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Abstract—This work describes an unsplit, second-order accurate algorithm for multidimensional
systems of hyperbolic conservation laws with source terms, such as the compressible Euler equations
for reacting flows. It is a MUSCL-type, shock-capturing scheme that integrates all terms of the
governing equations simultaneously, in a single time-step, thus avoiding dimensional or time-splitting.
Appropriate families of space-time manifolds are introduced, along which the conservation equations
decouple to the characteristic equations of the corresponding 1-D homogeneous system. The local
geometry of these manifolds depends on the source terms and the spatial derivatives of the flow
variables. Numerical integration of the characteristic equations is performed along these manifolds
in the upwinding part of the algorithm. Numerical simulations of two-dimensional detonations with
simplified kinetics are performed to test the accuracy and robustuness of the algorithm. These flows are
unstable for a wide range of parameters and may exhibit chaotic behavior. Grid-convergence studies
and comparisons with earlier results, obtained with traditional schemes, are presented. (© 2002
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Considerable amount of work had been devoted to the theoretical study of systems of hyperbolic
conservation laws. Most of the effort was focused in systems with two independent variables.
These variables were, usually, a time and a space variable. As a result of this effort, it became
possible to establish the existence and uniqueness of weak solutions for such systems and to
derive important properties of these solutions, such as their asymptotic behavior, see [1,2]. The
theoretical developments were followed by the design of accurate algorithms for the numerical
approximation of these solutions, such as the MUSCL scheme [3}, the ENO schemes [4], the PPM
method [5], and others. These algorithms take into account the presence of discontinuities in the
solution by solving a 1-D Riemann problem at each computational cell interface. The concepts
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of characteristics and Riemann invariants played a significant role in both the theoretical and
computational developments on the field.

The extension, however, of theoretical results to systems with more than two independent
variables proved to be a very difficult task. The complicated topology of the discontinuous
solutions admitted by such systems has not allowed, so far, global existence theories. Furthermore,
general solution for the multidimensional Riemann problem is not yet available. This does not
allow a straightforward extension of the various shock algorithms in many dimensions. A robust,
and in many cases efficient, way to overcome this difficulty is to employ dimensional splitting.
Such schemes advance the solution to the next time-step through a series of one-dimensional
computations on each spatial dimension.

Algorithms that do not employ splitting have also been presented by various authors in the
past. Such algorithms include the characteristic-based schemes of Deconick et al. [6] and others.
Colella [7] developed an unsplit scheme by considering the characteristic form of the multidi-
mensional equations at the cell interfaces. LeVeque [8] designed a finite-volume method based on
one-dimensional normal and tangential Riemann problems. More recently, Dai and Woodward {9]
proposed a scheme based on a single-step Eulerian formulation of the discretized equations.

An alternative approach for solving homogeneous systems in many spatial dimensions was
introduced by Lappas et al. [10], who developed an unsplit MUSCL-type scheme for the 2-D
compressible Euler equations. In their analysis, a general methodology is developed that defines
manifolds in space-time, dubbed, “Riemann invariant manifolds”, along which the equations are
decomposed into the same scalar fields as in the one-dimensional case and then solved numerically.

The problems arising in the numerical solution of nonlinear hyperbolic equations become more
complicated when source terms are present because of the development of a much larger number
of spatial and temporal scales. The source terms are stiff for most practical applications and this
makes the integration of the equations even more difficult. The conventional method for solving
such systems is to introduce time splitting for the source terms, i.e., integration of the source
term in an intermediate time-step, in addition to dimensional splitting.

The present work describes the generalization of the algorithm proposed by Papalexandris et
al. {11} to multidimensional systems with source terms. A new family of space-time manifolds is
introduced along which the system of equations can be decomposed into the characteristic ODEs
for the corresponding one-dimensional homogeneous case. These manifolds are the Riemann
invariant manifolds for the system under consideration, equivalent to the ones defined in [10]
for the inert case. This particular decomposition is then employed in the upwinding step of a
MUSCL-type scheme that integrates all the terms of the equations simultaneously, in a single
and fully-coupled time-step. Neither time splitting nor dimensional splitting is performed. In
the first part of this paper, the construction of the invariant manifolds and a detailed description
of the proposed unsplit algorithm are presented. The second part contains numerical tests on
unsteady, two-dimensional detonations. Discussion of the results is included, with emphasis on
the instability mechanisms of such flows. Comparisons with results in the literature are also
made.

2. RIEMANN INVARIANT MANIFOLDS
OF THE REACTIVE EULER EQUATIONS

Consider the Euclidean space-time of N spatial dimensions, t x RY, and the following system

of M equations, satisfied at each point (t,x%) = (¢,z1,...,2n5) of t x RV:

ouU ou

- (U) — = j=1,... .
In the quasilinear system above, U{t,x) = [u1(t,x),...,up(t,x)] is the solution vector, and
G(U,t,x) = [g1(U,t,%x),...,9a(U, t,x)] is the vector of the source terms. 4;(U), j =1,...,N,

are M x M matrices. Summation notation is implied for repeated indices.
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The Cauchy initial value problem for this system amounts to specifying data (referred to as
Cauchy data) at points on some initial N-dimensional submanifold of ¢ x RV, S, and determin-
ing U that satisfies (1) off this manifold. The idea behind the hyperbolicity of a quasi-linear
system is that the Cauchy problem be well posed for it, i.e., there exists a unique solution that
depends continuously on the data specified on S. It is interesting to see how the terms of sys-
tem (1) can be rearranged so that the derivative of U normal to S (exterior derivative) can be
expressed in terms of the Cauchy data and its derivatives in S (interior derivatives).

The way to do this is to consider a coordinate transformation and replace (¢,x) by a new
vector, @ = [¢o, ..., ¢n]. The components ¢;(t,x), i =0,..., N, are assumed to be differentiable
functions of their arguments. Keep the variable ¢t unchanged, i.e., ¢g = t, and assume that the
manifold S is associated with one particular coordinate, say ¢n. The following equation is then
used to define the manifold S '

¢N(t7x) =0. ’ (2)

The other coordinates ¢;(t,x), i = 1,..., N — 1, can be selected arbitrarily, provided that the
Jacobian of the coordinate transformation,

a(t,:lfl,...,il,‘lv)

J= 3
O(¢o, ..., bN) ®)
is nonvanishing at the points of interest, i.e., in the vicinity of S. Then system (1) becomes
Odn d¢n\ OU ¢y 0\ 0U
; I— 4+ A4,— | — = G(U,t,x). 4
(I Bt +Afazj>a¢N+ ot " Aiar, ) ag, T GUHX) @
By making the substitutions
ot ij (5)
Oi 9¢:\ U
={1— j - G,
R (I bt +Aﬂaxj> 56,
system (4) yields
A ou +R=0 (6)
Opn '
Given Cauchy data on S, all tangential derivatives g%, 1=0,...,N —1, are known. Only the

S-normal derivative, i.e., the exterior derivative, is not known. It can be evaluated, however, by
equation (6) provided that A~! exists. This condition implies that the following relation must

hold on a given point P of S:
Q(P;n,\) =det (A) #0. (7

Furthermore, let V¢ be the spatial gradient of ¢ and define

‘V¢Nl’ (8)

Substituting in the expression for @Q(P;n, A), one finds that
Q(Pin, ) =det (=AM +n 4;). (9)

This is a homogeneous polynomial of degree M in the quantities (A, n1,...,nx) and a first-order
differential equation for ¢ (¢, x).
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The surfaces along which this polynomial equals zero are the characteristic surfaces. The
differential equation that holds on a particular characteristic surface can be found by taking the
inner product of the original system with the appropriate left eigenvector, I,

ouU ou

L — 4+l {Aj=— -G | =0, E=1,...,M. 10

‘m’“(famj ) ' (10)

The system of first-order, quasi-linear equations (1) is defined to be hyperbolic at a point P in

the space-time ¢ x R, if real characteristic surfaces pass through this point, i.e., if the zeros A
of Q(P;n, ) are all real, and if its right eigenvectors ry, satisfying

(-)\k1+njAj)rk=O, k=1,...,M, (11)

(no summation on k), span the space EM. The property of hyperbolicity as formulated above is
a local property and depends on both the point P and the Cauchy data prescribed initially.

Consider now a simple model of chemical interaction of two calorically perfect gases, A — B,
assuming one-step, irreversible, Arrhenius kinetics, and the absence of dissipation mechanisms.
The conservation equations of the reacting system are given by

%{Z) + V. (pu) =0, (12a)
%-Fu-Vu-i—%Vp:O, (12b)
%ﬂﬂer+wN-u=K%W—1wzf&ﬂl (12¢)
%; +u-Vz=-—Kze 5/ (12d)

The equation of state of the reacting system is

=2 (13)
P
In the equations above, u = (u, v) is the velocity vector, T" is the gas temperature normalized by
the gas constant, and z is the reactant mass fraction, satisfying 0 < z < 1. The parameters of
the system are

v, the specific heat ratio, assumed common for both species,

go, the heat-release parameter,

E,, the activation-energy parameter, and

K, a scaling factor.
In the system under consideration, there are five dependent unknowns, therefore M = 5, on a
three-dimensional space-time, therefore N = 2.

Assume that the solution is continuous and consider an arbitrary but fixed spatial unit vector,
n = (n1,ng). Then, for the system above, the characteristic polynomial gives

(u-n—2)°((u-n-2)?%=(an))?) =0, (14)

o= \/775 (15)

This quantity is usually referred to as the frozen speed of sound. Relation (14) yields, in view

of (8),
3 2
(8;;‘[_ +u- V¢N> ((agtN +u- VgﬁN) —{a |V¢Nl)2> —0 (16)

where
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The convective manifold defined by the equation

O¢n

ot u Yoy =0 (17)

has a three-fold degeneracy. The associated triple eigenvalue is A1 23 = u-n. The acoustic
manifold defined by the equation

17
—SZM+U'V¢N+(1|V¢N|:O (18)

corresponds to the eigenvalue Ay = u-n — a, while the acoustic manifold defined by the equation

a—;?—%—u-quN—a[VchI:O (19)

corresponds to the eigenvalue A5 = u-n+a. The left eigenvectors of the system are, respectively,

I = [0, 200, 0} , : (20a)
ny

I =[-d%0,0,1,0], (20b)

13 =0, 0, 0,0, 1], (20¢)

l4 = [0, nipa, napa, 1, 0], (20d)

Iy = {0, ~nipa, —ngpa, 1, 0]. (20e)

Applying (10}, the original system of equations can be written in characteristic form,

0 _ _ z _
;1o (Pp™7) +u-V (log (pp™7)) = K (y =D aop e Ba/T, (21a)
0z
a%»u-Vz: —K ze Ba/T, (21b)
17
Ez(u-ni)+u-V(u‘ni) :—%Vp-n{ (21c)
Op ou
—a-?—kpanwg{ +(u+an)-(Vp+pan- -Vu) =R, (21d)
d 0
<b—f——pan~—5$> +{(u—an)-(Vp—pan-Vu) =R, (21e)
where
R=pa’n-(Vuyn -V -ul+ K (y—1)gpze &/T. (22)

In the equations above, n'l stands for the spatial unit vector normal to n. The first three
equations hold along the fluid stream-lines, while the fourth and fifth equations hold along the
bicharacteristics.

The terms on the right-hand side of equations (21) act as forcing terms and do not allow a
straightforward extension of the method of characteristics, as used for the one-dimensional Euler
equations of gas dynamics. The splitting approach in the design of shock-capturing schemes, with
or without source terms, is to fix n parallel to the grid direction, ignore the velocity component
normal to n and the terms on the right-hand side of the characteristic equations (21), and finally
solve for the remaining parts of the equations along the one-dimensional characteristic directions.
By employing this strategy, however, one disregards information that is coming from other flow
directions.

The idea behind the present design of unsplit, multidimensional schemes is to find manifolds
in space-time along which the equivalent one-dimensional, homogeneous characteristic equations
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hold. The immediate advantage of using such manifolds is that these equations can be easily
discretized and solved numerically. Assume that the solution vector is continuous up to first-
order derivatives. Then, the convective velocities ug, u;, uy, uy, u_ can be defined so that the
following relations are satisfied:

ug - Vleg (pp™") = =K (v = 1) g0 % e BT (23a)

u, - Vz=Kze /7T (23b)
ul'V(u~nJ“) :-:;Vp-nl, (23¢)

u; - (Vp+pan-Vu) = —R, (23d)
u_-(Vp—pan-Vu) = -R. (23e)

Additionally, consider the manifolds Sy, Sy, S§—, S;, S1, defined as the integral surfaces of the
following equations:

So ¢ f)D_t log(pp™") =0, (24a)

St g—; =0, (24b)
SL:DEt(u-nl):O, (24c)

Sy —g—‘?+pa—DD—t(u-n):O, (24d)
S- :%—?~pa—5—t(u'n):0. (24e)

Combining relations (23) and (21), it can be verified that the integral curves of the following
vector fields lie on the manifolds (24):

{(t,x)etx?)?Z: %’tfzu+uo}650, (25a)
{(t,x)etx§R2: %’tg:u—kur}e&, (25b)
{(t,x)etx?Rzz %:u+uL}€SL, (25¢)
{(t,x)eth: %’tf:u+an+u+}68+, (25d)
{(t,x)étx?)?zz %?:u—an-%u-}éS-. (25e)

The convective velocities ug, u,, uy, us, u_ depend locally on the spatial gradients of the flow
and are defined through the inner-product relations (23). These relations must be regarded as the
necessary compatibility conditions for the integral curves given by (25) to lie on the corresponding
manifolds. Each of these equations is linear in the components of the corresponding convective
velocity. This is because each of the ODEs (24) holds on a family of curves that constitutes a
two-dimensional manifold on the three-dimensional Euclidean space-time. Every curve on this
manifold passing through a point P corresponds to a different choice of convective velocity, see
Figure 1.

The definition of these manifolds is of local character because it is made under the assumption
of a smooth solution vector. The existence of discontinuities in the solution or its derivatives does
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Figure 1. A Riemann invariant manifold in the three-dimensional Euclidean space-
time.

not allow construction of the five manifolds, globally. This is not, however, a serious restriction
for numerical purposes. If a discontinuity is present in the flow-field, each of these manifolds can
be defined, and used in the computations, on either side of the discontinuity. The presence of
shocks, for example, is accommodated by supplementing the equations that hold on the manifolds,
with the appropriate jump conditions across the discontinuities. In other words, an appropriate
Riemann problem has to be solved. In this case, care must be taken so that not both initial states
are taken from the unshocked region, because then the information carried by the manifolds will
not propagate through the approaching shock. This shock-capturing strategy is equivalent to
the one used in traditional schemes which trace the bicharacteristic rays on each side of the
discontinuity. .

Some numerically useful choices of directions on the manifolds of interest are presented below.
First, consider the invariant manifold S.. Let N, denote the spatial unit vector normal to this
front. Then one gets

N, = Vp+ paV(u-n) . (26)
|[Vp+ paV(u-n)
N, depends on the spatial unit vector n. Actually, there is a family of manifolds Sy, each
manifold corresponding to a different choice of n. The unit vector n, which is assumed to be
arbitrary but fixed, acts as a “label” for the particular manifold under consideration. In other
words, n is the free parameter of the one-parameter family of manifolds S,.. This is also true for
the family of manifolds S_ and S, . It is not true, however, for 5o and S, because the orientation
of these manifolds does not depend on n, see equations (25).

Furthermore, n gives the spatial direction along which a one-dimensional characteristic problem
holds. By keeping u, fixed and letting n rotate a full circle, one gets a conoid of invariant curves
passing through the point P. An example of the relative position of this conoid with respect to
the conoid that is formed by rotation of the bicharacteristics (ray conoid) is sketched in Figure 2.

The velocity of the front S is given by

¢y =udan-+ug. (27)



32 M. V. PAPALEXANDRIS et al.

t=const.

Figure 2. Relative position of the invariant conoid (solid line) formed by the rota-
tion of n, with respect the ray conoid (dotted line) passing through a point P in
space-time.

A useful choice for uy is to seek |uy| ;.. The curve on Sy that corresponds to this choice is
the curve that lies as close to the equivalent bicharacteristic ray as possible. This means that
among all intersection points of S; and the constant-t plane, the one that belongs to the above
curve is the closest to the intersection of the bicharacteristic ray and the constant-t plane. Then
uy || Ny, and in fact,

= (rperan) ™ =

The velocity of the front S+ can be written as
ciL —=u -+ G,A1+ N+. (29)
In the equation above, the expression for M, can be obtained from (28) and (27). The result is

R
a|Vp+paViu- -n)|

My=n-N, — (30)

The dimensionless parameter M. is a measure of the deviation of the surface element around
the selected curve on the manifold S, from the bicharacteristic ray u + an. When [M | < 1,
the surface element is time-like. When |M,| > 1, the surface element is space-like (and when
|M| = 1, it is characteristic). When the surface element of S, is space-like, it lies outsice the
domain of dependence of a given point P. This might appear counter-intuitive but it has to
do with the fact that knowledge of the local spatial gradients of the flow and their smoothness
constitutes additional information about how the initial data are related. This information can
propagate with speeds greater than the characteristic speeds, as (30) reveals, and can be used
for computational purposes, see also relative discussion in [10].

The information about S is contained in N, and M, . These quantities provide the direction
of this manifold and its relative position with respect to the characteristic manifolds. Both of
these quantities depend directly on the spatial unit vector n. This dependence is due to the
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multidimensional character of the problem under consideration. The intersection of a manifold
in space-time and the local characteristic ray cone can be examined by considering the projection
vector, V,,, of an arbitrary bicharacteristic direction 1,

V,=u+an, (31)

on the manifold of interest. For the case of S, one can readily find that the projection of a curve
x(t) = W on Sy is the curve x(t) = w, such that the norm |W — w,,| attains a minimum. This
occurs if

(W~ w,) | Ny

When this condition is satisfied, then W = V,, and w,, = c;. Furthermore, one gets that
(W—-w,)=V,—cy=a(n -Np— M )N, (32)

The bicharacteristic ray lies locally on the invariant manifold S, if the right-hand side of the
above expression becomes zero, i.e., if the following relation is satisfied:

This equation admits a solution only if |M | < 1. Since both N and n are unit vectors, this
condition is satisfied when the surface element of S, lies within the characteristic ray cone.
This implies that whenever the invariant manifold Sy is not space-like, there are bicharacteristic
directions along which an equivalent one-dimensional problem holds.

Similar relations hold for the invariant manifold S_. The spatial unit normal to this front is
given by

_ Vp-paV(u-n)
N T paV ) (44

and the velocity of this front is given by
c_=u—an-+u_.

Along the curve of S_ that lies as close as possible to the equivalent bicharacteristic, the norm
[n_| attains a minimum. In this case, u_ || N_, and one gets

v = (v ™ (%)

The velocity of the front S can be written as

c. =u-aM_N_. (36)
M_ is the dimensionless parameter that measures the deviation of the curve from the bicharac-
teristic u — an. It is defined as

.\ R
a|Vp-—paV(u-n)|

M_=n-N_ (37)

As in the case of Sy, a surface element on S_ is time-like, characteristic, or space-like, according
to whether |[M_| <1, |M_| =1, or |M_| > 1, respectively. Using arguments similar to the ones

employed when S, was examined, one can find that the necessary condition for a characteristic

curve to lie on S_ is
M_=n-N_. (38)
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It remains to investigate the structure of the invariant manifolds Sy, S;, S1 and determine the
curves along these manifolds that can be used for numerical purposes. The spatial unit normal

vectors of these manifolds are given by

Vp —a’Vp
Ng= im————,
° 7 Vp - a2V
_Vz
r |vz|7
N, = V(u-nl) 7
|V (u-nt)|

respectively. The corresponding front velocities are

Cg = u + ug,
cr = u+u,

c; =utuy.

(39a)
(39b)

(39¢)

(40a)
(40b)
(40c¢)

As mentioned earlier, the convective velocities ug, u,, and u, need only satisfy the compatibility
conditions (23). Since all of these conditions are linear equations in the velocity space, a particular
choice of a convective velocity represents a curve along the corresponding manifold. It is natural

to select the velocities whose norm attain a minimum, i.e., to look for |ug|min. [Ur|min, 1L|

Then, one immediately gets

ug || No,
u, || Ny,
u) H N_]_.

Using relation (39), the following expressions are deduced:

K(y—1)gpze &/T
Uy = — ) 0,
|Vp —a*Vp|

K ze B/T

u, = —W— ry

u Vp-nt

1 = ee——— R
pIV(u-nt)]

Alternatively, one can introduce dimensionless parameters,

K{(vy-1)q ze Bs/T

My = 5
0 a |Vp — a?Vp
—E,)T
M= Bze
a |Vz|
Vp-nt

M=——
t 7 palV{und)]
and express the convective velocities in the following fashion:

Uy = —(J,]\/[()NQ,
u, = aM N,

uj :aA[LNL.

mnin”

(41a)
(41b)
(41¢)

(42a)
(42b)

(42¢)

(43a)
(43b)

{43c)

(44a)
(44b)
(44c)
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As in the case with M and M_, the parameters My, M,, and M, determine the relative position
of the corresponding invariant manifolds, Sg, Sy, and S, with respect to the local ray cone. If a
parameter is greater than unity, then its corresponding manifold is space-like and it is time-like
otherwise.

The intersection of Sy, &;, and &) with the ray cone can be examined in the same way as
above, i.e., by considering the projection vector of an arbitrary characteristic direction. Then,
one deduces that the following' condition has to be satisfied for a characteristic curve to lie on Sy:

My =1 - Ng. (45)
Similarly, if a characteristic curve is to lie on S;, then the necessary condition is

M, =n- N, . (46)
Finally, if a characteristic curve is to lie on S |, then the necessary condition is

M, =n-N|. (47)

2.1. Description of the Numerical Scheme

The compressible Euler equations for reacting flows (12), written in integral form, are

d
—/pdV+/pu-dS:0, (48a)
dt Jy 5
d
—/pudV+/puu~dS+/pdS:0, (48b)
dt Jy s s
d
— peth+/petu-dS+/pu~dS:0, (48c¢)
dt Jv s s
d
— pde+/pzu-dS—/pg(T,z)dV:O,
dt Jv s v
where ey is the total specific energy,
N A (49)
R R VR

and g(T, z) is the source term of the reaction equation,
g(T,z) = — Kze B/T, (50)

These equations are written for an arbitrary control volume V whose boundary S has zero velocity.
The procedure of discretization and numerical evaluation of these integrals at each computational
cell is given below. The resulting algorithm is second-order accurate for smooth parts of the flow.

Consider a simply-connected domain consisting of N; x M, quadrilateral cells of arbitrary
shape. The area of the (i, ) cell is denoted by AS; ;, and the coordinates of the center of the
cell are denoted by (f ;,yf ;). The interface between the cells (i,7) and (i + 1, j) is denoted by
(i+1/2,7). Similarly, the interface between the cells (¢, 7) and (i, + 1) is denoted by (i, j +1/2).
Finally, the unit vector normal to a cell interface is denoted by ng, and the length of a cell
interface is denoted by [.

Bilinear variation of all variables is assumed in each cell. The generic quantity ¢ is then given

by

Q(Z’J) = di,j + (q:c)i,j (iI} - ‘Tg,j) + (qy)i,j (y - yf,j) ) i=1,... #Nc’ .] =1,..., Aljcv (‘51)
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where ¢, ;, the average value of ¢ in the (4, 5) cell and (q:);.;, (¢y)i,; are the slopes of ¢ inside this
cell.

Under the assumption of bilinear variation of g, the slopes are constant. Then, ¢, ; is just the
value of g at the center of the cell. The slopes (¢z)i.;, (gy)i.; are evaluated through the divergence
theorem. For bilinear functions, this theorem takes the form,

[(@z)i5) (@y)ig] ASi; = (gns Dig1y2; + (qns D) jr1/2- (52)

In the relation above, ¢ must be evaluated at the center of each cell interface. This is performed
with the following procedure.

Assume that ¢ is to be computed at the center of the left interface, and let Al; denote the
distance between (zf ;,vf ;) and (z7_ ;,y{_, ;). Consider the left divided difference

qi,j _Qi—l.j. (53)

Aqp = AL

The differences Agr, Aqu, Agp, in the right, up, and down directions, respectively, are defined
in a similar fashion. Then, the value of ¢ at the left interface is given by

Gi-1/2 = Gi,j — 0.5 Al; Agrr,

where Aqpr is an approximation of the slope of q‘in the direction normal to the cell interface. It
can be computed from Agq, and Agg with the use of van Albada’s limiter, [12],

Aqur = ave(Aqy,, Aqr) (54)
and ,
a+b a—b
ave(a,b) = 5 (1 — a2(+ B J)r 62) ) (55)

with ¢ being a small positive number, say, ¢ = 1072, This slope-limiting procedure is employed
to preserve the monotonicity of ¢ near discontinuities while maintaining second-order accuracy
in both space and time for smooth parts of the flow. The evaluation of g at the centers of the
other cell interfaces is performed by repeating these steps to the appropriate interface.

For the numerical solution of the system of conservation equations, mass-averaged values of
the conservative variables are considered,

My j 5/ pdzdy, (56a)
(4.7)

My Ui = /( ) pudx dy, (56b)
6.

Mi Vg = / pvdz dy, (56¢)
(4,5)

My ;€4 E/ pe; dz dy, (56d)
(4,5}

My 2 z/ pzdxdy. (56e)
(4,7}

For the source term, set

mMi,9i5 = /( . pg(T, z) dz dy. (57)
i,j
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The flux vectors are given by

F,, = [pu, pv], (58a)
F. = [pu’ +p, pu, (58b)
F, = [puwv, pv* + p] (58c)
F. = [pecu + pu, pegv + pul, (58d)
F,=[pzu, pzv]. (58e)

The integration of the flux vectors along each cell interface is performed using the midpoint rule.
Consequently, the proposed numerical scheme, which evaluates the solution at time (n + 1)At
from the solution at the previous time nAt, can be written as

(mag)" ™ = (may)" = At [(Ing - Fr)[ 17, — (ne - Fo) 12

i+1/2.5 i—1/2,5 (59a)
a
n+1/2 +1/2
—At [([ns ' Fm)i):j+1/2 - (lns : Fm);;—l/?] ’
+1 n+1/2 n+1/2
(i ga, )" = (g )" = A [(ng B - (i, F ) (59b)
n+1/2 n+1/2
—At [(lns . Fu)i,j+1/2 - (lns ' F1l)/ljl:j71/2jl s
(mjvi )" = (majvig)" — At [(lns ' F")?:ll//;j — (In, - F,,)fjf/jj
' (59¢)
n+1/2 1/2
~At [(zns B, — (g FU)Z]-*,{/Q} )
it . nt1/2 nt1/2
(mujei )" = (myjei ;)" — At [(lns Fe)ifija, — Uns F"‘)i—l/%} (50d)
+1/2 n+1/2
—At [(lnS . Fe)2j+1/2 — (Ins - Fe);,j—l/?} ’
+1 +1/2 n+1/2
(mijzig)"" = (mijzig)" — At [(lns F) ey — (o FZ):I//‘Z«JJ (59)
n 2 n : :
~At [(lns TFa)) e — (Ins Fz)z.;_lﬁz} + AtAS; 5 (mi5g:5)" 2

The flux terms in relation above have to be evaluated at the center of each cell interface, and
at time t = (n + 1/2)At. This is performed by using the information provided by the Riemann
invariant manifolds that were described in the previous section. This procedure is illustrated
below for the interface between the cells (z,7) and (i + 1, 7). For the other three cell interfaces,
the procedure is exactly the same.

Let x,, = (@, yw) denote the center of this interface. One has to trace specific curves along
the five invariant manifolds that pass through the point with coordinates (z., yw. (7 + 1/2)At)
and find the intersection of these curves with the surface t = nA#. Then, the equations that hold
on the manifolds have to be discretized and solved numerically.

But first, one must select n. Recall that there is a one-parameter family of the manifolds S5
that is generated by the rotation of n. These manifolds form a conoid equivalent to the ray
conoid. By selecting n, one essentially decides the direction along which the ODEs that hold on
S, and S_ are solved. Numerical experiments showed that selecting the unit normal to the cell
interface, i.e., n = ny, works well in practice.

Having determined the manifold &, that will be used, one has to decide which specific curve
on S; should be traced forward in time, i.e., which convective velocity u, will be used. The
intersection of S, with the plane ¢ = nAt is the locus of the points that are connected with the
point (T, Yw, (n + 1/2)At) by the characteristic differential equation (24d), see Figure 3. Each
point of this curve corresponds to a specific uy. In the present work, the convective velocity uy
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(i,.§) (i+1))

—_— e
X

Figure 3. The locus of the points at ¢ = nAt that are connected with (T, yw)
through (24d).

has been selected to satisfy equation (28). In other words, the curve that lies as close to the
equivalent bicharacteristic as possible has been chosen.

The coordinates of the point at which this curve intersects the plane t = nAt, say x,, are evalu-
ated by solving equation (25d) numerically. For this purpose, the selected curve is approximated
by a straight line. After some straightforward calculations, one gets the following expression for
the coordinates of xp:

Tp 1
[yp} det = ’ (60)
where
2
=_ F(U+U+)y+—A'Z —(u—l—u+)y2 ’
| (vt vg)e (1L+U+)1+E
r A
7~ (u+uy)
Yy =
Yy
LAt —{(v+wvy)

All the quantities in this relation are evaluated at the center of the cell interface. Once the
coordinates of x, are computed, the solution vector is evaluated at this point.

This procedure is repeated for the manifold S_ by setting n = —n,. The specific curve on S_
that is used is the one that corresponds to a convective velocity u. which satisfies (35). The
point at the plane t = nAt that is connected with (2, yu, (n + 1/2)At) by the characteristic
equation (24e) is determined by solving numerically the equation (25e), with a procedure similar
to the one employed for (25d) that was described earlier. Then, the solution vector is evalnated
at this point.

Subsequently, the ODEs (24d) and (24e) are solved for the computation of the pressure and the
normal velocity component at the cell interface at time (n + 1/2)At. These two equations must
be supplemented with appropriate jump conditions when discontinuities are present. Probably
the most robust way to implement this, is to treat the discontinuity as if it was normal to the
cell interface. This is equivalent to solving an 1-D Riemann problem in the direction parallel
to n. Other possible shock directions are also allowed by the algorithm. The 1-D Riemann
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problem of the Euler equations for reacting flows is not self-similar like the classical 1-D, gas-
dynamic, Riemann problem. Shock waves and expansion fans are not straight lines on the z-t
plane anymore, because they are accelerating. Yet, the solution of the Riemann problem for
reacting flows converges to the solution of the classical 1-D Riemann problem as z,t — 0, [13].
Therefore, one can safely use the solution of the classical 1-D Riemann problem for computational
purposes, see also [11].

As mentioned earlier, allowing discontinuities only at the cell interfaces is a feature not only of
this algorithm but of all shock-capturing schemes. This constraint can be important, especially
in cases of oblique shocks fronts because it might result to more numerical diffusion than desired.
This constraint, however, is independent of the effort to design unsplit schemes, where the goal
is to reconstruct the solution by being able to consider information from all possible directions.

L is evaluated by selecting a curve on S;. In the

The tangential velocity component, u - n
present work, the selected curve corresponds to the velocity ul given by equation (42¢). As
usual, the curve is approximated by a straight-line segment, and its intersection with the plane
t = nAt is computed. At that point, u-n' has the same value as at (Tw, Yw, (n + 1/2)At). The
expression for the coordinates of that point is analogous to (60). The reactant mass fraction is
evaluated by selecting a curve on S;. The selected curve corresponds to a velocity u, given by
equation (42b).

Finally, the density is evaluated by tracing the curve on Sy that corresponds to a velocity
up given by equation (42a), and subsequently locating the point at which this curve crosses the
t = nAt plane. Let pp,po denote the values of pressure and density at this point. The density at
the interface, say (1 + 1/2,7), is evaluated by discretizing equation (24a) in the following way.

If p:fll/ 22] > po, then

(pn+l/2 . p())
1/2 1/2 i+1/2,5
(P:fl/z] - P0> - <(’Y +1)po+ (v - 1)1)?;’1/2,0 B vt (61a)
It 7111//22] < po, then
nt1/2 _ n+1/2 1 61b
Pix1ja; = Po\Piyiya, /Po) - (61b)

Equation (61a) is the jump condition of (24a). It is used when the curve on &y is being crossed
by a shock. Equation (61b) is just the discretized version of (24a).

The computational costs of this algorithm and the traditional MUSCL scheme [3], equlpped
with operator splitting, are comparable. This is because the only additional operations needed by
the proposed scheme are those for the calculation of the convective velocities ug, u;, uy, uy, u_.
These velocities are computed directly from equations (28), (35), and (42a)—(42c), respectively,
without any iterative procedure. Their computation is, therefore, performed at minimal cost.

3. NUMERICAL TESTS OF
TWO-DIMENSIONAL DETONATIONS

Detonations are generally unstable phenomena with many spatial and temporal scales. The
most noticeable feature of a detonation is the cellular structure, e.g., [14]. These structures are
sustained because of the continuous energy release from the chemical reaction. The cells are
diamond shaped and are formed by the trajectories of the triple points of the main front. The
cell size can be almost uniform, resulting in a system of regularly distributed cells, or it might
vary from cell to cell. The existence, or not, of such regularity depends on the combustible
mixture and the width of the channel. In general, narrow channels result in cells of uniform size.
Unconfined detonations typically produce irregular cellular patterns. It has been observed [14]
that the cell spacing is of the order of 100 reaction-lengths of the steady (ZND) solution. The
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linearized, two-dimensional stability problem has been considered by [15], who used a Fourier-
series approach to investigate the growth-rate of transverse instabilities. For more recent works
on the two-dimensional stability problems, see among others, Yao and Stewart [16] and Clavin
et al. [17].

In general, linearized-stability theories applied to these problems are accurate in the predic-
tion of the stability limits. As it turns out, two-dimensional detonations, governed by one-step
Arrhenius kinetics, are intrinsically unstable. Stability is maintained only if the overdrive is high
(more than ten), or the activation energy is small. The approximate theories mentioned above,
however, have not been successful in the prediction of cell size because the mechanisms that
determine the evolution of detonation fronts are highly nonlinear.

Numerical simulation of 2-D detonations was initiated in the early 1970s [18]. More recently,
Oran et al. [19] simulated detonating flows in rectangular domains with periodic boundary con-
ditions at the top and bottom boundaries using the flux-corrected-transport (FCT) algorithm.
Bourlioux and Majda [20] performed simulations of the same problem for a wide range of parame-
ters using the piecewise parabolic method (PPM), see [5]. Cai [21] presented results with a hybrid
algorithm that uses an essentially nonoscillatory (ENQO) scheme at regimes of steep gradients and
spectral representation elsewhere. In the present work, detonations in channels are solved nu-
merically to examine the effectiveness of the proposed algorithm and to make comparisons with
previously published results.

3.1. Preliminary Test

This test simulates the flow of a reactive gas over a wedge. The wedge is placed instantly in
the uniform flow of the gas and a shock is then formed at the wedge. Since the gas is reactive,
the shock is progressively curved due to the dilatation of the reacting material behind the shock.
A detonation might be established downstream if the shock temperature is sufficiently high. The
wedge is assumed to be long enough so that its geometry downstream cannot influence the flow
the computational domain.

The wedge angle 6 is an important parameter of this problem. It is expected that for small
wedge angles the shock turns smoothly and the flow far downstream consists of a standing oblique
ZND wave, i.e., a ZND wave with a nonzero transversal velocity component. Pratt et al. [22]
studied the parametric values of the wedge angle § and upstreamn Mach number A that result in
such standing waves. For this test, § = 20°. The properties of the gas are

v=12 ¢ =500, K=3125  E,=10.0,
while the upstream condition of the gas is
p=10, T=10, M =150.

The theoretical prediction is that downstream the flow reduces to an oblique ZND wave of over-
drive factor f = 1.2, and at a shock angle of approximately 43.5°. The computational domain is
a rectangle with dimensions 120 x 32 unit lengths (a unit length is the half-reaction length of the
ZND wave). The bottom boundary is the wall of the wedge. Inflow conditions have been specified
at the left boundary and outflow conditions at the top and right boundaries. Two different mesh
sizes have been used, 240 x 64 and 480 x 128 cells, respectively.

Contour plots of the flow variables at t = 25.0 are shown in Figure 4. At that time the flow
has already reached steady state. Each plot contains 15 contours at values equally distributed
between the minimum and maximum values of the variables. As expected, the results obtained
with the two different resolutions are very close. The smearing of the shock is the only noticeable
difference. Simulations of such flows have been performed, among others, by Li et al. {23]. Their
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(a) Mesh size, 240 x 64 cells.

Figure 4. Oblique detonation, contour plots of the flow variables at t = 25.0.

results were similar to the ones reported here. A detailed study of wedge-induced detonations
with the proposed unsplit algorithm is presented in [24].

3.2. Numerical Tests of Detonations in Channel Flows

In this set of numerical tests the computational domain is a rectangle. Periodic conditions
are imposed on the top and bottom boundaries and inflow conditions are imposed on the left
boundary. Finally, outflow conditions are prescribed on the right boundary. The flow at this
boundary is subsonic. The problem of evaluating the fluxes across a boundary becomes under-
determined when one or more curves of the invariant manifolds lie outside the computational
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Figure 4. (cont.)

domain. Therefore, an a priori condition needs to be imposed, but in such way that no artificial
wave-reflections occur at the boundary. In the present work, this is achieved by copying the
values from the boundary cells to their corresponding dummy cells. By doing so, two conditions
are satisfied. First, all the invariant curves lie inside the computational domain except for the
curve defined by {25e) which lies outside. Second, each term of the characteristic equation (24e)
that holds on (25e) becomes identically 0, thus overcoming the underdeterminacy problem.

The initial condition is a transversally-perturbed, planar ZND wave, propagating in a quiescent
medium. For a given choice of parameters the one-dimensional ZND profile has been computed
numerically and it is assigned to each longitudinal station throughout the width of the domain.
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The perturbation is a sinusoidal variation of the amplitude of the post-shock values of the flow
variables in the transversal direction. It is employed to trigger the instabilities faster than the
truncation error would. The ZND wave is assumed to propagate to the left and is stationary with
respect to the laboratory frame. Hence, if the flow was indeed steady the position of the shock
front would be constant in this frame.

It is a common practice to employ explicit artificial dissipation mechanisms for compressible
flow simulations. This is often necessary because the implicit viscosity of the scheme, which arises
from the discretization of the equations and monotonicity constraints, is not adequate for the
stabilization of strong shocks. For a detailed discussion on this topic, see [5]. The only explicit
dissipation mechanism that has been employed in the proposed unsplit scheme is slope limiting,
even though the leading shock fronts in detonations are typically quite strong (the shock Mach
number is typically above ten). Additional explicit dissipation has been employed in most of the
previously published results of two-dimensional detonations. The extra dissipation was used in
the vicinity of either the leading shock or the transverse shock waves.

Furthermore, if a shock is sufficiently slow with respect to the grid, Godunov-type schemes
generate spurious post-shock oscillations. These oscillations occur because one eigenvalue of the
equations changes sign across the shock, see [5]. The change of sign makes the diffusive term
of the difference equations that approximate the original system, locally very small. Therefore,
additional artificial dissipation is needed to suppress the oscillations. In two-dimensional prob-
lems, this error is smaller because flow obliquity introduces the required dissipation and because
the error can diffuse away from the front in other directions. In the simulations presented here,
the front is initially planar and is moving slowly with respect to the grid in the early stages of
the process. The amplitude of the resulting error, however, is small because of the transverse
perturbations in the initial condition. These perturbations introduce fluxes to the y-direction,

e e —

Figure 5. Pressure field for a planar detonation, at ¢ = 3.0 Schlieren-type images
and plots along the centerline with initial transverse perturbation (bottom row), and
without (top row). Two periods in the y-direction are plotted.
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making the low two-dimensional even at small times. If these perturbations had not been intro-
duced, then persistent post-shock oscillations would have been generated.

To illustrate this effect, Schlieren-type snapshots of the pressure field and plots of the pressure
along the bottom boundary for both initial conditions (with and without perturbations) are

(¢) Resolution: 30 points per unit length.

Figure 6. Case A: contour plots of the flow variables at t = 60.0. Two periods in the
y-direction are plotted.
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Figure 7. Case B. Schlieren-type images of flow variables at t = 60.0. Two periods
in the y-direction are plotted.
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(c) Vorticity.
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Figure 8. Case C. Schlieren-type images of flow variables at ¢t = 40.0. Two periods
in the y-direction are plotted. )
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presented in Figure 5, for comparison. The detonation parameters are: v = 1.2, E, = 50.0, ¢ =
50.0, and f == 1.6. These snapshots are taken at £ = 3.0. The shock is initially located at = 25.0.
The expression “Schlieren-type snapshot” implies snapshots of the norm of the gradient vector
of a variable. Once the instabilities are fully developed and the cellular structure is formed, the
front moves fast with respect to the grid and the local curvature of the front can be substantial.
Therefore, post-shock oscillations are strongly diminished in the later stages of the process.
Results for three different cases are presented. In all cases, the variables and parameters of the
system have been made dimensionless by reference to the uniform state ahead of the detonation
front. The half-reaction length of the ZND profile, Ly2, is characteristic length-scale. Ly
divided by the sound speed ahead of the shock provides the characteristic time scale. The spatial
resolution is, unless otherwise specified, 20 points per half-reaction length, and the CFL.number
has been set at CFL = 0.7. The sinusoidal transversal perturbation of a variable has an amplitude
equal to 0.2% of its post-shock value. The wavelength of the perturbation is one unit-length.

Case A. This is a case of low activation energy and low heat release,
v=12,  E,=200, ¢=20  f=12

The stiffness coefficient of the system is K = 1134363.64. The computational domain of the
simulation is 30 unit-lengths long and ten unit-lengths wide. The ZND wave is initially located
at x = 35.0.

The corresponding one-dimensional case is linearly stable, i.e., there are no linearly unsta-
ble longitudinal modes. The transverse perturbations, however, grow and transverse waves are
eventually generated. These waves lead to the formation of the familiar cellular structures. As
mentioned earlier, the explosions generated by the collisions of the transverse waves release large
amounts of heat that allow the conservation of these patterns. In this particular case, the colli-
sions occur periodically in time. The cellular structures are quite regular and have the same size.
The geometry of the main front also changes periodically. The dimensionless shock pressure,
according to the ZND solution, is p; = 3.688. In the numerical simulation, the shock pressure
goes as high as ps = 6.1267.

Results for this case at time t = 160.0 are presented in Figure 6b. They agree well with the
results presented in {20]. The structure of the main front, in particular, and the cellular patterns
are the same in both simulations. Different resolutions, namely ten and 30 points per unit-length,
have also been used. These results are shown in Figures 6a and 6¢, respectively. The flow-fields
generated by the three simulations are very similar. The patterns of the flow field are stable in
time and space with regard to resolution. The main difference is that the vorticity structures
become sharper as the resolution is increased.

Cask B. In this case, both the activation energy and the overdrive factor are low,
v=12 E,=100, o =500, f=12

The stiffness coefficient for this case is K = 3.124. The computational domain is 60 unit-lengths
long and ten unit-lengths wide, i.e., it consists of 1200 x 200 points. The initial ZND wave is
placed at z = 55.0. The corresponding one-dimensional flow is stable. The CFL number has
been lowered to 0.3. Such a low value is necessary to avoid excessive numerical diffusion that
may smear important flow patterns.

Results for this case are presented in Figure 7. The simulations show that the structure of
the main front varies periodically with time. The transverse waves are weaker and shorter than
those of the previous cases. The vortex sheets from two colliding triple points detach from the
front simultaneously, thus forming pairs. These pairs are regularly distributed in the wake of the
front. The shock pressure of the ZND solution is ps = 50.49, but the maximum shock pressure
of the simulation is ps = 144.62. The numerical simulations show that the structure of the main
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front varies periodically with time. The results obtained with the proposed algorithm are in very
good agreement with the results presented in [20] for the same case.

CAse C. This is a case of low overdrive factor and high heat release. The corresponding one-
dimensional problem has five unstable longitudinal modes,

v=12,  E,=500 ¢ =500 f=12.

The stiffness coefficient for this detonation is K = 871.42. The computational domain of the
simulation is 60 unit-lengths long and ten unit-lengths wide. The initial ZND wave is located at
x = 5.0. Schlieren-type snapshots of the flow variables for this problem are given in Figure 8.

The two-dimensional analysis in [15] reveals that this detonation is unstable at arbitrarily
short wavelengths. In the early stages, the evolution of the flow-field resembles the equivalent
one-dimensional process. More specifically, the shock pressure and temperature drop below the
ZND values and, as a consequence, the reaction zone stays temporarily behind the hydrodynamic
shock. Later on, material burns fast due to thermal runaway, resulting to high over-pressures.
This similarity to the one-dimensional case suggests that in early times the evolution process is
dominated by longitudinal instabilities.

Once the transverse instabilities grow and start dominating the flow, the structures of the flow
field become very complicated. At the front, strong triple-point collisions occur, generating new
systems of shock waves. In the wake of the front, there are many vortical structures. Pockets
of unreacted material are constantly created and subsequently burn. They are long chunks of
unburnt material, almost parallel to the main front. Sometimes they can span the width of the
channel.

The transverse waves of the triple points are strong and can be more than ten lengths long.
Transverse-wave collisions are encountered often. The shock wave systems that result from these
collisions interact with the vortical structures that have been convected downstream from the
main front. There is no evidence of regularity even far behind the leading front. According
to the ZND theory, the shock pressure is ps = 50.49. In the present simulation, the maximum
value observed is p; = 220.0. Results for this case have also been reported in [20], where similar
phenomena were observed. The main features of the flow (long unreacted pockets, strong vortical
interaction in the wake, etc.) are the same in both simulations.

4. CONCLUDING REMARKS

A new shock-capturing, MUSCL-type algorithm has been proposed for the numerical study
of multidimensional systems of hyperbolic conservation laws with source terms. The algorithm
is fully unsplit in the sense that it avoids both dimensional and time splitting. It is based on
the decomposition of the governing system to the set of equations that is satisfied along the
characteristic paths of the corresponding 1-D homogeneous problem. Each of these equations
now holds along a specific space-time manifold, referred to as a Riemann invariant manifold.
Numerical integration of these equations is performed in the upwinding step of the algorithm.

The performance of the proposed algorithm was tested via simulations of stable and unstable
two-dimensional detonations. The stable cases were a wedge-induced detonation, and a planar
detonation of low activation energy and heat release. In both cases, numerical convergencs was
observed as the grid was refined. The unstable cases were two examples of planar detonations
with large heat release. Such flows are characterized by cellular structures that are formed by the
motion of the triple points of the leading shock. The slip lines emanating from these points roll up,
detach from the front, and interact with the wave structures of the wake. The proposed algorithm
appeared to be stable and capable of capturing many important details of the flow-fields. No
special treatment other than slope-limiting was employed to suppress spurious oscillations and
to avoid entropy-violating shocks. In particular, flux-splitting and entropy-fixes were completely
avoided with the proposed method.
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