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Abstract

Valiant-Vazirani showed in 1985 [VV85] that solvidgP with the promise that “yes” instances have only
one witness is powerful enough to solve the erlReclass (under randomized reductions).

We are interested in extending this result to the quantutingetVe prove extensions to the classes Merlin-
Arthur (MA) and Quantum-Classical-Merlin-ArthuQCMA) [ANO2]. Our results have implications on the
complexity of approximating the ground state energy of antwa local Hamiltonian with a unique ground
state and aimverse polynomiaspectral gap. We show that the estimation, to within polyiabaccuracy, of
the ground state energy of poly-gapped 1-D local HamiltasiaQCMA-hard, under randomized reductions.
This is in strong contrast to the case of constant gapped &ilktbnians, which is itNP [Has07]. Moreover,
it shows that unles§ CMA can be reduced tNP by randomized reductions, there is no classical descriptio
of the ground state of every poly-gapped local Hamiltonidich allows the calculation of expectation values
efficiently.

Finally, we discuss a few obstacles towards establishirgnaiogous result to the class Quantum-Merlin-
Arthur (QMA). In particular, we show that random projections fails toyie a polynomial gap between two
witnesses.

1 Introduction and Results

1.1 Extending Valiant-Vazirani

One of the properties of the clabi is that the number of withesses might vary from zero to exptiaky
many. How hard is it to distinguish between “no” instanced §res” instances that have a unique witness?
One might think that such a problem is easier than solWIRy In a celebrated result, Valiant and Vazirani
[VV85] showed that access to an oracle which can decide lestvireo” and “unique yes” instances is enough
to solve theNP-complete problensAT, with high probability, using randomized reductihs

The classe$A, QCMA [ANO2] and QMA [KVST02] are probabilistic and quantum analogues\gt.
Informally, we say a problem is iWlA if for every “yes” instance there is a witness which makesvrdfier to
accept with high probability (e.g. in the range (2/3, 1))lelfior “no” instances he only accepts with a small
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1A promise problem A is reducible to B by a randomized reduxtibthere exists a probabilistic polynomial Turing Macki(TM) M
and a polynomiap s.t.:

e completenesst € Ayes = Pry(M(z,r) € Byes) > 1/p(|z|)
e perfect soundness: € A,o = Vr M(z,r) € Bpo
wherer are the random bits of the TM/. We denote this byl <r B.
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probability (e.g. in (0, 1/3)), no matter which witness igagi to him. The clasQCMA is defined in a similar
manner, but now the verifier can use a quantum computer tdel@diether to accept or not. @MA, in turn,
not only does the verifier use a quantum computer to checkrtiad,out also the proofitself is a quantum state
composed of a polynomial (in the input size) number of qubits

We can ask a similar question to that of Valiant and Vazir&oiia each of these classes: given access to an
oracle that can only decide between “no” instances and “jegances which have a unique solution koA,
QCMA, orQMA, can we solve complete problems for those classes, withdrigbability? The quantum related
questions are also motivated by physical questions aboungrrstates of local Hamiltonians. We provide some
interesting implications in this direction, which we withen describe.

In this paper we partially solve these questions: we presgeneralization of the Valiant-Vazirani result to
MA andQCMA. We also discuss some obstructions towards establishimgilaisresult toQMA, which is left
as an open problem.

We definetUMA andUQCMA as the restrictions dfiIA andQCMA, respectively, to instances with a unique
witness. Roughly speaking, in a “yes” instance of a problerdMA or UQCMA, one proof convinces the
verifier with probability larger than e.g. 2/3, while any ethwitness makes him accept with probability of at
mostl/3. In a “no” instance, the verifier accepts any witness withoaitality at most 1/3. Our two main results
are:

Theorem 1 MA £ UMAE.
Theorem 2 UQCMA £ QCMA.

The proofs of both theorems rely heavily on the Valiant-Yazi construction [VV8E, AB09], which can be
divided into three components:

1. We could guess the size of the accepting witness set, and vandom “filter” with a certain degree
of screening, which is determined by the set size. If we gues®ctly, then with constant probability,
exactly one witness will pass the filter.

2. We notice that it is not crucial to guess the exact size efsét - and a multiplicative approximation is
enough. In this way, the possible number of guesses is rddum® exponentially many in the previous
component, to linear (in the length of the witness).

3. we replace the random “filter” with a pseudo random “filted’universal hash function - without loosing
any of the properties. These pseudo-random objects haegltlamtage of an efficient description, unlike
truly random sets.

The probabilistic setting dl/A and QCMA raises a new difficulty: on “yes” instances there might be an
exponentially larger number of witnesses in the gap-irierg.(1/3,2/3)) than in the “yes” interval2/3, 1).
Thus, a random choice of one of the witnesses - in the spitih@fValiant-Vazirani approach - would, with
overwhelming large probability, fail to choose a witnegstiirthe “yes” interval. The main idea in overcoming
this obstacle is to divide the “gap” interval into polynoithianany smaller intervals, and argue that in at least
one of them, the number of witnesses inside it is not muclefatgan the number of witnesses in the intervals
above it.

We can also define the claB®QMA - a unique variant oQQMA - with the hope of proving the analogous
result. It is defined as follows: the conditions for a “no” tiausce are the same as @MA, but for a “yes”
instance, we demand that there existBa which is accepted above the “yes”-threshold, and all states
orthogonal to it are accepted with probability below the ™tlreshold. Before we proceed to show that an
analogous result foPMA is probably impossible to achieve using similar technicioethe ones we employ,
we use this definition together with TheorEn 2 to derive igting implications.

R
2We say that the clags is included inC2 under randomized reduction, and denote ity C Cs if for every L1 € C; there exists
Lo € Cys.t.Cy <R Ca.



1.2 Implications to Ground State and Hamiltonian Complexity

We say a Hamiltonian, acting ond-dimensional particles, is-local if it can be written as a sum @bly(n)
terms which act non-trivially at most dnsites.

Definition 3 k-LOCAL HAMILTONIAN : We are given &-local Hamiltonian onn qubits H = Z’j‘:l H; with
r = poly(n). EachH; has a bounded operator norf{f{;|| < poly(n). We are also given two constantsnd
bwithb —a > 1/poly(n). In “yes” instances, the smallest eigenvalueffis at most. In “no” instances, it
is larger thanb. We should decide which one is the case.

In a seminal work, Kitaev showed that the. 5¢AL HAMILTONIAN problem is complete foMA [Kit99].
Improvements in parameters (dimensionality and locality)je given in[[KROB, KKR0B, OT05], leading to the
QMA-completeness of b-2-LocAL HAMILTONIAN [AGIKO7], which is the variant of the original problem
to one-dimensional nearest-neighbors Hamiltonians (with 12). The importance of these results stems not
only from the fact that OCAL HAMILTONIAN is probably the most representati®lA-complete problem, but
also from the key role of local Hamiltonians and their growstate energy in physics.

An important parameter when dealing with the complexity afumnd states and local Hamiltonians is the
spectral gapof local Hamiltonians, given by the difference of the growardl the first excited energy levels,
A = )\ (H) — M\ (H). When the spectral gap is constant, the Hamiltonian is salibtgapped. When it is
inverse polynomial, we say the Hamiltonian is poly-gapped.

What are the implications of a gap for thecAL HAMILTONIAN problem? A groundbreaking result by
Hastings shows that ground states of 1-D gapped Hamilterfiave an efficient classical description, as a
Matrix-Product-State (MPS) of polynomial bond dimensi@@ﬁ. Since expectation values of local ob-
servables of an MPS can be calculated in polynomial timeemtimber of sites and in its bond dimension (see
e.g. [PGVWCO0B]), Hastings’ result implies thatdleONSTANT-GAP LOCAL HAMILTONIAN (the restriction of
the original problem to 1-D gapped Hamiltonians) belongdfo

It has been asked whether such efficient descriptions migst #or the ground state of 1-D poly gapped
Hamiltonians. We show that using TheorEm 2, and some mork,waoe can deduce that the answer to this
question is negative (under some reasonable complexityrgsfon). The reasoning is as follows.

We define the&JNIQUE LOCAL HAMILTONIAN problem to be similar to theoCAL HAMILTONIAN problem,
where the conditions for a “no” instance are the same, bu fges” instance we demand that there exists)a
with energy below the low-threshold, and all other eigengalare above the upper-threshold. We also define
the UNIQUE 1-D 2-LOCAL HAMILTONIAN in a similar manner.

It is not difficult to show (by observing that the construatiosed in[[AGIKO7] preserves the uniqueness)
that:

Lemma 4 UNIQUE 1-D 2-LOCAL HAMILTONIAN is UQMA-Complete.

R
Together with Theoreid 2, which implies ttRCMA C UQCMA C UQMA, we have
Theorem 5 UNIQUE 1-D 2-LOCAL HAMILTONIAN is QCMA-hard, under randomized reductions.

From Theorerfil5 we can deduce the following “no-go” corolfamthe ground state of poly-gapped Hamil-
tonians. Consider any set of states which are (i) descrilggably(n) parameters and (i) from which one can
efficiently compute expectation values of local observab\datrix-Product-States are an example of such a set,
and several others have recently been propdsed [ARVid07HKH" 08]. We can show:

Theorem 6 Ground states of 1-D poly gapped local Hamiltonians canreoapproximated to inverse polyno-
mial accuracy by states satisfying properties (i) and (inJessQCMA L NP.

3A state|y) € (C?)®™ has an MPS representation with bond dimendipii it can be written as

= > Al A, ), 1)

with AL

i

D x D matrices. Note that onlgdD? complex numbers are needed to specify the state.



The reason is that “yes” instances of theIQUE 1-D 2-LOCAL HAMILTONIAN are poly-gapped, and there-
fore such a description would plac@liQUE 1-D 2-LOCAL HAMILTONIAN in NP.

To further analyze the complexity of the local Hamiltoniamlpem for poly-gapped Hamiltonians, we
introduce a variant of th&JQMA class, which we call poly-gappe@dMA (PGQMA), as follows: in both
“yes” and “no” instances we require there is a gap (given byeadetermined quantity larger than an inverse
polynomial in the input size) from the witness which accefihvthe largest probability to all the others. We
show that the problem b-POLY-GAP LOCAL HAMILTONIAN, in which the Hamiltonians are promised to
be poly-gapped, is complete for the class. We also preseintesrandomized reduction from aiyQMA
problem to aPGQMA, which implies

Theorem 7 1-D POLY-GAP LOCAL HAMILTONIAN is QCMA-hard, under randomized reductions.

We thus see that, unleBQP = QCMA, the determination of the ground energy of poly-gapped bdall
Hamiltonians is an intractable problem for quantum comipaia Note that this conclusion cannot be drawn
from the previous lower bounds on the complexity of the peab[AGIK07,[SCV08]. Indeed, the results of
concerning adiabatic quantum computation with-® poly-gapped Hamiltonian indirectly imply
that 1-D POLY-GAP LOCAL HAMILTONIAN is BQP-hardf, while in [SCV08] the problem was shown to be hard
for the clasdJUP N Uco-NP (the intersection of uniqullP with unique coNP), whose relation witlBBQP is
unknown.

1.3 Impossibility Results forUQMA

Finally, we examine the#QMA case. We show that attempting to apply the brute force analofthe previous
proofs in the case dJQMA, we already fail in the first (inefficient) component. A neve@seems to be
required, if an extension of the Valiant-Vazirani appro&cpossible at all foQMA.

To show this we construct a simple family @MA “yes” instances which we believe captures the difficulty
of the problem.

Example 1 LetC be a quantum circuit ohqubits, with the property that there exists a subspdad dimension
2,s.t.Vjy) € V, Pr(C accepts |¢)) = 1,andV|y) € VL, Pr(C accepts [¢)) = 0.

In the classical case, the analogous example of two sokii®easy to deal with by choosing a “filter”
(hash-function) that screens about half of the witnesslee.ntural quantum analogue to try, is to use a random
projection that will reject half of the space. In proposifi we prove that such a transformation (even if it can
be implemented efficiently) does not create an inverse pohjal gap between the two states in the subspace
with probability exponentially close to 1, regardless @ timensionality of the random projection, all states in
V will be accepted with probabilities exponentially closestch other.

The reason for this is that the projection of evé¥ydimensional vector on d-dimensional random sub-
space is concentrated aroug%d with a standard deviation of ordeﬁ]@, for a sufficiently largeV. Therefore,
regardless of how we choodgewe always get that the gap is less thjﬁ, which is exponentially small. Hence,
the behavior of random sets - the filters in the classicainggttis very different from the behavior of random
subspaces, the natural quantum analogue.

One might hope that a more refined measurement would helpactn[$en06] has shown that the two
distributions resulting from applying a random von Neumareasurement on two arbitrary orthogonal states
have a constant total variation distance with all but exptinly small probability. This sounds promising;
Moreover, a similar effect can be achieved efficiently byrguat-designs as shown by [AED7]. Unfortunately,
a constant total variation distance between two distrimgidoes not imply an efficient method to distinguish

4BQP is the class of problems which can be efficiently solved, Witth probability, by a quantum computer

5The construction of [AGIKOJ7] for adiabatic quantum comjtigta with one-dimensional Hamiltonians provides a way toae the
outcome of any polynomial quantum computation into the etqi®mn value of a measurement, in the computational bafsike first site of
the ground state of a 1-D poly-gapped local hamiltonianhwaizero ground state energy. By adding a small perturbatitiretHamiltonian,
penalizing the first site when it is not in the zero state, aitl & strength much smaller than the spectral gap, but stiéirse polynomial
in the number of sites, we can readily conclude that thistcocon shows that 1> POLY-GAP LOCAL HAMILTONIAN is BQP-hard



between them; this problem is tightly related to completébpms for the complexity class SZK, which are not

known to have a quantum polynomial time algorithm. Thus ptablem of whetheJQMA e QMA remains
wide open.

1.4 Organization of the paper

The structure of the rest of the paper is as follows: in Sa@id we present the definitions. Sectidn 3 reviews
the proof of the Valiant-Vazirani Theorem, while Sectibhant[% contain the extension of the theorem to the
classeMA andQCMA, respectively. In sectionl 6 we discuss some alternate tefisiof the clastJQMA,

and complete problems for this class. We also show that tlectasses are equivalent, under randomized
reductions. Finally, in sectidd 7 we prove impossibilitgués regarding extending our resultsQdA using
similar ideas.

2 Definitions

We start by defining a few standard complexity classes whielwil consider throughout the paper. Then we
turn to the definition of unique versions bfA, QCMA, andQMA, which to the best of our knowledge, have
not been formalized before.

2.1 Background Definitions

Definition 8 (Nondeterministic Polynomial (NP)) A languagel, € NP if there exists a Turing Machine (TM)
M which runs in polynomial time in its first argument s.t.:

1.z € L= Tys.t M(x,y) accepts.

2. 2 ¢ L =Yy M(x,y) rejects.

Definition 9 (Unique Nondeterministic Polynomial (UP)) A promise problenl = (Lyes, Lypo) € UP if
there exists a Turing Machine (TMY which is polynomial in its first argument s.t.:

1.z € Lyes = Jy s.t. M(x,y) accepts andVy’' # y M(z,y’) rejects.
2. 2 € Ly, = Yy M(z,y) rejects.

Definition 10 (Merlin-Arthur ( MA)) A promise probleni = (L,.s, L,,) € MA if there exists a probabilistic
polynomial TMAM which is polynomial in its first argument, and its random kite denoted by the string,
s.t.

1.z € Lyes = Jy s.t. Prp(M(z,y,r) accepts) > 2/3.
2. 2 € Lypo = Yy Pr.(M(x,y,r) accepts) < 1/3.

Definition 11 (Quantum Classical Merlin-Arthur ( QCMA)) A promise problenL = (Lyes, Lno) € QCMA
if there exists a polynomial quantum circit, which can be computed jpoly(|z|) time, having (x) qubits as
input and requiringm(z) ancilla qubits initialized tg0™), such that

1. 2 € Lyes = Jy s.t. |[ILUL(|y) @ [07)]2 > 2/3.
2. 2 € Lno = Vy |[ILU,(|y) ® [0™))]12 < 1/3.

I1, is the projection ontd1) in the first qubit, i.eIl; := |1)(1| ® [;4m—1. We writel = [(z) andm = m(x)
whenz can be understood from the context.



Definition 12 (Quantum Merlin-Arthur ( QMA)) A promise problenL = (Lyes, Ln,) € QMAif there exists
a polynomial quantum circuit/,, which can be computed ipoly(|z|) time, havingl(z) qubits as input and
requiringm () ancilla qubits initialized tg0™), s.t.

1. z € Lyes = 3¢) s.t. [[ILU,(|¢) ® [0™))]|* > 2/3.
2. @ € Lno = V[Y) |ILUz([¥) @ [0™))|1* < 1/3.
I1; is the projection ontol) in the first qubit.

2.2 New Definitions
We now describe the analogue unique versions for the cld$8eendQCMA andQMA.

Definition 13 (Unique Merlin-Arthur ( UMA)) A promise problenL = (Ly.s, Ln,) € UMA if there exists a
probabilistic TMM which is polynomial in its first argument s.t.:

1. 2 € Lyes = Jy s.t. Prp.(M(z,y,r) accepts) > 2/3 andVy’ # y, Pr.(M(z,y',r) < 1/3.
2. 2 € Lyo = Yy Pr.(M(x,y,r) accepts) < 1/3.

Definition 14 (Unique Quantum Classical Merlin-Arthur (UQCMA)) A promise problen = (Lyes, Lno) €
UQCMA if there exists a polynomial quantum circait, which can be computed pvly(|z|) time, having (z)
qubits as input and requiring:(x) ancilla qubits initialized td0™), such that

1. 2 € Lyes = Jy s.t. [ILUL(Jy) @ [0™))[* = 2/3 andVy' # y, [T U (Jy") ©[0™))]1> < 1/3
2. 7€ Lpo = Vy |[I1UL(Jy) @ [0™))]]2 < 1/3.
I1, is the projection ontdl) in the first qubit.

Definition 15 (Unique Quantum Merlin-Arthur ( UQMA)) A promise problenl = (Lyes, Lno) € UQMA
if there exists a polynomial quantum circait, which can be computed pvly(|x|) time, having(x) qubits as
input and requiringm(z) ancilla qubits initialized tg0™), s.t.

1. @ € Lyes = 3Y) ML Ux(|¢) @ 10™)[|? > 2/3 andV|¢) L|v), [[TLhUx(1¢) @ [0™)[I* < 1/3
2. 2 € Lno = V[9) |ILU:(J¢)) ® [0™))|]* < 1/3.

3 The Valiant-Vazirani Proof Revisited

In this section, we review the results 6f [VV85]. We divideethroof into three components, so that we can
better understand which components of the original constmi fail in the probabilistic and quantum setting.
The main result proved by Valiant and Vazirani can be stasgoliows:

Theorem 16 [VV85] If UP C RP = NP C RP.

The standard proof of the theorem works with the well kndwWcomplete problensat. We will not use
it, as there is no simple variant 8AT which is complete for the class&$A andQCMA.

Definition 17 (TRIVIAL NP PROBLEM (TNPP)) The words in are tuples,(V, «, [, t), where V is a descrip-
tion of a deterministic Turing machine, x is a string of leémgt and/, ¢ € N, given in unary.
(V,z,1,t) € Lifthere exists & with |y| = [ s.t. V(x, y) accepts ir: steps.

It can easily be seen thatPris NP-Complete. The following promise problem is a “unique” versiontofpr.

Definition 18 (UNIQUE-NP PROMISE PROBLEM (UNPPP)) The promise problem i8 = (Lyes, Lyno). The
words in L are tuples,(V, z,,t), where V is a description of a deterministic Turing machie a string of
length n, and, ¢t € N, given in unary.

(V,z,1,t) € Lyes if there exists exactly one strings.t. |y| = [ andV (x, y) accepts irt steps.(V, x, [, t) €
L, if for all stringsy s.t.|y| = ¢, V(z, y) does not accept insteps.



3.1 Proof Sketch

We begin with an instancéand a languagé € N P, and we should decideﬁie L. The first step is to use
the completeness @f N PP to find an instancé = (V, z, [, t) with the propertyl € L < I € TNPP.
There are three main components in the proof, which we gial, explain.

Component 1: The right random “filter” for the right size

LetW be the set of accepting witnesség::= {y : |y| =l and V(z,y) acceptsint steps}, and lejW| = w.
Notice thatl € TNPP <— w # 0.

Definition 19 (R-restriction) Let R be a set of strings, each one of them of gjagith the property that there
is an algorithm that answers whethgre R in exactlyT' time steps. Given a Turing machifie we call the
following Turing machines th&-restriction of V, and denote it byg:

1. Ify ¢ R, Reject. Otherwise, Continue.
2. RunV on(z,y).

We see theR-restriction as a filter added to the original problem, baeatlhe new machine accepts only
accepting witnesses of the original machine, which belorte setR.

Let us denote by’ the instancéVy, x,1, ¢t + T'). Component 1 takes the filtét to be a random set, where
each string in{0, 1}! is chosen independently with probability *. Notice that the Turing machinié; might
not have a short description, because in order to decidéwhet R, all the elements oR should somehow be
“hard-wired” to the machine. IfR| is exponential iri, then by using Kolmogorov Theory argumehnts[CTWI06],
there is no short description for such a circuit, therefbeedescription o’z will not be short. Therefore, the
mapping between to I’ is not efficient. This drawback will be circumvent in compaha.

We claim thatl’ will be in U N PP P, with probabilityQ(1). LetW’ = {y : |y| = landVg(z,y) accepts i+
T stepg. DefiningV = {w1, ..., wjw},

Pr(I' e UNPPP,,) = Pr(W'|=1)
= Pr((WnR|=1)
= Pr <U(wl € RNjx wy ¢ R))
i=1
1 1
_ —(1- = w—1
we (=)
> 1/e. @)

The first equality follows fromi’ € UNPPP <= w' = 1 and the second fro”’ = W N R. The third
is a direct consequence of the definitiongf The fourth stems from the facts that the events in the limvab
are all disjoint, and using the definition of the g&tTherefore, querying the oracle with’, =, [, t + ') results
in a “yes” with probability of at Ieasﬁ;.

Using this idea, we crea® instances/1, ..., I:, one for every possible value of I; = (V;,z,1,t + ).
We claim:

Lemma 20 (Completeness) If € TNPP, then there exists a for which, with probabilityQ2(1) over the
choice ofR, I; € UNPPP,.,. (Soundness) If ¢ TNPP, then all thel; are inUNPPP,,.

Proof: Completeness: Follows from the previous argument: one®f {8 is I,,. I,, € UNPPP,., with
probability of at leastl /e. SoundnessI ¢ TNPP = W = (. AsW,; = W N R;, W; = (), and therefore
I; e UNPPP,,.

Our algorithm consists of querying N PP P with Iy, ..., I;. If one of the results is yes, we accept. The
completeness asserts that for a “yes” instance, we accéptamstant probability. The soundness asserts that
we always reject in “no” instances.



Component 2: Approximated “filter” also works

The second component concerns the fact that we do not knowathew and, therefore, in order to use the
algorithm given in component 1, we need exponentially mamrigs to thd/ N PP P oracle. The key to the
solution is to realize that being wrong about the sizevddy a constant factor, only changes the probability of
having a unique solution by another constant factor.

More explicitly, we transform our instandeinto a polynomial number of random instancés; I, ..., I;.

These instances are formed by choosing randomigetsyain; but now, each element is taken with probability
1
2_k .
A similar statement to Lemnia R0 also holds here. To analyg&dmpleteness of the protocol, we notice

that for somek, 2F < w < 2Ft1. Hence, for suclk,

Pr(I, e UNPPP,.;) = Pr(|W,|=1)
= Pr(]WnRgl =1)

= Pr (U(yl €W Njriy; ¢ W))
=1
1 1

w—1
1-5)

v
—~
[—

|
~—

Therefore, when asking the oraéle 1 queries, at least one of the answers will be “yes”, with philitg of at
leastl/e?. The soundness analysis uses the same argument as in cathpone

Component 3: Approximated pseudo random filter is just as god

The third component deals with the inefficiency of randomsn@srandom and exponential large setannot

be determined by a polynomial description. The solutiomiseplace the randomness by a suitable notion of
pseudo-randomness. In this case, the pseudo-randomsbjécterest are pairwise independent universal hash
functions [AB09].

Definition 21 (pairwise independent hash functions)A family of functiondH,, ,,, where eachh € H, h :
{0,1}™ — {0,1, }'", is called a pairwise independent universal family of h&shetions if:

1.
1

Vy1 #y2 € A, Ya, b€ B, Prpo,u(h(y1) =aandh(yz) =b) = Jom

2. There exists a Turing MachimfeRINT-H s.t. for everyn,m € Nandj € H,, ,,, PRINT-H (n,m,j)
prints a description of another Turing machine, which cotega; € H, ,,,. By abuse of notation, we
also denote the Turing machine which computeby /. The printing is done ipoly(n, m) time.

3. The running time of eadh € H,, ,,, is bounded by som@ly(n, m) time.

Note that this probability is the same as if the ntagas random, although has a short description (unlike a
random function which has no compact description).

Instead of choosing, to be arandom set, we pick a random universal hash funkjidrom the setH; ;. o;
The setRy, is h; ' (0) = {y|h(y) = 0}. Evaluatinghy(y) is polynomial inl, and therefore, step 1 6f, takes



only polynomial time. To conclude, our algorithm is desedbin Alg.[1.

Input: The tuple(V, z, 1, t).
Output: if x € TN PP accept with some constant probabilityzit2 TN P P reject (with probability 1)

1 foreach k € [I] do

2 Sample a hash-function uniformly at randém~, H; ;o and letR;, = h,;l(o)

3 Denote byV}, the Ry-restriction ofV/.

4 Query thelU NP PP oracle withl, = (Vj,x,l,t + 1 ;+2), and put the result im.ﬁ
5 end

6 if Ik s.t.r, =1 then

7 | accept

8 else

o | reject

10 end

Algorithm 1: TNPPsolver, which uses polynomially many queriesstorPP

aWe will denote byT, ; the running time of.(y) whereh € H, ;. We need the reasonable assumption that the running tinhe is t
same for allv’s andy’s and that it is an easy to compute function. We changed thettio bet + T} ; 2, because the maching, (z, y)
needs to do one evaluation of the hash function, compardtetmachind/.

It hence suffices to prove lemma 20 in order to st C RP = NP C RP, because then Al@l 1 is iRP.
First, we need to show that the algorithm takes polynomia¢tiThe only suspect is step 1. The preparation of
the descriptior/, takes polynomial time, as in the definition of hash functidefinition21).

Soundness: In the case thag TN PP, then by the soundness of lemma 20, allthss in sted1 are false,
and, therefore, in stép 1 the condition does not hold, so waya reject.

Completeness: By combining the assumption thatP PP is in RP, and the completeness of lemma3 20,
we have that if € TN PP, then with probability2(1) over the choice ok, I, € UNPPP,., and therefore
for that & the query in stepl1 will return “accept” with probability3. Therefore, the overall probability of
accepting is at leasf(1) = Q(1).

Proof of Lemmal[20: Soundness: Same argument as before.

Completeness: We make use of the following lemma:

Lemma 22 Let W C {0,1}" of sizew, such tha* < w < 2*+! and let h be a random universal hash
function from the sell; ;..», which is a set of functions frof, 1} to {0, 1}**2. Then,

Pr(l(0)nW|=1) >1/8.

We prove this lemma in AppendixIA. Note that = (Vi x,y,1,t + T} k+2) € UNPPP,., is equivalent
to |W| = 1. We have thatV, = W N Ry = W Nk, *(0) and Lemm&22 tells us thdt, ' (0) N W| = 1 with
probability at least /8 over the choice of.

The fact that the description &f, is efficient makes sure that step 1 of Alg. 1 only takes polyiabtime.
All the other steps can be easily seen to take polynomial isneell.l

4 Valiant-Vazirani Extended to the ClassMA

In this section we prove Theordrh 1, which can also be forredlas:

Theorem 23 UMA € RP — MA < RP.

Definition 24 (Trivial MA Promise Problem (TMAPP)) TMAPP = (Lycs, Lyn,). The words inTMAPP are
tuples,(V, x, p1,p2, 1, t), where V is a description of a probabilistic Turing machirés a string of length n,
and0 < p; < ps < 1, wherepy — p1 > 1/poly(n), andl,t € N, given in unary.



V,x,p1,p2,1,t) € L, if there exists a string; s.t. |y| = [ and Pr(V (x,y) accepts in t steps) €
y g Yy
“yes — interval”.
(V,x,p1,p2,1,t) € Ly, if for all stringsy of lengthl, Pr(V (z,y) accepts in t steps) € “no — interval”.

It can be easily seen thamapPp is MA-Complete.

We start with a languagk € MA and an instanc& and we should decide whethEre L or not. The first
step, as was done in thé P case, is to use the completenesgiaPpP, and reduce it to the question whether
I=(V,z,p1,p2,1,t) € TMAPP,.; OF [ € TMAPP,,.

1 1
—=—====-
===
—=—=====-
P2 = D2
s
——=====
—=—====-
p1 P1
—==—====- —=—====-
B S SSae B S SSae
——===== ——=====-
e =
—=—====- —=—=====-
——===== ——=====
=== ===
1 0

Figure 1: Typical “no” and “yes” instances
The y-axis is probability. The ellipses are all tifedifferent witnesses of a specific instance. The red lines
outline the boundarielp; , p2] - the maximal acceptance probability o instance are promised not to be in
that interval. The left one is a “no” instance, the maximallyability of acceptance is less than The right
one is a “yes” instance, because the maximal probabilitxoéptance is greater than.

Hence, our goal is to create a transformation which takesaPp,., instance (right side of Fig.]1) to a
UMAPP, instance (Figl.12) with constant probability, andnapPp,,, instance to amMAPP,,, instance (left side
of Fig.[d) with probability 1. We divide the potential witrges into 3 groups, by their probability of acceptance:
Yo = {y| [y| =l and Pr(V (z,y) accepts in t steps) € “no — interval”}
Yaap = {y| || = l and Pr(V (z,y) accepts in t steps) € “gap — interval}
Yyes = {y| [yl = l and Pr(V (z,y) accepts in t steps) € “yes — interval”} (3)

Let us look at theR-restriction ofV, Vz, whereR is a random set and each elementafj is taken with
some probabilityp. We denote it byl” = (Vg, z, p1,p2,1,t + t'), wheret’ is the time taken for the machine
VR to make its first step. Defing,., Y, Y,, for I, as was done fof in EquatioriB. For every of lengtht,
denote byf(y) = Pr(V(x,y) accepts in t steps), andf’(y) = Pr(V'(z,y) accepts int +t' steps).

)0 ifyé¢ R
f(y)_{f(y) ifye R

Observation 25

ThereforeY,,, = Yyes N RandY,, = Yy, N R.

yes gap

Using the same method as in tN® case clearly fails, as we explicitly show in the followingten.

10
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Figure 2: A “unique yes” instance
There is exactly one witness which is accepted with proligigteater tham,, and all others are accepted
with probability smaller thamp; .

4.1 Problems with the first component

We present an instance that shows the failure of implemgmt@mponent 1 in the probabilistic case. The
example is a/problematic — (y7problematic 4 4y 1y ] t) € TMAPP, instance which can be seen in Eig.3,
with the properw than/ypezoblematiq — 27 |Y(}Z‘Z§)blematic| — 2l —_92 and|yy{)(§“oblematic| = 0.

Because the size of the S€f,,, is exponentially bigger thaki,.., we cannot “filter” - by using the random
setR - one element fronY,., and none front,,, with non-negligible probability: Suppose we pick the size
of R by the sefiV), so each element is chosen with probabilifi2. With probability2(1) exactly one element
will be chosen fromiV,, but about half of the elements @f; will also be chosen. Therefore, it fails to hold
the second property of @vAPP,., instance. If we pick elements iR by the sizel/;, which means that each
element is picked with probabilityllj then with probability(1 — 21£2)2 (which is exponentially close to one),
no element will be picked frorily, therefore it fails to hold the first property oftmAPP,., instance.

4.2 the fourth component
The missing property in the example of secfiod 4.1 is forrealiin the next definition:

Definition 26 (“lightweight-gap” instance) Aninstancd = (V, z, p1, p2, (. t) is a “lightweight-gap” TMAPP,
instance if it is aTMAPP, instance, andY,,,| < 3|Yes|.

Lemma[30 explains how this kind of instances does not hav@rhielem that was shown in sectibn4.1.
But first we will see how to create a very simple transformatidich takes a generaMApPP,., instance to a
“lightweight-gap”"TMAPP,. instance:

Lemma 27 Let] be aTmMAPPinstance. There exists an efficient transformation thatsiap several instances
11, ..., I; o with the following properties:

o lf/ e TMAPP,., thendk s.t. I, is a “lightweight-gap” TMAPP,., instance.

e If [ € TMAPP,,, thenVk I, € TMAPP,, instance.

11
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P1

Figure 3: A problematic ma-instance: it has numerous wgegsvith probability inside the “gap-interval” and
very few in the “yes-interval”.

Proof: ~ The transformation is the following. We start by applyingpdffication: We can reduce the instance
I={(V,z,p1,p2,,t)t0 I = (V, z, %, 1-— %, 1,t). This is done by using standard error reduction techniques.

Observation 28 LetI1 = (V,x,p1,p2,1,t) and letly = (V,x, q1, g2, 1, t), where[qi, ¢2] C [p1, p2]-
® [} € TMAPP, s = I3 € TMAPP ;.

e [; € TMAPP,, = I5 € TMAPP,,.

The observation follows immediately from the definitionsrefapp.

The second step of the transformation is the following: weetthe instancd = (V, z, %,1 — %,l,t)
and creatd — 2 instancels, ..., [;_», wherel; = (V,z, 4,2t 1 ¢). By observation28, we know that if
I € TMAPPycs = VEk I}, € TMAPP,.,, and thatl € TMAPP,,, = Vk I}, € TMAPP,,.

But in the case of a “yes” instance, the lemma demands a tigight-gap”"TMAPP,., instance. This is

achieved using the following observation:

dObf.servation 29 (Existence of lightweight range)We defind ranges:r; = [, 21) 1 < j <1—1. We
efine

Y; ={y| |ly| =l and Pr(V(z,y) accepts in t steps) € r;}
If I =(V,z,1,1—3,1,t) € TMAPP,,, then there exists as.t. |Y;| < 3|Yj;1].

Proof:  First, notice thatY;| > 1, due to the fact thaf € TMAPP,.,. Now, assume that the inequality does
not hold for every j, i.e.|Y;| > 3|Y;11]. Then,|Y;| > 3'=1 > 2. The total number of the witnesses2s
ContradictionH

All we need to notice to prove lemrhal27 is that¥f| < 3|Y;_+|, thenl; is a “lightweight-gap " TMAPP,
instance. Observatidn P9 asserts that sugindeed existsll

Until now we have shown how to transform the instance to ahtliggight-gap”. The following lemma
proves that component 1 works for this kind of instances:

12
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Figure 4: A yes-instance, with its lightweight range.

Lemma 30 Supposé = (V, z, p1,p2, [, t) is alightweight-gag MAPP,, instance. Defing’ = (Vg, x, p1, p2, [, t+
t'), whereVy, is the R-restriction o where each element i is taken with probability = m Then,

with probability2(1) (over the choice of R), is aUMAPP,. instance.

Proof:
As was shown in component 1, with probabili}(1) exactly one witness will be picked from the set
Yyes U Yyap. The probability that the instance is from the $gt, is proportional to its size. Therefofer (I’ €

Yyes
UMAPPy ) = Q(l)% >10(1)..

Component 2 works without any change in the probabilistitireg a constant approximation of the size
|Y,es| is sufficient. In order to adapt component 3 to the preser, e@s need a simple variant of leming 22:

Lemma 31 LetS c {0,1}! of sizeb, such tha* < b < 2¢*+1, S, C S of sizea, andS, = S\ S;. Let h be
picked randomly from the sé&t,, ;2. Then,

Pr(h=1(0) () Sl =1 A h7H(0) () Sa| = 0] > %

The proof is given in AppendikJA. We apply lemrhal 31 to our comstion by settingS; = Yjes, S2 =
Yyap, S =510 Ss.

13



4.3 Putting It All Together

AssuminguMAPP € RP, then algorithni 2, which solvemvaPP, is also inRP.

Input: I =(V,z,1— %, %, I,t), where V is a description of a probabilistic Turing machixés a string
of length n, and) < p; < ps < 1, whereps — p1 > 1/poly(n), andl,t € N, given in unary.
Output: if z € TMAPP,.; accept with some constant probabilityzife TMAPP,,, reject (with

probability 1)

1 foreach k € [l — 2] do

2 | Definel, = (V,a, % KL 71 ¢).

3 foreach b € [I] do

4 Sample a hash-function in randdm € H,, ,.». Denote byR;, = hb‘l(o)
5 Create theR,-restriction of V', Vj:

6 if hy(y) # 0then

7 | return “no”

8 else

9 result — Run (simulate}/ (z, y)

10 return result

11 end

12 DefineIk,b = <V1,,I,%,%,l,t+Tl_]b+2>E

13 Query theumAPP oracle with;, ;, and put the resultimy, 4 .
14 end

15 end

16 if 3k, b s.t. TEo = 1 then
17 | accept

18 else

19 | reject

20 end

Algorithm 2 : TMAPP solver, which uses polynomially many queriestaAPP

aWe will denote byT,, ; the running time of:(y) whereh € H, ;. We need the reasonable assumption that the running tirhe is t
same for allv’s andy’s and that it is an easy to compute function. We have changedirnet to bet + T; ;o because the machine
Vi (z, y) needs to do one evaluation of the hash function, comparédwtmachind’, and therefore we need the additional time.

That the algorithm takes polynomial time can be seen in theesaanner as theP case. For the soundness,
we have thavk,b I € TMAPP,, = I, € TMAPP,,, by using observation 28 and observafioh 25. Because
aTMAPP,, instances is also amAPP,, instance, stepl2 will always output 0, and therefore in [Steg 2will
always reject. Finally, let us analyze the completenedseptotocol. We know that € TMAPP,.,. According
to lemma 2V, for some, I, is a “lightweight-gap”"TMAPP,. instance. Definéfy’“es, Yg’flp for I, in similar
manner to Equatioil3). According to lemind 31, with = Yy’zs, Sy = quap, S = 51 N S, we have that

I1p € UMAPPy,, for ab such thak? < Y;, < 2°F!, with probability 5.

5 Valiant-Vazirani Extended to the classQCMA

The proof of Theorel?2 is identical to tih&A case.
Theoreni P can also be formulated as:

Theorem 32 UQCMA € RP — QCMA < RP.
We define th&€QCMA analogue offMAPP anduMAPP to be:

Definition 33 (TQCMAPP) TQCMAPP = (Ly.s, Ly,). The words inrQcmApPPare tuples(U, p1, p2) whereU
is a description of a quantum circuit, with input of size.t.:

14



1. (U, p1,p2) € Lyes if there exists a string of length |, s.t.Pr(U accepts |y)) € “yes — interval”.
2. (U,p1,p2) € Ly, if for all strings y of length | Pr(U accepts |y)) € “no — interval”.

Definition 34 (UQCMAPP) UQCMAPP = (Ly.s, Ly,,). The words iruQcmapPPare tuples(U, p1, p2) WhereU
is a description of a quantum circuit, with input of size.t.:

1. (U,p1,p2) € Ly.s if there exists a string of length |, s.t.Pr(U accepts |y)) € “yes — interval” and
Vy' # y Pr(U accepts |y)) € “no — interval”.

2. (U,p1,p2) € Ly, if for all stringsy of length | Pr(U accepts |y)) € “no — interval”.

All the steps realized previously can also be done here: Winheith a languagd. € QCMA and an
instancel’, and we need to decide whethEre L or not. We use the completenesstafcMAPP to reduce
it to the question whethef = <U,p1,p2> € L or not. Notice that in order to use component 4, and apply
lemmal2Y, we need to perform gap amplification, i.e. to tramsf({/, p,,p,) to (U, 1,1 — 7). This is not
a problem, because standard amplification works als@foMA: Giveny we can create several copies of it
without worrying about the “no cloning theorem”, by measagry in the standard basis, without disturbipg.
TheTQcMmAPPsolver appears in Ald.] 3.

Input: I = (U, %, 1-— %>, whereU is a description of a Quantum Circuit, afd p; < po < 1, where
p2 —p1 > 1/poly(n)
Output: if x € TMAPP,. accept with some constant probabilityzite TMAPP,,, reject (with
probability 1)

1 foreach k € [l — 2] do

2 | Definel, = (U, %, &),

3 foreach b € [I] do

4 Sample a hash-function in randdm € H,, ;1. Denote byR;, = h;l(o)

5 Create theR,-restriction ofU, Uy, which is implemented by a quantum circuit:
6 if hp(y) # 0 then

7 | return “no”

8 else

9 result « Run the circuit/ on the statey),

10 return result

11 end

12 DefineIk,b = <Ub, %, #, >

13 Query theuQcMAPP oracle with/y, ;, and put the resulting ;, .

14 end
15 end
16 if 3k, b s.t. TEo = 1 then
17 | accept
18 else
19 | reject
20 end

Algorithm 3: TQcMmAPP solver, which uses polynomially many queriesitQCMAPP

Soundness and Completeness follow from the same argunssdsrutheMA case. This ends the proof of
TheoreniP.

6 The Robustness oUQMA

6.1 Discussion about QMA and the Marriott-Watrous Formalism

In this section we discuss the robustness of our definitiamafueQMA and prove Lemmial4.
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From Definition[I2 we see that for a givéMA verification scheme and a stdtg), its probability of
acceptance is:
Pr(verifier accept$y)) = [|TI U, (I @ |0™))])||?

A useful operator in this context, as definedin [MWO05], is thkowing
Q= (In @ (0" NUTTLU(I & |0™)). (4)

Note that
Pr(verifier accept$y)) = (| Q). (5)

As (@ is Hermitian, there is a basis of orthonormal eigenveo@pﬁ§}>§l:1 forwhich@ = >, A1) (], where
Ai(Q) > X\i+1(Q) are the eigenvalues @j. Note that by knowing the eigenvectors and eigenvalu&3 ofe
can find out the acceptance probability of every witness imale way

WIQIY) =Y aja;(¥:|Qly;) (6)
i,j
= Za?ajAj<wile> = Z |ail* A,
i, i

wherea; = (¥;]1).
Let us consider another possible definition of the claGsVIA.

Definition 35 (UQMA) A promise problenl, = (Lycs, Lno) € UQMA if there exists a polynomial quantum
circuit U,, which can be computed imwly(|z|) time, havingl(z) qubits as input and requiringn(z) ancilla
qubits initialized to]0™), s.t.

1. 2 € Lyes = M(Q) > 2/3andX2(Q) < 1/3.
2.z € Ly, = M(Q) <1/3.
Whereh; > A2 > ... Ay (,) are the eigenvalues @j.

Lemma 36 (Equivalence of Definition§ 15 an 35A languagel = (Ly.s, Ln,) € UQMA according to Def-
initionI5 <= L € UQMA according to Definitiofi 35

Proof: We start proving that given & € L., according to Definitiof 15, it is also if,., according to
Definition[35. We now from DefinitioR 15 that there is state which is accepted with probability of at least
2/3. According to Eq.[(b), the acceptance probability0f is ()|Q|) = p > 2/3. From Eq. [[6), in turn, we
see thap can be written as a convex combination of #tie Therefore\; > 2/3.

We now prove that\, < 1/3. Denote byl the subspace spanned by the eigenvectors with eigenvalue
greater tharl /3. Note thatv|¢) € V (¢|Q|¢) > 1/3. If dim (V') > 2, there must exist &) € V orthogonal
to ) and, therefore, the acceptance probability@®f is greater thari /3, which is in contradiction to the
properties of arL,,., instance according to definition]15.

The other directions is straightforwaill.

We now turn to the proof of Lemnid 4. Let us start with the predsfinition of the problemyNIQUE 1-D
2-LOCAL HAMILTONIAN :

Definition 37 UNIQUE 1-D 2-LOCAL HAMILTONIAN : We are given &-local Hamiltonian om d-dimensional
sitesH = Z;:1 H; With r = poly(n) arranged in a line. EactH; has a bounded operator norfii;|| <
poly(n). We are also given two constantsand b with b — a > 1/poly(n). In “yes” instances, the small-
est eigenvalue off is at mosta and all the other eigenvalues are abakeln “no” instances, the smallest
eigenvalue is larger thah. We should decide which one is the case.
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We now prove Lemm@4. That the problem isi®MA can be seen by the following verification procedure.
We expect as a proof the unique ground stat&/ ofSiven a witnes$)), we use the phase estimation algorithm
(see e.g. Ref[[WZ06]) to determine, within inverse polymalraccuracys with exponentially high probability,
its energy, i.e(y|H|vy). Case it is smaller tham + ¢, we accept; otherwise we reject. It is clear that in “yes”
instances, there is one witness which is accepted with pilitysexponentially close to one (the ground state
of H), while any state orthogonal to it is accepted only with apanentially small probability (which is the
probability that the phase estimation does not give theecoanswer).

The hardness of the problem folQMA is a simple application of the construction bf [AGIK07], whi
presents a reduction from any problem@MA to 1-D 2-LOCAL HAMILTONIAN with d = 12. The details
of the construction are not important here. We only note thatlow-lying eigenvectors of the Hamiltonian
considered are well approximated, within an inverse patyiad, to a class of states parametrized by all possible
proofs - called history states - with the property that twihogonal proofs give raise to two orthogonal history
states. Moreover, the probability of acceptance of a giveofuis imprinted in the energy of the associated
history state - again up to inverse polynomial accuracy théen clear that a problem WQMA will give raise
to valid instance ofJNIQUE 1-D 2-LOCAL HAMILTONIAN , since in “yes” instances of the problem (which is
the only case we must analyze), the second eigenvalue ofgheltdnian, which is well approximated by the
energy of the history state associated to the witness wiashheseconchighest probability of acceptance, will
be separated from the ground state energy by a constant facto

6.2 Yet Another New Class and its Equivalence TQMA

One might define a similar class @MA, with the additional promise of the gap of its acceptancé®abdity.

Definition 38 (Poly-Gapped QMA (PGQMA)) A promise problent, = (L5, L,,) € GQMA if there exists
a polynomialé(|z|), and a polynomial quantum circulf,, which can be computed iply(|z|) time, having
I(«) qubits as input and requiring:(x) ancilla qubits initialized tg0™), s.t.

1. 2 € Lyes = M(Q) > 2/3and (M (Q) — X2(Q)) > o(|x]).
2.2 €Ly, =M < 1/3 and()\l(Q) — /\Q(Q)) > 5(|$|)
Whereh; > \; > ... Ay, are the eigenvalues of the operat@r defined in Eq.[{4).

The above definition is motivated by thecAL HAMILTONIAN problem, with the additional promise that
the spectral gap of the Hamiltonian is inverse polynomtalohe dimensional version is defined as follows.

Definition 39 1-D POLY-GAP LOCAL HAMILTONIAN : We are given 2-local Hamiltonian om d-dimensional
sitesH = 37, H; with » = poly(n) arranged in a line. Eachfl; has a bounded operator norfj¥;|| <
poly(n). We are also given three constantsh and A with b — a, A > 1/poly(n). We have the promise that
the spectral gap off is larger thanA. In “yes” instances, the smallest eigenvalueféfis at mostz. In “no”
instances, the smallest eigenvalue is larger thawe should decide which one is the case.

As in the unique case, we can show
Lemma 40 1-D POLY-GAP LOCAL HAMILTONIAN is PGQMA-Complete.

The proof is completely analogous to the reasoning we pealfdr Lemmd¥#. In order to prove Theorem
[, we need the following result.

Lemma 41 PGQMA £ UQMA.

Proof:  We first show thaUQMA c PGQMA. This inclusion is not immediate because of the following
reason: Ifl € L,, € UQMA, then we know that;(Q) < 1/3, but we do not know whethgh\; (Q) —

A2(Q)) > 0.
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Figure 5. A quantum R-restriction. On the left: a generalcdgsion of aQMA verification scheme. On the
right: its R-restriction, wherdlIy is the projection on the subspa&e The state is accepted only if in both
measurements the outcome was 1.

In order to resolve this issue, we use the amplification ptgped QMA, and change the “no”-probability
to bel/3 — ¢ instead ofl/3: so we have\;(Q) < 1/3 — §. Then, by a simple construction which we shall
explain in the sequel, we add a single state which is accepitecdorobability1/3, havingA; (Q) = 1/3 and
X2(Q) < 1/3 — 6, which provides the necessary gap.

Adding thel/3-eigenvalue is done by changing the circuit: we append @nefibit to the input qubits, and
measure it in the beginning of the circuit. If its state istgrt we proceed as before. If it is 1, we measure all
other input qubits in the computational basis. If all of thare 1, we accept with probability 1/3. Otherwise
we reject. A simple calculation shows that the action of saigrocedure is exactly as we want: it adds one
1/3-eigenvalue, and’ — 1 0-eigenvalues, which do not concern us.

We now show thaPGQMA E UQMA. This is again not immediate, as cab& L,., € PGQMA, we
know that\; (Q) > 2/3, but we do not know whethex,(Q) is below the “no™-probability. For this we use the
fact thatUQMA, /5 5,3 = UQMA, ;, where(b — a) > 1/poly. We know that for & € L., there exists a for
which\(Q) > 2/3+ (j +1)3 andA2(Q) < 2/3+ j3. So, we give the circuit asdQMA, /3, ;s 5/34 (j11)4
problem, forj = 1,..., [j|, and for at least ong, it will be in L,.,. Thus by pickingj at random, we get the
required property. It is also easy to see that we have sossdnéhe above constructiolll.

7 The QMA Case

7.1 Random Projections Fail to Create Inverse Polynomial Ga

As mentioned earlier, we have divided the proof of the Vahdarirani Theorem into 3 components. Compo-
nent 1 solves the problem in the simple case where the nuritiex accepting witnesses is known; Component
2 improves it by observing that the size of the set can be gmya&imated, without a considerable effect on
the probability of acceptance; Finally, Component 3 shdved tve may achieve the same results by using a
two-universal hash function instead of a random functiendering the reduction efficient.

In this section we show that even in the case where the nunfisehuwions is known, as in component 1, we
cannot - at least in the most direct approach - create a tranation that maps it to a “unique instance”. The
main difficulty in theQMA case is that we do not know in which basis to operate. Notiatitlthere exists a
description (which Merlin can supply) of how to efficienthahsform a standard basis state to one of the states
that is accepted with probability greater tHf3, then the problem is iIQCMA.

Let us define a possible quantum analogue &-gestriction. A natural generalization is - instead of re-
stricting to witnesses which belong to some Bet to project onto some subspa&e We call this procedure
a quantumR-restriction. As we did in the discussion of component 1, wik mot consider the efficiency of
implementing the restriction. A diagram of a general ciramid its R-restriction is given in Figurg 7.1.

While the relevant operator for the original verificatiortjs= (1; ® (0™|) UL, U (I; ® |0™)), after the the
R-restriction it is given byQr = (I,,, ® (0™|)UTTI1RIT; A(1,,, @ |0%)), wherellg is a projection onto the
subspace?. The quantum analogue of component 1 consists of takinguth&pace? to be a random subspace
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of dimensiond, chosen accordingly to the Haar measure, for some convahierhe next proposition shows
that this approach, unfortunately, fails.

Proposition 1 For everye > 0, with probability larger thanl — e, applying the quantum randof-restriction,
with arbitrary d, to exampl&ll creates an instance with a gap smaller #dR—!/2+2,

Proof: Asthe verification circuit already rejects any state in titbagonal complement of the two-dimensional
subspacé’, it is clear that we only have to analyze the gap created dessiial’.

A rank d random projector can be written &P;U T, whereU is a unitary drawn from the Haar measure
andP; := Z?Zl 7). Letmy (U,d) := maxyyey (Y|UPUT ) — (pH|UPUT|p+), where|yt) is the
- up to a phase - unique orthogonal vectof#9 in V. We consider the following quantity, which gives the
expectation value of the gap created by applying the ranBepnojection defined by P,U:

Ev~Haalmy (U, d)) = /U(Ql)dUmV(U, d), )

where the integral is taken over the Haar measure of theryigtaupU (2).
Let {|0),|1)} be a basis fo¥”. Note thatmy (U, d) is given by the difference of the maximuiy,,x and
minimum A,,;, eigenvalues of the following matrix

0|UP,UT|0 0|UP U1
Vg o=
ok (UPUT0) (UUPUTL)

)

By Gersgorin disc Theoreni ([BB97] p. 244), we find
Amax (Vik) = Amin(Vor)| < O[T PaUTI0) = (LUPLU1)] + 2/0|U PaU (1))

from which follows that
/ dUmy (U,d) < / dU|(0|UPLUT|0) — (AU PUT|1)| + 2/ dU[{0|UP;UT(1)].
U(2!) U(2!) u(2h)
Applying Lemmd4R to each of the two terms in the R.H.S. of tipeation above,

262 — k) k(2 — k) _
/U(y) dUmy (U,d) < \/(21 022 — 1) + 2\/(21 T ) < 9242,

foranyl < k < 2. To complete the proof, note that by Markov’s inequality,

/ dU < 2_l/2+2/A7
U:my (U,d)>X

for every\ > 0. Setting\ = 27%/2%2 /¢, we find that with probability

/ dU:l—/ dU >1— e,
U:my (U, d)<X U:my (U,d)>X

my (U, d) is smaller thar2="/2+2 /c. R

Lemma 42 For any traceless operatak € B(CY),

k(k — K)tr(X1X)
/U(N) dU|tr(UPUTX)| < \/(N+ NN —1)’ (8)

whereP; == -5 [5)(j].
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Proof:  From the convexity of the square function,

2
/ dUtr(UPUTX))| g/ dU|tr(UPUTX)|?.
U(N) U(N)
To compute the R.H.S. of the equation above, we first note that

/ dU|tr(UPUTX)? :/ dUtr(U®2P23(UN)*2X @ XT)
U(N) U(N)

tr( (/ dUU®2P,;®2(UT)®2> XoXT). (9)
U(N)

By Schur's Lemmal[FHY1],

I — SWAP
N(N —1)
I+ SWAP
N(N +1)
k(k + 1)
N(N+1)

/U (N)dUU®2P,§2(UT)®2 = tr(PZ*(I - SWAP)

+ tr (PZ*(I+ SWAP))

 k(k—1)
= v py - SwAP + (I+ SWAP),

where SWAP if the swap operator and we used tH&WAP(P;, @ Py)) = tr(P2) = tr(P;) = k. Then, from
Eq. (),

e ot k(k+1)  k(k—1)

from which the lemma easily followill

7.2 Using a Many-Outcome Measurement

In the previous section we tried to solve exanidle 1 by applyfre most natural idea that comes to mind: do
a random 2-outcome measurement, and see if one state cai tipaprojection with an amount which is not
negligible, compared to the other state on the subspaceode fout that such a procedure fails. In this section,
we analyze the use a many-outcome measurement. We begiplgyngpa measurement in a random basis (or,
to put it differently, by applying a random unitary accorglito the Haar measure, and then measuring in the
standard basis). This, of course, cannot be done efficianttyve will deal with it later.

Radhakrishnan et al. [RRS05] have shown,

Theorem 43 [RRS05] Let+ ), [4») be two orthogonal quantum statesG. Then,
By ([[0r(va) - 1(0a))| ) = 201

wherelV/ is a orthogonal basis chosen uniformly from the Haar measure

A stronger result was presented in Theorem 1 of [SEn06], minplies the same kind of result, but instead of
the expectation, it asserts that the same holds with allibekponentially small probability.
Furthermore, Ambainis and Emerson [AEQ7] have shown that:

Theorem 44 Let|y,), [v2) be two orthogonal quantum statesG{’. Then,

|91} = 3 (wa))|, = 20)

where}M is a POVM with respect to anrapproximate (4, 4)-design.
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For our purpose, there is no need to understand what isaguproximate (4, 4)-design, but only that there
exists an efficient construction which enables us to realizcePOVM M for any constant. Notice that this
is a constant POVM, and for every 2 states, the TVD of theibigions is constant. For more details of how
one can implement a 4-design, see Theorem L of [AE07]. Althdhe POVM is constant, it achieves the same
result as a random object (many-outcome measurements) bt éfficient way, and therefore we see it as a
“pseudo-random” object.

So, how can we take advantage of that? Suppose we had thgtiesarf the distribution of]\Z/(|¢1)) and
]\Z/(|¢2>). Then we could select a unique witness by accepting only weemeasure an outcomessociated
to the;’s for which M ([¢1))(5) > M(|v2))(4). In this way we would get by Theoreml44 that ) is accepted
with aQ(1) probability larger tharis). Of course this approach does not lead to the solution of thielem,
as the promise of having a description of the distributi@t®o strong.

Indeed, although there is a classical description whichlevai us distinguish, with high probability, be-
tween the two cases, there is no known general way to achietevhich is inBQP. We would like to note
that there is a resemblance between this problem an8ZKeComplete given in Ref. [Vad90], where in both
problems, it is required to distinguish between two prolitéds with some total variation distance.
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A Proofs

Proof of Lemmal22: Let{y1,y2, ...,y } be the elements di’.

Pr(ptO)(YWl=1) =

Pr(Q(b(yi) =0 D_h(y» #0)) (10)
- iPr(b(yi) =0 Q_h(yj) #0) (11)
- i Pr(h(y:) = 0)Pr( D h(y;) # Olh(y:) = 0)

- iPr(b(yi) = 0)(1 - Pr(g h(y;) = 0[h(y;) = 0)

> Zi Pr(h(y:) = 0)(1 — ; Pr(h(y;) = 0lh(y:) = 0) (12)

Equation [(ID) follows from the fact that all the elementshe tinion of equatiori (10) are disjoint. Equation
(12) follows from the union bound.

Becauseh is taken from a universal hash function set, we havefhdt(y;) = 0) = 1/2%+2, Pr(h(y;) =
0lh(y;) = 0) = 1/2+2, It was also given thav /2572 > 1/4 andw /252 < 1/2. So,

w—1

_ k+2
=w/2"(1 = 9k+2

)=>1/8 (13)
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Proof of Lemmal31:
The proof is almost the same: Lgt, ..., y, be the elements &, andy,+ 1, ..., y» the elements ofs. So,

(" ﬂsl|—1A|h 0)()Sal =0)
= U () ;) #0)).
i=1 1< <b,j#i

The next steps are exactly the same, until we get to:

> ZPr(h(yi) =0)(1— > Pr(h(y;) = 0lh(y:) = 0))

1<j<b,j#i

> a/22(1 — (b— 1)/2612) > 1/8%

|
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