
ar
X

iv
:1

51
1.

02
23

5v
1

 [
qu

an
t-

ph
]

 6
 N

ov
 2

01
5

nand-Trees, Average Choice Complexity, and Effective Resistance

Stacey Jeffery∗and Shelby Kimmel†

Abstract

We show that the quantum query complexity of evaluating nand-tree instances with average
choice complexity at most W is O(W), where average choice complexity is a measure of the
difficulty of winning the associated two-player game. This generalizes a superpolynomial speedup
over classical query complexity due to Zhan et al. We further show that the player with a
winning strategy for the two-player game associated with the nand-tree can win the game
with an expected Õ(N1/4

√
C(x)) quantum queries against a random opponent, where C(x)

is the average choice complexity of the instance. This gives an improvement over the query
complexity of the naive strategy, which costs Õ(

√
N) queries.

The results rely on a connection between nand-tree evaluation and st-connectivity prob-
lems on certain graphs, and span programs for st-connectivity problems. Our results follow
from relating average choice complexity to the effective resistance of these graphs, which itself
corresponds to the span program witness size.

1 Introduction

nand-tree evaluation is a Boolean formula evaluation problem that has proven to be a rich ground
for developing quantum algorithms. The first quantum algorithm for evaluating nand-trees was
created by Farhi, Goldstone, and Gutmann in the continuous time model [FGG07], and showed
that a tree with input size N , corresponding to a formula consisting of nested nand-gates to
depth log N , could be evaluated in time O(

√
N). They used an algorithm that involved scattering

a wavepacket off of a graph. The nand-tree problem was quickly adapted to the query model,
[CCJYM09, ACR+10], and seems to be a major motivation for the development of span program
quantum algorithms in [RŠ12]. Through the refinement of span program algorithms, Reichardt was
able to show that any formula with O(1) fan-in on N variables (of which nand-trees are a special
case) can be evaluated in O(

√
N) queries [Rei11b]. Classically, the query complexity of evaluating

nand-trees is Θ(N .753) [SW86]. Variants of the nand-tree problem have also been studied. For
example, when the input is in a certain class, called k-fault trees, the quantum query complexity
can be improved to O(2k) [ZKH12, Kim11]. A lower bound of Ω((log log N−log k)k) on the classical
query complexity of evaluating k-fault trees makes this a superpolynomial quantum speedup for a
range of values of k [ZKH12].

Every nand-tree instance also defines a two-player game as follows. Players A and B move on
a full binary tree of depth log N , with leaves labeled by the input bits of x ∈ {0, 1}N . Starting
from the root, A and B alternate choosing one child of the current node to move to until a leaf is
reached. If the value of the leaf is 1, A wins, and if the value of the leaf is 0, B wins. It turns out

∗Institute for Quantum Information and Matter (IQIM), Caltech, sjeffery@caltech.edu
†Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland, shelbyk@umd.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216240064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1511.02235v1

that for 1-instances of nand-tree evaluation, A can always win if she plays optimally, no matter
what strategy B employs, and for 0-instances, B can always win if he plays optimally.

The results of [ZKH12] show a connection between the difficulty of winning the game associated
with a nand-tree instance, as measured by the fault complexity, and the quantum query complexity
of evaluating a nand-tree instance. A nand-tree instance has fault complexity 2k if the player with
the winning strategy will encounter at most k faults on any winning path, where a fault is a node
at which one choice leads to a sub-game in which the player still has a winning strategy, while the
other does not. In this paper, we consider a more nuanced measure of the difficulty of winning the
two-player game associated with a nand-tree, which we call the average choice complexity. The
average choice complexity is upper bounded by the fault complexity. Like the fault complexity,
the average choice complexity is related to the number of critical decisions a player must make to
win the two-player game, but rather than describing the worst case, as with the fault measure,
the average choice complexity depends on decisions made in a good strategy, averaged over the
opponent’s strategy. The average choice complexity also provides a more subtle characterization of
the criticality of the choice made at a particular node, and captures the fact that nodes that are
not faults can still be important decision points.

By exploiting an elegant connection between nand-trees (or (∧,∨)-formulas in general) and
st-connectivity problems on certain graphs, we find that the average choice complexity is exactly
the span program witness size in a span program for evaluating nand-trees. We are thus able to
generalize the superpolynomial speedup of [ZKH12] to show that the bounded error quantum query
complexity of evaluating nand-trees, when we are promised that the average choice complexity of
the input is at most W , is O(W) (Theorem 3).

A related problem to evaluating a nand-tree instance is winning a nand-tree instance. The
connection between nand-tree evaluation and winning strategies suggests a strategy for winning
the game: at every node, solve the instances of nand-tree rooted at each child, and if possible,
always choose one that evaluates to 1 if you are Player A, or 0 if you are Player B. The total number
of quantum queries employed by this strategy is Õ(

√
N). As a second application of the connection

between average choice complexity and span program witness size, we are able to give a strategy that
wins a nand-tree against a random opponent using an expected Õ(N1/4

√
C) quantum queries, where

C is the average choice complexity (Theorem 6). This result gives an operational interpretation
of average choice complexity as the difficulty, in quantum query complexity, of winning against a
random opponent. The algorithm uses a recent result of [IJ15] that constructs an algorithm for
estimating the span program witness size of any span program. The player uses this estimation
algorithm to estimate the average choice complexity of both children and then chooses the path
that is easier on average.

We achieve the connection between average choice complexity and witness size by exploiting a
link between evaluating nand-trees and solving st-connectivity in certain graphs, which may be of
further interest. In particular, we find that 1-valued nand-tree instances are related to st-connected
subgraphs of a certain graph G, while 0-valued instances are related to st-connected subgraphs of
the dual of G.

The relationship we uncover between nand-trees, st-connectivity problems on graphs and their
duals, and two-player games hints at many connections that might be explored. When is the
quantum query complexity of evaluating Boolean formulas characterized by graph connectivity
problems? What role do graphs and their duals play in span program algorithms? Our current
span program algorithm characterizes properties of a two-player game assuming the opponent plays
randomly; by adjusting the span program algorithm, could we characterize the same two-player
game, but with different strategies for the players? On the other hand, it may be that these
strategies are somehow particularly natural for quantum algorithms, in which case, we would like

2

to understand why.

Outline In Section 2, we give some requisite background information. In Section 3, we define
average choice complexity. In Section 4, we prove our first main result: that nand-trees with
average choice complexity at most W can be evaluated in O(W) quantum queries. We also show

in this section that the average choice complexity can be estimated using Õ
(√
C(x)N1/4

)
queries,

where C(x) is the average choice complexity of the instance. We prove these results by exploiting a
connection between nand-trees and st-connectivity on a family of graphs and their duals. We first
relate the average choice complexity to the effective resistance of these graphs (Section 4.1). Then,
we construct and analyze a span program for st-connectivity problems on these graphs, such that
the witness size of the span program depends on the effective resistance of the graph (Section 4.2).
In Section 5, we give a quantum algorithm for playing the two-player nand-tree game that makes
use of our algorithm for estimating C(x). Finally, in Section 6, we discuss some open problems.

2 Preliminaries

In this section, we will provide the necessary information to understand our paper: in Section 2.1,
we describe nand-trees, in Section 2.2 we provide some basic results about span programs and
quantum algorithms, and in Section 2.3 we introduce some key concepts from graph theory.

2.1 NAND-Trees

A nand-tree is a full binary tree of depth ℓ in which each leaf is labeled by a variable xi, and each
internal node is labeled by either ∨ (or), if it is at even distance from the leaves, or ∧ (and), if it
is at odd distance from the leaves. While a nand-tree of depth ℓ is sometimes defined as a Boolean
formula of nands composed to depth ℓ, we will instead think of the formula as an alternation of
ands and ors — when ℓ is even, these two characterizations are identical. An instance of nand-
tree is a binary string x ∈ {0, 1}N , where N = 2ℓ. We use nandℓ to denote a complete nand-tree
of depth ℓ. For instance, a nand-tree of depth 2 represents the formula:

nand2(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4). (1)

If nandℓ(x) = 1, we say that x is a 1-instance, and otherwise we say it is a 0-instance.
A nand-tree instance can be associated with a two-player game. Let x ∈ {0, 1}N be an input

to a depth-ℓ nand-tree, so N = 2ℓ. Then we associate this input to a game played on a full binary
tree as in Figure 1, where the leaves take the values xi. The game starts at the root node v, which
we call the live node. If the live node is at even distance from the leaves (an or node) Player A
chooses to move to one of the live node’s children. The chosen child now becomes the live node.
At each further round, as long as the live node is not a leaf, if the live node is at even (respectively
odd) distance from the leaves, Player A (resp. Player B) chooses one of the live node’s children
to become the live node. When the live node becomes a leaf, if the leaf has value 1, then Player
A wins, and if the leaf has value 0, then Player B wins. The sequence of moves by each player
determines a path from the root to a leaf.

A simple inductive argument shows that if x is a 1-instance of nand-tree, then there exists
a strategy by which Player A can always win, no matter what strategy B employs; and if x is
a 0-instance, there exists a strategy by which Player B can always win. We say an input x is
A-winnable if it has value 1 and B-winnable if it has value 0.

In this paper, we will consider trees of even depth for simplicity, but the arguments can be
easily extended to odd depth trees.

3

2.2 Span Programs

In this section, we review the concept of span programs, and their use in quantum algorithms.
Span programs [KW93] were first introduced to the study of quantum algorithms by Reichardt and
Špalek [RŠ12]. They have since proven to be a tool of immense importance for designing quantum
algorithms in the query model.

Definition 1 (Span Program). A span program P = (H, V, τ, A) on {0, 1}n is made up of

1. finite-dimensional inner product spaces H = H1⊕ · · · ⊕Hn, and {Hj,b ⊆ Hj}j∈[n],b∈{0,1} such
that Hj,0 + Hj,1 = Hj,

2. a vector space V ,

3. a target vector τ ∈ V , and

4. a linear operator A : H → V .

For every string x ∈ {0, 1}n, we associate the subspace H(x) := H1,x1⊕· · ·⊕Hn,xn, and an operator
A(x) := AΠH(x), where ΠH(x) is the orthogonal projector onto H(x).

Given a span program, one can obtain a quantum query algorithm based on that span program.
The parameters of the span program that determine the query complexity of the algorithm are the
positive and negative witness sizes:

Definition 2 (Positive and Negative Witness). Let P be a span program on {0, 1}n and let x be a
string x ∈ {0, 1}n. Then we call |w〉 a positive witness for x in P if |w〉 ∈ H(x), and A|w〉 = τ .
We define the positive witness size of x as:

w+(x, P) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x) : A|w〉 = τ},

if there exists a positive witness for x, and w+(x) =∞ otherwise. We call a linear map ω : V → R

a negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative witness size of
x as:

w−(x, P) = w−(x) = min{‖ωA‖2 : ω ∈ L(V,R) : ωAΠH(x) = 0, ωτ = 1},
if there exists a negative witness, and w−(x) = ∞ otherwise. If w+(x) is finite, we say that x is
positive (wrt. P), and if w−(x) is finite, we say that x is negative. We let P1 denote the set of
positive inputs, and P0 the set of negative inputs for P .

For a decision problem f : X → {0, 1}, with X ⊆ {0, 1}n, we say that P decides f if f−1(0) ⊆ P0

and f−1(1) ⊆ P1. In that case, we can use P to construct a quantum algorithm that decides f ,
where the number of queries used by the algorithm depends on the witness sizes:

Theorem 1 ([Rei09]). Fix X ⊆ {0, 1}n and f : X → {0, 1}, and let P be a span program on {0, 1}n
that decides f . Let W+(f, P) = maxx∈f−1(1) w+(x, P) and W−(f, P) = maxx∈f−1(0) w−(x, P).
Then there is a bounded error quantum algorithm that decides f with quantum query complexity
O(
√

W+(f, P)W−(f, P)).

In [IJ15], Ito and Jeffery show that additional quantum algorithms can be derived from a span
program P . These algorithms depend on the approximate positive and negative witness sizes.

4

Definition 3 (Approximate Positive Witness). For any span program P on {0, 1}n and x ∈ {0, 1}n,
we define the positive error of x in P as:

e+(x) = e+(x, P) := min
{∥∥∥ΠH(x)⊥ |w〉

∥∥∥
2

: A|w〉 = τ

}
.

We say |w〉 is an approximate positive witness for x in P if
∥∥∥ΠH(x)⊥ |w〉

∥∥∥
2

= e+(x) and A|w〉 = τ.

We define the approximate positive witness size as

w̃+(x) = w̃+(x, P) := min
{
‖|w〉‖2 : A|w〉 = τ,

∥∥∥ΠH(x)⊥ |w〉
∥∥∥

2
= e+(x)

}
.

Note that if x ∈ P1, then e+(x) = 0. In that case, an approximate positive witness for x is a
positive witness, and w̃+(x) = w+(x). For negative inputs, the positive error is larger than 0.

We can define a similar notion of approximate negative witnesses:

Definition 4 (Approximate Negative Witness). For any span program P on {0, 1}n and x ∈
{0, 1}n, we define the negative error of x in P as:

e−(x) = e−(x, P) := min
{∥∥∥ωAΠH(x)

∥∥∥
2

: ω(τ) = 1
}

.

Any ω such that
∥∥∥ωAΠH(x)

∥∥∥
2

= e−(x, P) is called an approximate negative witness for x in P . We

define the approximate negative witness size as

w̃−(x) = w̃−(x, P) := min
{
‖ωA‖2 : ω(τ) = 1,

∥∥∥ωAΠH(x)

∥∥∥
2

= e−(x, P)
}

.

Note that if x ∈ P0, then e−(x) = 0. In that case, an approximate negative witness for x is a
negative witness, and w̃−(x) = w−(x). For positive inputs, the negative error is larger than 0.

Ito and Jeffery give a quantum algorithm to estimate the positive witness size (resp. negative
witness size) of a span program; the query complexity of the algorithm depends on the approximate
negative (resp. positive) witness sizes:

Theorem 2 (Witness Size Estimation Algorithm, [IJ15]). Fix X ⊆ {0, 1}n and f : X → R≥0.

Let P be a span program such that for all x ∈ X, f(x) = w+(x, P) and define W̃− = W̃−(f, P) =
maxx∈X w̃−(x, P). There exists a quantum algorithm that estimates f to relative error ε and that

uses Õ
(

1
ε3/2

√
w+(x)W̃−

)
queries. Similarly, let P be a span program such that for all x ∈ X,

f(x) = w−(x, P) and define W̃+ = W̃+(f, P) = maxx∈X w̃+(x, P). Then there exists a quantum

algorithm that estimates f to accuracy ε and that uses Õ
(

1
ε3/2

√
w−(x)W̃+

)
queries.

2.3 Graph Theory

For an undirected graph G, we let V (G) denote the vertices of G, and E(G) denote the edges of G.
We also define

−→
E (G) = {(u, v) : {u, v} ∈ E(G)} We will consider the effective resistance of graphs,

for which we need the concept of a unit flow:

Definition 5 (Unit Flow). Let G be an undirected graph with s, t ∈ V (G). Then a unit st-flow on

G is a function θ :
−→
E (G)→ R such that:

5

1. For all (u, v) ∈ −→E (G), θ(u, v) = −θ(v, u);

2.
∑

v∈Γ(s) θ(s, v) =
∑

v∈Γ(t) θ(v, t) = 1, where Γ(u) is the neighbourhood of u in G; and

3. for all u ∈ V (G) \ {s, t}, ∑v∈Γ(u) θ(u, v) = 0.

A circulation is a function θ that satisfies (1), and in addition, satisifes (3) for all vertices in V (G).

Definition 6 (Unit Flow Energy). Given a unit st-flow θ on a graph G, the unit flow energy is
J(θ) =

∑
{u,v}∈E θ(u, v)2.

The effective resistance between s and t is the smallest energy of any unit st-flow:

Definition 7 (Effective Resistance). Fix an undirected graph G, and s, t ∈ V (G). The effective
resistance is defined Rs,t(G) = ∞ if s and t are not connected in G, and otherwise, Rs,t(G) =
minθ

∑
{u,v}∈E θ(u, v)2, where θ runs over all unit st-flows in G.

We will also look at dual graphs:

Definition 8 (Dual Graph). Let G be a planar graph (with an implicit planar embedding). The
dual graph, G†, is defined as follows. For every face f of G, G† has a vertex vf , and any two
vertices are adjacent if their corresponding faces share an edge, e. We call the edge between two
such vertices the dual edge to e, e†.

When G is a directed graph, we assign edge directions to the dual by orienting each dual edge
π/2 radians clockwise from the primal edge.

3 Average Choice Complexity

In [ZKH12], Zhan, Kimmel and Hassidim find a relationship between the difficulty of playing the
two-player game associated with a nand-tree, and the witness size. Specifically, they find that trees
with a smaller number of faults, or critical decisions for a player playing the associated two-player
game, are easier to evaluate on a quantum computer. In this section, we give a more nuanced
measure of the difficulty of a two-player game, the average choice complexity, which we will later
see is also connected with the quantum query complexity of evaluating a nand-tree.

Zhan et al. measure the difficulty of a tree in terms of faults. When playing a game, a fault is a
node where if the player chooses the correct direction, she can win the game if she plays optimally,
but if the player chooses the wrong direction, she is no longer guaranteed to win the game, and in
fact will lose if the opposing player plays optimally. Equivalently, it is a node in which one child
corresponds to a 0-instance of nand-tree, and the other child corresponds to a 1-instance. Let x
be a Z-winnable input for Z ∈ {A, B}. Consider all paths such that Player Z wins, and also Player
Z never makes a move that would allow her opponent to win. We call such paths Z-winning paths.
Zhan et al. call a tree k-fault1 if each of these paths encounters at most k faults. Then the witness
size of such a tree is less than 2k [Kim11], and we call 2k the fault complexity of the tree. Fault
complexity encapsulates the worst case number of critical decisions that must be made in order to
win the game, on any winning path.

In our case, the average choice complexity, defined shortly, does not characterize the number of
decisions in the worst case over any winning path, but is rather a characterization of the expected
number of decisions required when playing against a random opponent.

1We have actually used the more refined definition of k-fault from [Kim11]

6

1

p1

1

p2

1 0 0 0 1

p3

1

p4

0 0 0 1 1 1 0 1

v000 v001 v010 v011 v100 v101 v110 v111

v00 v01 v10 v11

v0 v1

v Player A’s First Turn

Player B’s First Turn

Player A’s Second Turn

Player B’s Second Turn

depth

2d

0

Figure 1: A winning strategy for Player A is defined by the solid lines. There are four possible
paths that the winning strategy might take, labeled by pi.

Consider an even-depth nand-tree instance x ∈ {0, 1}22d
. A Z-strategy S(x) for input x is a

complete deterministic proscription for how Player Z should act given any action of the opposing
player. Any strategy consists of 2d paths from the root to a leaf, which describe all possible
responses to the opposing player. A Z-winning strategy is a Z-strategy S such that all paths are
Z-winning paths. An example of a winning strategy for Player A and the paths of the strategy are
given in Figure 1. In a valid strategy, only one choice at each of Player Z’s turns must be on a
path. For example, in Figure 1, at node v, to follow any of the paths, Player A must choose to go
to node v0 rather than v1. Along any given path p, let νZ(p) be the set of nodes along the path at
which it is Player Z’s turn. Thus, νA(p) contains those nodes in p at even distance > 0 from the
leaf, and νB(p) contains those nodes at odd distance from the leaf.

To each node v, we assign a criticality parameter c(v) that ranges between 1 and 2, and is a
representation of how important that decision is. A value of 1 signals that the decision made by
the player at this node is inconsequential: loosely speaking, there are just as many ways to win
in either sub-game the player could choose. However a criticality parameter of 2 signals that the
decision is critical: one of the sub-games is winnable, and the other is not. In other words, any
node with criticality value 2 is a fault node.

Definition 9 (Node Criticality and Average Choice Complexity). For x ∈ {0, 1}2ℓ
for ℓ ≥ 0 (note

ℓ can be even or odd), let CA(x) be the average choice complexity for Player A on input x, and
CB(x) be the average choice complexity for Player B. If x is A-winnable, then CB(x) =∞, and if x
is B-winnable, then CA(x) =∞. For a depth-0 tree, we define CA(1) = 1 and CB(0) = 1. For depth
ℓ trees with ℓ > 0, we define average choice complexity, CZ, for Z ∈ {A, B} recursively in terms of
the criticality, c(v), defined shortly:

CZ(x) =

{
minS∈SZ(x) Ep∈S

[∏
v∈νZ (p) c(v)

]
if x is Z-winnable

∞ else,
(2)

where SZ(x) is the set of all Z-winning strategies.

7

We now define c(v). As a base case, let v be a node whose children are leaves — that is, it is
the root of a depth-1 subtree — with children labeled x0, x1 ∈ {0, 1}. Then define:

c(v) =

{
1 if x0 = x1

2 if x0 6= x1.
(3)

Let v be a node that is the root of a depth-ℓ subtree for ℓ > 1. If ℓ is even, fix Z ′ = A,
and if ℓ is odd, fix Z ′ = B. If v is the root of a tree that is not Z ′-winnable, then we define
c(v) = 1. If v is a fault, then we define c(v) = 2. Otherwise, let x00, x01, x10, and x11 be the
respective inputs to the subtrees rooted at v00, v01, v10, and v11, the four grandchildren of v. Then
CZ′(x00), CZ′(x01), CZ′(x10), CZ′(x11) are all finite, and we define:

c(v) =
max

{CZ′(x00) + CZ′(x01), CZ′(x10) + CZ′(x11)
}

avg {CZ′(x00) + CZ′(x01), CZ′(x10) + CZ′(x11)} . (4)

Note that exactly one of CA(x) and CB(x) is finite. Finally, we define:

C(x) = min{CA(x), CB(x)}. (5)

The criticality should be thought of as measuring the difference between making a random
choice at node v, and making a good choice at node v, with c(v) = 1 indicating that the two
choices at v are equal. The expressions CZ′(x00)+CZ′(x01) and CZ′(x00)+CZ′(x01) are proportional
to the average complexity (averaged over the opposing player’s next decision) faced by Player Z ′

in each of the respective paths she might take. If these two values are nearly the same, it does not
matter so much which path Player Z ′ takes at this turn, and c(v) is close to 1. If these two values
are very different, then c(v) approaches 2. The criticality parameter is always in the range [1, 2].

In Section 5, we further motivate the average choice complexity by showing that it is related
to the quantum query complexity of winning a two-player nand-tree game. We now compare the
average choice complexity to fault complexity. If we let c̄(v) assign a value of 2 to every fault
node, and 1 to every non-fault, and take the max over all Z-winning paths p, we recover the fault
complexity of Zhan et al.:

FZ(x) = max
p∈P

∏

v∈νZ (p)

c̄(v) = max
p∈P

2kp , (6)

where x is Z-winnable, P runs over all Z-winning paths, and kp is the number of faults in νZ(p).
When x is not Z-winnable, FZ(x) =∞. Then the fault complexity is F(x) = min{FA(x),FB(x)}.

We prove in Lemma 3 that C(x) ≤ F(x). In contrast to the setting of fault complexity, Defini-
tion 9 allows the criticality parameter to range between 1 and 2, only considers paths in a certain
strategy, and takes an average over those paths rather than looking at the maximum. In the worst
case, when every winning path has exactly k faults, and every non-fault node on every winning
path has criticality 1, we have C(x) = F(x), but in general, C(x) may be significantly smaller.

4 Evaluating NAND-Trees with low Average Choice Complexity

In this section, we generalize the speedup of Zhan et al. by proving the following theorem.

Theorem 3. Fix W = W (d). For all d, let Xd ⊆ {0, 1}22d
be the set of instances such that C(x) ≤

W . Then the bounded error quantum query complexity of evaluating nand-trees in X =
⋃

d Xd is
O(W).

8

Let k be the largest integer such that 2k ≤ W . Then by Lemma 3, X contains the set of
k-fault trees. Thus, the lower bound of Ω((log log N − log k)k) on the classical query complexity of
k-fault trees from [ZKH12] implies a lower bound of Ω((log log N − log log W)log W) on evaluating
nand-trees in X, making Theorem 3 a superpolynomial speedup as well.

To prove Theorem 3, we describe in Section 4.1 how nand-tree evaluation is equivalent to
solving an st-connectivity problem on certain graphs, Gd(x). In Lemma 3, we show that CA(x) =
Rs,t(Gd(x)) and CB(x) is the effective resistance on the dual-complement of Gd(x). In Section 4.2,
we present a span program whose positive witness sizes correspond to Rs,t(Gd(x)) (Lemma 4), and
negative witness sizes correspond to the effective resistance on the dual complement (Lemma 5),
completing the proof.

In this section, we also prove the following theorem, which will be used in Section 5:

Theorem 4. Let Z ∈ {A, B}. The bounded error quantum query complexity of estimating the
average choice complexity for Player Z of a nand-tree instance x ∈ {0, 1}N to relative accuracy ε

is Õ
(

1
ε3/2

√
CZ(x)N1/4

)
.

4.1 NAND-Trees and st-Connectivity

In this section, we present a useful relationship between the even-depth nand-tree evaluation
problem and the st-connectivity problem on certain graphs. Let G0 be a graph on 2 vertices,
labelled s and t, with a single edge. For d > 0, let Gd be the graph obtained from Gd−1 by
replacing each edge with a 4-cycle — or more specifically, replacing an edge {u, v} with two paths
of length 2 from u to v. The first three such graphs are illustrated in Figure 2. It is not difficult to
see by recursive argument that the graph Gd has 22d edges.

s

t

s

t

s

t

G0

G1

G2

Figure 2: The graphs G0, G1 and G2.

u

τ

v

7−→

u

τ00

τ01

τ10

τ11

v

Figure 3: This graph shows how to label edges of Gd+1 given a label τ on an edge {u, v} ∈ E(Gd).
For example, if τ = 01, the new labels will be 0100, 0101, 0110, and 0111.

9

s

t

x0 x2

x1 x3

x0 x1 x2 x3

∨

∧ ∧

Figure 4: Here we show the relationship between the labeling of edges in the graph G2, and the
inputs xi to a depth-2 nand-tree.

Let x ∈ {0, 1}22d
be a depth-2d nand-tree instance. We can associate the 22d binary variables

xi with the edges of Gd inductively as follows. Begin with d = 0. G0 has one edge, which we label
with the empty string σ = ∅. We then associate the variable xσ with the edge labeled by the string
σ. In this case, there is only one variable x∅, and it is associated with the edge labeled by ∅.

For the inductive step, we have a graph Gd, for d ≥ 0, with edges labeled by strings. We now
want to label the strings of the graph Gd+1. To create Gd+1 from Gd each edge of Gd is replaced
by the graph G1. Consider an edge between vertices u and v in the graph Gd that is labeled by the
string τ . When the edge between u and v is replaced by a four-cycle to create Gd+1, we label the
four edges as in Figure 3.

We can now define a subgraph Gd(x) of Gd by including only those edges of Gd in which the
associated input variable is true. This allows us to directly connect instances of depth-2d nand-
trees to subgraphs of Gd. In Figure 4, we show explicitly how the labels of a graph correspond to
the inputs to a nand-tree for d = 2. Then we have the following:

Lemma 1. For all x ∈ {0, 1}22d
, x is a 1-instance of depth-2d nand-tree evaluation if and only if

s and t are connected in Gd(x).

Proof. We proceed by induction. We start with the depth-0 nand-tree. The depth-0 nand-tree is
simply the identity function. The graph G0(x) associated with this tree consists of only the vertices
s and t: if x = 1, there is an edge between s and t, and if x = 0, there is no edge between s and t.
Thus s and t are connected in G0(x) if and only if the depth-0 nand-tree evaluates to 1 on x.

s

Gd(x00) Gd(x10)

Gd(x01) Gd(x11)

t

l r

Figure 5: In the above graph we identify l with the original node t of Gd(x00), l with the original
node s of Gd(x01), r with the original node t of Gd(x10), and r with the original node s of Gd(x11).

For the induction step, we suppose that the hypothesis is true for depth-2d nand-trees, and we

10

would like to prove it is true for depth-2(d+1) nand-trees. Now the function nand2(d+1) evaluates
to true if and only if
(
nand2d

(
x00
)

= 1 ∧ nand2d

(
x01
)

= 1
)∨(

nand2d

(
x10
)

= 1 ∧ nand2d

(
x11
)

= 1
)

= 1, (7)

where xτ indicates all bits of x whose labeling string begins with τ . But if any of these nand2d (xτ) =
1, by the induction assumption, there must be a connective path between the nodes at either end
of the subgraph Gd(xτ) in Figure 5. This implies that s and t are connected in Gd+1(x) if and only
if nand2(d+1)(x) = 1.

Dual Graphs We now define a class of graphs that relate 0-instances of nand-trees to st-
connectivity problems. Define G′0 as an edge with the endpoints labelled s′ and t′. For d ≥ 1,
define G′d recursively by replacing every edge in G′d−1 with the multigraph consisting of two 2-
paths with the same three vertices. The first three such graphs are shown in Figure 6.

s′ t′ s′ t′ s′ t′

G′0 G′1
G′2

Figure 6: The graphs G′0, G′1 and G′2.

Note that for any d, both Gd and G′d are planar. Define Ḡd as a planar embedding of Gd with
an additional edge {s, t}. Define Ḡ′d as a planar embedding of G′d with an additional edge {s′, t′}.
Then we have the following.

Theorem 5. Ḡ′d = Ḡ†d, the dual graph of Ḡd.

Proof. We will prove the theorem by induction on d. For d = 0, both Ḡ0 and Ḡ′0 are just two edges
with the same endpoints, and this graph is self-dual.

Note that for all d ≥ 1, Ḡd has an edge {s, t}, and Ḡ′d has an edge {s′, t′}. These edges will
always be dual. Suppose Ḡ′d−1 = Ḡ†d−1. Fix some edge e = {u, v} ∈ E(Ḡd−1) other than {s, t}. To
get to Ḡd, this edge is replaced by 4 edges, e0, e1, e2, e3 as in Figure 7 (a).

By the induction hypothesis, e has a dual edge e† in E(Ḡ′d−1). To obtain Ḡ′d from Ḡ′d−1, we
replace e† = {u′, v′} with 4 edges, e′0, e′1, e′2, e′3 as in Figure 7 (b). Replacing e has introduced two
new vertices, and one new face, whereas replacing e† has introduced two new faces and one new
vertex. We identify them as in Figure 7 (c). We can thus see that e′b = e†b for all b ∈ {0, 1, 2, 3}.

e0

e1

e2

e3

u

v

u′ v′
e′0

e′1

e′2

e′3

(a) (b) (c)

Figure 7: (a) shows a subgraph of Gd corresponding to an edge e = {u, v} of Gd−1. (b) shows the
subgraph of G′d corresponding to the dual edge of e, e† = {u′, v′}, in G′d−1, (u′, v′). (c) shows how
the two subgraphs are dual.

11

Figure 8: Ḡ2 and its dual Ḡ′2.

In Figure 8, we show how Ḡd and Ḡ′d are dual for for d = 2.
Recall that each edge e ∈ E(Gd) corresponds to some input variable xe. Thus every edge

e ∈ E(G′d) corresponds to an input variable xe† . For any instance x ∈ {0, 1}22d
, we define a

subgraph of G′d, G′d(x), by including only those edges of G′d for which the corresponding variable
xe† is 0. Just as nand2d(x) = 1 if and only if s and t are connected in Gd(x), we now show
nand2d(x) = 0 if and only if s′ and t′ are connected in G′d(x).

Lemma 2. For any x ∈ {0, 1}22d
, nand2d(x) = 0 if and only if s′ and t′ are connected in G′d(x).

Proof. The proof is very similar to the proof of Lemma 1, so we merely sketch the argument. Define
nand2d as the formula on a full binary tree of depth 2d in which we label vertices at even distance
from the leaves by ∧, and those at odd distance from the leaves by ∨ (the opposite of a nand-tree).
First, we have by De Morgan’s Law, nand2d(x) = 0 if and only if nand2d(x̄) = 1, where x̄ is the
entrywise complement of x. A simple inductive proof shows that x̄ is a 1-instance of nand2d if and
only if s′ and t′ are connected in G′d(x).

Connection to Average Choice Complexity We have described a connection between evalu-
ating nand-trees and solving st-connectivity problems. We will now connect the effective resistance
of these graphs to average choice complexity, defined in Section 3.

Lemma 3. For any instance of nand-tree, x ∈ {0, 1}22d
, CA(x) = Rs,t(Gd(x)) and CB(x) =

Rs′,t′(G′d(x)). Furthermore, for all x, C(x) ≤ F(x), where F is the fault complexity.

Proof. We will give a proof for CA, as the case of CB is similar.
First, Rs,t(Gd(x)) = ∞ if and only if s and t are not connected in Gd(x), if and only if x is a

0-instance, if and only if CA(x) =∞. Thus, suppose this is not the case, so C(x) = CA(x) <∞.
The rest of the proof is by induction. For the case of d = 0, we have to consider the only

A-winnable input in {0, 1}20
, x = 1. In that case, we have CA(x) = 1, and since G0(x) is just a

single edge from s to t, Rs,t(G0(x)) = 1. We also have F(x) = 1, since there are no choices, so
there are no faults.

Let x ∈ {0, 1}22(d+1)
be any A-winnable input. Let SA(x) be the set of all A-winning strategies

on input x, and let S be a strategy in SA(x). Let b ∈ {0, 1} be the choice of S at the root.
Then S can be described recursively by b and a pair of winning sub-strategies, S0 ∈ SA(xb0) and

12

S1 ∈ SA(xb1), one for each of the possible first choices of Player B. If r is the root, we have:

CA(x) = min
S∈SA(x)

Ep∈S

 ∏

v∈νA(p)

c(v)

= min
b∈{0,1}

min
S0∈SA(xb0),S1∈SA(xb1)

1

2

Ep∈S0

c(r)

∏

v∈νA(p)

c(v)

 + Ep∈S1

c(r)

∏

v∈νA(p)

c(v)

=
1

2
c(r) min

b∈{0,1}
{CA(xb0) + CA(xb1)}. (8)

We first consider the case that r is a fault, so c(r) = 2. We first show CA(x) ≤ F(x). Using the
induction hypothesis,

CA(x) ≤ min
b∈{0,1}

{FA(xb0) + FA(xb1)} ≤ min
b

max
b′

2FA(xbb′

) = F(x). (9)

Also by the induction hypothesis:

CA(x) = min
b∈{0,1}

{Rs,t(Gd(xb0)) + Rs,t(Gd(xb1))}. (10)

Since r is a fault, exactly one of CA(xb0)+CA(xb1) for b ∈ {0, 1} is finite. Without loss of generality,
suppose it is b = 0. Then Rs,t(Gd(x10)) + Rs,t(Gd(x11)) = ∞, meaning that s and t are not
connected in one of Gd(x10) and Gd(x11). Referring to Figure 5, which shows how Gd+1(x) is be
constructed from Gd(x00), Gd(x01), Gd(x10) and Gd(x11), since resistances in series add, we have
Rs,t(Gd+1(x)) = Rs,t(Gd(x00)) + Rs,t(Gd(x01)) = CA(x), as desired.

Now suppose that r is not a fault. Continuing from (8), we have:

CA(x) =
1

2

max{C(x00) + C(x01), C(x10) + C(x11)}
avg{C(x00) + C(x01), C(x10) + C(x11)} min

b∈{0,1}

{
C(xb0) + C(xb1)

}

=
(C(x00) + C(x01))(C(x10) + C(x11))

C(x00) + C(x01) + C(x10) + C(x11)
. (11)

Since v is not a fault, we have F(x) = maxb,b′∈{0,1} F(xbb′
). Using (11) and the induction hypothesis,

we get:

CA(x) ≤ 1

2
max

b∈{0,1}
{CA(xb0) + CA(xb1)} ≤ 1

2
max

b∈{0,1}
{F(xb0) +F(xb1)} ≤ F(x). (12)

By the induction hypothesis and (11), we get:

CA(x) =
(Rs,t(Gd(x00)) + Rs,t(Gd(x01)))(Rs,t(Gd(x10)) + Rs,t(Gd(x11)))

Rs,t(Gd(x00)) + Rs,t(Gd(x01)) + Rs,t(Gd(x10)) + Rs,t(Gd(x11))
. (13)

To complete the proof, we refer to Figure 5, which shows how Gd+1(x) can be constructed from
Gd(x00), Gd(x01), Gd(x10) and Gd(x11). Since resistances in series add, and inverse resistances in
parallel add, we have:

1

Rs,t(Gd+1(x))
=

1

Rs,t(Gd(x00)) + Rs,t(Gd(x01))
+

1

Rs,t(Gd(x01)) + Rs,t(Gd(x11))

=
Rs,t(Gd(x00)) + Rs,t(Gd(x01)) + Rs,t(Gd(x00)) + Rs,t(Gd(x01))

Rs,t(Gd(x00)) + Rs,t(Gd(x01)))(Rs,t(Gd(x00)) + Rs,t(Gd(x01)))
, (14)

so CA(x) = Rs,t(Gd+1(x)).
A similar analysis for CB completes the proof.

13

4.2 Span Program for NAND-Trees

We use the relationship between st-connectivity on Gd and depth-2d nand-tree evaluation to define
a span program for nand-tree evaluation. It is nearly identical to a span program for st-connectivity
given in [BR12] (see also [IJ15, Section 4]), except that we exploit the fact that we are only
considering subgraphs of Gd, so not all edges are possible. We call the following span program PGd

:

He,0 = {0}, He,1 = span{|e〉}, H = span{|e〉 : e ∈ −→E (Gd)}, V = span{|u〉 : u ∈ V (Gd)}
τ = |s〉 − |t〉, A =

∑

(u,v)∈−→E (Gd)

(|u〉 − |v〉)〈u, v|.

We have used e in He,1 as a short-hand for the input variable associated with e.

Lemma 4. Let x ∈ {0, 1}E(Gd) be a 1-instance of nand-tree evaluation, and let Gd(x) be the
associated subgraph of Gd. Then w+(x, PGd

) = 1
2Rs,t(Gd(x)).

Proof. Let PK = (H̃, Ṽ , τ̃ , Ã) be the span program for st-connectivity on any |V (Gd)|-vertex graph,
defined in [IJ15, Section 4]. Then it is easy to see that τ = τ̃ , and ÃΠH̃(Gd(x)) = AΠH(x), so

w+(x, PGd
) = w+(Gd(x), PK). By [IJ15, Lemma 4.1], w+(Gd(x), PK) = 1

2Rs,t(Gd(x)).

We now show that the negative witness size of the span program for st-connectivity on Gd(x)
is given by the effective resistance of the dual graph G′d(x) :

Lemma 5. Let x ∈ {0, 1}E(Gd) be a 0-instance of nand-tree, and let G′d(x) be the associated
subgraph of G′d. Then w−(x, PGd

) = 2Rs′,t′(G′d(x)).

Proof. The proof exploits the duality between an st-path and an st-cut.
For x ∈ {0, 1}22d

, define Ḡd(x) (respectively Ḡ′d(x)) as a planar embedding of Gd(x) (resp.
G′d(x)) with an additional edge {s, t} (resp. {s′, t′}). We first show that a negative witness for x in
PGd

corresponds to a unit s′t′-flow in G′d(x) whose energy equals twice the negative witness size.

Fix a negative witness ω for x, and define a function θ :
−→
E (Ḡ′d) → R by θ((u, v)†) = ω(u) − ω(v).

Then clearly we have θ(u′, v′) = −θ(v′, u′) for all {u′, v′} ∈ E(Ḡ′d). Since ω is a negative witness
for x,

∑
{u,v}∈E(Gd(x))(ω(u) − ω(v))2 = 0, so whenever {u, v} ∈ E(Gd(x)), ω(u) = ω(v), and thus

θ((u, v)†) = 0. This happens precisely when {u, v}† 6∈ E(G′d(x)). Thus θ is only nonzero on the
edges of Ḡ′d(x).

v′

u′

w1

w2 w3

w4

w5w6

Figure 9: The dualtiy between a cycle and a star.

Next, we notice that for any v′ ∈ V (Ḡ′d), by the definition of the dual graph, the nodes u′ such
that {u′, v′} ∈ Ḡ′d correspond to edges around a face, fv′ , of Ḡd (see Figure 9). If (w1, . . . , wk = w1)
are the nodes in Ḡd forming the cycle around the face fv′ , then

0 =
k∑

i=1

(ω(wi)− ω(wi+1)) =
k∑

i=1

θ((wi, wi+1)†) =
∑

u′:{v′,u′}∈E(Ḡ′
d
)

θ(v′, u′) =
∑

u′:{v′,u′}∈E(Ḡ′
d
(x))

θ(v′, u′).

(15)

14

Thus, θ is a circulant on Ḡ′d(x), so if we define θ′ so that θ′(s′, t′) = 0, and θ′(v′, u′) = θ(v′, u′) when
{v′, u′} 6= {s′, t′}, then θ′ is an s′t′-flow on G′d(x). Furthermore, since θ(s′, t′) = ω(s) − ω(t) = 1
(since ωτ = 1), θ′ is a unit flow. The energy of θ′ is:

∑

{v′,u′}∈E(G′
d
(x))

θ(v′, u′)2 =
1

2

∑

(v′,u′)∈−→E (G′
d
)

θ(v′, u′)2 =
1

2

∑

(v′,u′)∈−→E (Gd)

(ω(v′)− ω(u′))2 =
1

2
‖ωA‖2 ,

(16)
where the factor of 1

2 comes from having to sum each edge twice (once for each direction). Thus
w−(x, PGd

) ≥ 2Rs′,t′(G′d(x)).
Next we show that every unit s′t′-flow in G′d corresponds to a negative witness for x in P whose

witness size is equal to half the energy of the flow. Let θ′ be a unit flow on G′d(x) from s′ to t′. Let
θ(u, v) = θ′(u, v) when {u, v} 6= {s′, t′} and θ(s′, t′) = 1. Since θ′ is a unit s′t′-flow, θ is a circulant
on Ḡ′d(x). It is thus also a circulant on Ḡ′d, and so it can be decomposed into a combination of
cyclic-flows around the faces of Ḡ′d.

To see this decomposition, let F be the set of faces of Ḡ′d with clockwise orientation, and F ′

is the same faces but with counter- clockwise orientation. Then we can write |θ〉 =
∑

e θ(e)|e〉 as
|θ〉 =

∑
f∈F∪F ′ αf |Cf 〉 where f ∈ F ∪ F ′ and αf ∈ R, and where |Cf 〉 =

∑k−1
i=1 |wi, wi+1〉 with

f = (w1, . . . , wk = w1) for a set of vertices wi ∈ Ḡ′d.

For a clockwise oriented face
−→
f ∈ F , let

←−
f be the counter-clockwise orientation of the same

face. Every face
−→
f ∈ F corresponds to a vertex vf ∈ V (Ḡd), so define ω(vf) := 1

2(α−→
f
− α←−

f
).

We claim that ω is a negative witness. Let (u′, v′) be any directed edge in
−→
E (G′d). Then since

{u′, v′} is adjacent to two faces, (u′, v′) is part of one face in F , and one face in F ′. Let
−→
f be the

clockwise oriented face containing (u′, v′), and←−g be the counter-clockwise oriented face containing
(u′, v′). Since these are the only faces containing (u′, v′), we must have θ(u′, v′) = α−→

f
+ α←−g . Since

θ(u′, v′) = −θ(v′, u′), we have α−→
f

+ α←−g = −α←−
f
− α−→g . Thus:

ω(vf)− ω(vg) =
1

2
(α−→

f
− α←−

f
− α−→g + α←−g) =

1

2
(θ(u′, v′)− θ(v′, u′)) = θ(u′, v′). (17)

So for every edge (u, v) ∈ −→E (Ḡd), ω(u) − ω(v) is exactly the flow across (u, v)†. Thus for all
{u, v} ∈ E(Gd(x)), {u, v}† 6∈ E(G′d(x)), so ω(u) − ω(v) = 0. Furthermore, ω(s) − ω(t) = 1. Thus
ω is a negative witness, and we have:

‖ωA‖2 =
∑

(u,v)∈−→E (Gd)

(ω(u)− ω(v))2 = 2
∑

e†∈E(G′
d
)

θ(e†)2 = 2J(θ). (18)

Because the smallest possible energy of any unit s′t′-flow is Rs′,t′(G′d(x)), we have that w−(x) ≤
2Rs′,t′(G′d(x)), completing the proof.

Theorem 3 now follows immediately.

Proof of Theorem 3. Let f be the problem of evaluating nand-trees promised to have C(x) ≤ W .
By Lemmas 3, 4 and 5, we have, for all 1-instances of f , w+(x, PGd

) = 1
2Rs,t(Gd(x)) = 1

2C(x) ≤ 1
2W ,

and for all 0-instances of f w−(x, PGd
) = 2Rs′,t′(G′d(x)) = 2C(x) ≤ 2W . Thus, by Theorem 1,

the bounded error quantum query complexity of f is at most O(
√

W+(f, PGD
)W−(f, PGd

)) =

O(
√

W 2) = O(W).

15

In Section 5, we will consider a different problem: winning the two-player game associated with
a nand-tree instance x against an adversary making random choices. To solve this problem, it will
be useful not only to evaluate a nand-tree, but to estimate the span program witness size, w+(x)
(or w−(x)). By Theorem 2, we can construct such an algorithm fom PGd

. In order to analyze
this algorithm’s query complexity, we upper bound the approximate negative witness size of inputs
to PGd

:

Lemma 6. W̃−(PGd
) ≤ 2d+1 and W̃+(PGd

) ≤ 2d+1.

Proof. For negative inputs, w̃−(x) = w−(x) = 2Rs′,t′(G′d(x)) ≤ 2d+1, since, it is easy to see by
induction, every self-avoiding s′t′-path in G′d has length 2d. Thus, we limit ourselves to positive
inputs.

Recall that an approximate negative witness is a function ω : V (Gd) → R that minimizes
‖ωAΠH(x)‖2 =

∑
(u,v)∈−→E (Gd(x))

(ω(u) − ω(v))2 and satisfies ωτ = ω(s) − ω(t) = 1. Then a valid ω

is a voltage induced by a unit potential difference between s and t in the resistor network Gd(x)
(Dirichlet’s principle, or see [DS84]). Without loss of generality, we can assign ω such that ω(s) = 1,
ω(t) = 0, and then on the component of Gd(x) containing s and t, ω is the unique harmonic function
with these boundary conditions, and on any other component of Gd(x), ω is constant. Then the
negative approximate witness size is

w̃−(x) = min
valid ω

‖ωA‖2 =

∑

(u,v)∈−→E (Gd)

(ω(u)− ω(v))2

. (19)

We prove the result inductively. We start with d = 0. In this case, the graph consists only of
nodes s and t, which must take values 1 and 0, so ‖ωA‖2 = (ω(s)− ω(t))2 + (ω(t)− ω(s))2 = 2.

Now we look at the case of Gd+1(x), which is formed by replacing the edges of a four cycle with
graphs Gd(xτ) as in Figure 5. For any approximate negative witness ω̃ for x, let γ(ω̃) = ω̃(l) and
γ′(ω̃) = ω̃(r). Let ω be an optimal approximate negative witness for x, and we denote γ ≡ γ(ω)
γ′ ≡ γ(ω). For b, b′ ∈ {0, 1}, let ωbb′ be the restriction of ω to V (Gd(xbb′

)) that takes value 0 on
vertices not in V (Gd(xbb′

)). Then we have:

‖ωA‖2 =
∑

(u,v)∈−→E (Gd)

(ω00(u)− ω00(v))2 +
∑

(u,v)∈−→E (Gd)

(ω01(u)− ω01(v))2

+
∑

(u,v)∈−→E (Gd)

(ω10(u)− ω10(v))2 +
∑

(u,v)∈−→E (Gd)

(ω11(u)− ω11(v))2. (20)

Consider ω00. Since ω is a harmonic function on Gd+1(x) with boundary conditions ω(s) = 1 and
ω(t) = 0 that minimizes ‖ωA‖2, ω00 is a harmonic function on Gd(x00) with boundary conditions
ω00(s) = 1 and ω00(l) = γ that minimizes

∑
(u,v)∈−→E (Gd)

(ω00(u) − ω00(v))2. If γ = 1, ω00 is

necessarily constant, and so
∑

(u,v)∈−→E (Gd)
(ω00(u)− ω00(v))2 = 0. Otherwise, 1

1−γ ω00 is a harmonic

function on Gd(x00) with boundary conditions satisfying 1
1−γ ω00(s) − 1

1−γ ω00(l) = 1, minimizing
∑

(u,v)∈−→E (Gd)
(ω(u) − ω(v))2, so 1

1−γ ω00 is an optimal approximate negative witness for x00, so by
the induction hypothesis, we have:

∑

(u,v)∈−→E (Gd)

(
1

1− γ
ω00(u)− 1

1− γ
ω00(v)

)2

≤ 2d+1. (21)

16

So for any γ, ∑

(u,v)∈−→E (Gd)

(ω00(u)− ω00(v))2 ≤ (1− γ)22d+1. (22)

By similar arguments, we have
∑

(u,v)∈−→E (Gd)

(ω01(u)− ω01(v))2 ≤ γ22d+1, (23)

∑

(u,v)∈−→E (Gd)

(ω10(u)− ω10(v))2 ≤ (1− γ′)22d+1, (24)

∑

(u,v)∈−→E (Gd)

(ω11(u)− ω11(v))2 ≤ (γ′)22d+1. (25)

(26)

Thus, combining (22), (23), (24) and (25) with (20):

‖ωA‖2 ≤ (1− γ)22d+1 + γ22d+1 + (1− γ′)22d+1 + (γ′)22d+1. (27)

We note that if r and l are in the same component as s and t, then by the harmonic property,
we must have γ, γ′ ∈ [0, 1], and so (1− γ)2 + γ2 + (1− γ′)2 + (γ′)2 ≤ 2, and so ‖ωA‖2 ≤ 2d+2.

Otherwise, suppose r is in a different component than s and t. In that case, ω can take any
constant value on that component and still be an approximate negative witness, so we choose
ω̃ = 0 on the component containing r and ω̃ = ω everywhere else. In that case, γ′(ω̃) = 0, so
using arguments similar to those above, we have ‖ω̃A‖2 ≤ 2d+2. Finally, since ω is an optimal
approximate negative witness, ‖ωA‖2 ≤ ‖ω̃A‖2 . A similar argument works for the case when l is
in a different component.

The proof that w̃+(x) ≤ 2d+1 for all x ∈ {0, 1}22d
is similar, so we omit the details.

Proof of Theorem 4. Let x ∈ {0, 1}22d
. By Theorem 2, since CB(x) = 2w−(x) for all 0-instances,

and CA(x) = 1
2w+(x) for all 1-instances, we can estimate CA(x) in query complexity

Õ

(
1

ε2/3

√
CA(x)W̃

1/2
−

)
= Õ

(
1

ε2/3

√
CA(x)2d

)
= Õ

(
1

ε2/3

√
CA(x)N1/4

)
, (28)

since N = 22d, and similarly, we can estimate CB(x) in query complexity Õ
(

1
ε2/3

√
CB(x)N1/4

)
.

Extending to odd-depth trees is a straightforward exercise.

5 The Query Complexity of Winning a NAND-Tree

Given an A-winnable input, suppose Player A can access x via queries of the form: Ox : |i, b〉 7→
|i, b ⊕ xi〉. We consider the number of queries needed by Player A to make decisions throughout
the course of the game such that the final live node has value 1 — i.e. Player A wins the game —
with probability ≥ 2/3. (In this section, we focus on A-winnable trees, but the case of B-winnable
trees is similar.)

17

Naive Strategy There is a quantum query algorithm [Rei09, Rei11a] that decides if a tree of
depth 2d is winnable with bounded error ǫ in O(2d log 1

ǫ) queries. Thus, if Player A must make a
decision at a node v with children v0 and v1, a naive strategy is to evaluate the subtrees with roots
v0 and v1 and move to one that evaluates to 1 (if they both evaluate to 0, then since Player A’s
turns correspond to nodes labelled by ∨, v also evaluates to 0, and the tree is not A-winnable). By
setting the error to O(1/d) at each decision, this strategy succeeds with bounded error and costs:

d−1∑

ℓ=0

2d−ℓ log d =
d∑

r=1

2r log d ≤ 2d+1 log d = O(2d log d) = O(
√

N log log N). (29)

The naive strategy does not account for the fact that some subtrees may be easier to win than
others. For example, suppose one of the subtrees rooted at v0 or v1 has all leaves labeled by
1, whereas the other subtree has all leaves labeled by 0. In that case, the player just needs to
distinguish these two very disparate cases. More generally, one of the subtrees might have a very
small positive witness — i.e., it is very winnable — whereas the other has a very large witness —
i.e., is not very winnable. In that case, it may save work later on if Player A chooses the more
winnable subtree. Using the witness size estimation algorithm of [IJ15], we can create a strategy to
quickly distinguish an easily winnable tree from a much less easily winnable (possibly unwinnable)
tree.

Strategy with Witness Size Estimation We now discuss a winning algorithm that uses wit-
ness size estimation. When the tree has small average choice complexity and the opponent plays
randomly, this strategy does better than the naive strategy, on average. The new strategy will be
to always choose the subtree with smaller average choice complexity, unless the two subtrees are
very close in average choice complexity, in which case it doesn’t matter which one we choose.

We estimate the average choice complexity of both subtrees using Theorem 4. Let Est(x) be the
algorithm from Thoerem 4 with ε = 1

3 . We are only concerned about which of two average choice
complexities is smaller, so we do not want to wait for both iterations of Est to terminate. Let c be
some polylogarithmic function in N such that Est(x) always terminates after at most c

√
CA(x)N1/4,

for all x ∈ {0, 1}N . We define a subroutine, Select(x0, x1), that takes two instances, x0 and x1,
and outputs a bit b such that CA(xb) ≤ 2CA(xb̄), where b̄ = b⊕ 1. Select works as follows. It runs
Est(x0) and Est(x1) in parallel. If one of these programs, say Est(xb), outputs some estimate wb,
then it terminates the other program after c

√
wbN

1/4 steps. If only the algorithm running on xb

has terminated after this time, it outputs b. If both programs have terminated, it outputs a bit b
such that wb ≤ wb̄.

Lemma 7. Let x0, x1 ∈ {0, 1}N be nand-tree instances such that at least one of them is a 1-
instance. Let wmin = min{CA(x0), CA(x1)}. Then Select(x0, x1) terminates after

Õ
(
N1/4√wmin

)
(30)

queries to x0 and x1 and outputs b such that CA(xb) ≤ 2CA(xb̄) with bounded error.

Proof. Since at least one of x0 and x1 is a 1-instance, at least one of the programs will terminate.
Suppose without loss of generality that Est(x0) is the first to terminate, outputting w0. Then there
are two possibilities: Est(x1) does not terminate after c

√
w0N1/4 steps, and Select outputs 0; or

Est(x1) outputs w1 before c
√

wN1/4 steps have passed and Select outputs b such that wb ≤ wb̄.
Consider the first case. Suppose CA(x0) > 2CA(x1). Then Est(x1) must terminate after

c
√
CA(x1)N1/4 ≤ 1√

2
c
√
CA(x0)N1/4 steps. By assumption, we have |w0 − CA(x0)| ≤ εCA(x), so

18

w0 ≥ (1 − ε)CA(x0) = 2
3CA(x0). Thus Est(x1) must terminate after 1√

2
c
√

3
2w0N1/4 < c

√
w0N1/4

steps, which is a contradiction. Thus, CA(x0) ≤ 2CA(x1), so outputting 0 is correct. Further-
more, since we terminate after c

√
w0N1/4 = Õ(

√
CA(x0)N1/4) steps, and CA(x0) = O(CA(x1)), the

running time is at most Õ
(
N1/4√wmin

)
.

We now consider the second case, in which both programs output estimates w0 and w1, such
that |wb − CA(xb)| ≤ εCA(xb) for b = 0, 1. Suppose wb ≤ wb̄. We then have

CA(xb)

CA(xb̄)
≤ CA(xb)

wb

wb̄

CA(xb̄)
≤ 1 + ε

1− ε
=

4/3

2/3
= 2. (31)

Thus CA(xb) ≤ 2CA(xb̄), as required. Furthermore, the running time of the algorithm is bounded by
the running time of Est(x1), the second to terminate. We know that Est(x1) has running time at
most Õ(

√
CA(x1)N1/4) steps, and by assumption, Est(x1) terminated after less than c

√
w0N1/4 =

Õ(
√
CA(x0)N1/4) steps, so the total running time is at most Õ

(
N1/4√wmin

)
.

We can thus prove the main theorem of this section:

Theorem 6. Let x ∈ {0, 1}N for N = 22d be an A-winnable input. At every node v where Player
A makes a decision, let Player A use the Select algorithm in the following way. Let v0 and v1

be the two children of v, with inputs to the respective subtrees of v0 and v1 given by x0 and x1

respectively. Then Player A moves to vb where b is the outcome that occurs a majority of times
when Select(x0, x1) is run O(log d) times. Then if Player B, at his decision nodes, chooses left
and right with equal probability, Player A will win the game with probability at least 2/3, and will
use Õ(N1/4

√
C(x)) queries on average, where the average is taken over the randomness of Player

B’s choices.

Proof. We first note that Player A must make d choices over the course of the game. Thus we
amplify Player A’s probability of success by repeating Select at each decision node O(log d) times
and taking the majority. Then the probability that Player A chooses the wrong direction at any
node is O(1/d). By doing this we ensure that her probability of choosing the wrong direction over
the course of the algorithm is < 1/3. From here on, we analyze the error free case.

Let vτ be any node in the tree at distance 2k from the root, for k ∈ {0, . . . , d−1}, with children
vτ0 and vτ1. The node vτ is the root of an instance of nand-tree of depth 2(d − k). Because it
is the root of an even-depth subtree, it is a node where Player A must make a decision. Player A
runs Select(xτ0, xτ1), which returns b1 ∈ {0, 1} such that (by Lemma 7)

CA(xτb1) ≤ 2CA(xτ b̄1). (32)

If xτb represents the bits labeling the leaves of an odd-depth subtree, the root of the subtree, vτb is
a node where Player B makes a choice. Because we assume Player B chooses uniformly at random,

CA(xτb) = min
S∈SA(xτb)

Ep∈S

 ∏

v∈νA(p)

c(v)

=
1

2

 min
S∈SA(xτb0)

Ep∈S

 ∏

v∈νA(p)

c(v)

 + min

S∈SA(xτb1)
Ep∈S

 ∏

v∈νA(p)

c(v)

=
1

2

(
CA(xτb0) + CA(xτb1)

)
. (33)

19

Thus, (32) becomes

1

2

(
CA(xτb10) + CA(xτb11)

)
≤ CA(xτ b̄10) + CA(xτ b̄11). (34)

If vτ is a fault, then max{CA(xτb1), CA(xτ b̄1)} =∞, and so we must have CA(xτb1) < CA(xτ b̄1) =
∞. Then by (8) and (33), CA(xτ) = CA(xτb10) + C(xτb11) = 2CA(xτb).

If vτ is not a fault, by (11), we have

CA(xτ) =
(CA(xτb10) + CA(xτb11))(CA(xτ b̄10) + CA(xτ b̄11))

CA(xτb10) + CA(xτb11) + CA(xτ b̄10) + CA(xτ b̄11)

≥
1
2

(
CA(xτb10) + CA(xτb11)

)2

3
2 (CA(xτb10) + CA(xτb11))

by (34). (35)

Thus, whether vτ is a fault or not, we have:

CA(xτb) =
1

2

(
CA(xτb10) + CA(xτb11)

)
≤ 3

2
CA(xτ). (36)

Since vτ is the root of a nand-tree of size N = 22(d−k), by Lemma 7, there exists c ∈ poly(log N)
such that running Select at node vτ has query complexity at most

c
(
22(d−k)

)1/4
√
CA(xτb) ≤ c2(d−k)/2

√
3

2
CA(xτ). (37)

We now show, by induction on k, that the expected value of this expression, in τ , is bounded

from above by c2d/2
√

3
2CA(x). For the k = 0 step this is clear. We next consider the inductive step.

Let τb1b2, for some string τ ∈ {0, 1}2k−2 be the sequence of choices made thus far, so b2 is the
last choice made by Player B, and b1 the last choice made by Player A. Then the query complexity

of Select for vτb1b2 , that is, Player A’s next choice, will be at most c2(d−k)/2
√

3
2CA(xτb1b2). This

has expected value, in Player B’s uniform random choice b2:

1

2

(
c2(d−k)/2

√
3

2
CA(xτb10) + c2(d−k)/2

√
3

2
CA(xτb11)

)

≤ c

2

√
32(d−k)/2

√
1

2
(CA(xτb10) + CA(xτb11)) by Jensen’s inequlaity,

=
c

2

√
32(d−k)/2

√
CA(xτb1) by (33)

≤ c
√

3

2
√

2
2(d−(k−1))/2

√
3

2
CA(xτ) by (36). (38)

By the induction hypothesis, this has expected value in τ at most c
√

3
2 2d/2

√
3
2CA(x). Using

√
3/2 < 1

completes the proof that every call to Select has expected query complexity at most c2d/2
√

3
2CA(x).

Summing over the expected query complexity at all d levels, and including success probability
amplification, we have that the query complexity is

Õ

(
2d/2

√
CA(x)

)
= Õ

(
N1/4

√
CA(x))

)
. (39)

20

6 Open Problems

In this work, we have introduced average choice complexity, a measure of the difficulty of winning
the two-player game associated with a nand-tree, which allowed us to generalize a superpolynomial
quantum speedup of [ZKH12], and give a new quantum algorithm for winning the two-player nand-
tree game. To accomplish this, we exploited a connection between nand-trees and st-connectivity
problems on a family of graphs, and their dual graphs, which we believe may be of further interest.

One interesting problem raised by this work concerns span programs in general: when can we
view span programs as solving st-connectivity problems? This could be particularly interesting
for understanding when span programs are time-efficient, since the time-complexity analysis of
st-connectivity span programs is straightforward (see [BR12, Section 5.3] or [IJ15, Appendix B]).

Another motivation for considering the connection between span programs and st-connectivity
problems is the nice characterization of the duality between 1-instances and 0-instances given by the
duality of the corresponding graphs. An important class of st-connectivity-related span programs
are those arising from the learning graph framework, which provides a means of designing quantum
algorithms that is much simpler and more intuitive than designing a general span program [Bel12].
A limitation of this framework is its one-sidedness with respect to 1-certificates: whereas a learning
graph algorithm is designed to detect 1-certificates, a framework capable of giving optimal quantum
query algorithms for any decision problem would likely treat 0- and 1-inputs symmetrically. The
duality between 1- and 0-inputs in st-connectivity problems could give insights into how to extend
the learning graph framework to a more powerful framework, without losing the intuition and
relative simplicity.

7 Acknowledgments

The authors would like to thank Ashley Montanaro for helpful discussions.
S.J. gratefully acknowledges funding provided by the Institute for Quantum Information and

Matter, an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gor-
don and Betty Moore Foundation (GBMF-12500028). S.K. acknowledges funds provided by the
Department of Defense.

References

[ACR+10] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any AND-OR
formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. SIAM
Journal on Computing, 39(6):2513–2530, 2010.

[Bel12] A. Belovs. Span programs for functions with constant-sized 1-certificates. In Pro-
ceedings of the 44th Symposium on Theory of Computing (STOC 2012), pages 77–84,
2012.

[BR12] A. Belovs and B. W. Reichardt. Span programs and quantum algorithms for st-
connectivity and claw detection. In Proceedings of the 20th European Symposium on
Algorithms (ESA 2012), pages 193–204, 2012.

[CCJYM09] A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo. Discrete-query quantum
algorithm for NAND trees. Theory of Computing, 5:119–123, 2009.

21

[DS84] P. G. Doyle and J. L. Snell. Random Walks and Electrical Networks, volume 22 of The
Carus Mathematical Monographs. The Mathematical Association of America, 1984.

[FGG07] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian
NAND tree, 2007. arXiv:quant-ph/0702144.

[IJ15] T. Ito and S. Jeffery. Approximate span programs, 2015. arXiv:1507.00432

[quant-ph].

[Kim11] S. Kimmel. Quantum adversary (upper) bound. Chicago Journal of Theoretical Com-
puter Science, 2013(4), 2011.

[KW93] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the IEEE 8th
Annual Conference on Structure in Complexity Theory, pages 102–111, 1993.

[Rei09] B. W. Reichardt. Span programs and quantum query complexity: The general ad-
versary bound is nearly tight for every Boolean function. In Proceedings of the 50th
IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages 544–551,
2009. arXiv:quant-ph/0904.2759.

[Rei11a] B. W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the
22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pages
560–569. SIAM, 2011.

[Rei11b] B. W. Reichardt. Span-program-based quantum algorithm for evaluating unbalanced
formulas. In Theory of Quantum Computation, Communication, and Cryptography
(TQC 2011), pages 73–103. Springer, 2011.

[RŠ12] B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluat-
ing formulas. Theory of Computing, 8(13):291–319, 2012.

[SW86] M. Saks and A. Wigderson. Probabilistic boolean decision trees and the complexity of
evaluating game trees. In Proceedings of the 27th Annual Symposium on Foundations
of Computer Science (FOCS 1986), pages 29–38. IEEE, 1986.

[ZKH12] B. Zhan, S. Kimmel, and A. Hassidim. Super-polynomial quantum speed-ups for
boolean evaluation trees with hidden structure. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference (ITCS 2012), pages 249–265, New York,
NY, USA, 2012. ACM.

22

	1 Introduction
	2 Preliminaries
	2.1 NAND-Trees
	2.2 Span Programs
	2.3 Graph Theory

	3 Average Choice Complexity
	4 Evaluating NAND-Trees with low Average Choice Complexity
	4.1 NAND-Trees and st-Connectivity
	4.2 Span Program for NAND-Trees

	5 The Query Complexity of Winning a NAND-Tree
	6 Open Problems
	7 Acknowledgments

