u . n  ±) 

(39a) 

(39b) 

(39c) 

respectively. The corresponding front velocities are 

co = u + u0, (40a) 

c r = u -~- Ur, (40b) 

eL = u + u±.  (40c) 

As ment ioned earlier, t i le convective velocities u0, Ur, and u± need only satisfy the compat ib i l i ty  
condit ions (23). Since all of these condit ions are linear equations in the  velocity space, a par t icular  

choice of a convective velocity represents a curve along the corresponding manifold. I t  is na tura l  

to select the  velocities whose norm a t ta in  a minimum, i.e., to look for ]U0lmin ,  lUr lmin ,  lU± l ,n in .  

Then,  one immedia te ly  gets 

uo II No, (41a) 
llr II Nr, (41b) 

u± II N±.  (41c) 

Using relat ion (39), the  following expressions are deduced: 

U 0 = 

U r - -  

U ± - -  

K ( 7 -  1 ) q o p z e - E ~ / r  

[Vp - aSVp[ 

I (  Z e - E a / T  
N r ,  IvzI 

V p .  n ± 
N ± .  

p IV(u .  n±)I  

No, (42a) 

(42b) 

(42c) 

Alternat ively,  one can introduce dimensionless parameters ,  

K (7 - 1 )qoze  -E~/r  
Mo -= 

a IV[) - aSVpl 

K z e -  ~ I T  
M,.=_ 

a rVzJ 

V p .  n ± 
M± =_ 

m~ I V ( u .  n i ) l  ' 

(43a) 

(43b) 

(43c) 

trod express the  convective velocities in the following fashion: 

Uo = - a M o N 0  

ur = aMrNr ,  

u± = a M ± N ± .  

(448) 

(44b) 

(44c) 
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As in the case with 2~I+ and M_,  the parameters M0, Mr, and kl±,  determine the relative position 
of the corresponding invariant manifolds, So, Sr, and Sz ,  with respect to the local ray cone. If a 
parameter  is greater than unity, then its corresponding manifold is space-like and it is time-like 
otherwise. 

The intersection of So, Sr, and $± with the ray cone can be examined in the same way as 
above, i.e., by considering the projection vector of an arbitrary characteristic direction. Then, 
one deduces tha t  the following condition has to be satisfied for a characteristic curve to lie on So: 

M0 =/~.  No. (45) 

Similarly, if a characteristic curve is to lie on $~, then the necessary condition is 

M,. = f t .  Nr .  

Finally, if a characteristic curve is to lie on S±, then the necessary condition is 

(46) 

M± = f i . N ± .  (47) 

2.1. D e s c r i p t i o n  o f  t h e  N u m e r i c a l  S c h e m e  

The compressible Euler equations for reacting flows (12), written in integral form, are 

d; 
d~ p dV + p u - d S  = O, 

d--t pu dV + pu u • dS + p dS = O, 

d / v  / s  / s  d-t pet d V  + ,pet u • dS + pu - dS = O, 

d fvPz dV + fspz u dS fvp g(T,z)dV O, dt 

where et is the total specific energy, 

(48a) 

(48b) 

(48c) 

p U 2 

et -- p(.~ _ 1~) + qoz + --~, (49) 

and g(T ,  z)  is the source term of the reaction equation, 

g(T,  z)  = - K z e - z " / r .  (5o) 

These equations are written for an arbitrary control volume V whose boundary  S has zero velocity. 
The procedure of discretization and numerical evaluation of these integrals at each computat ional  
cell is given below. The resulting algorithm is second-order accurate for smooth parts of the flow. 

Consider a simply-connected domain consisting of Arc x Mc quadrilateral cells of arbitrary 
shape. The area of the ( i , j )  cell is denoted by AS~,j ,  and the coordinates of the center of the 
cell are denoted by (x c ~,~ ~ The interface between the cells ( i , j )  and (i + 1, j)  is denoted by \ i , j ' ~ i , j J "  

(i + 1 /2 , j ) .  Similarly, the interface between the cells ( i , j )  and ( i , j  + 1) is denoted by ( i , j  + 1/2). 
Finally, the unit vector normal to a cell interface is denoted by ns, and the length of a cell 

interface is denoted by l. 
Bilinear variation of all variables is assumed in each cell. The generic quanti ty q is then given 

by 

Xc c . . . . .  q(i,j)=qi,~+(q~)i,j (x-  ,u)+(q~)i,~ (y-y,,~), i=1, .,No, j = l ,  ,Me,  (81) 
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where qi,j, the average value of q in the (i, j )  cell and (qz)i.j, (qy)i,j are the slopes of q inside this 
cell. 

Under the assumption of bilinear variation of q, the slopes are constant. Then, qi,j is just the 
value of q at the center of the cell. The slopes (qx)i.j, (qy)i,j are evaluated through the divergence 
theorem. For bilinear functions, this theorem takes the form, 

[(q~)i,j, (q~j)i,j] ASi,j = (qn~ 1)i+1/2, j ~- (qn~ l)i,j~zl/2. (52) 

In the relation above, q must be evaluated at the center of each cell interface. This is performed 
with the following procedure. 

Assume that  q is to be computed at the center of the left interface, and let Ali denote the 
(x ~ ~ c ~ and (. i - l , j ,  Yi-l,j). Consider the left divided difference distance between ~ i,j, ,~i,j ] x c  c 

AqL -- qid -q i - l , j  (53) 

The differences Aqa,  Aqu, AqD, in the right, up, and down directions, respectively, are defined 
in a similar fashion. Then, the value of q at the left interface is given by 

qi-1/2,j -~ qi,j -- 0.5/kli /kqLa, 

where AqLa is an approximation of tile slope of q in the direction normal to the (:ell interface. It 
can be computed from Aqm and Aqa with the use of van Albada's  limiter, [12], 

AqLla = ave(AqL, AqR) (54) 

and 
a + b (  ( a - b )  2 ) (55) 

a v e ( a , b ) - - ~ -  1 a 2 + b 2 + e 2  , 

with c being a small positive number, say, e = 10 -12. This slope-limiting procedure is employed 
to preserve the monotonicity of q near discontinuities while maintaining second-order accuracy 
in both space and time for smooth parts of tile flow. Tile evaluation of q at the centers of the 
other cell interfaces is performed by repeating these steps to the appropriate interface. 

For the numerical solution of the system of conservation equations, nmss-averaged values of 
the conservative w~riables are considered, 

mid =-/i,j) pdxdy,  (56a) 

mi,j ui,j ==- f i , j  ) pu dx dy , (56b) 

midvi,j =-/~,j) pv dx dy, (56c) 

mi'3eti'J =- f(i,j) pet dx dy, (56d) 

mi,jzi,j - ~(.~,j) p z dx dy. (56e) 

For the source term, set 
f 

- ] pg(T z) dx dy. 77Li,j.qi,j  
J( i,j) 

(57) 
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The flux vectors are given by 

F m  ~ [p~, p v ] ,  (58a)  

F v  = [puv,  pv~ + p] , (58c) 

f e ~ [/)¢ttt + p~t, /)¢t y -~- p?3], (58d)  

The integration of the flux vectors along each cell interface is performed using the midpoint rule. 

Consequently, the proposed numerical scheme, which evaluates the solution at time (n + 1)At 
from the solution at the previous time nAt,  can be written as 

,n+~ [ ~' V~+t/~ - ( /n~ F in+l/2 ] m~, j )  = ( m i , j )  n - A t  (ln~ . ~ m ] i + l / 2 , j  • m ] i _ l / 2 , j j  

~' Vt+V2 - ( / n ~ . F  ~.+1/2 ] - A t  (/n~. . . . .  ~id+~/2 m " i , j -  1/2J ' 

(aga) 

(77~i j U i  j ) n + l  = (?7~i,j?.l.i,j)n _ A t  [(lns" ~' hn+l /2  _ (ln~. 1~' hn+l /2  ] 
• , , ~ u ] ~ + l / 2 , j  ~ u l i - 1 / 2 . j j  

(59b) 
~' - (ln~. ~' V~+l/2 ~n+l/2 ] - A t  (ln~ ' -uJ~, j+l /2  -,,J.i.j a/2j, 

m v ~n.+l [ ~, ~+1/2 _ ( / n ~ . F  ~n+a/2 ] i ,j  i,;~ = ( m i , j v i , j )  7' - A t  (/ns "--~'Ji+I/~, j  ,ui-1/2,jJ 
(59c) 

V ,~n+l/2 V ~n+l /2  ] 
- A t  ( l n s . _ v j i , j + U 2  - ( lns '  ~ v j i . j - i / 2 j  , 

F V ~+1/2 ] ( ? T Q , j e i , j )  n + l  ~- (? l~ i , j e i , j )  n -- A t  [(lns. ~eJi+l/2,jl~ 3n+1/2 __ (lns- e , i - [ 1 2 , j j  
(59d) 

F - ( / n ~ - ~ "  ) n + l / 2  )7/+1/2 ] 
- A t  (lns" ~Ji , j+ l /2  ~ J ~ 4 - 1 / 2 J ,  

( m  z ~n+l [ ~ ~n+1/2 _ (/n~ . l~, V ~+U2 ] i ,j  i , j j  = ( m i , j z ~ , j )  n - A t  (In s " ~ J i + l / ' 2 , j  ~ J ~ - ~ / ' 2 , j j  
(59e) 

- A t  [(/n~ - ~" hn+l/2 _ (/n.~ • F ~n+l/2 ] '?~z \n+l/2 
~ z / i , j + l / 2  z ] i , j - - l / 2 j  4- / ~ t A S i , 9  [ i , 3 g i , j )  • 

The flux terms in relation above have to be evaluated at the center of each cell interface, and 
at time t = (n + 1/2)At.  This is performed by using the information provided by the Riemann 
invariant manifolds tha t  were described in the previous section. This procedure is illustrated 
below for the interface between the cells ( i , j )  and (i + 1,j) .  For the other three cell interfaces, 
the procedure is exactly the same. 

Let x~ = (x~,,y~) denote the center of this interface. One has to trace specific curves along 
the five invariant manifolds tha t  pass through the point with coordinates (x~,, y~,, (n + 1/2)At)  
and find the intersection of these curves with the surface t = nAt.  Then, the equations that  hold 
on the manifolds have to be discretized and solved numerically. 

But  first, one must select n. Recall that  there is a one-parameter family of the manifolds N+ 
that  is generated by the rotation of n. These manifolds form a conoid equivalent to the ray 
conoid. By selecting n, one essentially decides the direction along which the ODEs that  hold on 
$+. and $_  are solved. Numerical experiments showed that  selecting the unit normal to the cell 

interface, i.e., n = ns, works well in practice. 
Having determined the manifold $+ that  will be used, one has to decide which specific curve 

on N+ should be traced forward in time, i.e., which convective velocity u+ will be used. The 
intersection of $+ with the plane t = n a t  is the locus of the points that  are connected with the 
point (xw, y~,, (n + 1/2)At)  by the characteristic differential equation (24d), see Figure 3. Each 
point of this curve corresponds to a specific u+. In the present work, the convective velocity u+ 
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(i,j+ I ) 

x c ~ n., 

x 

Figure 3. The locus of the points at t = na t  that are connected with ( xw ,yw)  
through (24d). 

has been selected to satisfy equation (28). In other words, the curve tha t  lies as close to the 
equivalent bicharacter is t ic  as possible has been chosen. 

The  coordinates  of the  point  a t  which this curve intersects the plane t = nAt ,  say xp, are evalu- 

a ted by solving equat ion (25d) numerically. For this purpose, the selected curve is approximated  
by a s t ra ight  line. After  some s t ra ightforward calculations, one gets the  following expression for 
the  coordinates  of xp: 

Y v  - det---~-~ N" E,  (60) 

where [ 2 ] 
(v + v+)~ + - -  - ( ~  + 2÷),, 

. - _  At  

:¢__ -£7 - (u+~+)  
A y  
X/  (v+~+) /  

All the  quanti t ies  in this relat ion are evaluated at  the center of the cell interface. Once the 
coordinates  of xp are computed,  the  solution vector is evaluated at  this point.  

This  procedure  is repeated for the  manifold 8_ by set t ing n = -n~ .  The  specific curve on 8_  
tha t  is used is the  one tha t  corresponds to a convective velocity u_ which satisfies (35). The  
point  at  the  plane t = n a t  t ha t  is connected with (xw, Yw, (n + 1 /2 )At )  by the character is t ic  
equat ion (24e) is de termined by solving numerical ly the equation (25e), with a procedure  similar 
to the  one employed for (25d) tha t  was described earlier. Then,  the solution vector is evaluated 
at this  point.  

Subsequently,  the ODEs (24d) and (24e) are solved for the  computa t ion  of the  pressure and the 
normal  velocity component  at the  cell interface at t ime (n + 1 /2)At .  These two equations must 
be supplemented  with appropr ia te  jump  conditions when discontinuit ies are present.  P robab ly  
the  most  robust  way to implement  this, is to t rea t  the  discontinui ty as if it  was normal  to the 
celt interface. This is equivalent to solving an 1-D Riemann problem in the  direct ion parallel  
to n. Other  possible shock directions are also allowed by the algori thm. The 1-D Riemann 
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problem of the Euler equations for reacting flows is not self-similar like the classical l-D, gas- 
dynamic,  Riemann problem. Shock waves and expansion fans are not straight lines on the x-t 
plane anymore, because they are accelerating. Yet, the solution of the Riemann problem for 
reacting flows converges to the solution of the classical 1-D Riemann problem as x, t - ,  0, [13]. 
Therefore, one can safely use the solution of the classical 1-D Riemann problem for computat ional  
purposes, see also [11]. 

As mentioned earlier, allowing discontinuities only at the cell interfaces is a feature not only of 
this Mgorithm but of all shock-capturing schemes. This constraint can be important,  especially 
in cases of oblique shocks fronts because it~might result to more numerical diffusion than desired. 
This constraint, however, is independent of the effort to design unsplit schemes, where the goal 
is to reconstruct the solution by being able to consider information from all possible directions. 

The tangential velocity component, u .  n ±, is evaluated by selecting a curve on $±. In the 
present work, the selected curve corresponds to the velocity u± given by equation (42c). As 
usual, the curve is approximated by a straight-line segment, and its intersection with the plane 
t = n a t  is computed. At that  point, u • n ± has the same value as at (xw, y~,,, (n + 1/2)At) .  The 
expression for the coordinates of that  point is analogous to (60). The reactant mass fl'action is 
evaluated by selecting a curve on 8~. The selected curve corresponds to a velocity u~ given by 
equation (42b). 

Finally, the density is evaluated by tracing the curve on So that  corresponds to a velocity 
u0 given by equation (42a), and subsequently locating the point at which this curve crosses the 
t = n a t  plane. Let Po,Po denote the values of pressure and density at this point. The density at 
the interface, say (i + 1/2, j) ,  is evaluated by discretizing equation (24a) in the following way. 
ie n+1/2 
I Pi+l/2,j  > PO, then 

// r~+l/2 -- DO) 
1" n+1/2 ~ ~Pi+l/2,j \(Pr~+l/2i+l/2'J - - P o ) -  (('T-F 1)po-F( 'T-  )Pi+I/2,j) 2/)o = O. (61a) 

_n+l/2 
If Pi+l/2, j  <- P0, then 

,~+1/2 p,,+l/'2 ) 1/.~. 
P~+I/2.j = Po i+l/2d /Po (61b) 

Equation (61a) is the jump condition of (24a) It is used when the cm've on 80 is being crossed 
by a shock. Equation (61b) is just the discretized version of (24a). 

The computat ional  costs of this algorithm and the traditional MUSCL scheme [3], equipped 
with operator splitting, are comparable. This is because the only additional operations needed by 
the proposed scheme are those for the calculation of the convective velocities u0, Ur, u±,  u+,  u_.  
These velocities are computed directly from equations (28), (35), and (42a) (42c), respectively, 
without  any iterative procedure. Their computat ion is, therefore, performed at minimal cost. 

3 .  N U M E R I C A L  T E S T S  O F  

T W O - D I M E N S I O N A L  D E T O N A T I O N S  

Detonations are generally unstable phenomena with many spatial and temporal  scales. The 
most noticeable feature of a detonation is the cellular structure, e.g., [14]. These structures are 
sustained because of the continuous energy release from the chemical reaction. The cells are 
diamond shaped and are formed by the trajectories of the triple points of the main front. The 
cell size can be almost uniform, resulting in a system of regularly distributed cells, or it might 
vary from cell to cell. The existence, or not, of such regularity depends on the combustible 
mixture and the width of the channel. In general, narrow channels result in cells of uniform size. 
Unconfined detonations typically produce irregular cellular patterns. It  has been observed [14] 
tha t  the cell spacing is of the order of 100 reaction-lengths of the steady (ZND) solution. The 
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linearized, two-dimensionM stability problem has been considered by [15], who used a Fourier- 
series approach to investigate the growth-rate of transverse instabilities. For more recent works 
on the two-dimensional stability problems, see among others, Yao and Stewart [16] and Clavin 
et al. [17]. 

In general, linearized-stability theories applied to these problems are accurate in the predic- 
tion of the stability limits. As it turns out, two-dimensional detonations, governed by one-step 
Arrhenius kinetics, are intrinsically unstable. Stability is maintained only if the overdrive is high 
(more than ten), or the activation energy is small. The approximate theories mentioned above, 
however, have not been successflfl in the prediction of cell size because the mechanisms that  
determine the evolution of detonation fronts are highly nonlinear. 

Numerical simulation of 2-D detonations was initiated in the early 1970s [18]. More recently, 
Oran et  al. [19] simulated detonating flows in rectangular domains with periodic boundary con- 
ditions at the top and bot tom boundaries using the flux-corrected-transport (FCT) algorithm. 
Bourlioux and Majda [20] performed simulations of the same problem for a wide range of parame- 
ters using the piecewise parabolic method (PPM), see [5J. Cai [21] presented results with a hybrid 
algorithm that  uses an essentially nonoscillatory (ENO) scheme at regimes of steep gradients and 
spectral representation elsewhere. In the present work, detonations in channels are solved nu- 
merically to examine the effectiveness of the proposed algorithm and to make comparisons with 
previously published results. 

3.1. P r e l i m i n a r y  Tes t  

This test simulates the flow of a reactive gas over a wedge. The wedge is placed instantly in 
the uniform flow of the gas and a shock is then formed at the wedge. Since the gas is reactive, 
the shock is progressively curved due to the dilatation of the reacting material behind the shock. 
A detonation might be established downstream if the shock temperature is sufficiently high. The 
wedge is assumed to be long enough so that  its geometry downstream cannot influence the flow 
the computat ional  domain. 

The wedge angle 0 is an important  parameter of this problem. It is expected that  for small 
wedge angles the shock turns smoothly and the flow far downstream consists of a standing oblique 
ZND wave, i.e., a ZND wave with a nonzero transversal velocity component. Pra t t  et al. [22] 
studied the parametric values of the wedge angle 0 and upstream Mach number 2~I that  result in 
such standing waves. For this test, 0 = 20 °. The properties of the gas are 

7 = 1.2, q0 = 50.0, K = 3.125, Ea = 10.0, 

while the upstream condition of the gas is 

p = 1.0, T = 1.0, 5 / =  15.0. 

The theoretical prediction is that  downstream the flow reduces to an oblique ZND wave of over- 
drive factor f = 1.2, and at a shock angle of approximately 43.5 °. The computational  domain is 
a rectangle with dimensions 120 x 32 unit lengths (a unit length is the half-reaction length .of the 
ZND wave). The bot tom boundary is the wall of the wedge. Inflow conditions have been specified 
at the left boundary and outflow conditions at the top and right boundaries. Two different mesh 
sizes have been used, 240 x 64 and 480 x 128 cells, respectively. 

Contour  plots of the flow variables at t = 25.0 are shown in Figure 4. At that  time the flow 
h ~  already reached steady state. Each plot contains 15 contours at values equally distributed 
between the minimmn and maximum values of the variables. As expected, the results obtained 
with the two different resolutions are very close. The smearing of the shock is the only noticeable 
difference. Simulations of such flows have been performed, among others, by Li et al. [23]. Their 
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(a) Mesh size, 240 x 64 cells. 

Figure 4. Oblique detonation, contour plots of the flow variables at t = 25.0 

results were similar to the ones reported here. A detailed study of wedge-induced detonations 

with the proposed unsplit algorithm is presented in [24]. 

3.2. Numerical Tests of Detonations in Channel Flows 

In this set of numerical tests the computational domain is a rectangle. Periodic conditions 
are imposed on the top and bottom boundaries and inflow conditions are imposed on the left 
boundary. Finally, outflow conditions are prescribed on the right boundary. The flow at this 

boundary is subsonic. The problem of evaluating the fluxes across a boundary becomes under- 
determined when one or more curves of the invariant manifolds lie outside the computational 
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Figure 4. (cont.) 

120 

domain.  Therefore, an a p r i o r i  condition needs to be imposed, but in such way that no artificial 
wave-reflections occur at the boundary. In the present work, this is achieved by copying the 
values from the boundary cells to their corresponding d u m m y  cells. By  doing so, two conditions 
are satisfied. First, all the invariant curves lie inside the computational  domain except for the 
curve defined by (25e) which lies outside. Second, each term of the characteristic equation (24e) 
that holds on (25e) becomes identically 0, thus overcoming the underdeterminacy problem. 

The initial condition is a transversally-perturbed, planar ZND wave, propagating in a quiescent 
medium. For a given choice of parameters the one-dimensional ZND profile has been computed 
numerically and it is assigned to each longitudinal station throughout the width of the domain. 
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The perturbation is a sinusoidal variation of the amplitude of the post-shock values of the flow 
variables in the transversal direction. It is employed to trigger the instabilities faster than the 
truncation error would. The ZND wave is assumed to propagate to the left and is stationary with 
respect to the laboratory frame. Hence, if the flow was indeed steady the position of the shock 
front would be constant in this frame. 

It is a common practice to employ explicit artificial dissipation mechanisms for compressible 
flow simulations. This is often necessary because the implicit viscosity of the schenle, which arises 
from the discretization of the equations and monotonicity constraints, is not adequate for the 
stabilization of strong shocks. For a detailed discussion on this topic, see [5]. The only explicit 
dissipation mechanism that has been employed in the proposed unsplit scheme is slope limiting, 
even though the leading shock fronts in detonations are typically quite strong (the shock Mach 
number is typically above ten). Additional explicit dissipation has been employed in most of the 
previously published results of two-dimensional detonations. The extra dissipation was used in 
the vicinity of either the leading shock or the transverse shock waves. 

Furthermore, if a shock is sufficiently slow with respect to the grid, Godunov-type schemes 
generate spurious post-shock oscillations. These oscillations occur because one eigenvalue of the 
equations changes sign across the shock, see [5]. The change of sign makes the diffusive term 
of the difference equations that approximate the original system, locally very small. Therefore, 
additional artificial dissipation is needed to suppress the oscillations. In two-dimensional prob- 
lems, this error is smaller because flow obliquity introduces the required dissipation and because 
the error can diffuse away from the front in other directions. In the simulations presented here, 
the front is initially planar and is moving slowly with respect to the grid in the early stages of 
the process. The amplitude of the resulting error, however, is small because of the transverse 
perturbations in the initial condition. These perturbations introduce fluxes to the y-direction, 

i ~ , ~  1 

I 

4 

1 

Figure 5. Pressure field for a planar  detonation,  at t = 3.0 Schlieren-type images 
and  plots along the  centerline with initial t ransverse per turba t ion  (bot tom row), and  
without  (top row). Two periods in the  y-direction are plotted. 
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making the flow two-dimensional even at small times. If these perturbations had not been intro- 
duced, then persistent post-shock oscillations would have been generated. 

To illustrate this effect, Schlieren-type snapshots of the pressure field and plots of the pressure 
along the bottom boundary for both initial conditions (with and without perturbations) are 
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(b) Resolution: 20 points per unit length. 
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(c) Resolution: 30 points per unit length .  

Figure 6. Case A: contour plots of the flow variables at t = 60.0. Two periods in the 
y-direction are plotted. 
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Figure 7. Case B. Schlieren-type images of flow variables at t = 60.0. Two periods 
in the y-direction are plotted. 
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presented in Figure 5, for comparison. The detonation parameters are: " / =  1.2, E~ = 50.0, q0 = 

50.0, and f = 1.6. These snapshots are taken at t = 3.0. The shock is initially located at x = 25.0. 

The expression "Schlieren-type snapshot" implies snapshots of the norm of the gradient vector 

of a variable. Once the instabilities are fully developed and the cellular s tructure is formed, the 

fi'ont moves fast with respect to the grid and the local curvature of the front can be substantial .  

Therefore, post-shock oscillations are strongly diminished in the later stages of the process. 

Results for three different cases are presented. In all cases, the variables and parameters of the 

system have been made dimensionless by reference to tile uniform state ahead of the detonat ion 

front. The half-reaction length of the ZND profile, L1/2, is characteristic length-scale. L1/2 
divided by the sound speed ahead of the shock provides the characteristic t ime scale. The spatial 

resolution is, unless otherwise specified, 20 points per half-reaction length, and the C F L ~ u m b e r  

has been set at CFL = 0.7. The sinusoidal transversal per turbat ion of a variable has an ampli tude 

equal to 0.2% of its post-shock value. The wavelength of the per turbat ion is one unit- length.  

CASE A. This is a case of low activation energy and low heat release, 

"y = 1.2, Ea = 20.0, q0 = 2.0, f = 1.2. 

The stiffness coefficient of the system is K = 1134363.64. The computat ional  domain of the 

simulation is 30 unit- lengths long and ten unit- lengths wide. The ZND wave is initially located 

at x = 35.0. 

The corresponding one-dimensional case is linearly stable, i.e., there are no linearly unsta-  

ble longitudinal  modes. The transverse perturbations,  however, grow and transverse waves are 

eventually generated. These waves lead to the formation of the familiar cellular structures. As 

mentioned earlier, the explosions generated by the collisions of the transverse waves release large 

amounts  of heat tha t  allow the conservation of these patterns. In this particular case, the colli- 

sions occur periodically in time. The cellular structures are quite regular and have the same size. 
The geometry of the main front also changes periodically. The dimensionless shock pressure, 

according to the ZND solution, is Ps = 3.688. In the numerical simulation, the shock pressure 

goes as high as ps = 6.1267. 
Results for this case at time t = 160.0 are presented in Figure 6b. They agree well with the 

results presented in [20]. The structure of the main front, in particular, and the cellular pat terns  

are the same in both simulations. Different resolutions, namely ten and 30 points per unit- length,  

have also been used. These results are shown in Figures 6a and 6c, respectively. The flow-fields 

generated by the three simulations a re  very similar. The pat terns of the flow field are stable in 

t ime and space with regard to resolution. The main difference is tha t  the vortieity structures 

become sharper as the resolution is increased. 

CASE B. In this case, both the activation energy and the overdrive factor are low, 

= 1.2, Ea = 10.0, q0 = 50.0, f = 1.2. 

The stiffness coefficient for this case is K = 3.124. The computat ional  domain is 60 uni t- lengths 
long and ten unit- lengths wide, i.e., it consists of 1200 x 200 points. The initial ZND wave is 

placed at x = 55.0. The corresponding one-dimensional flow is stable. The CFL nmnber  has 

been lowered to 0.3. Such a low value is necessary to avoid excessive numerical diffusion that  

may smear impor tant  flow patterns.  

Results for this case are presented in Figure 7. The simulations show that  the structure of 

the main  front varies periodically with time. The transverse waves are weaker and shorter than  

those of the previous cases. The vortex sheets from two colliding triple points detach fi'om the 

front simultaneously, thus forming pairs. These pairs are regularly distr ibuted in the wake of the 

front. The shock pressure of the ZND solution is ps = 50.49, but  the maximum shock pressure 
of the simulation is ps = 144.62. The numerical simulations show that  the structure of the main  
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front varies per iodical ly  with time. The  results obta ined with the proposed algori thm are in very 
good agreement  with the  results presented in [20] for the same case. 

CASE C. This  is a case of low overdrive factor and high heat release. The corresponding one- 
d imensional  problem has five unstable  longitudinal  modes, 

7 = 1.2, Ea = 50.0, q0 = 50.0, f = 1.2. 

The  stiffness coefficient for this detonat ion is K = 871.42. The computa t iona l  domain of the 

s imulat ion is 60 uni t - lengths  tong and ten unit- lengths wide. The initial  ZND wave is located at 

z = 5.0. Schlieren-type snapshots  of the flow variables for this problem are given in Figure 8. 

The  two-dimensional  analysis in [15] reveals tha t  this de tonat ion  is unstable  at  a rb i t ra r i ly  

short  wavelengths.  In the early stages, the evolution of the flow-field resembles the equivalent 
one-dimensional  process. More specifically, the shock pressure and t empera tu re  drop below the 
ZND values and, as a consequence, the react ion zone stays temporar i ly  behind the hydrodynamic  

shock. Later  on, mater ia l  burns fast due to thermal  runaway, resulting to high over-pressures. 
This  s imi lar i ty  to the one-dimensional  case suggests tha t  in early t imes the evolution process is 
domina ted  by longi tudinal  instabili t ies.  

Once the t ransverse  instabi l i t ies  grow and s tar t  dominat ing  the flow, the s t ructures  of the  flow 
field become very complicated.  At  the front, s trong t r iple-point  collisions occur, generat ing new 

systems of shock waves. In the wake of the front, there  are many vort ical  s t ructures.  Pockets 

of unreac ted  mater ia l  are constant ly  created and subsequently burn. They  are long chunks of 

unburnt  mater ia l ,  a lmost  paral lel  to the main front. Sometimes they can span the width  of the 

channel.  

The  t ransverse  waves of the  t r iple  points are s trong and can be more than  ten lengths long. 
Transverse-wave collisions are encountered often. The shock wave systems tha t  result  from these 
collisions interact  with the  vort ical  s t ructures  tha t  have been convected downstream fl'om the 

main  front. There  is no evidence of regular i ty  even far behind the leading fl'ont. According 

to the ZND theory, the  shock pressure is p~ = 50.49. In the present s imulat ion,  the max imum 

value observed is p~ = 220.0. Results  for this case have also been repor ted  in [20], where similar 
phenomena  were observed. The main features of the flow (long unreacted pockets,  s t rong vort ical  
in terac t ion  in the  wake, etc.) are the same in both simulations. 

4. C O N C L U D I N G  R E M A R K S  

A new shock-capturing,  MUSCL-type  algori thm has been proposed for the  numerical  s tudy  
of mul t id imensional  systems of hyperbolic  conservation laws with source terms. The a lgor i thm 
is fully unspl i t  in the  sense tha t  it avoids both dimensional  and t ime split t ing. I t  is based on 
the decomposi t ion of the  governing system to the set of equations tha t  is satisfied along the 
character is t ic  pa ths  of the  corresponding I -D tlomogeneous problem. Each of these equations 
now holds along a specific space-t ime manifold, referred to as a Riemann invariant  manifold. 
Numerica l  in tegrat ion of these equations is performed in the upwinding step of the  algori thm. 

The  performance of the  proposed algori thm was tested via simulat ions of s table and unstable  
two-dimensional  detonat ions.  The s table  cases were a wedge-induced detonat ion,  and a p lanar  
de tona t ion  of low act ivat ion energy and heat  release. In both cases, nmnerical  convergenc~ was 
observed as the  grid was refined. The unstable  cases were two examples of p lanar  de tonat ions  
with large heat  release. Such flows are characterized by cellular s t ructures  tha t  are formed by the 
mot ion of the t r iple  points  of the  leading shock. The slip lines emanat ing  from these points  roll up, 
detach fi'om the front, and interact  with the  wave s tructures  of the wake. The proposed a lgor i thm 
appeared  to be s table  and capable  of captur ing many impor tan t  detai ls  of the  flow-fields. No 
special  t r ea tmen t  other  than  slope-l imit ing was employed to suppress spurious oscil lat ions and 
to avoid ent ropy-viola t ing shocks. In par t icular ,  f lux-spli t t ing and entropy-fixes were complete ly  
avoided with the  proposed method.  
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