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Abstract

Valiant-Vazirani showed in 1985 [VV85] that solvingNP with the promise that “yes” instances have only
one witness is powerful enough to solve the entireNP class (under randomized reductions).

We are interested in extending this result to the quantum setting. We prove extensions to the classes Merlin-
Arthur (MA) and Quantum-Classical-Merlin-Arthur (QCMA) [AN02]. Our results have implications on the
complexity of approximating the ground state energy of a quantum local Hamiltonian with a unique ground
state and aninverse polynomialspectral gap. We show that the estimation, to within polynomial accuracy, of
the ground state energy of poly-gapped 1-D local Hamiltonians isQCMA-hard, under randomized reductions.
This is in strong contrast to the case of constant gapped 1-D Hamiltonians, which is inNP [Has07]. Moreover,
it shows that unlessQCMA can be reduced toNP by randomized reductions, there is no classical description
of the ground state of every poly-gapped local Hamiltonian which allows the calculation of expectation values
efficiently.

Finally, we discuss a few obstacles towards establishing ananalogous result to the class Quantum-Merlin-
Arthur (QMA). In particular, we show that random projections fails to provide a polynomial gap between two
witnesses.

1 Introduction and Results

1.1 Extending Valiant-Vazirani

One of the properties of the classNP is that the number of witnesses might vary from zero to exponentially
many. How hard is it to distinguish between “no” instances and “yes” instances that have a unique witness?
One might think that such a problem is easier than solvingNP. In a celebrated result, Valiant and Vazirani
[VV85] showed that access to an oracle which can decide between “no” and “unique yes” instances is enough
to solve theNP-complete problemSAT, with high probability, using randomized reductions1.

The classesMA, QCMA [AN02] and QMA [KVS+02] are probabilistic and quantum analogues ofNP.
Informally, we say a problem is inMA if for every “yes” instance there is a witness which makes theverifier to
accept with high probability (e.g. in the range (2/3, 1)), while for “no” instances he only accepts with a small
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1A promise problem A is reducible to B by a randomized reduction, if there exists a probabilistic polynomial Turing Machine (TM)M

and a polynomialp s.t.:

• completeness:x ∈ Ayes ⇒ Prr(M(x, r) ∈ Byes) ≥ 1/p(|x|)

• perfect soundness:x ∈ Ano ⇒ ∀r M(x, r) ∈ Bno

wherer are the random bits of the TMM . We denote this byA �R B.
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probability (e.g. in (0, 1/3)), no matter which witness is given to him. The classQCMA is defined in a similar
manner, but now the verifier can use a quantum computer to decide whether to accept or not. InQMA, in turn,
not only does the verifier use a quantum computer to check the proof, but also the proof itself is a quantum state
composed of a polynomial (in the input size) number of qubits.

We can ask a similar question to that of Valiant and Vazirani about each of these classes: given access to an
oracle that can only decide between “no” instances and “yes”instances which have a unique solution forMA,
QCMA, orQMA, can we solve complete problems for those classes, with highprobability? The quantum related
questions are also motivated by physical questions about ground states of local Hamiltonians. We provide some
interesting implications in this direction, which we will soon describe.

In this paper we partially solve these questions: we presenta generalization of the Valiant-Vazirani result to
MA andQCMA. We also discuss some obstructions towards establishing a similar result toQMA, which is left
as an open problem.

We defineUMA andUQCMA as the restrictions ofMA andQCMA, respectively, to instances with a unique
witness. Roughly speaking, in a “yes” instance of a problem in UMA or UQCMA, oneproof convinces the
verifier with probability larger than e.g. 2/3, while any other witness makes him accept with probability of at
most1/3. In a “no” instance, the verifier accepts any witness with probability at most 1/3. Our two main results
are:

Theorem 1 MA R
= UMA 2.

Theorem 2 UQCMA R
= QCMA.

The proofs of both theorems rely heavily on the Valiant-Vazirani construction [VV85, AB09], which can be
divided into three components:

1. We could guess the size of the accepting witness set, and use a random “filter” with a certain degree
of screening, which is determined by the set size. If we guesscorrectly, then with constant probability,
exactly one witness will pass the filter.

2. We notice that it is not crucial to guess the exact size of the set - and a multiplicative approximation is
enough. In this way, the possible number of guesses is reduced from exponentially many in the previous
component, to linear (in the length of the witness).

3. we replace the random “filter” with a pseudo random “filter”- a universal hash function - without loosing
any of the properties. These pseudo-random objects have theadvantage of an efficient description, unlike
truly random sets.

The probabilistic setting ofMA andQCMA raises a new difficulty: on “yes” instances there might be an
exponentially larger number of witnesses in the gap-interval (e.g.(1/3, 2/3)) than in the “yes” interval(2/3, 1).
Thus, a random choice of one of the witnesses - in the spirit ofthe Valiant-Vazirani approach - would, with
overwhelming large probability, fail to choose a witness from the “yes” interval. The main idea in overcoming
this obstacle is to divide the “gap” interval into polynomially many smaller intervals, and argue that in at least
one of them, the number of witnesses inside it is not much larger than the number of witnesses in the intervals
above it.

We can also define the classUQMA - a unique variant ofQMA - with the hope of proving the analogous
result. It is defined as follows: the conditions for a “no” instance are the same as inQMA, but for a “yes”
instance, we demand that there exists a|ψ〉 which is accepted above the “yes”-threshold, and all states|φ〉
orthogonal to it are accepted with probability below the “no”-threshold. Before we proceed to show that an
analogous result forQMA is probably impossible to achieve using similar techniquesto the ones we employ,
we use this definition together with Theorem 2 to derive interesting implications.

2We say that the classC1 is included inC2 under randomized reduction, and denote it byC1

R

⊆ C2 if for everyL1 ∈ C1 there exists
L2 ∈ C2 s.t.C1 �R C2.
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1.2 Implications to Ground State and Hamiltonian Complexity

We say a Hamiltonian, acting onn d-dimensional particles, isk-local if it can be written as a sum ofpoly(n)
terms which act non-trivially at most onk sites.

Definition 3 k-LOCAL HAMILTONIAN : We are given ak-local Hamiltonian onn qubitsH =
∑r
j=1Hj with

r = poly(n). EachHj has a bounded operator norm||Hj || ≤ poly(n). We are also given two constantsa and
b with b − a ≥ 1/poly(n). In “yes” instances, the smallest eigenvalue ofH is at mosta. In “no” instances, it
is larger thanb. We should decide which one is the case.

In a seminal work, Kitaev showed that the 5-LOCAL HAMILTONIAN problem is complete forQMA [Kit99].
Improvements in parameters (dimensionality and locality)were given in [KR03, KKR06, OT05], leading to the
QMA-completeness of 1-D 2-LOCAL HAMILTONIAN [AGIK07], which is the variant of the original problem
to one-dimensional nearest-neighbors Hamiltonians (withd = 12). The importance of these results stems not
only from the fact thatLOCAL HAMILTONIAN is probably the most representativeQMA-complete problem, but
also from the key role of local Hamiltonians and their ground-state energy in physics.

An important parameter when dealing with the complexity of ground states and local Hamiltonians is the
spectral gapof local Hamiltonians, given by the difference of the groundand the first excited energy levels,
∆ := λ1(H) − λ0(H). When the spectral gap is constant, the Hamiltonian is said to be gapped. When it is
inverse polynomial, we say the Hamiltonian is poly-gapped.

What are the implications of a gap for theLOCAL HAMILTONIAN problem? A groundbreaking result by
Hastings shows that ground states of 1-D gapped Hamiltonians have an efficient classical description, as a
Matrix-Product-State (MPS) of polynomial bond dimension [Has07]3. Since expectation values of local ob-
servables of an MPS can be calculated in polynomial time in the number of sites and in its bond dimension (see
e.g. [PGVWC06]), Hastings’ result implies that 1-D CONSTANT-GAP LOCAL HAMILTONIAN (the restriction of
the original problem to 1-D gapped Hamiltonians) belongs toNP.

It has been asked whether such efficient descriptions might exist for the ground state of 1-D poly gapped
Hamiltonians. We show that using Theorem 2, and some more work, one can deduce that the answer to this
question is negative (under some reasonable complexity assumption). The reasoning is as follows.

We define theUNIQUE LOCAL HAMILTONIAN problem to be similar to theLOCAL HAMILTONIAN problem,
where the conditions for a “no” instance are the same, but fora “yes” instance we demand that there exists a|ψ〉
with energy below the low-threshold, and all other eigenvalues are above the upper-threshold. We also define
theUNIQUE 1-D 2-LOCAL HAMILTONIAN in a similar manner.

It is not difficult to show (by observing that the construction used in [AGIK07] preserves the uniqueness)
that:

Lemma 4 UNIQUE 1-D 2-LOCAL HAMILTONIAN is UQMA-Complete.

Together with Theorem 2, which implies thatQCMA
R
⊆ UQCMA ⊆ UQMA, we have

Theorem 5 UNIQUE 1-D 2-LOCAL HAMILTONIAN is QCMA-hard, under randomized reductions.

From Theorem 5 we can deduce the following “no-go” corollaryfor the ground state of poly-gapped Hamil-
tonians. Consider any set of states which are (i) described by poly(n) parameters and (ii) from which one can
efficiently compute expectation values of local observables. Matrix-Product-States are an example of such a set,
and several others have recently been proposed [APD+06, Vid07, HKH+08]. We can show:

Theorem 6 Ground states of 1-D poly gapped local Hamiltonians cannot be approximated to inverse polyno-

mial accuracy by states satisfying properties (i) and (ii),unlessQCMA R
= NP.

3A state|ψ〉 ∈ (Cd)⊗n has an MPS representation with bond dimensionD if it can be written as

|ψ〉 =
d

X

i1,...,in=1

tr(A[1]
i1
...A

[n]
in

)|i1, ..., in〉, (1)

with A[k]
i D ×D matrices. Note that onlyndD2 complex numbers are needed to specify the state.

3



The reason is that “yes” instances of theUNIQUE 1-D 2-LOCAL HAMILTONIAN are poly-gapped, and there-
fore such a description would placeUNIQUE 1-D 2-LOCAL HAMILTONIAN in NP.

To further analyze the complexity of the local Hamiltonian problem for poly-gapped Hamiltonians, we
introduce a variant of theUQMA class, which we call poly-gappedQMA (PGQMA), as follows: in both
“yes” and “no” instances we require there is a gap (given by a pre-determined quantity larger than an inverse
polynomial in the input size) from the witness which accept with the largest probability to all the others. We
show that the problem 1-D POLY-GAP LOCAL HAMILTONIAN , in which the Hamiltonians are promised to
be poly-gapped, is complete for the class. We also present a simple randomized reduction from anyUQMA
problem to aPGQMA, which implies

Theorem 7 1-D POLY-GAP LOCAL HAMILTONIAN is QCMA-hard, under randomized reductions.

We thus see that, unlessBQP = QCMA 4, the determination of the ground energy of poly-gapped 1-D local
Hamiltonians is an intractable problem for quantum computation. Note that this conclusion cannot be drawn
from the previous lower bounds on the complexity of the problem [AGIK07, SCV08]. Indeed, the results of
[AGIK07] concerning adiabatic quantum computation with a 1-D poly-gapped Hamiltonian indirectly imply
that 1-D POLY-GAP LOCAL HAMILTONIAN is BQP-hard5, while in [SCV08] the problem was shown to be hard
for the classUP ∩ Uco-NP (the intersection of uniqueNP with unique co-NP), whose relation withBQP is
unknown.

1.3 Impossibility Results forUQMA

Finally, we examine theUQMA case. We show that attempting to apply the brute force analogue of the previous
proofs in the case ofUQMA, we already fail in the first (inefficient) component. A new idea seems to be
required, if an extension of the Valiant-Vazirani approachis possible at all forQMA.

To show this we construct a simple family ofQMA “yes” instances which we believe captures the difficulty
of the problem.

Example 1 LetC be a quantum circuit onl qubits, with the property that there exists a subspaceV of dimension
2, s.t.∀|ψ〉 ∈ V, Pr(C accepts |ψ〉) = 1, and∀|ψ〉 ∈ V ⊥, P r(C accepts |ψ〉) = 0.

In the classical case, the analogous example of two solutions is easy to deal with by choosing a “filter”
(hash-function) that screens about half of the witnesses. The natural quantum analogue to try, is to use a random
projection that will reject half of the space. In proposition 1 we prove that such a transformation (even if it can
be implemented efficiently) does not create an inverse polynomial gap between the two states in the subspaceV :
with probability exponentially close to 1, regardless of the dimensionality of the random projection, all states in
V will be accepted with probabilities exponentially close toeach other.

The reason for this is that the projection of everyN -dimensional vector on ad-dimensional random sub-
space is concentrated arounddN , with a standard deviation of order

√
d
N , for a sufficiently largeN . Therefore,

regardless of how we choosed, we always get that the gap is less than1√
N

, which is exponentially small. Hence,
the behavior of random sets - the filters in the classical setting - is very different from the behavior of random
subspaces, the natural quantum analogue.

One might hope that a more refined measurement would help. In fact [Sen06] has shown that the two
distributions resulting from applying a random von Neumannmeasurement on two arbitrary orthogonal states
have a constant total variation distance with all but exponentially small probability. This sounds promising;
Moreover, a similar effect can be achieved efficiently by quantumt-designs as shown by [AE07]. Unfortunately,
a constant total variation distance between two distributions does not imply an efficient method to distinguish

4BQP is the class of problems which can be efficiently solved, withhigh probability, by a quantum computer
5The construction of [AGIK07] for adiabatic quantum computation with one-dimensional Hamiltonians provides a way to encode the

outcome of any polynomial quantum computation into the expectation value of a measurement, in the computational basis,of the first site of
the ground state of a 1-D poly-gapped local hamiltonian, with a zero ground state energy. By adding a small perturbation to the Hamiltonian,
penalizing the first site when it is not in the zero state, and with a strength much smaller than the spectral gap, but still inverse polynomial
in the number of sites, we can readily conclude that this construction shows that 1-D POLY-GAP LOCAL HAMILTONIAN is BQP-hard
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between them; this problem is tightly related to complete problems for the complexity class SZK, which are not

known to have a quantum polynomial time algorithm. Thus, theproblem of whetherUQMA R
= QMA remains

wide open.

1.4 Organization of the paper

The structure of the rest of the paper is as follows: in Section 2.1 we present the definitions. Section 3 reviews
the proof of the Valiant-Vazirani Theorem, while Sections 4and 5 contain the extension of the theorem to the
classesMA andQCMA, respectively. In section 6 we discuss some alternate definitions of the classUQMA,
and complete problems for this class. We also show that the two classes are equivalent, under randomized
reductions. Finally, in section 7 we prove impossibility results regarding extending our results toQMA using
similar ideas.

2 Definitions

We start by defining a few standard complexity classes which we will consider throughout the paper. Then we
turn to the definition of unique versions ofMA, QCMA, andQMA, which to the best of our knowledge, have
not been formalized before.

2.1 Background Definitions

Definition 8 (Nondeterministic Polynomial (NP)) A languageL ∈ NP if there exists a Turing Machine (TM)
M which runs in polynomial time in its first argument s.t.:

1. x ∈ L⇒ ∃y s.t. M(x, y) accepts.

2. x /∈ L⇒ ∀y M(x, y) rejects.

Definition 9 (Unique Nondeterministic Polynomial (UP)) A promise problemL = (Lyes, Lno) ∈ UP if
there exists a Turing Machine (TM)M which is polynomial in its first argument s.t.:

1. x ∈ Lyes ⇒ ∃y s.t. M(x, y) accepts and∀y′ 6= y M(x, y′) rejects.

2. x ∈ Lno ⇒ ∀y M(x, y) rejects.

Definition 10 (Merlin-Arthur ( MA)) A promise problemL = (Lyes, Lno) ∈ MA if there exists a probabilistic
polynomial TMM which is polynomial in its first argument, and its random bitsare denoted by the stringr,
s.t.:

1. x ∈ Lyes ⇒ ∃y s.t. P rr(M(x, y, r) accepts) ≥ 2/3.

2. x ∈ Lno ⇒ ∀y Prr(M(x, y, r) accepts) ≤ 1/3.

Definition 11 (Quantum Classical Merlin-Arthur ( QCMA)) A promise problemL = (Lyes, Lno) ∈ QCMA
if there exists a polynomial quantum circuitUx which can be computed inpoly(|x|) time, havingl(x) qubits as
input and requiringm(x) ancilla qubits initialized to|0m〉, such that

1. x ∈ Lyes ⇒ ∃y s.t. ‖Π1Ux(|y〉 ⊗ |0m〉)‖2 ≥ 2/3.

2. x ∈ Lno ⇒ ∀y ‖Π1Ux(|y〉 ⊗ |0m〉)‖2 ≤ 1/3.

Π1 is the projection onto|1〉 in the first qubit, i.e.Π1 := |1〉〈1| ⊗ Il+m−1. We writel = l(x) andm = m(x)
whenx can be understood from the context.
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Definition 12 (Quantum Merlin-Arthur ( QMA)) A promise problemL = (Lyes, Lno) ∈ QMA if there exists
a polynomial quantum circuitUx which can be computed inpoly(|x|) time, havingl(x) qubits as input and
requiringm(x) ancilla qubits initialized to|0m〉, s.t.

1. x ∈ Lyes ⇒ ∃|ψ〉 s.t. ‖Π1Ux(|ψ〉 ⊗ |0m〉)‖2 ≥ 2/3.

2. x ∈ Lno ⇒ ∀|ψ〉 ‖Π1Ux(|ψ〉 ⊗ |0m〉)‖2 ≤ 1/3.

Π1 is the projection onto|1〉 in the first qubit.

2.2 New Definitions

We now describe the analogue unique versions for the classesMA andQCMA andQMA.

Definition 13 (Unique Merlin-Arthur ( UMA)) A promise problemL = (Lyes, Lno) ∈ UMA if there exists a
probabilistic TMM which is polynomial in its first argument s.t.:

1. x ∈ Lyes ⇒ ∃y s.t. P rr(M(x, y, r) accepts) ≥ 2/3 and∀y′ 6= y, Prr(M(x, y′, r) ≤ 1/3.

2. x ∈ Lno ⇒ ∀y Prr(M(x, y, r) accepts) ≤ 1/3.

Definition 14 (Unique Quantum Classical Merlin-Arthur ( UQCMA)) A promise problemL = (Lyes, Lno) ∈
UQCMA if there exists a polynomial quantum circuitUx which can be computed inpoly(|x|) time, havingl(x)
qubits as input and requiringm(x) ancilla qubits initialized to|0m〉, such that

1. x ∈ Lyes ⇒ ∃y s.t. ‖Π1Ux(|y〉 ⊗ |0m〉)‖2 ≥ 2/3 and∀y′ 6= y, ‖Π1Ux(|y′〉 ⊗ |0m〉)‖2 ≤ 1/3

2. x ∈ Lno ⇒ ∀y ‖Π1Ux(|y〉 ⊗ |0m〉)‖2 ≤ 1/3.

Π1 is the projection onto|1〉 in the first qubit.

Definition 15 (Unique Quantum Merlin-Arthur ( UQMA)) A promise problemL = (Lyes, Lno) ∈ UQMA
if there exists a polynomial quantum circuitUx which can be computed inpoly(|x|) time, havingl(x) qubits as
input and requiringm(x) ancilla qubits initialized to|0m〉, s.t.

1. x ∈ Lyes ⇒ ∃|ψ〉‖Π1Ux(|ψ〉 ⊗ |0m〉)‖2 ≥ 2/3 and∀|φ〉⊥|ψ〉, ‖Π1Ux(|φ〉 ⊗ |0m〉)‖2 ≤ 1/3

2. x ∈ Lno ⇒ ∀|ψ〉 ‖Π1Ux(|ψ〉 ⊗ |0m〉)‖2 ≤ 1/3.

3 The Valiant-Vazirani Proof Revisited

In this section, we review the results of [VV85]. We divide the proof into three components, so that we can
better understand which components of the original construction fail in the probabilistic and quantum setting.
The main result proved by Valiant and Vazirani can be stated as follows:

Theorem 16 [VV85] If UP ⊆ RP⇒ NP ⊆ RP.

The standard proof of the theorem works with the well knownNP-complete problemSAT. We will not use
it, as there is no simple variant ofSAT which is complete for the classesMA andQCMA.

Definition 17 (TRIVIAL NP PROBLEM (TNPP)) The words inL are tuples,〈V, x, l, t〉, where V is a descrip-
tion of a deterministic Turing machine, x is a string of length n, andl, t ∈ N, given in unary.
〈V, x, l, t〉 ∈ L if there exists ay with |y| = l s.t.V (x, y) accepts int steps.

It can easily be seen thatTNPPis NP-Complete. The following promise problem is a “unique” version ofTNPP.

Definition 18 (UNIQUE -NP PROMISE PROBLEM (UNPPP)) The promise problem isL = (Lyes, Lno). The
words inL are tuples,〈V, x, l, t〉, where V is a description of a deterministic Turing machine,x is a string of
length n, andl, t ∈ N, given in unary.
〈V, x, l, t〉 ∈ Lyes if there exists exactly one stringy s.t. |y| = l andV (x, y) accepts int steps.〈V, x, l, t〉 ∈

Lno if for all stringsy s.t. |y| = t, V (x, y) does not accept int steps.
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3.1 Proof Sketch

We begin with an instancêI and a languageL ∈ NP , and we should decide if̂I ∈ L. The first step is to use
the completeness ofTNPP to find an instanceI = 〈V, x, l, t〉 with the propertŷI ∈ L ⇐⇒ I ∈ TNPP .

There are three main components in the proof, which we shall,now, explain.

Component 1: The right random “filter” for the right size

LetW be the set of accepting witnesses:W := {y : |y| = l and V (x, y) accepts in t steps}, and let|W | = w.
Notice thatI ∈ TNPP ⇐⇒ w 6= 0.

Definition 19 (R-restriction) LetR be a set of strings, each one of them of sizel, with the property that there
is an algorithm that answers whethery ∈ R in exactlyT time steps. Given a Turing machineV , we call the
following Turing machines theR-restriction of V, and denote it byVR:

1. If y /∈ R, Reject. Otherwise, Continue.

2. RunV on (x, y).

We see theR-restriction as a filter added to the original problem, because the new machine accepts only
accepting witnesses of the original machine, which belong to the setR.

Let us denote byI ′ the instance〈VR, x, l, t+ T 〉. Component 1 takes the filterR to be a random set, where
each string in{0, 1}l is chosen independently with probabilityw−1. Notice that the Turing machineVR might
not have a short description, because in order to decide whethery ∈ R, all the elements ofR should somehow be
“hard-wired” to the machine. If|R| is exponential inl, then by using Kolmogorov Theory arguments[CTWI06],
there is no short description for such a circuit, therefore the description ofVR will not be short. Therefore, the
mapping betweenI to I ′ is not efficient. This drawback will be circumvent in component 3.

We claim thatI ′ will be inUNPPPyes with probabilityΩ(1). LetW ′ = {y : |y| = l andVR(x, y) accepts int+
T steps}. DefiningW = {w1, ..., w|W |},

Pr(I ′ ∈ UNPPPyes) = Pr(|W ′| = 1)

= Pr(|W ∩R| = 1)

= Pr

(

w
⋃

i=1

(wi ∈ R ∩j 6=i wj /∈ R)

)

= w
1

w
(1−

1

w
)w−1

≥ 1/e. (2)

The first equality follows fromI ′ ∈ UNPPP ⇐⇒ w′ = 1 and the second fromW ′ = W ∩R. The third
is a direct consequence of the definition ofwi. The fourth stems from the facts that the events in the line above
are all disjoint, and using the definition of the setR. Therefore, querying the oracle with〈V ′, x, l, t+ t′〉 results
in a “yes” with probability of at least1e .

Using this idea, we create2l instances,I1, ..., I2l , one for every possible value ofw: Ij = 〈Vj , x, l, t+ t′〉.
We claim:

Lemma 20 (Completeness) IfI ∈ TNPP , then there exists aj for which, with probabilityΩ(1) over the
choice ofR, Ij ∈ UNPPPyes. (Soundness) IfI /∈ TNPP , then all theIj are inUNPPPno.

Proof: Completeness: Follows from the previous argument: one of the Ij ’s is Iw . Iw ∈ UNPPPyes with
probability of at least1/e. Soundness:I /∈ TNPP ⇒ W = ∅. AsWj = W ∩ Rj , Wj = ∅, and therefore
Ij ∈ UNPPPno.

Our algorithm consists of queryingUNPPP with I1, ..., I2l . If one of the results is yes, we accept. The
completeness asserts that for a “yes” instance, we accept with constant probability. The soundness asserts that
we always reject in “no” instances.
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Component 2: Approximated “filter” also works

The second component concerns the fact that we do not know thevaluew and, therefore, in order to use the
algorithm given in component 1, we need exponentially many queries to theUNPPP oracle. The key to the
solution is to realize that being wrong about the size ofw by a constant factor, only changes the probability of
having a unique solution by another constant factor.

More explicitly, we transform our instanceI into a polynomial number of random instances:I1, I2, ..., Il.
These instances are formed by choosing random setsRk again; but now, each element is taken with probability
1
2k .

A similar statement to Lemma 20 also holds here. To analyze the completeness of the protocol, we notice
that for somek, 2k ≤ w ≤ 2k+1. Hence, for suchk,

Pr(Ik ∈ UNPPPyes) = Pr(|Wk| = 1)

= Pr(|W ∩Rk| = 1)

= Pr

(

w
⋃

i=1

(yi ∈ W ∩j 6=i yj /∈W )

)

= w
1

2k
(1−

1

2k
)w−1

≥ (1−
1

2k
)2

k+1−1 ≥ e−2.

Therefore, when asking the oraclel− 1 queries, at least one of the answers will be “yes”, with probability of at
least1/e2. The soundness analysis uses the same argument as in component 1.

Component 3: Approximated pseudo random filter is just as good

The third component deals with the inefficiency of randomness: a random and exponential large setR cannot
be determined by a polynomial description. The solution is to replace the randomness by a suitable notion of
pseudo-randomness. In this case, the pseudo-random objects of interest are pairwise independent universal hash
functions [AB09].

Definition 21 (pairwise independent hash functions)A family of functionsHn,m where eachh ∈ H, h :
{0, 1}n → {0, 1, }m, is called a pairwise independent universal family of hash-functions if:

1.

∀y1 6= y2 ∈ A, ∀a, b ∈ B, Prh∼UH(h(y1) = a andh(y2) = b) =
1

22m

2. There exists a Turing MachinePRINT -H s.t. for everyn,m ∈ N andj ∈ Hn,m, PRINT -H(n,m, j)
prints a description of another Turing machine, which computeshj ∈ Hn,m. By abuse of notation, we
also denote the Turing machine which computeshj byhj. The printing is done inpoly(n,m) time.

3. The running time of eachh ∈ Hn,m is bounded by somepoly(n,m) time.

Note that this probability is the same as if the maph was random, althoughh has a short description (unlike a
random function which has no compact description).

Instead of choosingRk to be a random set, we pick a random universal hash functionhk from the setHl,k+2;
The setRk is h−1

k (0) = {y|hk(y) = 0}. Evaluatinghk(y) is polynomial inl, and therefore, step 1 ofVk takes

8



only polynomial time. To conclude, our algorithm is described in Alg. 1.

Input : The tuple〈V, x, l, t〉.
Output : if x ∈ TNPP accept with some constant probability, ifx /∈ TNPP reject (with probability 1)
foreach k ∈ [l] do1

Sample a hash-function uniformly at randomhk ∼U Hl,k+2 and letRk = h−1
k (0)2

Denote byVk theRk-restriction ofV .3

Query theUNPPP oracle withIk = 〈Vk, x, l, t+ Tl,k+2〉, and put the result inrk. a4

end5

if ∃k s.t. rk = 1 then6

accept7

else8

reject9

end10

Algorithm 1 : TNPPsolver, which uses polynomially many queries toUNPPP

aWe will denote byTa,b the running time ofh(y) whereh ∈ Ha,b. We need the reasonable assumption that the running time is the
same for allh’s andy’s and that it is an easy to compute function. We changed the timet to bet + Tl,i+2, because the machineVk(x, y)
needs to do one evaluation of the hash function, compared to the machineV .

It hence suffices to prove lemma 20 in order to showUP ⊆ RP⇒ NP ⊆ RP, because then Alg. 1 is inRP.
First, we need to show that the algorithm takes polynomial time. The only suspect is step 1. The preparation of
the descriptionVk takes polynomial time, as in the definition of hash function (definition 21).

Soundness: In the case thatI /∈ TNPP , then by the soundness of lemma 20, all therk ’s in step 1 are false,
and, therefore, in step 1 the condition does not hold, so we always reject.

Completeness: By combining the assumption thatUNPPP is in RP, and the completeness of lemma 20,
we have that ifI ∈ TNPP , then with probabilityΩ(1) over the choice ofhk, Ik ∈ UNPPPyes, and therefore
for thatk the query in step 1 will return “accept” with probability2/3. Therefore, the overall probability of
accepting is at least23Ω(1) = Ω(1).
Proof of Lemma 20: Soundness: Same argument as before.

Completeness: We make use of the following lemma:

Lemma 22 Let W ⊂ {0, 1}n of sizew, such that2k ≤ w ≤ 2k+1, and let h be a random universal hash
function from the setHl,k+2, which is a set of functions from{0, 1}l to {0, 1}k+2. Then,

Pr
(

|h−1(0) ∩W | = 1
)

≥ 1/8.

.

We prove this lemma in Appendix A. Note thatIk = 〈Vk, x, y, l, t + Tl,k+2〉 ∈ UNPPPyes is equivalent
to |Wk| = 1. We have thatWk = W ∩Rk = W ∩ h−1

k (0) and Lemma 22 tells us that|h−1
k (0) ∩W | = 1 with

probability at least1/8 over the choice ofh.
The fact that the description ofVk is efficient makes sure that step 1 of Alg. 1 only takes polynomial time.

All the other steps can be easily seen to take polynomial timeas well.

4 Valiant-Vazirani Extended to the ClassMA

In this section we prove Theorem 1, which can also be formulated as:

Theorem 23 UMA ∈ RP =⇒ MA ∈ RP.

Definition 24 (Trivial MA Promise Problem ( TMAPP )) TMAPP = (Lyes, Lno). The words inTMAPP are
tuples,〈V, x, p1, p2, l, t〉, where V is a description of a probabilistic Turing machine,x is a string of length n,
and0 ≤ p1 < p2 ≤ 1, wherep2 − p1 ≥ 1/poly(n), andl, t ∈ N, given in unary.

9



〈V, x, p1, p2, l, t〉 ∈ Lyes if there exists a stringy s.t. |y| = l andPr(V (x, y) accepts in t steps) ∈
“yes− interval′′.
〈V, x, p1, p2, l, t〉 ∈ Lno if for all stringsy of lengthl, Pr(V (x, y) accepts in t steps) ∈ “no− interval′′.

It can be easily seen thatTMAPP is MA-Complete.
We start with a languageL ∈ MA and an instanceI ′ and we should decide whetherI ′ ∈ L or not. The first

step, as was done in theNP case, is to use the completeness ofTMAPP, and reduce it to the question whether
Î = 〈V̂ , x, p1, p2, l, t〉 ∈ TMAPPyes or Î ∈ TMAPPno.
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Figure 1: Typical “no” and “yes” instances
The y-axis is probability. The ellipses are all the2l different witnesses of a specific instance. The red lines

outline the boundaries,[p1, p2] - the maximal acceptance probability of aMA instance are promised not to be in
that interval. The left one is a “no” instance, the maximal probability of acceptance is less thanp1. The right

one is a “yes” instance, because the maximal probability of acceptance is greater thanp2.

Hence, our goal is to create a transformation which takes aTMAPPyes instance (right side of Fig. 1) to a
UMAPPyes instance (Fig. 2) with constant probability, and aTMAPPno instance to aUMAPPno instance (left side
of Fig. 1) with probability 1. We divide the potential witnesses into 3 groups, by their probability of acceptance:

Yno = {y| |y| = l and Pr(V̂ (x, y) accepts in t steps) ∈ “no− interval′′}

Ygap = {y| |y| = l and Pr(V̂ (x, y) accepts in t steps) ∈ “gap− interval′′}

Yyes = {y| |y| = l and Pr(V̂ (x, y) accepts in t steps) ∈ “yes− interval′′} (3)

Let us look at theR-restriction ofV , VR, whereR is a random set and each element in[2l] is taken with
some probabilityp. We denote it byI ′ = 〈VR, x, p1, p2, l, t + t′〉, wheret′ is the time taken for the machine
VR to make its first step. DefineY ′

yes, Y
′
gap, Y

′
no for I ′, as was done for̂I in Equation 3. For everyy of lengthl,

denote byf(y) = Pr(V (x, y) accepts in t steps), andf ′(y) = Pr(V ′(x, y) accepts in t+ t′ steps).

Observation 25

f ′(y) =

{

0 if y /∈ R

f(y) if y ∈ R

Therefore,Y ′
yes = Yyes ∩R andY ′

gap = Ygap ∩R.

Using the same method as in theNP case clearly fails, as we explicitly show in the following section.

10
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Figure 2: A “unique yes” instance
There is exactly one witness which is accepted with probability greater thanp2, and all others are accepted

with probability smaller thanp1.

4.1 Problems with the first component

We present an instance that shows the failure of implementing component 1 in the probabilistic case. The
example is aIproblematic = 〈V problematic, x, p1, p2, l, t〉 ∈ TMAPPyes instance which can be seen in Fig.3,
with the property that|Y problematicyes | = 2, |Y problematicgap | = 2l − 2 and|Y problematicno | = 0.

Because the size of the setYgap is exponentially bigger thanYyes, we cannot “filter” - by using the random
setR - one element fromYyes and none fromYgap with non-negligible probability: Suppose we pick the size
of R by the setW0, so each element is chosen with probability1/2. With probabilityΩ(1) exactly one element
will be chosen fromW0, but about half of the elements ofW1 will also be chosen. Therefore, it fails to hold
the second property of aUMAPPyes instance. If we pick elements inR by the sizeW1, which means that each
element is picked with probability 1

2l−2
then with probability(1− 1

2l−2
)2 (which is exponentially close to one),

no element will be picked fromW0, therefore it fails to hold the first property of aUMAPPyes instance.

4.2 the fourth component

The missing property in the example of section 4.1 is formalized in the next definition:

Definition 26 (“lightweight-gap” instance) An instanceI = 〈V, x, p1, p2, l, t〉 is a “lightweight-gap”TMAPPyes
instance if it is aTMAPPyes instance, and|Ygap| ≤ 3|Yyes|.

Lemma 30 explains how this kind of instances does not have theproblem that was shown in section 4.1.
But first we will see how to create a very simple transformation which takes a generalTMAPPyes instance to a
“lightweight-gap”TMAPPyes instance:

Lemma 27 Let Î be aTMAPP instance. There exists an efficient transformation that maps Î to several instances
I1, ..., Il−2 with the following properties:

• If Î ∈ TMAPPyes then∃k s.t. Ik is a “lightweight-gap” TMAPPyes instance.

• If Î ∈ TMAPPno then∀k Ik ∈ TMAPPno instance.

11
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Figure 3: A problematic ma-instance: it has numerous witnesses with probability inside the “gap-interval” and
very few in the “yes-interval”.

Proof: The transformation is the following. We start by applying amplification: We can reduce the instance
Î = 〈V̂ , x, p1, p2, l, t〉 to I = 〈V, x, 1

l , 1−
1
l , l, t〉. This is done by using standard error reduction techniques.

Observation 28 Let I1 = 〈V, x, p1, p2, l, t〉 and letI2 = 〈V, x, q1, q2, l, t〉, where[q1, q2] ⊂ [p1, p2].

• I1 ∈ TMAPPyes ⇒ I2 ∈ TMAPPyes.

• I1 ∈ TMAPPno ⇒ I2 ∈ TMAPPno.

The observation follows immediately from the definitions ofTMAPP.
The second step of the transformation is the following: we take the instanceI = 〈V, x, 1

l , 1 −
1
l , l, t〉

and createl − 2 instance,I1, ..., Il−2, whereIj = 〈V, x, jl ,
j+1
l , l, t〉. By observation 28, we know that if

I ∈ TMAPPyes ⇒ ∀k Ik ∈ TMAPPyes, and thatI ∈ TMAPPno ⇒ ∀k Ik ∈ TMAPPno.
But in the case of a “yes” instance, the lemma demands a “lightweight-gap”TMAPPyes instance. This is

achieved using the following observation:

Observation 29 (Existence of lightweight range)We definel ranges: rj = [ jl ,
j+1
l ), 1 ≤ j ≤ l − 1. We

define
Yj = {y| |y| = l and Pr(V̂ (x, y) accepts in t steps) ∈ rj}

If I = 〈V, x, 1
l , 1−

1
l , l, t〉 ∈ TMAPPyes, then there exists aj s.t. |Yj | < 3|Yj+1|.

Proof: First, notice that|Yl| ≥ 1, due to the fact thatI ∈ TMAPPyes. Now, assume that the inequality does
not hold for every j, i.e.|Yj | ≥ 3|Yj+1|. Then,|Y1| ≥ 3l−1 > 2l. The total number of the witnesses is2l.
Contradiction.

All we need to notice to prove lemma 27 is that if|Yj | < 3|Yj−1|, thenIj is a “lightweight-gap”TMAPPyes
instance. Observation 29 asserts that such aj indeed exists.

Until now we have shown how to transform the instance to a “lightweight-gap”. The following lemma
proves that component 1 works for this kind of instances:

12
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Figure 4: A yes-instance, with its lightweight range.

Lemma 30 SupposeI = 〈V, x, p1, p2, l, t〉 is a lightweight-gapTMAPPyes instance. DefineI ′ = 〈VR, x, p1, p2, l, t+
t′〉, whereVR is the R-restriction ofV where each element inR is taken with probabilityp = 1

|Ygap|+|Yyes| . Then,

with probabilityΩ(1) (over the choice of R),I ′ is a UMAPPyes instance.

Proof:
As was shown in component 1, with probabilityΩ(1) exactly one witness will be picked from the set

Yyes ∪ Ygap. The probability that the instance is from the setYyes is proportional to its size. ThereforePr(I ′ ∈

UMAPPyes) = Ω(1)
|Yyes|

|Ygap|+|Yyes| ≥
1
4Ω(1).

Component 2 works without any change in the probabilistic setting: a constant approximation of the size
|Yyes| is sufficient. In order to adapt component 3 to the present case, we need a simple variant of lemma 22:

Lemma 31 LetS ⊂ {0, 1}l of sizeb, such that2k ≤ b ≤ 2k+1, S1 ⊂ S of sizea, andS2 = S \ S1. Let h be
picked randomly from the setHn,k+2. Then,

Pr(|h−1(0)
⋂

S1| = 1 ∧ |h−1(0)
⋂

S2| = 0] ≥
a

8b

.

The proof is given in Appendix A. We apply lemma 31 to our construction by settingS1 = Yyes, S2 =
Ygap, S = S1 ∩ S2.
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4.3 Putting It All Together

AssumingUMAPP ∈ RP, then algorithm 2, which solvesTMAPP, is also inRP.

Input : I = 〈V, x, 1− 1
l ,

1
l , l, t〉, where V is a description of a probabilistic Turing machine,x is a string

of length n, and0 ≤ p1 ≤ p2 ≤ 1, wherep2 − p1 ≥ 1/poly(n), andl, t ∈ N, given in unary.
Output : if x ∈ TMAPPyes accept with some constant probability, ifx ∈ TMAPPno reject (with

probability 1)
foreach k ∈ [l − 2] do1

DefineIk = 〈V, x, kl ,
k+1
l , l, t〉.2

foreach b ∈ [l] do3

Sample a hash-function in randomhb ∈ Hn,b+2. Denote byRb = h−1
b (0)4

Create theRb-restriction ofV , Vb:5

if hb(y) 6= 0 then6

return “no”7

else8

result← Run (simulate)V (x, y)9

return result10

end11

DefineIk,b = 〈Vb, x,
k
l ,
k+1
l , l, t+ Tl,b+2〉.a12

Query theUMAPP oracle withIk,b and put the result inrk,b .13

end14

end15

if ∃k, b s.t. rk,b = 1 then16

accept17

else18

reject19

end20

Algorithm 2 : TMAPP solver, which uses polynomially many queries toUMAPP

aWe will denote byTa,b the running time ofh(y) whereh ∈ Ha,b. We need the reasonable assumption that the running time is the
same for allh’s andy’s and that it is an easy to compute function. We have changed the timet to bet + Tl,i+2 because the machine
Vk(x, y) needs to do one evaluation of the hash function, compared to the machineV , and therefore we need the additional time.

That the algorithm takes polynomial time can be seen in the same manner as theNP case. For the soundness,
we have that∀k, b I ∈ TMAPPno ⇒ Ik,b ∈ TMAPPno, by using observation 28 and observation 25. Because
a TMAPPno instances is also aUMAPPno instance, step 2 will always output 0, and therefore in step 2we will
always reject. Finally, let us analyze the completeness of the protocol. We know thatI ∈ TMAPPyes. According
to lemma 27, for somek, Ik is a “lightweight-gap”TMAPPyes instance. DefineY kyes, Y

k
gap for Ik in similar

manner to Equation (3). According to lemma 31, withS1 = Y kyes, S2 = Y kgap, S = S1 ∩ S2, we have that
Ik,b ∈ UMAPPyes, for ab such that2b ≤ Yk ≤ 2b+1, with probability 1

24 .

5 Valiant-Vazirani Extended to the classQCMA

The proof of Theorem 2 is identical to theMA case.
Theorem 2 can also be formulated as:

Theorem 32 UQCMA ∈ RP =⇒ QCMA ∈ RP.

We define theQCMA analogue ofTMAPP andUMAPP to be:

Definition 33 (TQCMAPP ) TQCMAPP = (Lyes, Lno). The words inTQCMAPPare tuples,〈U, p1, p2〉 whereU
is a description of a quantum circuit, with input of sizel, s.t.:
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1. 〈U, p1, p2〉 ∈ Lyes if there exists a stringy of length l, s.t.Pr(U accepts |y〉) ∈ “yes− interval”.

2. 〈U, p1, p2〉 ∈ Lno if for all stringsy of length lPr(U accepts |y〉) ∈ “no− interval”.

Definition 34 (UQCMAPP) UQCMAPP= (Lyes, Lno). The words inUQCMAPPare tuples,〈U, p1, p2〉 whereU
is a description of a quantum circuit, with input of sizel, s.t.:

1. 〈U, p1, p2〉 ∈ Lyes if there exists a stringy of length l, s.t.Pr(U accepts |y〉) ∈ “yes− interval” and
∀y′ 6= y Pr(U accepts |y〉) ∈ “no− interval”.

2. 〈U, p1, p2〉 ∈ Lno if for all stringsy of length lPr(U accepts |y〉) ∈ “no− interval”.

All the steps realized previously can also be done here: We begin with a languageL ∈ QCMA and an
instanceI ′, and we need to decide whetherI ′ ∈ L or not. We use the completeness ofTQCMAPP to reduce
it to the question whether̂I = 〈Û , p1, p2〉 ∈ L or not. Notice that in order to use component 4, and apply
lemma 27, we need to perform gap amplification, i.e. to transform 〈Û , p1, p2〉 to 〈U, 1

l , 1 −
1
l 〉. This is not

a problem, because standard amplification works also forQCMA: Giveny we can create several copies of it
without worrying about the “no cloning theorem”, by measuringy in the standard basis, without disturbing|y〉.

TheTQCMAPPsolver appears in Alg. 3.

Input : I = 〈U, 1
l , 1−

1
l 〉, whereU is a description of a Quantum Circuit, and0 ≤ p1 ≤ p2 ≤ 1, where

p2 − p1 ≥ 1/poly(n)
Output : if x ∈ TMAPPyes accept with some constant probability, ifx ∈ TMAPPno reject (with

probability 1)
foreach k ∈ [l − 2] do1

DefineIk = 〈U, kl ,
k+1
l 〉.2

foreach b ∈ [l] do3

Sample a hash-function in randomhb ∈ Hn,b+2. Denote byRb = h−1
b (0)4

Create theRb-restriction ofU , Ub, which is implemented by a quantum circuit:5

if hb(y) 6= 0 then6

return “no”7

else8

result← Run the circuitU on the state|y〉,9

return result10

end11

DefineIk,b = 〈Ub,
k
l ,
k+1
l , 〉.12

Query theUQCMAPPoracle withIk,b and put the result inrk,b .13

end14

end15

if ∃k, b s.t. rk,b = 1 then16

accept17

else18

reject19

end20

Algorithm 3 : TQCMAPPsolver, which uses polynomially many queries toUQCMAPP

Soundness and Completeness follow from the same arguments used in theMA case. This ends the proof of
Theorem 2.

6 The Robustness ofUQMA

6.1 Discussion about QMA and the Marriott-Watrous Formalism

In this section we discuss the robustness of our definition ofuniqueQMA and prove Lemma 4.
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From Definition 12 we see that for a givenQMA verification scheme and a state|ψ〉, its probability of
acceptance is:

Pr(verifier accepts|ψ〉) = ‖Π1Ux(I ⊗ |0
m〉)|ψ〉‖2

A useful operator in this context, as defined in [MW05], is thefollowing

Q = (Im ⊗ 〈0
m|)U †Π1U(I ⊗ |0m〉). (4)

Note that
Pr(verifier accepts|ψ〉) = 〈ψ|Q|ψ〉. (5)

AsQ is Hermitian, there is a basis of orthonormal eigenvectors{|ψi}〉2
l

i=1 for whichQ =
∑

i λi|ψi〉〈ψi|, where
λi(Q) ≥ λi+1(Q) are the eigenvalues ofQ. Note that by knowing the eigenvectors and eigenvalues ofQ we
can find out the acceptance probability of every witness in a simple way

〈ψ|Q|ψ〉 =
∑

i,j

a∗i aj〈ψi|Q|ψj〉 (6)

=
∑

i,j

a∗i ajλj〈ψi|ψj〉 =
∑

i

|ai|
2λi,

whereai = 〈ψi|ψ〉.
Let us consider another possible definition of the classUQMA.

Definition 35 (UQMA) A promise problemL = (Lyes, Lno) ∈ UQMA if there exists a polynomial quantum
circuit Ux which can be computed inpoly(|x|) time, havingl(x) qubits as input and requiringm(x) ancilla
qubits initialized to|0m〉, s.t.

1. x ∈ Lyes ⇒ λ1(Q) ≥ 2/3 andλ2(Q) ≤ 1/3.

2. x ∈ Lno ⇒ λ1(Q) ≤ 1/3.

Whereλ1 ≥ λ2 ≥ . . . λ2l(x) are the eigenvalues ofQ.

Lemma 36 (Equivalence of Definitions 15 and 35)A languageL = (Lyes, Lno) ∈ UQMA according to Def-
inition 15⇐⇒ L ∈ UQMA according to Definition 35

Proof: We start proving that given aI ∈ Lyes according to Definition 15, it is also inLyes according to
Definition 35. We now from Definition 15 that there is state|ψ〉 which is accepted with probability of at least
2/3. According to Eq. (5), the acceptance probability of|ψ〉 is 〈ψ|Q|ψ〉 = p ≥ 2/3. From Eq. (6), in turn, we
see thatp can be written as a convex combination of theλ’s. Therefore,λ1 ≥ 2/3.

We now prove thatλ2 ≤ 1/3. Denote byV the subspace spanned by the eigenvectors with eigenvalue
greater than1/3. Note that∀|φ〉 ∈ V 〈φ|Q|φ〉 > 1/3. If dim(V ) ≥ 2, there must exist a|φ〉 ∈ V orthogonal
to |ψ〉 and, therefore, the acceptance probability of|φ〉 is greater than1/3, which is in contradiction to the
properties of anLyes instance according to definition 15.

The other directions is straightforward.

We now turn to the proof of Lemma 4. Let us start with the precise definition of the problemUNIQUE 1-D
2-LOCAL HAMILTONIAN :

Definition 37 UNIQUE 1-D 2-LOCAL HAMILTONIAN : We are given a2-local Hamiltonian onn d-dimensional
sitesH =

∑r
j=1Hj with r = poly(n) arranged in a line. EachHj has a bounded operator norm||Hj || ≤

poly(n). We are also given two constantsa and b with b − a ≥ 1/poly(n). In “yes” instances, the small-
est eigenvalue ofH is at mosta and all the other eigenvalues are aboveb. In “no” instances, the smallest
eigenvalue is larger thanb. We should decide which one is the case.
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We now prove Lemma 4. That the problem is inUQMA can be seen by the following verification procedure.
We expect as a proof the unique ground state ofH . Given a witness|ψ〉, we use the phase estimation algorithm
(see e.g. Ref. [WZ06]) to determine, within inverse polynomial accuracyδ with exponentially high probability,
its energy, i.e.〈ψ|H |ψ〉. Case it is smaller thana+ δ, we accept; otherwise we reject. It is clear that in “yes”
instances, there is one witness which is accepted with probability exponentially close to one (the ground state
of H), while any state orthogonal to it is accepted only with an exponentially small probability (which is the
probability that the phase estimation does not give the correct answer).

The hardness of the problem forUQMA is a simple application of the construction of [AGIK07], which
presents a reduction from any problem inQMA to 1-D 2-LOCAL HAMILTONIAN with d = 12. The details
of the construction are not important here. We only note thatthe low-lying eigenvectors of the Hamiltonian
considered are well approximated, within an inverse polynomial, to a class of states parametrized by all possible
proofs - called history states - with the property that two orthogonal proofs give raise to two orthogonal history
states. Moreover, the probability of acceptance of a given proof is imprinted in the energy of the associated
history state - again up to inverse polynomial accuracy. It is then clear that a problem inUQMA will give raise
to valid instance ofUNIQUE 1-D 2-LOCAL HAMILTONIAN , since in “yes” instances of the problem (which is
the only case we must analyze), the second eigenvalue of the Hamiltonian, which is well approximated by the
energy of the history state associated to the witness which has thesecondhighest probability of acceptance, will
be separated from the ground state energy by a constant factor.

6.2 Yet Another New Class and its Equivalence ToUQMA

One might define a similar class toQMA, with the additional promise of the gap of its acceptance probability.

Definition 38 (Poly-Gapped QMA (PGQMA)) A promise problemL = (Lyes, Lno) ∈ GQMA if there exists
a polynomialδ(|x|), and a polynomial quantum circuitUx which can be computed inpoly(|x|) time, having
l(x) qubits as input and requiringm(x) ancilla qubits initialized to|0m〉, s.t.

1. x ∈ Lyes ⇒ λ1(Q) ≥ 2/3 and(λ1(Q)− λ2(Q)) ≥ δ(|x|).

2. x ∈ Lno ⇒ λ1 ≤ 1/3 and(λ1(Q)− λ2(Q)) ≥ δ(|x|).

Whereλ1 ≥ λ2 ≥ . . . λ2l(x) are the eigenvalues of the operatorQ, defined in Eq. (4).

The above definition is motivated by theLOCAL HAMILTONIAN problem, with the additional promise that
the spectral gap of the Hamiltonian is inverse polynomial. Its one dimensional version is defined as follows.

Definition 39 1-D POLY-GAP LOCAL HAMILTONIAN : We are given a2-local Hamiltonian onn d-dimensional
sitesH =

∑r
j=1Hj with r = poly(n) arranged in a line. EachHj has a bounded operator norm||Hj || ≤

poly(n). We are also given three constantsa, b and∆ with b − a,∆ ≥ 1/poly(n). We have the promise that
the spectral gap ofH is larger than∆. In “yes” instances, the smallest eigenvalue ofH is at mosta. In “no”
instances, the smallest eigenvalue is larger thanb. We should decide which one is the case.

As in the unique case, we can show

Lemma 40 1-D POLY-GAP LOCAL HAMILTONIAN is PGQMA-Complete.

The proof is completely analogous to the reasoning we provided for Lemma 4. In order to prove Theorem
7, we need the following result.

Lemma 41 PGQMA R
= UQMA.

Proof: We first show thatUQMA ⊂ PGQMA. This inclusion is not immediate because of the following
reason: IfI ∈ Lno ∈ UQMA, then we know thatλ1(Q) ≤ 1/3, but we do not know whether(λ1(Q) −
λ2(Q)) ≥ δ.
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Figure 5: A quantum R-restriction. On the left: a general description of aQMA verification scheme. On the
right: itsR-restriction, whereΠR is the projection on the subspaceR. The state is accepted only if in both
measurements the outcome was 1.

In order to resolve this issue, we use the amplification property of QMA, and change the “no”-probability
to be1/3 − δ instead of1/3: so we haveλ1(Q) ≤ 1/3 − δ. Then, by a simple construction which we shall
explain in the sequel, we add a single state which is acceptedwith probability1/3, havingλ1(Q) = 1/3 and
λ2(Q) ≤ 1/3− δ, which provides the necessary gap.

Adding the1/3-eigenvalue is done by changing the circuit: we append another qubit to the input qubits, and
measure it in the beginning of the circuit. If its state is 0, then we proceed as before. If it is 1, we measure all
other input qubits in the computational basis. If all of themare 1, we accept with probability 1/3. Otherwise
we reject. A simple calculation shows that the action of sucha procedure is exactly as we want: it adds one
1/3-eigenvalue, and2l − 1 0-eigenvalues, which do not concern us.

We now show thatPGQMA
R
⊆ UQMA. This is again not immediate, as caseI ∈ Lyes ∈ PGQMA, we

know thatλ1(Q) ≥ 2/3, but we do not know whetherλ2(Q) is below the “no”-probability. For this we use the
fact thatUQMA1/3,2/3 = UQMAa,b, where(b − a) ≥ 1/poly. We know that for aI ∈ Lyes there exists a for
whichλ1(Q) ≥ 2/3 + (j + 1) δ2 andλ2(Q) ≤ 2/3 + j δ2 . So, we give the circuit as aUQMA2/3+j δ

2
,2/3+(j+1) δ

2

problem, forj = 1, . . . , ⌊j⌋, and for at least onej, it will be in Lyes. Thus by pickingj at random, we get the
required property. It is also easy to see that we have soundness in the above construction.

7 TheQMA Case

7.1 Random Projections Fail to Create Inverse Polynomial Gap

As mentioned earlier, we have divided the proof of the Valiant-Vazirani Theorem into 3 components. Compo-
nent 1 solves the problem in the simple case where the number of the accepting witnesses is known; Component
2 improves it by observing that the size of the set can be only approximated, without a considerable effect on
the probability of acceptance; Finally, Component 3 shows that we may achieve the same results by using a
two-universal hash function instead of a random function, rendering the reduction efficient.

In this section we show that even in the case where the number of solutions is known, as in component 1, we
cannot - at least in the most direct approach - create a transformation that maps it to a “unique instance”. The
main difficulty in theQMA case is that we do not know in which basis to operate. Notice that if there exists a
description (which Merlin can supply) of how to efficiently transform a standard basis state to one of the states
that is accepted with probability greater than2/3, then the problem is inQCMA.

Let us define a possible quantum analogue of aR-restriction. A natural generalization is - instead of re-
stricting to witnesses which belong to some setR - to project onto some subspaceR; We call this procedure
a quantumR-restriction. As we did in the discussion of component 1, we will not consider the efficiency of
implementing the restriction. A diagram of a general circuit and itsR-restriction is given in Figure 7.1.

While the relevant operator for the original verification isQ = (Il ⊗ 〈0m|)U †Π1U(Il ⊗ |0m〉), after the the
R-restriction it is given byQR = (Im ⊗ 〈0

m|)U †Π1ΠRΠ1A(Im ⊗ |0
k〉), whereΠR is a projection onto the

subspaceR. The quantum analogue of component 1 consists of taking the subspaceR to be a random subspace
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of dimensiond, chosen accordingly to the Haar measure, for some convenient d. The next proposition shows
that this approach, unfortunately, fails.

Proposition 1 For everyǫ > 0, with probability larger than1− ǫ, applying the quantum randomR-restriction,
with arbitrary d, to example 1 creates an instance with a gap smaller thanǫ−12−l/2+2.

Proof: As the verification circuit already rejects any state in the orthogonal complement of the two-dimensional
subspaceV , it is clear that we only have to analyze the gap created on states inV .

A rank d random projector can be written asUPdU †, whereU is a unitary drawn from the Haar measure
andPd :=

∑d
j=1 |j〉〈j|. Let mV (U, d) := max|ψ〉∈V 〈ψ|UPdU

†|ψ〉 − 〈ψ⊥|UPdU †|ψ⊥〉, where|ψ⊥〉 is the
- up to a phase - unique orthogonal vector to|ψ〉 in V . We consider the following quantity, which gives the
expectation value of the gap created by applying the randomR-projection defined byUPdU †:

EU∼Haar(mV (U, d)) =

∫

U(2l)

dUmV (U, d), (7)

where the integral is taken over the Haar measure of the unitary groupU(2l).
Let {|0〉, |1〉} be a basis forV . Note thatmV (U, d) is given by the difference of the maximumλmax and

minimumλmin eigenvalues of the following matrix

VU,k :=

(

〈0|UPdU †|0〉 〈0|UPdU †|1〉
〈1|UPdU †|0〉 〈1|UPdU †|1〉

)

By Gersgorin disc Theorem ([BB97] p. 244), we find

|λmax(VU,k)− λmin(VU,k)| ≤ |〈0|UPdU
†|0〉 − 〈1|UPdU

†|1〉|+ 2|〈0|UPdU
†|1〉|,

from which follows that
∫

U(2l)

dUmV (U, d) ≤

∫

U(2l)

dU |〈0|UPdU
†|0〉 − 〈1|UPdU

†|1〉|+ 2

∫

U(2l)

dU |〈0|UPdU
†|1〉|.

Applying Lemma 42 to each of the two terms in the R.H.S. of the equation above,

∫

U(2l)

dUmV (U, d) ≤

√

2k(2l − k)

(2l + 1)2l(2l − 1)
+ 2

√

k(2l − k)

(2l + 1)2l(2l − 1)
≤ 2−l/2+2,

for any1 ≤ k ≤ 2l. To complete the proof, note that by Markov’s inequality,
∫

U :mV (U,d)≥λ
dU ≤ 2−l/2+2/λ,

for everyλ > 0. Settingλ = 2−l/2+2/ǫ, we find that with probability
∫

U :mV (U,d)<λ

dU = 1−

∫

U :mV (U,d)≥λ
dU ≥ 1− ǫ,

mV (U, d) is smaller than2−l/2+2/ǫ.

Lemma 42 For any traceless operatorX ∈ B(CN),

∫

U(N)

dU |tr(UPkU
†X)| ≤

√

k(k −K)tr(X†X)

(N + 1)N(N − 1)
, (8)

wherePk :=
∑k

j=1 |j〉〈j|.
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Proof: From the convexity of the square function,
(

∫

U(N)

dU |tr(UPkU †X)|

)2

≤

∫

U(N)

dU |tr(UPkU †X)|2.

To compute the R.H.S. of the equation above, we first note that
∫

U(N)

dU |tr(UPkU †X)|2 =

∫

U(N)

dU tr(U⊗2P⊗2
k (U †)⊗2X ⊗X†)

= tr(

(

∫

U(N)

dUU⊗2P⊗2
k (U †)⊗2

)

X ⊗X†). (9)

By Schur’s Lemma [FH91],
∫

U(N)

dUU⊗2P⊗2
k (U †)⊗2 = tr

(

P⊗2
k (I− SWAP)

) I− SWAP
N(N − 1)

+ tr
(

P⊗2
k (I + SWAP)

) I + SWAP
N(N + 1)

=
k(k − 1)

N(N − 1)
(I− SWAP) +

k(k + 1)

N(N + 1)
(I + SWAP),

where SWAP if the swap operator and we used that tr(SWAP(Pk ⊗ Pk)) = tr(P 2
k ) = tr(Pk) = k. Then, from

Eq. (9),
∫

U(D)

dU tr(UPkU †X)2 = tr(X†X)

(

k(k + 1)

N(N + 1)
−

k(k − 1)

N(N − 1)

)

,

from which the lemma easily follows.

7.2 Using a Many-Outcome Measurement

In the previous section we tried to solve example 1 by applying the most natural idea that comes to mind: do
a random 2-outcome measurement, and see if one state can “pass” the projection with an amount which is not
negligible, compared to the other state on the subspace. We found out that such a procedure fails. In this section,
we analyze the use a many-outcome measurement. We begin by applying a measurement in a random basis (or,
to put it differently, by applying a random unitary according to the Haar measure, and then measuring in the
standard basis). This, of course, cannot be done efficiently, but we will deal with it later.

Radhakrishnan et al. [RRS05] have shown,

Theorem 43 [RRS05] Let|ψ1〉, |ψ2〉 be two orthogonal quantum states inCN . Then,

EM̂

(
∥

∥

∥
M̂(|ψ1〉)− M̂(|ψ2〉)

∥

∥

∥

1

)

= Ω(1)

whereM̂ is a orthogonal basis chosen uniformly from the Haar measure.

A stronger result was presented in Theorem 1 of [Sen06], which implies the same kind of result, but instead of
the expectation, it asserts that the same holds with all but an exponentially small probability.

Furthermore, Ambainis and Emerson [AE07] have shown that:

Theorem 44 Let |ψ1〉, |ψ2〉 be two orthogonal quantum states inC
N . Then,

∥

∥

∥
M̂(|ψ1〉)− M̂(|ψ2〉)

∥

∥

∥

1
= Ω(1)

whereM̂ is a POVM with respect to anǫ-approximate (4, 4)-design.
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For our purpose, there is no need to understand what is anǫ-approximate (4, 4)-design, but only that there
exists an efficient construction which enables us to realizethe POVMM̂ for any constantǫ. Notice that this
is a constant POVM, and for every 2 states, the TVD of the distributions is constant. For more details of how
one can implement a 4-design, see Theorem 1 of [AE07]. Although the POVM is constant, it achieves the same
result as a random object (many-outcome measurements) but in an efficient way, and therefore we see it as a
“pseudo-random” object.

So, how can we take advantage of that? Suppose we had the description of the distribution ofM̂(|ψ1〉) and
M̂(|ψ2〉). Then we could select a unique witness by accepting only whenwe measure an outcomej associated
to thej’s for whichM̂(|ψ1〉)(j) > M̂(|ψ2〉)(j). In this way we would get by Theorem 44 that|ψ1〉 is accepted
with a Ω(1) probability larger than|ψ2〉. Of course this approach does not lead to the solution of the problem,
as the promise of having a description of the distributions is too strong.

Indeed, although there is a classical description which would let us distinguish, with high probability, be-
tween the two cases, there is no known general way to achieve that which is inBQP. We would like to note
that there is a resemblance between this problem and theSZK-Complete given in Ref. [Vad99], where in both
problems, it is required to distinguish between two probabilities with some total variation distance.
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A Proofs

Proof of Lemma 22: Let {y1, y2, ..., yw} be the elements ofW .

Pr(|h−1(0)
⋂

W | = 1) =

Pr(
w
⋃

i=1

(h(yi) = 0
⋂

j 6=i
h(yj) 6= 0)) (10)

=

w
∑

i=1

Pr(h(yi) = 0
⋂

j 6=i
h(yj) 6= 0) (11)

=

w
∑

i=1

Pr(h(yi) = 0)Pr(
⋂

j 6=i
h(yj) 6= 0|h(yi) = 0)

=

w
∑

i=1

Pr(h(yi) = 0)(1− Pr(
⋃

j 6=i
h(yj) = 0|h(yi) = 0)

≥
w
∑

i=1

Pr(h(yi) = 0)(1−
∑

j 6=i
Pr(h(yj) = 0|h(yi) = 0) (12)

Equation (10) follows from the fact that all the elements in the union of equation (10) are disjoint. Equation
(12) follows from the union bound.

Becauseh is taken from a universal hash function set, we have thatPr(h(yi) = 0) = 1/2k+2, Pr(h(yj) =
0|h(yi) = 0) = 1/2k+2. It was also given thatw/2k+2 > 1/4 andw/2k+2 ≤ 1/2. So,

= w/2k+2(1−
w − 1

2k+2
) ≥ 1/8 (13)
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Proof of Lemma 31:
The proof is almost the same: Lety1, ..., ya be the elements ofS1, andya+1, ..., yb the elements ofS2. So,

Pr(|h−1(0)
⋂

S1| = 1 ∧ |h−1(0)
⋂

S2| = 0)

= Pr(
a
⋃

i=1

(h(yi) = 0
⋂

1≤j≤b,j 6=i
h(yj) 6= 0)).

The next steps are exactly the same, until we get to:

≥
a
∑

i=1

Pr(h(yi) = 0)(1−
∑

1≤j≤b,j 6=i
Pr(h(yj) = 0|h(yi) = 0))

≥ a/2k+2(1− (b− 1)/2k+2) ≥ 1/8
a

b
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