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Abstract. A series of models of the lunar 
interior are derived from topographic, gravita- 
tional, librational, and seismic data. The libra- 
tional parameters and low-degree gravity harmonics 
result primarily from surface height variations 
and only secondarily from lateral density varia- 
tions. The moon departs from isostasy, even-for 
the low-degree harmonics, with a maximum super- 
isostatic stress of 200 bars under the major mas- 
con basins. The mean crustal thicknesses under 
different physiographic regions are: mascons, 30- 

12 n 

R(8, •) = RoEET ̂  (8, •) nm nm 

n=0 m=0 

•(r, 8, •) = 

n+l n 

R• -•-z G A (8 •) nm nm ' 
n=0 m=0 

(i) 

35 km; irregular maria, 50-60 km; and highlands, where T and Gnm are topography and gravity har- nm 

90-110 km. A possible composition consistent with monic coefficients, respectively, defined as 
our model is an anorthositic crust, underlain by 
a predominantly forsterite upper mantle which 
grades into a refractory rich lower mantle sur- 
rounding a pyrrhotite core. t 

T = [ C t [ Cnmg nm nm' Snm ] , G = g nm , S ] nm 
Introduction 

Lunar interior models of increasing complexity 
are derived from topographic, gravitational, li- 
brational, and seismic data. A series of models, 
rather than only the final one, is presented in an 
effort to demonstrate the unique contribution of 
each data type and its effect on determining model 
parameters for the lunar density structure. 

and 

A (8, $) = P [sin (8)] nm nm sin (m% 

The various data types and their errors are where Pnm are unnormalized associated Legendre 
discussed, and these data are cast into a form functions of degree n and order m. G, M, and R O 
most convenient for internal model determination. are the universal gravitational constant, the 
The basic theory for this analysis is developed, mass, and the mean radius, respectively, of the 
and a series of lunar interior models are derived moon. 
from the different data. Discussions are pre- The physical librations of the moon are depen- 
sented at each level of modeling, showing which dent upon both the low-degree gravity harmonics and 
data are satisfied and presenting the geophysical the parameters (•, •, ¾), which are defined in 
significance of that stage of the model develop- terms of the principal inertial moments A < B < C 
ment. Ultimately, a six-layered model is deter- as 
mined which satisfies all the data. The innova- 
tive aspects of this investigation are discussed 

in light of previous work, and the compositional C - B C - A B - A implications of this lunar interior model are • = 8 = ¾ = (2) 
analyzed. A B C 

Basic Data 

The topographic and gravitational data used Sinclair et al. [1976] have estimated the low- 
consist of spherical harmonic coefficients of the degree gravity harmonics and librational param- 
surface shape and gravitational potential of the eters from a combination of Doppler and laser- 
moon through degree and order 12 [Bills and ranging data. Table 1 presents these estimates, 
Ferrari, 1976; Ferrari, 1975]. The topography the low-degree topography harmonics [Bills and 
and gravitational potential as functions of lati- Ferrari, 1976], and an estimate of the gravita- 
tude 8 and longitude • are represented as tional constant G [Heyl and Chrzanowski, 1942]. 

The resulting estimates for the lunar mean Copyright 1977 by the American Geophysical [•ion. density and moments are 
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TABLE 1. Lunar Gravitational, Topographic, and Librational Data 

Topography Gravity 

t x 106 S t x 106 C g x 106 S g x 106 n m C nm nm nm nm 

0 0 106 ß ß ß 106 ß ß ß 
1 0 -367.7 + 44.6 ......... 

1 1 -1049.3 + 30.3 -255.4 + 23.6 ...... 

2 0 -303.9 + 49.5 ... -203.62 + 1.09 ... 

2 1 -193.4 + 34.2 30.4 + 24.9 ...... 

2 2 7.4 + 7.4 107.8 + 9.4 22.40 + 0.12 ... 

Three dots represent values hat are zero by definition. G -- (667.32 + 0.31) x 10-1• cm 3 s -2 g-1 GM -- (4902 796 + 0.003) x 1015 cm 3 s -2, 
R 0 = (1737.59 + 0.24) x 105 cm, 8 = (631168 + 0.13) x 10-6, and ¾ = (227.82 + 0.08) x 10 -6 

-3 
3.3437 + 0.0016 g cm 

C = (4c22g/¾)MR02 = (0.3933 + 0.0021)MR02 
I -- 

A+B+C 3 + 8 + ¾ - = 3(1 + 8) 
2 

= (0.3931 + 0.0021)MR 0 

(3) 

pg-1; and a set of spherical harmonic coefficients 
Tnm g which represent the shape of the outer sur- 
face of the layer. Thus the interface has the 
form 

12 n 

R(O •)= R0••ZT •A (0 •) (6) ' nm nm ' 
n=0 m=0 

In terms of moments M of the radial density 

distribution, n 
The mean density and mean inertial moment of 

such a model are expressed by 

M = (n + 1) p(•)•n d• (4) M 2 = • = P• M 4 - 
n 2MR02 g 

(7) 

where ( = r/R 0. On the basis of the values listed 
in (3) the second and fourth moments are ration is given by 

M 2 = • = 3,3437 + 0.0016 

M 4 = 5•I/2MR02 = 3. 286 + 0.018 

The complete inertia tensor of such a configu- 

8•R05 • 5L g (5) Iij = 15 Ap g (•g) ij 

where 

This form will prove useful for comparison with 

models to be derived later. • 1 + ••Sll•) 2 The seismic data used consist of (1) the in- Lll = 
ferred crustal structure in the region of the 

Apollo seismic array including discontinuities at g 1 + 5•Cllg)2 depths of -20 and 50-60 km [Toks6z et al., 1974] L22 = • 
and (2) the travel time as a function of epicen- 

tral distance for P and S waves [Nakamura et al., • 1 + ••Cll•) 2 1974]. L33 = 

(8) 

c10g) 2 ] c20 3c g + ( + 2 22 

+ (C10•) 2 ] + C20• • 2 + 3C22 

+ _ C2o 
Theory g 5 g • g L12 = L21 g = -•(Cll Sll ) - 3S22 

We will be mainly concerned with models consist- 

ing of nearly concentric nearly spherical shells L1 • • _ 5 •C • 3 • of uniform density material. Each shell • will be 3 = L31 - -•(Cll 10 ) -•C21 
characterized by the normalized radius of its 

Outer surface, • = R•/R0; a density contrast L 2 g = L g _ 5 11gC g 3 S21 g from the immediately overlying layer, Api = p i - 3 32 - -• (S 10 ) - • 
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The gravitational harmonics of the configura- 
tion are given by 

'3' - oG = A0 cgn+3T • nm g nm (9) 

4•GR02 n 1/2 - • 2 • = O0 p (13) n 3 nm 

This will be useful in assessing the departure 
from isostasy as a function of wavelength. 

In order to use seismic data as a constraint 

to first order in the Tnm g. From the relation on lunar internal structure we will need to 
between the inertia tensor and the gravity specify compressional and shear wave velocities 
harmonics 

c20gMR02 = (Ill + 122 - 2133)/2 

c21gMR02 = I13 = I31 

Vp and V s at each layer. These two velocities 
are determined by 

2 2 
V = (K + 4•/3)/0 V = •/0 (14) P s 

2 

s21gMR 0 = I23 = I32 (lO) 
where 

c22gMR02 : (I22 - Ill)/4 
K = o(3P/3o) 

s22gMR02 = I12/2 = I21/2 

we note that for n = 2, (9) is merely the linear 
approximation to (8). We will thus use (8) in 
place of (9) for n = 2. 

is the adiabatic bulk modulus and • is the shear 
modulus or rigidity. These in turn are functions 
of temperature and pressure for any given mate- 
rial. We will assume a linear dependence on tem- 
perature and pressure: 

We will also be interested in the extent to o(T, P) = OST P + (3o/•T)AT + (•o/•P)AP 
which our models depart from isostatic equilib- 
rium. This will be measured in terms of the 

K(T, P) : KST P + (•K/3T)AT + (•K/•P)AP (15) variations about the mean of the hydrostatic pres- 
sure at the crust-mantle interface. The mean 

pressure at this level is approximately, •(T, P) = •STP + (3•/3T)AT + (3•/3P)AP 

F : (4,R02/3)00•(1 - •1 ) (11) 

and the pressure deviations are A number of estimates of the lunar internal 
temperature distribution are available [e.g., 
Toks6z and Solomon, 1973]. All such models are 

4•GR02 12 •H characterized by a steep gradient near the sur- AP(8, •) = 3 p0• Z nmAnm(8, •) (12) face and a more gradual gradient at depth. We will assume a temperature profile of the form 
n=l m=0 [Nakamura and Latham, 1969] 

where 

H : T 0 + (Ao /•0)(• /•)•12T 1 nm nm 1 1 nm 

and •1 is the mean density of the moon beneath the 
crust. 

The rms isostatic pressure deviation as a func- 
tion of harmonic degree is obtained from the nor- 
malized harmonics Hnm = Hnm/Nnm, where the normal- 
ization factor is 

N = I(2n + 1)(2 - • nm (n - m) • 1/2 m0 ) (n + m) 

by 

T(•) : T(0) + AT• n (16) 

with the parameters chosen to match the near- 
surface gradient and deep interior temperatures. 
A more complex model is not justified in light of 
the lack of constraints on the problem. 

The pressure at each level is obtained by 
numerically integrating the equation of hydro- 
static equilibrium. The pressure and temperature 
are then used to estimate the ambient density and 
elastic moduli from their assumed STP values. 

The seismic travel times T and epicentral 
angles A are calculated from the velocity profile 
V(•) for a given ray path by [Bullen, 1963] 
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T • 2R 0 2 -1/2n d• -rim C 
m 

A = 2rl 2]-1/2d• n m -•- 

(17) 

where p = •/V(•) and nm is the value of n at the 
midpoint of the ray path, where it reaches its 
minimum radius • . 

m 

Models 
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Fig. 1. Envelope of plausible density profiles. 

Figure 1. If in addition, the model is constrained 
to have the observed mean density and density 

The simplest model considered has a uniform inversions with depth are not allowed, the enve- 
density of • = 3.3437 g cm -3 and the outer surface 
is characterized by the topography harmonics T 0 lope of acceptable density profiles is given by nm ' the dashed lines in Figure 1. When the model is 
An interesting aspect of this model is that its subjected to the additional constraint that it 
liberational parameters are 

(5.28 + 485.39) x 10 -6 = 490.67 x 10 -6 
-6 -6 

(5.65 + 45.29) x 10 = 50.94 x 10 

have the correct mean moment of inertia, the 
resulting density bounds are those given by the 
solid lines in Figure 1. 

These lower and upper bounds for the mean 
moment of inertia are simply the solutions for 

p0(•) and p0(•) + AOi(•), respectively, subject to 

where the parenthetical terms are the first- and 
second-degree contributions, respectively. We 
thus conclude that the first-degree harmonics are 
of little consequence dynamically in comparison PO 
to the second-degree harmonics. Comparing these 
estimates with the values in Table 1, we note that 
the assumption of uniform density, coupled with 
the actual topography, gives, at least qualita- 
tively, reasonable estimates of 8 and ¾, whereas 
Kopal [1969] has shown that the rotational and 
tidal distortions of a hydrostatic moon would 
yield 

37.39 x 10 -6 ¾ : 27.97 x 10 -6 

2.7 <__ P0 -< P0 + APl < 5.4 

3 = M2 3 3437 P0 + APl•l 5 = M 4 3 286 + APl•l = . = . 

They represent the envelope of all possible mono- 
tonic density distributions subject to the above 
constraints. However, not all models falling 
within these bounds are allowed. In particular, 
a uniform density model is inconsistent with these 
constraints. Although these bounds are not tight 
enough to be of real value in determining the 
composition of the lunar interior, they do exclude 
such extreme cases as either a uniform density or 
an Fe-Ni core with a radius of 380 km or greater. 
These bounds are also useful in conjunction with 

Two basic conclusions are obtained from this com- other data types. 
parison: first, the orientation and rotational The next step in complexity is to allow the 
dynamics of the moon are intrinsically determined model to depart from spherical symmetry in order 
primarily by surface height variations and only to match not only the actual topography, as was 
secondarily by lateral density variations, and done before, but also the gravitational potential 
second, the moon is not well approximated by a to degree and order 12 and the entire inertia 
hydrostatic model [Kopal, 1969]. tensor, three moments and three products of iner- 

We now turn our attention to models with a tia, rather than just the mean moment. To do 
radial density variation. The simplest such model this, we start by including the first- and second- 
considered consists of two concentric spherical degree harmonics Tnm g (g = 0, 1; n = 1, 2) 
shells having a density P0 in the outer shell and describing the shape of the outer surface and the 
a density contrast Ap 1 across the interface at a crust-mantle interface. The eight harmonics Tnm 0 
normalized radius of R1/R 0 = •1 ß A weak composi- (three first degree and five second degree) of the 
tional constraint is assumed in that outer layer are known from the observed topography 

[Bills and Ferrari, 1976] (see Table 1), but the 
-3 crustal density P0 and the eight harmonics of the 

2.7 ! p(•) ! 5.4 g cm crust-mantle interface Tnm 1, as well as the den- 
sity contrast AO 1 and the normalized radius •1 = 
R1/R 0, are unknown and must be determined from (8) 

where the lower bound corresponds roughly to and (9) by constraining the inertia tensor of the 
anorthosite and the upper bound to an Fe-FeS model to the observed values. Equation (9) applied 
eutectic composition [Brett, 1973] at the lunar to the first-degree harmonics ensures that the 
central pressure (•50 kbar) and room temperature. center of figure of the mantle is offset in such 
These bounds are shown by the dot-dash lines in a way as to counterbalance the center of figure 
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TABLE 2. Two-Layered Lunar Density Model Representative Solutions 

A Posteriori 

Parameter A Priori for R c = 0 

A Posteriori for 

R c = 400 km and 
Pc = 5.4 g cm -3 

-3 

O 0, g cm 2.90 + 0.20 2.72 + 0.07 2.'75 + 0.06 
-3 

A0, g cm 0.50 + 0.20 0.74 + 0.08 0.64 + 0.07 

Tc, km 69.5 + 17.4 95.7 + 15.6 73.2 + 15.8 

AX1, km 0.00 + 1.64 8.33 + 1.20 9.40 + 1.30 
AX2, km 0.00 + 1.64 2.53 + 0.56 2.86 + 0.40 
AX3, km 0.00 + 1.64 1.40 + 0.20 1.57 + 0.22 

C201, 10 -4 0.00 + 10.00 -7.98 + 0.63 -8.40 + 0.66 
C211, 10 -4 0.00 + 10.00 10.45 + 1.51 11.43 + 1.59 

i 10 -4 0 00 + l0 00 -0 25 + 0 04 -0 27 + 0 04 S21 , ......... 
1 10 -4 0 00 + l0 00 0 45 + 0 004 0.44 + 0 01 C22 ......... 

S221, 10 -4 0.00 + 10.00 -5.71 + 0.84 -6.26 + 0.89 

displacement of the outer layer. fies the constraints imposed by the gravitational, 
Such a model has 11 unknown' parameters topographic, and librational data. However, 

(Tnm 1 (eight), OO, AOl, and •1) but only 10 con- current seismic studies [e.g., Nakamura et al., 
straints (Glm (three), Iij (six), and 0). How- 1974] suggest a more complex internal structure. 
ever, we have some a priori knowledge about each The model that we have chosen has six distinct 
of the parameters, and since this makes the system regions, and the approxim•.te depths to the 
effectively overdetermined, we can perform a boundary interfaces are uppar and lower crust, 
weighted least squares inversion. See Table 2 20 and 70 km and upper, middle, and lower martle, 
for some representative results. Therein are 300, 800, and 1400 km. The core has a radius of 
presented the a priori and a posteriori estimates 340 km. The crustal and upper mantle interfaces 
and uncertainties for each of the 11 parameters correspond to seismic discontinuities [Toks6z et 
for both the nominal solution and a solution with al., 1974; Nakamura et al., 1974]. The middle 

a core of radius R c = 400 km and density Pc = and lower mantle and core are inferred from deep 
5.4 g cm -3. The first-degree harmonics are pre- seismic events [Nakamura et al., 1974], electri- 
sented in terms of the corresponding center of cal conductivity profiles [Dyal et al., 1976], 
figure displacement and thermal and compositional constraints [Brett, 

1973]. For modeling purposes the normalized radii 

of the interfaces are taken to be •g = 1.00, 0.99, AX = R0•l(Cll 1, Sll 1, Clo 1) 0.96, 0.83, 0.54, and 0.20. 
Within each region the STP density and elastic 

moduli are assumed to vary linearly with depth 
and the crustal thickness is T c = R0(1 - •1)' between the values specified at the upper and 

We discover two important facts from this lower boundaries. The ambient density and elastic 
model. First, in the case with no core the mean moduli at each layer are then calculated from 
crustal thickness is significantly greater than the STP values and the ambient temperature and 
that inferred from the locally derived seismic pressure. 

value, even though the densities are quite reason- The assumed temperature and pressura deriva- 
able. This conflict can be removed by inclusion tives of the density and elastic moduli corre- 
of a region of higher density at depth. Although spond in the crust to anorthosite [Baldridge and 
the core model presented (R c = 400 km and Pc = Simmons, 1971], in the mantle to forsterite, and 
5.4 g cm -3) is by no means unique, the amount of in the core to pyrite [Skinner, 1966; Birch, 1966]. 
density increase required is greater than can be The STP density and bulk modulus of the core are 
accounted for by self-compression of a homoge- those estimated for an Fe-FeS eutectic composi- 
neous moon for any reasonable elastic moduli and tion [Brett, 1973; Brett and Bell, 1969; King 
temperature profile. and Ahrens, 1973]. The crustal density profile 

Second, this model may be shown to depart from is from Gast and Giuli [1972], and the elastic 
isostatic equilibrium, even for the low-degree moduli were chosen to duplicate a suitable aver- 
harmonics. We shall have more to say about age of the crustal velocity profile as given by 
isostasy later. ToksSz et al, [1974]. 

Having established the inadequacy of a two- The lunar temperature profile is imprecisely 
layered model, we will now present a more known, particularly in the deep interior [e.g., 
detailed model in which the density, elastic ToksSz and Solomon, 1973]. We have assumed sur- 
moduli, and temperature are all allowed to vary face and central temperatures of 250 ø and 1900øK, 
more or less continuously with depth. Our analy- respectively, and have treated the actual temper- 
ses have shown that a three-layered model satis- ature distribution with depth as a variable deter- 
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TABLE 3a. Lunar Interior Structure Model 

Depth, km Temperature, øK 
Pressure, - 3 Vp, V s, kbar O, g cm K, Mbar • km s -1 km s -1 

Upper Crust 

1.00 0 250 0.00 2. 703 0.410 0. 250 5.22 3.02 
0.99 20 315 O. 76 2. 703 0.410 0.250 5.22 3.02 

Lower Crust 

0.99 20 315 O. 76 2.852 0.651 0.293 6.12 3.31 
0.96 70 499 3.19 2.950 0.769 0.296 6.52 3.51 

Upper Mantle 

0.96 70 499 3.19 3.371' 1.222' 0.246* 8.11 4.71 
0.83 300 1117 14.57 3.382* 1.234' 0.275* 7.89 4.39 

Middle Mantle 

0.83 300 1117 14.57 3.408* 1.234' 0.275* 7.89 4.39 
0.54 800 1760 34.36 3.397* 1.691'- 0.420* 7.80 2.89 

Lower Mantle 

0.54 800 1760 34.36 3.399* 1.691' 0.420* 7.80 2.89 
0.20 1400 1897 48.13 3.424* 1.745' 0.443* 7.68 2.46 

Core 

0.20 1400 1897 48.13 5.209 1.400 0.500 5.18 0.00 
0.00 1740 1900 52.95 5.223 1.423 0.500 5.22 0.00 

*Parameter which was varied in search for acceptable model. 

mined by the parameter n in (16). The value ulti- [Nakamura et al., 1974] in Figure 2. The seismic 
mat ely used was n = 4.0. phases shown are identified according to the 

A family of models is generated by varying the nomenclature usually applied to the earth 
density and elastic moduli at the mantle region [Jeffreys, 1959]. 
interfaces (• = 0.96, 0.83, 0.54, and 0.20) sub- We tentatively interpret the P wave arrivals 
ject to the constraints that (1) the STP values near A = 150 ø as rays diffracted around the core 
of p, K, and Poisson's ratio • = (3K - 2•)/ and the weak arrival at A = 168 ø as a PKP 2 phase 
(6K + 2•) are all nondecreasing with depth and (not shown in the figure) due to a rapid decrease 
(2) K and • are continuous across the interfaces in seismic velocity at the mantle-core interface. 
at • = 0.83 and 0.54. The STP values of p, K, 
and • at intermediate points are found by linear 
interpolation, and the ambient values of these 
parameters are found, as they were' before, from 
the ambient temperature and pressure. These per- 
turbations are performed until a model is found 
which has the desired mean density and moment as 
well as P and S wave travel times. The resultant 

temperature, pressure, density, bulk modulus, 
Poisson ratio, and seismic velocity profiles of 
such a model are given in Table 3a. Table 3b 

gives the moments of the density distributio n M n 
(n = O, 1, ..., 8). The seismic travel time as 
a function of epicentral distance for the model 
is compared with observed teleseismic data 

TABLE 3b. Moments of Density Distribution M n 

n M n n M n n M n 

0 3.7409 3 3.3101 6 3.2496 
1 3.4247 4 3.2875 7 3.2322 
2 3.3433 5 3.2679 8 3.2156 

Observed values are M 2 = 3.3437 + 0.0016 and 
M 4 = 3. 2858 + 0.0211. 
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Fig. 2. Lunar seismic travel times. Curves 
represent model calculations; circles with dots 
represent data [Nakamura et al., 1974]. 
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Fig. 3a. Crustal thickness variations on the lunar near side. 

A comparison of the STP density and elastic all lateral density variations occur as undula- 
moduli with those of olivine and pyroxene [Chung, tions on the mantle-crust interface, which is at 
1970; Nakamura et al., 1974] reveals that a a depth of 50-60 km in the area of the Apollo 
mineral assemblage consisting largely of olivine seismic array. For the densities in our model 
(80-85% forsterite) and some pyroxene is consis- a mean crustal thickness of 70 km is required to 
tent with the upper mantle model. The increase match the seismic values. The resultant crustal 
in density and bulk modulus with depth is consis- thickness map is presented in Figures 3a and 3b. 

tent with an increase in CaO, TiO 2, and/or Wood [1973] has presented a similar analysis based 
A1203 [Simmons and Wang, 1971; Anderson, 1975]. on a more restricted data set. He inferred crus- 

Given values for the mean crustal thickness tal thicknesses which are systematically less than 
and density and the density contrast with the our estimates. 
mantle, we can include the higher harmonics of The crustal thickness indicated in the mascon 
topography and gravity in our model, solving for basins is somewhat of an underestimate, since the 
Tnm 1 from Tnm¸ and Gnm by (8) and (9). We are effect of a surface layer of basalt is ignored. 
thus able to estimate the variation of crustal Bowin et al. [1975] estimate that such a surface 
thickness over the planet on the assumption that fill accounts for roughly 20% of the observed 
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• ISN t5N ß 

o o 
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105 i!'L>O i35 '150 270 

LON'G1TUDE (DEGRE ES) IOArnCONTOUR INTERVAL ...... 

Fig. 3b. Crustal thickness variations on the lunar far side. 
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TABLE 4. Root-Mean-Square Nonisostatic Stresses 
Versus Harmonic Degree 

Stress Half Wavelength 
Degree n •n, bars L n = •R0/n, km 

1 5.42 5460 
2 16.86 2730 
3 6.67 1820 
4 8.70 1365 
5 14.92 1092 
6 26.03 910 

7 27.50 780 

8 17.52 683 
9 17.09 607 

10 13.61 546 
11 31.94 496 
12 15.15 455 

gravity anomaly. They estimate a mantle uplift 

Summa r y 

We have presented a series of lunar models 
culminating in a six-layered model with undula- 
tions on the outer surface and at the crust- 
mantle interface. This model is consistent with 

all available topographic, gravitational, libra- 
tional, and seismic data. 

We have concluded that the librational param- 
eters of the moon are determined primarily by 
surface height variations and only secondarily 
by lateral density variations and that the sur- 
face topography is not isostatically supported, 
nor is it predominated by a fossil tidal or rota- 
tional bulge. The largest pressure departures 
from isostasy are approximately 200 bars under 
the major mascon basins. The crustal thickness 
varies from 30-35 km under mascon basins to 
90-110 km under the highlands, with the irregu- 
lar maria intermediate at 50-60 km. 

All of the data considered are consistent with 

in Mare Serenitatis of 12 km, compared to our • an anorthositic crust extending to a mean depth 
estimate of roughly 50 km. However, there is a of 70 km underlain by a predominantly forsterite 
factor of 2 discrepancy between the free-air upper mantle grading into a refractory-rich lower 
anomaly estimates used' and the fact that Bowin mantle surrounding a pyrrhotite core. Such a com- 
et al. are modeling only free-air gravity, whereas position is consistent with but not uniquely spe- 
we are modeling Bouguer gravity, accounts for an ified by our model calculations. 
additional factor of 2. We note that a smaller estimate of the mean 

The mean crustal thicknesses under different inertial moment would be consistent with a larger 
physiographic regions are mascons, 30-35 P•' core, which in turn would simplify the interpre- 
irregular maria, 50-60 km; and highlands, 90- tation of the P wave arrival times near A •/•150 
110 km. and at 168 deg, which are presently interpreted 

As was previously mentioned, this model is not as diffracted P and PKP 2, respectively. 
in isostatic equilibrium; i.e., the pressure at 
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