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Abstract

A small library of anticancer, cell-permeating, stapled peptides based on potent dual-specific 

antagonist of p53–MDM2/MDMX interactions, PMI-N8A, was synthesized, characterized and 

screened for anticancer activity against human colorectal cancer cell line, HCT-116. Employed 

synthetic modifications included: S-alkylation-based stapling, point mutations increasing 

hydrophobicity in key residues as well as improvement of cell-permeability by introduction of 

polycationic sequence(s) that were woven into the sequence of parental peptide. Selected 

analogue, ArB14Co, was also tested in vivo and exhibited potent anticancer bioactivity at the low 

dose (3.0 mg/kg). Collectively, our findings suggest that application of stapling in combination 

with rational design of polycationic short analogues may be a suitable approach in the 

development of physiologically active p53–MDM2/MDMX peptide inhibitors.
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Introduction

In recent years lack of funds has made cutting edge research in peptide chemistry 

significantly more challenging. A case in point is “stapling” of peptides that emerged as a 

leading strategy in the development of novel peptide-based drug candidates since a pivotal 

Blackwell & Grubbs paper (Blackwell and Grubbs, 1998). Numerous studies used this 

approach to develop potent bioactive compounds even resulting in the foundation of a 

specialized company, Aileron Therapeutics, Inc. However, reagents necessary to carry out 

stapling related research are rather expensive, especially olefin functionalized non-natural 

amino acids which form “staple” (α-helix-stabilizing olefin bridge) during a ring-closing 

metathesis (RCM) reaction. This makes related SAR peptide studies particularly expensive 

and risky, especially if one works on difficult or long sequences where yield becomes an 

issue. In this “classical” approach the peptide staple is efficiently created in a two-step 

process between strategically positioned olefin functionalized non-natural amino acid side 

chains. The first step, catalyzed by Grubbs catalyst, results in olefin containing bridge that is 

subsequently catalytically reduced to saturated hydrocarbon (alkane), effectively locking the 

peptide into a stable α-helix conformation (Bernal et al., 2007; Blackwell et al., 2001; 

Blackwell and Grubbs, 1998; Walensky et al., 2004). Such helix stabilization had been 

shown to dramatically increase the helicity, potency, resistance to proteolytic degradation 

and cell permeability of α-helical peptides (Bautista et al., 2010; Bernal et al., 2007; Bird et 

al., 2010; Kim et al., 2011; Kim and Verdine, 2009; Long et al., 2013; Schafmeister et al., 

2000)

Over the years novel strategies for peptide stapling have emerged as alternatives to the RCM 

approach (Lau et al., 2015a). These include hydrazone bridge (Cabezas and Satterthwait, 

1999), oxime bridge (Haney et al., 2011), 1,4-disubstituted-[1,2,3]-triazole linkage 

(Holland-Nell and Meldal, 2011; Ingale and Dawson, 2011; Kawamoto et al., 2012; Lau et 

al., 2014c; Lau et al., 2014b; Lau et al., 2014a; Lau et al., 2015b; Scrima et al., 2010), metal 

chelation (Ghadiri and Choi, 1990; Ruan et al., 1990), disulfide bond formation (Almeida et 

al., 2012; Jackson et al., 1991; Leduc et al., 2003), lactam ring formation (Fujimoto et al., 

2008; Geistlinger and Guy, 2001; Geistlinger and Guy, 2003; Houston, Jr. et al., 1995; 

Osapay and Taylor, 1992; Phelan et al., 1997) and S-alkylation based staples employing 

either α-haloacetamide alkylation of single cysteine (Brunel and Dawson, 2005; Cardoso et 

al., 2007; Galande et al., 2004; Woolley, 2005) or bridging two cysteines with bis-S-

alkylating linker(s) (de Araujo et al., 2014; Jo et al., 2012; Muppidi et al., 2011b; Muppidi et 

al., 2011a; Muppidi et al., 2012; Spokoyny et al., 2013; Szewczuk et al., 1992; Timmerman 

et al., 2005; Wilkinson et al., 2007; Zhang et al., 2007; Zhang et al., 2008). Among these, 

the last seems to be most flexible approach as a wide range of inexpensive bis-thiol-reactive 

linkers is commercially available, including rigid aromatic derivatives (Chua et al., 2015; Jo 

et al., 2012; Muppidi et al., 2011b; Muppidi et al., 2011a; Muppidi et al., 2012; Timmerman 
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et al., 2005; Zhang et al., 2007) and aliphatic counterparts (Byrne and Stites, 1995; Chua et 

al., 2015; Lindman et al., 2001; Wilkinson et al., 2007). In addition, the availability of 

various cysteine homologs: (L)Cys, (D)Cys, (L)homoCys, (D)homoCys, (L)Pen, and (D)Pen 

provides an additional option for “fine tuning” of pre-selected active derivatives. Moreover, 

those S-alkylation/stapling reactions can be carried out in water-based solutions without any 

protecting groups and due to use of standard amino acids (Cys and its homologs) costs are 

relatively low. Notably, the use of multi-thiol-reactive linkers has a remarkably long 

tradition, as an application for this purpose of the aromatic derivative, 1,3,5-

tris(bromomethyl)benzene, was initially reported by Kemp & McNamara in 1985 (Kemp 

and McNamara, 1985) and use of its bis-reactive homologs, 1,2-bis(bromomethyl)benzene, 

and 1,3-bis(bromomethyl)benzene was described only few years later (Szewczuk et al., 

1992). This methodology was also successfully applied in peptide drug development 

(Timmerman et al., 2007), including phage display (Angelini et al., 2012a; Baeriswyl et al., 

2012; Baeriswyl et al., 2013; Baeriswyl and Heinis, 2013a; Baeriswyl and Heinis, 2013b; 

Bellotto et al., 2014; Chen et al., 2012; Chen et al., 2013; Chen et al., 2014b; Chen et al., 

2014a; Heinis et al., 2009; Rentero-Rebollo et al., 2014; Timmerman et al., 2007) as well as 

peptide-albumin (Angelini et al., 2012c; Pollaro et al., 2014) and peptide-antibody drug 

conjugates (ADCs) (Angelini et al., 2012b).

We decided to apply this “cheap” strategy to the synthesis of p53–MDM2/MDMX bridged 

peptide inhibitors that are currently of great interest (Bernal et al., 2007; Bernal et al., 2010; 

Brown et al., 2009; Brown et al., 2013; Chang et al., 2013; Khoo et al., 2014).

The p53 pathway remains major target in anti-cancer research (Brown et al., 2009; Cheok et 

al., 2011). Generally, its deregulation causes malignant transformation of normal cells and 

approximately 50% of all cancers have a mutation in TP53 gene (Menendez et al., 2009), 

with varying mutations’ frequencies, ranging from ~10–70%, dependent on cancer type 

(Brosh and Rotter, 2009). Moreover, in all p53 pathway related cancers, only half is 

associated with TP53 mutations, with remaining cases being caused by overexpression of 

the p53-negative regulators: MDM2 (Momand et al., 1992) and MDM4, (Danovi et al., 

2004; Laurie et al., 2006; Riemenschneider et al., 1999) or deletion/inactivation of ARF, the 

p53-positive regulator and MDM2 inhibitor (Esteller et al., 2001; Lowe and Sherr, 2003; 

Sherr and Weber, 2000).

The p53 stress response protein is a transcription factor with a crucial role in tumour 

suppression (Lowe et al., 2004; Vousden and Lane, 2007). It regulates various biological 

activities (Menendez et al., 2007; Menendez et al., 2009; Vousden and Prives, 2009) 

including, apoptosis (Bensaad et al., 2006; Vousden, 2006), cell cycle (Kastan et al., 1992; 

Kuerbitz et al., 1992), senescence (Garbe et al., 2007), immune response (Taura et al., 

2008), cell differentiation (Molchadsky et al., 2008), motility (Qin et al., 2009) and 

migration (Roger et al., 2006; Singh et al., 2007), angiogenesis (Pal et al., 2001; Teodoro et 

al., 2006; Zhang et al., 2000), DNA (Helton and Chen, 2007) and energy (Green and 

Chipuk, 2006; Matoba et al., 2006; Vousden and Ryan, 2009) metabolism, microRNA 

processing (Suzuki et al., 2009), cell–cell communication (Yu et al., 2006) and the DNA 

damage response and repair (de Souza-Pinto et al., 2004; Sengupta and Harris, 2005; 

Sommers et al., 2005). Normal levels of p53 protein are low, due to rapid ubiquitin-
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dependent proteasomal degradation which is controlled largely by the E3 ubiquitin ligase 

MDM2 (Brooks and Gu, 2006) (known as HDM2 in human), which in turn is also a target of 

transcriptional regulation by p53 (Murray-Zmijewski et al., 2008). Additionally, MDM2 

may regulate p53 function through direct, high affinity binding to p53’s N-terminal 

transactivation domain which effectively blocks its function (Momand et al., 1992), and by 

impairing nuclear import of the p53 protein (Haupt et al., 1997; Wade and Wahl, 2009). 

MDM4 (also known as HDM4, MDMX or HDMX), another negative regulator of p53, also 

plays an important role in its function. Although MDM4 shows a similar to MDM2 p53-

binding properties, it lacks its E3 ubiquitin ligase activity and consequently cannot affect 

p53s stability (Marine et al., 2007; Marine, 2011; Migliorini et al., 2002a; Migliorini et al., 

2002b; Toledo et al., 2006; Toledo and Wahl, 2006; Wade and Wahl, 2009). However, 

MDM4, a structural homologue of MDM2, can form a MDM2/MDMX heterodimers 

through their C-terminal RING finger domains, which potentiate the ubiquitination of p53, 

and subsequently its degradation (de Graaf et al., 2003; Linares et al., 2003; Pan and Chen, 

2003). Notably, in contrast to MDM2, MDMX is not under transcriptional control of p53 

(Riedinger and McDonnell, 2009). In addition stability of p53 is influenced by ARF (also 

known as p14ARF) a tumour suppressor that interacts with MDM2 and inhibits p53 

degradation(Sherr and Weber, 2000).

Various stressors, including DNA damage and oncogenic stress, increase the amount of p53 

by disrupting its degradation resulting in p53’s stabilization and functional activation (Lavin 

and Gueven, 2006; Murray-Zmijewski et al., 2008; Sherr, 2006). Once activated, p53 can 

elicit various cellular responses, including growth arrest, senescence and apoptosis.

Since p53 is commonly inactivated in various human cancers, its “re-activation” represents a 

major therapeutic strategy. Specifically, targeting the interactions of p53 with its major 

negative regulators, MDM2 and MDM4, recently emerged as an important therapeutic 

approach, with multiple examples of both, small molecules and peptides being utilized as 

p53-MDM2/MDM4 inhibitors (Li and Lozano, 2013; Saha et al., 2013; Wang et al., 2012; 

Zhao et al., 2013). p53-MDM2/MDM4 interactions are mediated primarily by three key 

hydrophobic residues in p53: 19Phe, 23Trp, and 26Leu (Kussie et al., 1996; Pazgier et al., 

2009; Popowicz et al., 2008), and similar though not identical, hydrophobic surface grooves 

in MDM2 and MDM4 (Zhao et al., 2013). Over past few years, mutational studies and 

phage display has produced multiple peptide-based p53–MDM2/MDMX inhibitors, 

including all-D, stapled and bridged compounds with increased resistance to proteolysis 

(Bernal et al., 2007; Bernal et al., 2010; Chang et al., 2013; Guo et al., 2014; Hu et al., 2007; 

Li et al., 2009; Li et al., 2010b; Li et al., 2010a; Liu et al., 2010b; Liu et al., 2010a; Madden 

et al., 2011; Madhumalar et al., 2009; Pazgier et al., 2009; Zhan et al., 2012). Available in 

vitro/in vivo data (Chang et al., 2013; Hu et al., 2007; Liu et al., 2010a) suggest that the 

limiting factor in the inhibitory activity of these compounds is low cell-permeability since 

liposomal based formulations appear to be significantly more potent than “naked” peptide 

(Liu et al., 2010a). Even though, peptide stapling was postulated to increase cell 

permeability (Bernal et al., 2007) its effects seems to be limited as liposomal formulation 

(Liu et al., 2010a) of DPMI-α (dosage: 3 and 7.5 mg/kg, KD-MDM2=219 nM(Liu et al., 

2010b)) was significantly more potent than MPEGDSPE-based micellar formulation of 

Micewicz et al. Page 4

Int J Pept Res Ther. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ATSP-7041(Chang et al., 2013) (dosage: 15–30 mg/kg, KD-MDM2=0.91 nM), despite a 

superior binding affinity of the latter, although this assessment may not be totally valid since 

different cell lines/schedules were used in both studies. Conjugates of similar peptides with 

cell permeating molecules (Arg3, (D)Arg9 and spermine) were also prepared, though 

respective in vivo studies were not reported (Lau et al., 2014c; Lau et al., 2014b; Liu et al., 

2010a; Muppidi et al., 2011a). Other limited studies employing an S-alkylation of a pair of 

cysteines located at i,i+7 positions of analogous compounds, using 4,4’-bis-bromomethyl-

biphenyl (Bph) and 6,6’-bis-bromomethyl-[3,3’]-bipyridine (Bpy) were also reported 

(Muppidi et al., 2011b; Muppidi et al., 2011a). Again, in vivo anticancer activity was not 

presented.

Materials and Methods

Peptide Synthesis

All peptides were synthesized as C-terminal amides (except for ArB14Ao) by the solid 

phase method using CEM Liberty automatic microwave peptide synthesizer (CEM 

Corporation Inc., Matthews, NC), applying 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry 

and commercially available amino acid derivatives and reagents (EMD Biosciences, San 

Diego, CA and Chem-Impex International, Inc., Wood Dale, IL). Rink Amide MBHA Resin 

(Piperazine-2-Chlorotrityl for ArB14Ao) (EMD Biosciences, San Diego, CA) was used as a 

solid support. Peptides were cleaved from resin using modified reagent K (TFA 94% (v/v); 

phenol, 2% (w/v); water, 2% (v/v); TIS, 1% (v/v); EDT, 1% (v/v); 2 hours) and precipitated 

by addition of ice-cold diethyl ether. Linear peptides were purified by preparative reverse-

phase high performance liquid chromatography (RP-HPLC) and their purity evaluated by 

matrix-assisted laser desorption ionization spectrometry (MALDI-MS) as well as analytical 

RP-HPLC.

Stapling using the bis(halogenomethyl)aryl linkers

1. 1,2-bis(bromomethyl)benzene,

2. 1,3-bis(bromomethyl)benzene,

3. 1,4-bis(bromomethyl)benzene,

4. 1-(bromomethyl)-3-[3-(bromomethyl)benzyl]benzene,

5. 1-(chloromethyl)-4-[4-(chloromethyl)phenoxy]benzene, may be performed either 

on the solid support or in solution.

In solution: Peptide (1 eq) containing 2 properly placed cysteines was mixed in the solution 

of DMF (N,N-dimethylformamide) and DMSO (dimethylsulfoxide) (1:1 ratio, concentration 

of peptide: 0.5–1 mg/mL) with the bis(halogenomethyl)aryl compound (XCH2-Ar-CH2X, 1 

eq.) in the presence of cesium carbonate (Cs2CO3, 10 eq.) and tetrabutylammonium iodide 

(TBAI, 1 eq.). Reaction was monitored by HPLC/mass spectrometry. Alternatively stapled 

compounds were obtained using modified Timmerman protocol (Timmerman et al., 2005). 

Briefly, linear peptides were solubilized in 50% acetonitrile in water containing 50 mM 

NH4HCO3 (~0.5 mg/mL) and then appropriate bis-functional S-alkylating reagent was 

Micewicz et al. Page 5

Int J Pept Res Ther. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



added. Reaction(s) were stirred for 18 h and solutions subsequently lyophilized. Obtained 

crude compounds were purified by preparative RP-HPLC and their purity evaluated by 

MALDI-MS as well as analytical RP-HPLC

On the solid support: After assembly of the peptide, final Fmoc group was removed and 

side chains of Cys residues deprotected (2% trifluoroacetic acid (TFA), 2% triisopropyl 

silane (TIS) in dichloromethane (DCM), 3×10 min). Then peptide was washed with DMF 

and bis(thioether)arylbridging performed on resin using appropriate bis-functional S-

alkylating reagent (1 eq.) in the presence of Cs2CO3, (10 eq) and TBAI (1 eq) in DMF 

(overnight). Subsequently, peptides were cleaved and processed as described above.

Stapling with 2-chloro-N-(2-(2-chloro-acetyloamino)-ethyl)-acetamide linker: was 

performed using Timmerman protocol (Timmerman et al., 2005) described above.

Stapling with divinylsulfone (DVS): was performed using previously described protocol 

(Wilkinson et al., 2007) from corresponding purified linear peptides in reaction with 1 eq. 

(mole:mole ratio) of DVS in solution of 10 mM NH4HCO3 in 50% ACN in water 

(overnight). Subsequently, solution was lyophilized, and obtained crude solid residues 

purified by preparative RP-HPLC.

Stapling with 1,4-dibromobutane and 1,7-dibromoheptane: was performed in solution using 

modified Włostowski S-alkylation protocol (Wlostowski et al., 2010) that we adapted to 

peptides (Chua et al., 2015). Briefly, linear peptides were solubilized in anhydrous methanol 

(~0.5 mg/mL) containing, if necessary up 25% of DMSO. Subsequently 1 equivalent of 

either 1,4-dibromobutane and 1,7-dibromoheptane was added followed by 1,1,3,3-

tetramethylguanidine (final conc.=0.35%, vol/vol). Reaction mixture was stirred 15 min at 

room temperature and then 90 min at 50 °C. Subsequently, solution was lyophilized, and 

obtained crude solid residues purified by preparative RP-HPLC.

Synthesis of analogues ArB14k1÷k4 and ArB18Ek: Peptides ArB14k1÷k4 and ArB18Ek 

were assembled using SPPS (Fmoc-(D)Lys(Dde)-OH was used). Then side chain of (D)Lys 

was selectively deprotected using 2% hydrazine in DMF (3×10 min) and subsequently 

chloroacetylated using chloroacetic anhydride (5 eq./30 min). Then peptides were cleaved 

from the resin and cyclized in solution of 65 mM NH4HCO3 in 70% ACN in water 

(overnight) giving thioether bridge. Subsequently, solution was lyophilized, and obtained 

crude solid residues purified by preparative RP-HPLC.

Oxidation of thioethers to corresponding sulfones: (ArB14Dmx and ArB14Emx): Oxidation 

of thioethers to sulfones was performed using OXONE® (Duran et al., 2006) (Sigma-

Aldrich, KHSO5×0.5 KHSO4×0.5 K2SO4) in methyl alcohol:water mix (3:1) using 3 eq. of 

OXONE® per each thioether group. Reaction was carried out in room temperature for 3 h. 

Subsequently solutions were freeze-dried and purified using preparative RP-HPLC.

Synthesis of ArB conjugates with—Azidothymidine (AZT): was conjugated using 

Cu(I)-catalyzed azide-alkyne 1,3-dipolar Huisgen's cycloaddition (CuAAC, “click 

chemistry”). Alkyne component was synthesized from ArB14Co in one step synthesis: 5-

Hexynoic acid in dry DMSO (1 eq., Sigma-Aldrich Corp., St. Louis, MO) was pre-activated 
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with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) in the presence of 3 eq. of N-

hydroxysuccinimide (NHS) for 3 h. Subsequently, 1 eq. of ArB14Co in dry DMSO was 

added followed by 5 eq. of NMM. The solution was agitated overnight and subsequently 

evaporated under reduced pressure on SpeedVac. Remaining residue was purified on RP-

HPLC. Obtained ArB-alkyne derivative was then “clicked” with AZT using published 

protocol (Lau et al., 2015b) using CuSO4/sodium ascorbate catalyst in 50% tert-buthanol in 

water. Subsequently, reaction mixture was freeze-dried and purified using RP-HPLC.

Bleomycin A5 (BLM): was conjugated with ArB analogue(s) using bis-amine-reactive 

linker, dithiobis(succinimidyl propionate) (DSP, Pierce Biotechnology, Rockford, lL). 

Briefly, specific ArB peptide was synthesized with an additional 6-aminohexanoic acid 

(Ahx) residue at N-terminus. Then chosen stapling procedure was performed and stapled 

peptide was purified using RP-HPLC. Subsequently, equimolar amounts of Ahx-ArB 

peptide and BLM (EMD Millipore, Temecula, CA) were mixed in dry DMSO (5 mg/ml). 

Then 10 eq. of N-methylmorpholine (NMM) was added followed by 1 eq. of DSP. The 

reaction was mixed for 18 h and subsequently evaporated under reduced pressure on 

SpeedVac. Remaining residue was purified using RP- HPLC.

Chlorambucil (CLB): was introduced using N-terminal amine group employing N,N’-

diisopropylcarbodiimide (DIC, Sigma-Aldrich Corp., St. Louis, MO) as a coupling reagent. 

Reactions were carried out on resin using N,N-dimethylformamide as a solvent (2h).

Cholesterol (Chol): was introduced using N-terminal amine group employing cholesterol 

chloroformate (Sigma-Aldrich Corp., St. Louis, MO) resulting in urethane type connectivity. 

Reactions were carried out on resin in the presence of DIPEA using dichloromethane as a 

solvent (2h).

Docetaxel (DTX): was conjugated with ArB analogue(s) using the same strategy that was 

employed for BLM conjugates. Suitable DTX derivative, 2’-O-glycyl-docetaxel, was 

synthesized using previously described method (Zhigaltsev et al., 2010). Briefly, Trt-Gly-

OH (1 eq.) and DTX (1 eq.) were dissolved in dry dichloromethane and cooled in ice bath 

under the inert-gas blanket. Subsequently, 2 eq. of 2-fluoro-1-ethyl pyridinium 

tetrafluoroborate (FEP) dissolved in minimal amount of dry dichloromethane were added 

followed by 3 eq. of DIPEA. The reaction was agitated for 18 h with gradual warming to 

room temperature and then evaporated. Solid residue was re-dissolved in solution of 2% 

TFA in dry dichloromethane to remove Trt protecting group (30 min) and evaporated again. 

Obtained residue was purified using RP-HPLC giving 2’-O-glycyl-docetaxel that was 

subsequently used for conjugation(s).

Methotrexate (MTX): was introduced using N-terminal amine group employing N,N’-

diisopropylcarbodiimide (DIC, Sigma-Aldrich Corp., St. Louis, MO) as a coupling reagent. 

Reactions were carried out on resin in the presence of DIPEA using N,N-

dimethylformamide as a solvent (2h).
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Analytical RP-HPLC

Experiments were performed on a Varian ProStar 210 HPLC system equipped with ProStar 

325 Dual Wavelength UV-Vis detector with the wavelengths set at 220 nm and 280 nm 

(Varian Inc., Palo Alto, CA). Mobile phases consisted of solvent A, 0.1% TFA in water, and 

solvent B, 0.1% TFA in acetonitrile. Analyses of peptides were performed with an analytical 

reversed-phase C18 SymmetryShield™ column, 4.6×250 mm, 5 µm (Waters, Milford, MA) 

or (*) an analytical reversed-phase C18 Vydac 218TP54 column, 4.6×250 mm, 5 µm (Grace, 

Deerfield, IL) applying linear gradient of solvent B from 0 to 100% over 100 min (flow rate: 

1 ml/min).

In vitro cells’ growth inhibition assay

Experiments were carried out using PrestoBlue™ Cell Viability Reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer's protocol. Briefly, HCT-116 cells were plated in a 

96-well plate at a density of 5×103 cells/well in a total volume of 50 µl of culture media and 

treated with various concentrations of tested peptides (50 µl of 0–200 µM peptides in culture 

media). The cells' viability was assessed after 48 h by fluorescence measurement (Ex/Em:

560/590, incubation time 30 min) employing the SpectraMAX M2 microplate reader 

(Molecular Devices, Sunnyvale, CA). All experiments were carried out in triplicate.

Animal experiments

All animal experiments were approved by the UCLA Animal Care and Use Committee and 

conformed to local and national guidelines. For subcutaneous engraftment model 

experiments BALB/SCID gnotobiotic mice (8 weeks old) were obtained from the UCLA 

AALAC-accredited Department of Radiation Oncology Facility and subcutaneously injected 

with 2.0×106 cells of human colorectal cancer cell line (HCT-116, leg). After 3 weeks, 

palpable tumours of approximately 5 mm diameter appeared and treatment was initiated. In 

general, each animal received intraperitoneally a total of 10 doses of ArB14Co at 3.0 mg/kg 

or 7.5 mg/kg on days 1–5 and 8–12 with 8 mice per group. The peptide was formulated in 

2% Cremophor EL (Sigma-Aldrich, St Louis, MO) in phosphate-buffered saline (PBS, vol/

vol). Control animals were injected with vehicle alone. Tumour(s) size was assessed with 

calliper and its volume calculated using formula: V=L*W2/2 (V=tumour volume, L=length, 

W=width, L>W) and animals sacrificed as necessary according to the UCLA Animal Care 

guidelines.

Results and Discussion

Based on the analysis of literature data, we decided to synthesize library of p53–MDM2/

MDMX inhibitors with enhanced cell permeability afforded by multiple Arg residues 

“woven” into the sequence of the parent peptide. Such modifications provide desired 

permeability effect and simultaneously limit the size/costs of making the potential drug 

candidate. Physiological stability/enzymatic resistance of these peptides was enhanced by 

the use of unusual- and (D)-amino acids as well as by stapling based on bis-cysteine bridges 

obtained by means of S-alkylation with selected bis-functional compounds. Employed 

modifications are schematically represented in Fig. 1.
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As a starting point for our modifications we decided to use PMI-N8A peptide, the potent 

dual-specific antagonist of p53–MDM2/MDMX interactions with respective Kd values of 

490 pM and 2.4 nM. PMI and its derivative PMI-N8A were originally developed in Lu’s 

group using phage display (Li et al., 2010a; Pazgier et al., 2009). Analogous all-D-peptide 

inhibitors called DPMI-α, DPMI-γ and DPMI-δ were also discovered by the same group 

using mirror-image phage display (Liu et al., 2010b; Liu et al., 2010a; Zhan et al., 2012) and 

subsequently tested in an animal model. However even proteolysis resistant DPMI-α 

required a liposomal delivery system to be active in vivo.

Based on analysis of p53/MDM2 and PMI-N8A/MDM2 crystal structures we placed various 

combinations of (L)- and (D)Cys residues in specific positions of the PMI sequence taking 

into account the importance of particular amino acids for peptide bioactivity (Table 1). 

These peptides were in turn stapled using selected bis-thiol-reactive compounds (Fig. 2) that 

fitted into the available spatial arrangements/dimensions, based on computer-aided 

molecular modeling. Pairs of cysteines were placed in positions: i,i+3; i,i+4; i,i+6; and i,i

+7 of the peptides. Since DPMI-α presumably lacks cell permeating properties, in addition, 

we engineered several analogues with multiple (L)/(D)Arg residues to increase cell 

permeability, in combination with (D)- and non-proteinaceous amino acids to enhance 

stability and binding properties of the peptides. Selected analogues were also conjugated 

with cholesterol (Chol), bleomycin A5 (BLM), chlorambucil (CLB), docetaxel (DTX) and 

methotrexate (MTX), using the thiol-cleavable linker, dithiobis(succinimidyl propionate) 

(DSP, Pierce Biotechnology, Rockford, lL).

Generally, all analogues were synthesized as C-terminal amides (except ArB14Ao) by the 

solid phase method using CEM Liberty automatic microwave peptide synthesizer (CEM 

Corporation Inc., Matthews, NC), applying 9-fluorenylmethyl-oxycarbonyl (Fmoc) 

chemistry (Fields and Noble, 1990) and standard, commercially available amino acid 

derivatives and reagents (EMD Biosciences, San Diego, CA and Chem-Impex International, 

Inc., Wood Dale, IL). Non-stapled peptides were purified by preparative reverse-phase high 

performance liquid chromatography (RP-HPLC) and their purity evaluated by matrix-

assisted laser desorption ionization spectrometry (MALDI-MS) as well as analytical RP-

HPLC (see Table 1 and Fig. 3).

The stapling/S-alkylation reactions were carried out in solution using various protocols (for 

details see Experimental Section) using both, water-based solutions and “exclusively” 

organic solvents. Generally, for S-alkylation of synthetic linear peptides using bis-

halogenomethyl-aryl derivatives and 2-chloro-N-(2-(2-chloro-acetylamino)-ethyl)-

acetamide, we employed the protocol described by Timmerman and co-workers 

(Timmerman et al., 2005). Those reactions were carried out at ambient temperature in a 

solution of 50 mM ammonium bicarbonate (NH4HCO3) dissolved in a mixture of 

acetonitrile (ACN) and water. The synthesis of mono-S-alkylated compounds (ArB14Ck1-

k4) was achieved using the same protocol. The stapling with divinylsulfone (DVS) was 

performed using a previously described protocol (Wilkinson et al., 2007) with conditions 

very similar to NH4HCO3/ACN method, with the only difference being the NH4HCO3 

concentration (10 mM). The highest efficiency of stapling reaction(s) was observed for 

divinylsulfone (DVS), 2-chloro-N-(2-(2-chloro-acetylamino)-ethyl)-acetamide and 1,2- and 
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1,3-bis(bromomethyl)benzene bridged analogues. Simultaneously, 1-(bromomethyl)-3-[3-

(bromomethyl)benzyl]benzene and 1-(chloromethyl)-4-[4-(chloromethyl)phenoxy]benzene 

staples were created with particularly low efficiency (yield <3%). Therefore in these cases 

(ArB15Eb, ArB17Ac and ArB18Bc) we also attempted to synthesize desired analogues 

using DMF/DMSO/Cs2CO3/TBAI system that we recently described (Micewicz et al., 

2014). Unfortunately, this method did not improve synthetic efficiency. Notably, stapling 

with ortho- and meta-bis(bromomethyl)benzene can be also performed on resin using 

analogous protocol (see Experimental Section for details). The poor synthetic yields were 

also attributed to the stapling performed with 1,4-dibromobutane and 1,7-dibromoheptane 

that was carried out using a previously described 1,1,3,3-tetramethylguanidine (TMG) 

driven alkylation of thiol(s) in organic solvents that we adapted to peptides (Chua et al., 

2015). Synthesis of oxidized analogues ArB14Dmx and ArB14Emx was performed using 

OXONE® (Duran et al., 2006) (Sigma-Aldrich, KHSO5×0.5 KHSO4×0.5 K2SO4) in a 75% 

solution of methyl alcohol in water employing 3 eq. of OXONE® per each thioether group. 

The reaction was carried out in room temperature for 3 h giving desired sulfones‘ containing 

products. For the analogues ArB14Co and ArB14Cs we additionally synthesized conjugates 

with known anticancer compounds, namely azidothymidine (AZT), bleomycin A5 (BLM), 

chlorambucil (CLB), docetaxel (DTX) and methotrexate (MTX) (see Table 1 and Fig. 4) to 

ascertain possible synergy effects. AZT conjugate was synthesized using Cu(I)-catalyzed 

azide-alkyne 1,3-dipolar Huisgen's cycloaddition (CuAAC, “click chemistry”). CLB and 

MTX were attached as N-terminal moieties directly on resin during SPPS. In the case of 

BLM and DTX conjugates, we employed direct conjugation of proper unprotected ArB 

peptides with the desired anticancer entity using bis-amine reactive crosslinking reagent, 

dithiobis(succinimidyl propionate) (DSP, Pierce Biotechnology, Rockford, lL) in DMSO 

solution (5 mg/ml, 18 h).

An initial evaluation of bioactivity of our compounds was carried out in vitro using growth 

inhibition assay (PrestoBlue™, Invitrogen, Carlsbad, CA) and HCT-116 colorectal cancer 

cell line that is sensitive to MDM2 inhibitor(s) treatment (Hu et al., 2007; Tovar et al., 2006; 

Vassilev et al., 2004). In our view, this simple approach provides more reliable data which 

take into account many factors like the compounds’ cell permeability, stability, binding 

potency, etc., and in this particular case is better suited for the screening than pure 

biophysical method(s) e.g. measurements of binding affinity, especially in the light of 

reported discrepancies between physicochemical/in vitro data and in vivo activity (Chang et 

al., 2013; Liu et al., 2010b; Liu et al., 2010a). Notably, we had previously employed this 

approach in the synthesis of drug candidates targeting other intracellular targets (Smac) with 

positive results (Micewicz et al., 2014). Examples of cell growth curves are presented in Fig. 

5 and the in vitro screening data are summarized in Table 1. The most active compounds 

were found to be i,i+3 stapled analogues (ArB14Cs, ArB14Co, and ArB14Bo) containing a 

polyarginine motif (Fig. 6) with staple created either by 1,2-bis(bromomethyl)benzene 

(ArB14Co and ArB14Bo) or DVS (ArB14Cs) between (D)Cys in position 5 and (L)Cys in 

position 8. Notably, ArB14Cs seems to be ~2× more active than ArB14Co/ArB14Bo 

counterparts suggesting that the DVS-staple produces a sterically less constrained compound 

than the ortho-substituted-thio-methyl-benzene-linker. Moreover, the DVS staple is 

structurally/electrostatically similar to the Glu side chain that is present in this particular 
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position in the parental compound (PMI-N8A), which has previously been reported 

important for overall activity (Li et al., 2010a). Position 3 seems to be also quite permissive 

as the activity observed for the pentafluoro-phenylalanine-containing analogue (ArB14Co) 

is almost identical to that with a 2-naphthyl-alanine residue in the same position (ArB14Bo). 

The polyArg motif consists of 5 arginine residues in positions 1, 2, 4, 9 and 11, with 

positions 1 and 9 being occupied by (D)Arg residues. Introduction of (D)Arg enantiomers in 

these particular positions allowed for formation of a polycationic face for the molecule, 

which was reported as necessary feature for efficient cell entry (Futaki et al., 2002; Wender 

et al., 2008), while simultaneously providing additional resistance to proteolytic cleavage 

afforded by unnatural/(D) amino acids. Notably, all ArB analogues lacking the polyArg 

motif showed poor anticancer properties. Modifications in the crucial hydrophobic 

triad: 19Phe→PheF5/2-Nal, 23Trp→1-Nal, and 26Leu→Cha were prompted by reports that 

certain modifications enhancing hydrophobicity may result in analogues with enhanced 

properties (Liu et al., 2010b; Zhan et al., 2012), with an additional benefit being enhanced 

resistance to oxidative degradation afforded by elimination from the molecule of the Trp 

residue which is prone to such process (Simat and Steinhart, 1998). Interestingly, in the case 

of 19Phe→PheCF3 substitution effects seem to be less pronounced than for 19Phe→PheF5 

analogue, suggesting that the additional para-trifluoromethyl-group may be associated with 

limited steric hindrance, which is contrary to previously reported results (Zhan et al., 2012), 

although such conclusion may be partially incorrect since compared peptide sequences are 

not identical. The observed in vitro anticancer effects were sequence specific and seem to be 

independent on polArg toxicity as various other polycationic sequences synthesized for this 

study showed limited potency (e.g. ArB14Dm, ArB15Em, ArB15Fo, ArB15FNico, etc.). In 

certain cases, conjugation with known anticancer entities seems to be beneficial as well. 

Specifically, BLM-conjugates had improved anticancer activity (ArB14Cs-BLM versus 

ArB14Cs; ArB14Co-BLM versus ArB14Co). A similar, but less pronounced, trend was also 

observed for MTX- and CLB-conjugated counterparts.

To ascertain whether our ArB compounds possess therapeutic potential in vivo, we 

performed studies in a murine subcutaneous tumour engraftment model (HCT-116/SCID). 

Based on the in vitro results and ease of synthesis/availability, we selected stapled peptide 

ArB14Co as the drug candidate for in vivo experiments. The treatment of cancer-bearing 

animals with this analogue resulted in potent anticancer effects (Fig. 7). Animals treated 

with 10 doses of the compound at a concentration of 3.0 mg/kg showed ~14.6 days delay in 

tumour growth. Interestingly, 2.5× higher dose (7.5 mg/kg) showed similar efficacy. Since 

all reported to date in vivo data for p53–MDM2/MDMX peptide inhibitors utilized different 

murine models, direct comparison between them should be rather cautious due to inherent 

differences in tumour growth rates, physiology, etc. Nonetheless, comparison with recently 

reported results for ATSP-7041 (Chang et al., 2013) (Aileron Therapeutics, Inc.) seems to be 

very favorable as therapeutic dosage for ATSP-7041 was in much higher range (15–30 mg/

kg). Interestingly, in an MDM2-amplified osteosarcoma xenograft model (SJSA-1) 

anticancer activity of ATSP-7041, like ArB14Co, showed no dose response as the in vivo 

activitiy for 15 mg/kg and 30 mg/kg doses was basically the same, providing roughly ~4–5 

days of tumour growth delay, which is ~3× less than for ArB14Co administered at 

significantly lower dose (3.0 mg/kg). Activity of ATSP-7041 in the MDMX overexpressing 
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MCF-7 human breast cancer xenograft model is more promising, however the dosage 

utilized is still high (20–30 mg/kg). Comparison of ArB14Co with targeted liposomal 

formulation of DPMI-α (Liu et al., 2010a) (human glioma cell line U87/nude BALB/c 

model) is somewhat difficult as presented tumour volumes are reported in relative scale and 

tumour growth delay values are not reported, Nonetheless, presented results suggest 

significant activity, at least at 7.5 mg/kg dose. However, in this case ArB14Co may possess 

an advantage as well since it does not require liposomal delivery system. Notably, 

naked DPMI-α was virtually inactive in reported in vitro experimets in concentrations as 

high as 100 µM.

Conclusions

A new family of anticancer, cell-permeating, stapled peptides was synthesized, characterized 

and screened for anticancer activity against human colorectal cancer cell line, HCT-116. 

Selected analogue, ArB14Co was tested in vivo showing potent anticancer activity at the low 

dose (3.0 mg/kg). Utilized stapling/modification strategy yielding short, cell permeating 

analogues, containing polycationic motif woven into parental sequence of peptide(s) seems 

to be a suitable approach in the development of p53–MDM2/MDMX bridged peptide 

inhibitors.
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Fig. 1. 
Schematic representation of modifications in ArB analogues
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Fig. 2. 
Cysteine(s) based staples used in the synthesis of ArB-analogues
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Fig. 3. 
The representative analytical RP-HPLC profile and corresponding MALDI-MS spectra 

obtained for analogue ArB14Cs

Micewicz et al. Page 22

Int J Pept Res Ther. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Structures of selected conjugates of ArBs prepared for this study
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Fig. 5. 
Cell viability data for selected compounds. Compounds possess following EC50 values 

(µM): ArB14Co:11.2±1.2; ArB14Bo:10.7±0.7; ArB14Co-CLB:7.5±1.1; ArB14Co-MTX:

6.9±0.4; ArB14Co-AZT:30.2±2.5
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Fig. 6. 
The most active ArB analogues
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Fig. 7. 
In vivo results from subcutaneous engraftment mouse model (HCT-116/SCID). 

Administration of ArB14Co results in ~14.6 days of tumour growth delay
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