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We present a new computational method for the solution of elliptic eigenvalue problems with variable coefficients in general
two-dimensional domains. The proposed approach is based on use of the novel Fourier continuation method (which enables fast
and highly accurate Fourier approximation of nonperiodic functions in equispaced grids without the limitations arising from the
Gibbs phenomenon) in conjunction with an overlapping patch domain decomposition strategy and Arnoldi iteration. A variety of
examples demonstrate the versatility, accuracy, and generality of the proposed methodology.

1. Introduction

We present a new computational method for the solution
of variable-coefficient elliptic eigenvalue problems in general
two-dimensional domains. This method uses Arnoldi itera-
tion to approximate the eigenvalues of numerical differential
operators in such a way that the bulk of the associated com-
putational cost arises from the needed repeated evaluations of
the differential operator for given input functions (vectors).
For accuracy and efficiency our algorithm produces such
evaluations on the basis of the Fourier continuation (FC)
method [1] which, using equispaced meshes, resolves the
inaccuracies due to the Gibbs phenomenon by computing
smooth, periodic extensions of arbitrary smooth functions,
therefore allowing for accurate evaluation of derivatives in the
frequency domain. The efficiency of the method thus results
from its reliance on the Fast Fourier Transform (FFT) for
numerical differentiation.

Differential eigenvalue problems arise in many areas of
physical science; a prominent example is the Laplace eigen-
value problem:

∇
2
𝑢 (𝑥, 𝑦) = 𝜆𝑢 (𝑥, 𝑦) . (1)

In the simplest physics perspective the eigenvalues corre-
spond to the fundamental modes of vibration of a thin mem-
brane with geometry corresponding to the domain of (1).

Solutions to (1) completely characterize membrane motions
since the eigenfunctions form a complete orthonormal basis
for the space of membrane vibrations. Other physically
relevant applications of the Laplace eigenproblem include
the description of quantized energy states of particles (under
various potentials) and the dynamics of electromagnetic
waves traveling through waveguides [2]. Chain reactions
in nuclear reactors are described by a more complicated
eigenvalue problem, in which the smallest-magnitude eigen-
value describes whether the reaction is subcritical, critical,
or supercritical [3]. Because natural processes do not only
occur in simple separable geometric regions such as squares
or disks, the only types of regions on which (1) can be solved
analytically, much effort has been invested in the solution of
eigenvalue problems on general domains.

Existing approaches for differential eigenvalue problems
include collocation methods as well as finite element or finite
difference methods. Collocation methods utilize expressions
for the eigenfunction in terms of adequately chosen bases.
A classical example is the method of particular solutions,
in which the coefficients in the expansion are obtained via
consideration of a homogeneous system of linear equations
that enforces the required (homogeneous) boundary condi-
tions at points placed along the domain boundary [4, 5].
A noteworthy aspect of this method is its use of singular
(Fourier-Bessel) functions in the expansion to incorporate,
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for example, reentrant corners. Improvements have been
made by including points on the interior of the domainwhere
the condition that the eigenfunction is nonzero is enforced
[5]. Similar approaches were put forth in [6, 7] with different
choices for the basis functions. Other generalizations include
the use of conformal mappings to recast the problem in a cir-
cular domain as a generalized eigenvalue problem, as is done
in [8] for domains with approximately fractal boundaries.

Other eigenvalue solvers utilize finite difference or finite
element approximations which reduce differential eigenvalue
problem to a corresponding finite-dimensional algebraic
eigenvalue problem. Finite element methods rely on unstruc-
tured meshes that can be generated and adaptively refined
to account for complicated domain features [9]. Domain
decomposition techniques are often used in conjunction with
finite elements in order to deal with discontinuous coeffi-
cients or to reduce the problem to a number of smaller prob-
lems [10], as are iterative eigenvalue algorithms [11]; the
algorithm proposed in this paper utilizes both domain
decomposition and iterative methods. An extension of these
ideas can be found in the method given by [12], which uses
the basis from themethod of particular solutions and domain
decomposition, allowing for local usage of the basis near
singularities. Results from a wide array of these types of
methods are summarized in [2, 13].

Even though collocation methods have demonstrated
highly accurate evaluation of eigenvalues for some singular
geometries (such as the L-shaped membrane), the appli-
cability of these methods is limited to locally separable
geometries. As indicated above, use of conformal maps has
been suggested in the literature as a remedy for this difficulty
[6], but determining a mapping from a simple shape to an
arbitrary region is a nontrivial task. Finite element methods
can also be effective, and they are applicable to rather general
configurations. Finite differencemethods, finally, are efficient
by virtue of their finite bandwidths, but this advantage turns
into a challenge near domain boundaries. Even high-order
centered finite difference schemes must be reformulated near
boundaries, resulting in an asymmetric stencil and generally
a lower order of accuracy at the boundary [14].

To address the difficulties arising in the treatment of
general elliptic eigenvalue problems we propose a method-
ology wherein derivatives are produced by means of the
FC(Gram) algorithm [1]. Differentiation of Fourier series is,
of course, straightforward and, in view of the Fast Fourier
Transform, can be produced in 𝑂(𝑁 log𝑁) operations,
where 𝑁 is the number of points in the mesh. Because the
FC(Gram) algorithm produces smooth periodic extensions
for given functions, Fourier series truncated to a small
number of terms are still highly accurate representations of
the continued function: the difficulties arising from theGibbs
phenomenon are eliminated. As a result of the proposed FC-
based domain decomposition approach, eigenvalue problems
for complicated geometries and general smooth coefficients
can be tackled with high accuracy within the FC framework.
Additionally, the proposed domain decomposition approach
can be used to produce local mesh refinements as well as
efficient parallel implementations.

The capabilities afforded by the proposed methodologies
are demonstrated by means of a variety of examples in two-
dimensional space. Extensions of this framework to higher
dimensions, which are straightforward, are not otherwise
pursued in this paper.

2. Definitions

2.1. Overall Methodology. Our general approach relies on
an decomposition of the domain into overlapping patches
that are expressed in terms of curvilinear coordinates (i.e.,
mapped to rectangles with uniform grids), using parame-
trizations to describe the differential operator in terms of
Cartesian reference coordinates, which in what follows are
denoted by 𝑠 and 𝑡. On each patch, boundary conditions and
continuity are imposed, and then the operator is evaluated
using Fast Fourier Transforms. The numerical differential
operator thus defined on the whole domain can then be used
in conjunction with an iterative method for eigenvalue evalu-
ation.The basic concepts and notations used throughout this
process are discussed in what follows.

2.2. Eigenvalue Problem. Let Ω ⊂ R2 be a bounded domain
and let 𝐿 be a linear elliptic operator of the form 𝐿 =

∑
|𝛼|≤𝑚

𝑎
𝛼
(𝑥, 𝑦)𝜕

𝛼, where 𝛼 is a two-dimensional multi-index.
Throughout this paper, we search for a subset of the scalar val-
ues 𝜆 and corresponding functions 𝑢 ∈ 𝐶

∞
(Ω,R) such that

𝐿𝑢 = 𝜆𝑢,

𝑢|𝜕Ω
1

= 0,

𝜕𝑢

𝜕n̂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω
2

= 0,

(2)

where 𝜆 are the eigenvalues and 𝑢(𝑥, 𝑦) are the eigenfunc-
tions.The boundary conditions are defined so that 𝜕Ω

1
∪𝜕Ω
2

is a disjoint union that partitions 𝜕Ω and n̂ denotes the
outward unit normal. For simplicity we restrict the scope of
our study to only consider fixed (Dirichlet) and free (Neu-
mann) boundary conditions.

2.3. Domain Decomposition. Let {𝑃
𝑖
}
𝑛

𝑖=1
be open sets relative

to Ω such that there exist invertible smooth functions 𝑓
𝑖
:

𝑅 → 𝑃
𝑖
, where 𝑅 = [0, 1] × [0, 1]. We let (𝑠, 𝑡) denote coordi-

nates on 𝑅, which correspond to (𝑥, 𝑦) on 𝑃
𝑖
under the map-

ping𝑓
𝑖
. Using the chain rule to translate derivatives in domain

coordinates to derivatives in reference coordinates (e.g., 𝑢
𝑠
=

𝑥
𝑠
𝑢
𝑥
+ 𝑦
𝑠
𝑢
𝑦
) and inverting the resulting system yields the

desired expressions for derivatives in 𝑥 and 𝑦 in terms of 𝑠
and 𝑡. The derivatives in 𝑠 and 𝑡 are calculated numerically
on the uniform reference grid using the FC(Gram) algo-
rithm described in the following section. For the examples
considered in this paper, the domain decompositions were
achieved by inspection of the domain and trial-and-error
manipulations, but a variety of algorithms are available that
perform overlapping patch decompositions (e.g., [15]).
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2.4. FC(Gram). Evaluation of derivatives in the Fourier basis
offers two main advantages: under the Fourier Transform,
differentiation corresponds to scalar multiplication, and, in
view of the Fast Fourier Transform algorithm, numerical
evaluation of the Fourier Transform scales well to large
problems, since the cost of a Fourier Transform on 𝑛 modes
is 𝑂(𝑛 log 𝑛). As is known, however, truncated Fourier series
provide poor representations for nonperiodic functions, an
inaccuracy which is only compounded by differentiation.
Specifically, the Fourier series oscillates rapidly at the end-
points of the domain whenever the periodic extension is
discontinuous (Gibbs phenomenon). Since general functions
to which the differential operator must be applied are not
periodic, high orders of accuracy cannot be expected from
straightforward uses of Fourier expansions.

This problem may be addressed by means of the Fourier
continuation algorithm, which, given a function 𝑓, produces
Fourier series for smooth periodic extensions of 𝑓 to a
suitably larger interval. Thus, given a function 𝑓 defined on
(say) [0, 1] which is sampled on the discrete grid given by
𝑥
𝑗
= (𝑗 − 1)ℎ, where ℎ = 1/(𝑛 − 1) and 𝑗 = 1, . . . , 𝑛, the

algorithm constructs a new function 𝑓
𝑐
on [0, 𝑏] for some

𝑏 > 1 such that 𝑓
𝑐
(𝑥) = 𝑓(𝑥), ∀𝑥 ∈ [0, 1], and 𝑓

(𝑚)

𝑐
(𝑏) =

𝑓
(𝑚)

𝑐
(0), ∀𝑚 ≤ 𝑘. In view of these conditions the function

𝑓
𝑐
is smooth and periodic, and therefore its 𝑏-periodic

trigonometric polynomial,

𝑓
𝑐
(𝑥) = ∑

𝑘∈𝑡(𝐹)

𝑎
𝑘
e(2𝜋𝑖/𝑏)𝑘𝑥, (3)

(where 𝑡(𝐹) is the set of 𝑛 + 𝑛
𝑐
modes distributed symmet-

rically about 0) is highly accurate. To enforce the approxi-
mation of the function 𝑓, one must compute the coefficients
𝑎
𝑘
in (3) such that 𝑓

𝑐
and 𝑓 agree on the 𝑛 original sample

points.This could, for example, be accomplished by solving a
(possibly oversampled) minimization problem:

min
{𝑎
𝑘
|𝑘∈𝑡(𝐹)}

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑘∈𝑡(𝐹)

𝑎
𝑘
e(2𝜋𝑖/𝑏)𝑘𝑥𝑗 − 𝑓 (𝑥

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

. (4)

Written as a matrix equation, this amounts to solving

Ma = f , (5)

in the least-squares sense, where a is a column vector whose
entries are the coefficients 𝑎

𝑘
, f is a column vector whose

entries are 𝑓(𝑥
𝑗
), andM is a matrix with𝑀

𝑗𝑘
= e(2𝜋𝑖/𝑏)𝑘𝑥𝑗 .

By itself, this procedure constructs the desired extension
but is not desirable for high-efficiency computation, which
is needed in the context of an iterative solver. This method
can be modified, however, in such a way that only a con-
stant number of data points are used in the calculation of
the continuation for arbitrarily large values of 𝑛. A brief
summary of the resulting approach is presented in what
follows; full details can be found in [1, 16]. Consider the
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Figure 1: The function 𝑓(𝑥) = 𝑥
2 on [0, 1] extended via the

FC(Gram) algorithm to 𝑓
𝑐
(𝑥). The function has been extended so

that it is smoothly periodic over a slightly larger domain.

set of points {(𝑥
𝑛−𝑛
𝑙
−1
, 𝑓(𝑥
𝑛−𝑛
𝑙
−1
)), . . . , (𝑥

𝑛
, 𝑓(𝑥
𝑛
))} ∪ {(𝑥

1
+

1 + 𝑑, 𝑓(𝑥
1
)), . . . , (𝑥

𝑛
𝑟

+ 1 + 𝑑, 𝑓(𝑥
𝑛
𝑟

))}, where 𝑛
𝑙
and 𝑛

𝑟
are

fixed integers chosen independently of 𝑛. By computing the
trigonometric polynomial fit via (4) on this set of points, we
can construct a function 𝑓match such that

𝑓
𝑐
(𝑥) =

{

{

{

𝑓 (𝑥) , 𝑥 ∈ [0, 1] ,

𝑓match (𝑥) , 𝑥 ∈ (1, 1 + 𝑑]

(6)

is (1 + 𝑑)-periodic. A Fourier approximation of the smooth
and periodic function 𝑓

𝑐
in the interval [0, 1 + 𝑑] (which

also provides an approximation for 𝑓 in the interval [0, 1])
is highly accurate, and it provides, in particular, the needed
Fourier expansion of the function 𝑓 in the interval [0, 1].

It is possible to select 𝑛
𝑙
and 𝑛

𝑟
small while maintaining

high accuracy in the continuation by expressing the afore-
mentioned least-squares problem in terms of the orthonor-
mal (Gram) polynomial basis for the intervals [𝑥

𝑛−𝑛
𝑙
−1
, 1] and

[1 + 𝑑, 𝑥
𝑛
𝑟

+ 1 + 𝑑]. The algorithm is completed by relying
on highly accurate precomputed extensions for pairs of Gram
polynomials on the left and right subintervals, projection
of a given function onto the Gram basis, and a subsequent
use of the Fast Fourier Transform; see [1, 16] for details. An
example of an extension computed via FC(Gram) is shown
for a quadratic function on a closed interval in Figure 1. All
FC(Gram) continuations in our numerical examples use 𝑛

𝑙
=

𝑛
𝑟
= 10 and a Gram polynomial basis up to degree 5.

2.5. Numerical Differentiation. If 𝑓(𝑥) is a 1-dimensional
function whose continuation (computed via FC(Gram)) is



4 Mathematical Problems in Engineering

(1) Procedure FCDIFF(𝑢, 𝑘, ℎ) ⊳ returns 𝑘th derivative of 𝑢, where ℎ is the mesh step size
(2) 𝑢

𝑐
← cont(𝑢) ⊳ perform FC(Gram) continuation

(3) 𝑢
𝑐
← fft(𝑢

𝑐
)

(4) for 𝑗 ← 1, 𝑛
𝑐
do ⊳ 𝑛

𝑐
is the length of 𝑢

𝑐

(5) 𝑢
𝑐
[𝑗] ← 𝑢

𝑐
[𝑗] ∗ (2𝜋i/(𝑛

𝑐
ℎ))
𝑘

(6) end for
(7) 𝑢

𝑐
← ifft(𝑢

𝑐
)

(8) 𝑢 ← restrict(𝑢
𝑐
) ⊳ store the portion corresponding to the original domain

(9) return 𝑢

(10) end procedure

Algorithm 1: FC(Gram) 1D 𝑘th-order differentiation.

𝑓
𝑐
(𝑥), then the derivative of the Fourier series of 𝑓

𝑐
is com-

puted as follows:

𝑓
𝑐
(𝑥) =

∞

∑

ℓ=−∞

𝑓
ℓ
e𝑖𝜔ℓ𝑥,

d(𝑘)𝑓
𝑐

d𝑥
=

∞

∑

ℓ=−∞

(𝑖𝜔
ℓ
)
𝑘

𝑓
ℓ
e𝑖𝜔ℓ𝑥.

(7)

The derivative of 𝑓 is recovered by restricting the domain of
𝑓
(𝑘)

𝑐
. This method easily generalizes to multivariate functions

defined on rectangular domains. In the discrete setting,
we compute Fourier Transforms using the FFTW imple-
mentation [17] of the Fast Fourier Transform. The one-
dimensional FC(Gram) differentiation scheme is summa-
rized in Algorithm 1. Partial derivatives in two dimensions
are computed numerically by applying the one-dimensional
algorithm to each row (or column) of the equispaced grid
in reference coordinates. This method is indeed accurate to
high order, as shown in previous applications to ODE and
PDE problems [1, 16, 18]. Since we use a 5th-order Gram
basis to construct the fits, we expect Algorithm 1 to compute
derivatives with fourth-order accuracy.

3. Solving the Eigenvalue Problem

3.1. Boundary Conditions. Enforcing a Dirichlet boundary
condition is as simple as prescribing the value on a line of
fringe points along the boundary. Due to the mapping 𝑓

𝑖
,

the boundaries of 𝑅 correspond exactly to the boundaries of
𝑃
𝑖
, so Dirichlet boundary conditions can be easily translated

to reference coordinates. However, imposing a Neumann
boundary condition is more complicated due to the fact that
normal vectors are not held invariant by 𝑓

𝑖
. To translate the

condition to reference coordinates, we again use the chain
rule towrite the normal derivative as a combination of change
of variables terms and derivatives in parameter space (by
inverting the Jacobian of the mapping 𝑓

𝑖
):

0 =
𝜕𝑢

𝜕n̂
= ∇𝑢 ⋅ n̂ = 𝑢

𝑥
𝑛
1
+ 𝑢
𝑦
𝑛
2
= (𝑥
𝑠
𝑦
𝑡
− 𝑦
𝑠
𝑥
𝑡
)
−1

⋅ [𝑢
𝑠
(𝑛
1
𝑦
𝑡
− 𝑛
2
𝑥
𝑡
) + 𝑢
𝑡
(−𝑛
1
𝑦
𝑠
+ 𝑛
2
𝑥
𝑠
)] := 𝛾

1
𝑢
𝑠

+ 𝛾
2
𝑢
𝑡
.

(8)

The values 𝛾
1
and 𝛾
2
depend only on the unit outward normal

n̂ = (𝑛
1
, 𝑛
2
)
𝑇 and the partial derivatives of components of 𝑓

𝑖

(for a given patch 𝑃
𝑖
).

By treating the points on the boundary, where aNeumann
condition is prescribed as unknowns, we will already have
data from the candidate function 𝑢 along the boundary. As a
result, either 𝑢

𝑠
or 𝑢
𝑡
can be numerically computed along the

boundary, which in turn allows us to describe the Neumann
condition solely in terms of the other partial (i.e., by solving
for it in (8)). This means that the condition on the normal
derivative in domain space can be written as a condition
on the normal derivative in reference coordinates. Knowing
this, we use a least-squares system to fit a fifth-order 1D
polynomial to each set of 10 grid points along the normal
direction in parameter space. This polynomial is constructed
with the condition that its derivative has the value derived
from (8). Finally, the values at these grid points are replaced
by the values from the polynomial fit when computing
the Fourier continuation, but the original values are used
for the calculation of the derivative (after continuation).
This way, if a given function already obeys the Neumann
condition, nothing is changed and the operator is computed
properly.However, if the condition does not hold, this process
introduces the desired discontinuity in the function which
increases in magnitude when derivatives are computed.

3.2. Continuity. A similar method is used to enforce continu-
ity across patches in overlap regions. Suppose𝑃

𝑖
overlaps with

𝑃
𝑗
near one of its boundaries. A layer of fringe points is added

to the patch on the overlap region. Then the function values
for 𝑃
𝑖
on the fringe points are prescribed by interpolating

from the function values in the interior of 𝑃
𝑗
(avoiding values

in 𝑃
𝑗
that are themselves interpolated from other patches).

We useNeville’s algorithm for cubic polynomial interpolation
andperformall interpolation in reference coordinates. A sim-
ple implementation of Newton’s method is used to compute
𝑓
−1

𝑗
(𝑥, 𝑦) (when𝑓

−1

𝑗
is not explicitly known) for a given point

(𝑥, 𝑦) at the boundary of 𝑃
𝑖
.

3.3. Eigenvalue Algorithm. The methodologies described
above in this paper give rise to a numerical algorithm for
evaluation of differential operators for a given geometry
with a provided domain decomposition and boundary con-
ditions. To compute the eigenvalues in (2), we combine this
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Figure 2: Decomposition of simple geometries: (a) the unit square, decomposed into two overlapping rectangles; (b) the unit disk,
decomposed into eight overlapping sections of an annulus and a square centered at the origin. These examples demonstrate the usefulness of
domain decomposition to avoid difficulties in mapping entire domains.

numerical differential operator with the ARPACK++ [19]
implementation of the implicitly restarted Arnoldi method.
The Arnoldi method iteratively builds a lower dimensional
approximation of the operator 𝐿 as an upper Hessenberg
matrixH.The eigenvalues ofH (“Ritz values”) are, in practice,
good estimates of the eigenvalues of 𝐿, as are the eigenvectors
(up to an orthogonal transformation). The special structure
ofH allows for efficient calculation of the Ritz values as well.
Furthermore, we find that the implicitly restarted Arnoldi
method performs better than the full Arnoldi method (i.e.,
without restarts); the restarted method is dominated mostly
by the cost of evaluating the operator 𝐿 rather than the cost
of computing the eigenvalues of a largeHmatrix. Combined
with acceleration techniques that damp out components of
unwanted eigenvectors at each restart, the former method
is faster in practice, so ARPACK++ provides the necessary
computational framework for computing eigenvalues of 𝐿

using our FC algorithm. All eigenvalues in the following
numerical experiments are computed to a tolerance of 10−7
unless otherwise stated.

4. Numerical Results

4.1. Simple Geometries. To test the efficiency and accuracy of
the eigenvalue solver as well as the domain decomposition
approach we first present numerical results for two simple
geometries, the unit square and the unit disk, using 𝐿 = ∇

2.
For each of these geometries, we consider both Dirichlet
andNeumann homogeneous boundary conditions.The exact
eigenvalues and eigenfunctions are well known and easily
derived. We report them here for reference:

(1) Unit square (Ω = [0, 1] × [0, 1]) with all sides fixed:
𝜆
𝑚𝑛

= 𝜋
2
(𝑚
2
+ 𝑛
2
) for𝑚, 𝑛 ∈ Z+.

(2) Unit square with one side (𝑥 = 0) free: 𝜆
𝑚𝑛

= 𝜋
2
((𝑚+

1/2)
2
+ 𝑛
2
) for𝑚 ∈ Z+ ∪ {0} and 𝑛 ∈ Z+.

(3) Unit disk (Ω = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦
2
≤ 1}) with fixed

boundary: 𝜆
𝑚𝑛

= 𝑗
2

𝑛𝑚
, where 𝑗

𝑛𝑚
is the 𝑛th root of the

𝑚th Bessel function.
(4) Unit disk with free boundary: 𝜆

𝑚𝑛
= 𝑗
󸀠2

𝑛𝑚
, where

𝑗
󸀠

𝑛𝑚
is the 𝑛th root of the derivative of the𝑚th Bessel

function.

For these cases, the domain decompositions we use are
not optimal (in the sense of minimizing the number of
patches), as they are meant to test how well continuity con-
ditions are enforced. In addition, we intentionally discretize
neighboring patches with slightly different numbers of grid
points (to prevent grid lines from overlapping and artificially
increasing the accuracy of interpolation). The decomposi-
tions used for the square and disk cases are shown in Figure 2.

The error in the first 10 computed eigenvalues for all the
cases and for increasingly finer discretizations is shown in
Figure 3. In each case, we observe fourth-order convergence
(e.g., doubling the number of points along one direction of
each patch decreases the error in the eigenvalues by no less
than 2

−4). In addition, for the finest discretization in each
case, we obtain at least 8 digits of accuracy in the principal
eigenvalue. Finally, the number of calls to the numerical
operator (denoted by 𝐿𝑢) and the time taken per case are
reported in Table 1.

4.2. Comparison to Finite Differences. Because the Arnoldi
iteration is a black box algorithm that depends only on the
definition of the numerical operator, one might consider a
very similar algorithm that replaces the FC(Gram) algorithm
with another method for computing derivatives. In this
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Figure 3: Convergence in the first ten eigenvalues for each of the four cases in Section 4.1: (a) unit square and fixed edges; (b) unit square
and one free edge; (c) unit disk and fixed boundary; (d) unit disk and free boundary (with zero eigenvalues omitted). In all cases, the dashed
line for fourth-order convergence is shown for comparison. 𝑁 denotes the number of points used to discretize the overall two-dimensional
geometry in each case.
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Table 1: Computational time required for evaluation of the differ-
ential operator 𝐿𝑢 for four test cases, with breakdown of computing
time per 𝐿𝑢 calculation, and the number of 𝐿𝑢 calculations needed
for the eigenvalue solver to converge to the required tolerance. All
computations were performed on a 2.67GHz Intel Xeon processor.
(a) Square with fixed edges; (b) square with one free edge; (c) disk
with fixed boundary; (d) disk with free boundary.

(a)

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

1525 0.001691 728 1.2313
6100 0.006096 2179 13.2835
24400 0.020961 6003 125.8296
97600 0.103420 22861 2364.2878

(b)

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

1525 0.001891 923 1.7452
6100 0.005459 2702 14.7507
24400 0.019813 8328 165.0070
97600 0.094591 23440 2217.2179

(c)

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

3950 0.006348 1065 6.7605
15800 0.017500 2037 35.6459
63200 0.072966 4981 363.4445
252800 0.257892 12338 3181.8739

(d)

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

3950 0.006638 1584 10.5144
15800 0.012105 3336 40.3828
63200 0.061148 7027 429.6900
252800 0.222666 14820 3299.9156

section, we use the examples of the previous section to show
that the choice of FC(Gram) is justified when compared to
a standard finite difference scheme and that the advantages
of FC(Gram) are quite apparent. (It is worth noting the
recent contribution in [20], which relies on finite differences
and Richardson extrapolation, can provide highly accurate
approximations of Laplace eigenvalues provided that the
domain can be discretized by means of grids which exactly
sample the boundary of the domain.)

In these tests, we compare the number of iterations, time
taken, and number of grid points needed by the twomethods
to compute the principal eigenvalue of the Laplacian to a
fixed amount of error. We consider both the unit disk and
the unit square with Dirichlet boundary conditions, and a
second-order accurate centered finite difference scheme is
used in the comparison. As the results in Table 2 indicate, the
FC(Gram) algorithm requires significantly fewer iterations
and grid points than the finite difference algorithm to reach

Table 2: Number of iterations and computational time required by
the FC solver and the finite difference solver to compute 𝜆

1
to a fixed

accuracy for the unit square example (fixed boundaries). (The first
10 eigenvalues are calculated to the tolerance of 10−7, but we only
show the error in the first eigenvalue for conciseness.) For each given
accuracy, the FC(Gram) algorithm outperforms the finite difference
algorithm by a large margin. All computations were performed on
a 2.67GHz Intel Xeon processor. (a) Results using centered finite
difference; (b) results using FC(Gram) with 5th-order basis.

(a)

Absolute error 𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

3.00 × 10−4 74725 0.009501 9693
7.57 × 10−5 298800 0.05130 37760

(b)

Absolute error 𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

3.53 × 10−4 1525 0.001235 728
1.41 × 10−5 6100 0.004211 2245

the desired accuracy.This also results in a much lower overall
run time, even though the time per operation is smaller
for the finite difference scheme. In addition, the FC(Gram)
algorithm scales well to higher accuracies, while the cost
of the finite difference algorithm grows prohibitively large
for the finer discretizations. These results are even more
pronounced in the case of the unit disk. Finally, simple tests
using higher order Gram bases for the FC(Gram) algorithm
demonstrate that the order of accuracy can be increased
without much change in the computational cost. At the
same time, there is no significant alteration to the FC(Gram)
algorithm at high orders, while high-order finite difference
schemesmust be specially reformulated at boundaries to take
into account the extended stencils. Thus, FC(Gram) seems to
be well suited to the elliptic eigenvalue problems we consider
here and competitive with other methods.

4.3. Smoothed L-Shaped Membrane. Collocation methods
were used to calculate the eigenvalues of the L-shaped mem-
brane with Dirichlet boundary conditions in order to show
how polygonal boundaries, including those with geometric
singularities, could be handled. Improvements to Fox et al.’s
work [4] on the method of particular solutions have yielded
the first several eigenvalues to at least 10 digits of accuracy [5].
In its present form the FC method does not handle geom-
etries containing corner singularities, but it can be applied
to approximations thereof containing sharp but smooth
corners. (In the presence of corners in the boundary of the
domain, PDE solutions and eigenfunctions are singular and
therefore cannot be approximated with high accuracy by
means of the present version of the FCmethod. An extension
of this method could be envisioned which takes into account
such singularities explicitly, but the development of such
approaches lies beyond the scope of this paper.) We thus
consider the eigenvalue problem for an L-shaped membrane
with a smoothed corner, as discussed in what follows.
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Figure 4: The smoothed corner coincides exactly with the absolute
value function outside of [−1, 1].

To decompose the membrane, we smooth the corner by
locally approximating the boundary curve with 𝐶

∞ curve
that is sampled at a fixed set of points. Evaluation at an
arbitrary location is produced bymeans ofNeville’s algorithm
for cubic interpolation on a sufficiently fine mesh to ensure
that approximation errors are below the tolerances otherwise
required. The smooth curve that replaces the corner is given
(up to rigid transformations) by

𝑔 (𝑥) = ∫

𝑥

−∞

∫

𝑦

−∞

𝜙 (𝑧) 𝑑𝑧 𝑑𝑦, (9)

where the function𝜙(𝑧) is a smooth bump function onRwith
support on [−1, 1]:

𝜙 (𝑧) =

{{

{{

{

0, if 𝑧 ∉ [−1, 1] ,

e−1/(1−𝑧)

e−1/(1−𝑧) + e−1/𝑧
, if 𝑧 ∈ [−1, 1] .

(10)

Thus, outside the interval [−1, 1], 𝑔(𝑥) = |𝑥| and matches
the rest of the boundary of the L-shaped membrane near the
corner. Within it, we have a smooth curve that deviates from
the corner, as shown in Figure 4. (This can be thought of as
a way of approximating the Dirac delta function, which is
the second “derivative” of the absolute value function, with a
smooth function that has a peak of finite height and nonzero
width.)

Integral (9) is obtained numerically using Fourier tech-
niques that take advantage of the fact that 𝜙(𝑧) is𝐶∞ periodic
function on [−1, 1].We sample𝜙 at 1024 equally spaced points
on [−1, 1] and compute the FFT of the discrete data; at higher
frequencies, the Fourier coefficients are effectively zero. Inte-
gration in the frequency domain amounts tomultiplying each
coefficient by a constant. Thus, taking the inverse FFT after

0

0.5 

1

1.5

2

0 0.5 1 1.5 2

Figure 5: Domain decomposition for the smoothed L-shapedmem-
brane. The corner patch (𝑑 = 0.05) is drawn using a dashed line for
emphasis.

multiplication yields the integral of 𝜙 on [−1, 1] up to a con-
stant of integration.The second integral is computed the same
way, with the constant term integrated analytically.This yields
a highly accurate representation of 𝑔(𝑥) and its derivatives,
which are necessary for the calculation of the Laplacian. Note
that this method can be generalized for smoothing reentrant
corners of any angle by choosing the first integration constant
or adjusting the height of the peak in 𝜙 accordingly.

Using this description of the approximate boundary curve
we parametrize the region of the L-shaped membrane near
the corner by

𝑥 (𝑠, 𝑡) = (2 + 2𝑙) 𝑠 − (𝑙 + 1) ,

𝑦 (𝑠, 𝑡) =
𝑡

𝑏
𝑔 ((2 + 2𝑙) 𝑠 − (𝑙 + 1)) ,

(

𝑥

𝑦
) = 𝑑(

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
)(

𝑥

𝑦
) + (

𝑥
0

𝑦
0

)

+ ℎ(

sin 𝜃

cos 𝜃
) ,

(11)

for 𝑠 ∈ [0, 1] and 𝑡 ∈ [0, 𝑏]. Here 𝜃 = −𝜋/4, (𝑥
0
, 𝑦
0
) =

(1, 1), and 𝑙 and ℎ are chosen to be of the same order as 𝑑.
The decomposition of the smoothed L-shaped membrane is
shown in Figure 5. This particular parametrization is chosen
so that as 𝑑 → 0 the curve approximates the corner of the
L-shaped membrane arbitrarily well.

Figure 7 indicates that 4th-order convergence is achieved,
just as in the tests for the simpler unit square and unit disk
geometries; run time information is given in Table 3. Of
equal importance is the fact that the computed eigenfunc-
tions (Figure 6) closely resemble those of the true L-shaped
membrane [2] and the corresponding eigenvalues agree to
anywhere from two to four digits, as one might expect. In
practice, we have found that the eigenvalues converge linearly
as the rounding radius of curvature tends to zero.
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Figure 6: The first 5 eigenfunctions (modes of vibration) of the smoothed L-shaped membrane (cf. Figure 1 in [2]): (a) 𝜆
1
= −9.6013; (b)

𝜆
2
= −15.1969; (c) 𝜆

3
= −19.7392; (d) 𝜆

4
= −29.5214; (e) 𝜆

5
= −31.8179.
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1
= 9.63972

(e.g., [2, 4]) for the membrane with the sharp corner.

Table 3: Computational time required for evaluation of the Lapla-
cian for the smoothed L-shaped membrane. All computations were
performed on a 2.67GHz Intel Xeon processor.

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

9216 0.012912 6820 88.0598
18225 0.018062 14736 266.1676
36864 0.031643 21469 679.3593
72990 0.049035 44212 2167.9487
147456 0.149842 88070 13196.5794

4.4. Thinly Tethered Membrane. In this section we explore
a more physically relevant membrane geometry inspired
by quantum optics experiments. The particular geometry
explored here can be described as a roughly square-shaped
membrane (with side length on the order of 100 𝜇m) attached
by thin tethers coming off of the four corners to a square
frame (which has side length on the order of 600 𝜇m). The
edges of the membrane that are not attached to the frame
are left free. In addition, the tethers smoothly continue into
the boundaries of the inner square and also taper smoothly
at the corners of the frame. (The purpose of this geometry is
to decrease stress on the main part of the membrane, which
would theoretically drive down the fundamental frequency.)
For this experiment, we take the stress across the membrane
to be constant in order to obtain a first approximation to
the mechanics of such a complex membrane. Under this
approximation, the operator in (2) is once again the Laplace
operator (up to a constant factor).

Table 4: Computational times and number of iterations required
for evaluation of the Laplacian on the thinly tetheredmembrane. All
computations were performed on a 2.67GHz Intel Xeon processor
to a tolerance of 10−4.

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

56320 0.061338 464727 28505.4983
79420 0.072279 1758160 127079.4402
116380 0.115435 2679346 309291.7615
166045 0.167378 2793136 467510.6446

The decomposition developed for this membrane is
shown in Figure 8. Nearly all of the patches used are rectan-
gles, but the smooth boundary curves at the corner of the
membrane and the frame provide a challenge. To address
this issue, we use the methodology previously developed for
smoothing corners to parametrize these regions; we treat the
segments of the boundary shown in Figures 8(b) and 8(c) as
having smoothed reentrant corners with angles of 90∘ and
135∘, respectively.The dimensions of themembrane are scaled
so that the frame is the square of side length 2 centered at the
origin.

As in all the previous cases, we consider several suc-
cessively finer discretizations for the geometry. Because this
problem is significantly larger than those considered previ-
ously in this paper, we only increase the number of points
in each direction by a factor of 1.2 at each level. Conver-
gence rates for the first 5 eigenvalues are shown in Figure 9
and timings are given in Table 4. In addition, plots of the
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Figure 8: Domain decomposition for the thinly tethered membrane: (a) full decomposition (37 patches); (b) curving boundary near point
where tether attaches to center square; (c) curving boundary near corner of frame.

eigenfunctions corresponding to these computed eigenvalues
are shown in Figure 10, which show interesting oscillation
modes.

4.5. Variable Coefficients. In this section we consider a more
general eigenvalue problem with nonconstant coefficients,
which generalizes the eigenvalue problem for the Laplacian:

∇ ⋅ (𝛽 (𝑥, 𝑦) ∇𝑢) = 𝜆𝑢,

𝑢|𝜕Ω
1

= 0,

𝜕𝑢

𝜕n̂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω
2

= 0.

(12)

We take 𝛽 to be a scalar function of position. While the
Laplacian eigenvalue problem allows us to study the funda-
mental modes of vibration for a homogeneous membrane,
these more general operators allow for the simulation of
membranes with spatially varying tension, for example,
which are of great physical relevance.

For our tests, we solve (12) for the unit disk with fixed
boundary and 𝛽(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
+ 1, using the same decom-

position and set of discretizations as used previously. The
absolute error is computed with respect to finest discretiza-
tion. Results here, shown in Figure 11 and Table 5, are similar
to those seen in the case of the Laplacian eigenvalue problem
on the unit disk. We observe, most notably, that the con-
vergence rate for the computed eigenvalues (with respect to
the discretization) is roughly fourth order again. Similarly,
the time spent computing a single realization of the operator
and the number of calls to the operator scale sublinearly with
respect to𝑁, just as in the constant coefficient case. However,
the time per𝐿𝑢 calculation is slightly larger here since the gra-
dient and divergence operators are computed in succession.

4.6. Parallelization. The differential operator 𝐿 can be eval-
uated independently on each patch 𝑃

𝑖
, so the algorithm

presented here can be parallelized by distributing this step to
multiple processors.This is because the only step that requires
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Figure 9: Convergence in the first 5 eigenvalues for the thinly tethered membrane is roughly 4th order (when compared to the finest
discretization tested;𝑁 = 239580).

Table 5: Computational times and number of iterations required
for evaluation of the variable coefficient elliptic operator (12) with
𝛽(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2
+ 1. All computations were performed on a

2.67GHz Intel Xeon processor.

𝑁
Time per 𝐿𝑢
operation (s)

Number of 𝐿𝑢
operations

Total time in
𝐿𝑢 (s)

3950 0.009051 1242 11.2415
15800 0.023501 3072 72.1960
63200 0.109634 7610 834.3157
252800 0.370401 20630 7641.3635

communication between different patches is the setting of
continuity conditions (via interpolation from the interiors
of overlapping patches). To implement parallelization across
𝑝 processors, we use a simple load balancing algorithm for
𝑛 ≥ 𝑝 (cf. Algorithm 2a in [21]) that assigns a given task to
the processor with the least amount of work. The task in this
case is computing the restriction of 𝐿𝑢 to 𝑃

𝑖
, and the amount

of work for this task is given by the total number of points in
𝑃
𝑖
.
To test the efficiency of the parallelization, we consider

again the thinly tethered membrane geometry shown in
Figure 8 (𝑛 = 37), using a discretization with 𝑁 = 3604480.
The parallel efficiency, defined by

𝐸
𝑝
=

𝑇
1

𝑝𝑇
𝑝

, (13)

where𝑇
1
is the time taken to apply𝐿𝑢 using a single processor

and𝑇
𝑝
is the time taken to apply𝐿𝑢 after distributing the tasks

to 𝑝 processors, is shown in Figure 12 with respect to increas-
ing 𝑝. Sharp jumps in the efficiency are most likely because
of the prime number of patches, which makes distribution
of tasks in as even a manner as possible somewhat difficult
under this framework. Our parallel efficiency tests included
runs up to twelve processors; the parallel efficiency decreased
slowly as the number of processors increased to a level around
80%.

5. Conclusions

We have presented a high-order method for evaluation of
the eigenvalues of elliptic operators. Our approach combines
the FC method for evaluation of accurate Fourier approx-
imations of nonperiodic functions, domain decomposition,
and Arnoldi iteration. Our domain decomposition strategy
enables consideration of general geometries. Additionally,
the decomposition strategy leads easily to efficient parallel
computations. The resulting eigenvalue algorithm converges
at a roughly fourth-order rate in all cases considered. Fur-
thermore, a methodology to deal with corner singularities
is suggested by the results from the smoothed L-shaped
membrane. Comparisons to solutions provided by a finite
difference scheme demonstrate the advantages provided by
the proposed algorithm as well as the viability of our Fourier
continuation algorithm for evaluation of eigenvalues for com-
plex geometries and general variable-coefficient operators.
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Figure 10: The first 6 eigenfunctions (modes of vibration) of the thinly tethered membrane: (a) 𝑢
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