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Quantum-Proof Extractors: Optimal up to Constant Factors

Kai-Min Chung* Gil Cohen'’ Thomas Vidick? Xiaodi Wu?

Abstract

We give the first construction of a family of quantum-proof extractors that has optimal seed
length dependence O(log(n/e)) on the input length n and error e. Our extractors support any
min-entropy k = Q(logn + log"™*(1/¢)) and extract m = (1 — a)k bits that are e-close to uniform,
for any desired constant a« > 0. Previous constructions had a quadratically worse seed length or
were restricted to very large input min-entropy or very few output bits.

Our result is based on a generic reduction showing that any strong classical condenser is au-
tomatically quantum-proof, with comparable parameters. The existence of such a reduction for
extractors is a long-standing open question; here we give an affirmative answer for condensers.
Once this reduction is established, to obtain our quantum-proof extractors one only needs to con-
sider high entropy sources. We construct quantum-proof extractors with the desired parameters
for such sources by extending a classical approach to extractor construction, based on the use of
block-sources and sampling, to the quantum setting.

Our extractors can be used to obtain improved protocols for device-independent randomness
expansion and for privacy amplification.

1 Introduction

A randomness extractor is a deterministic procedure that extracts almost uniform random bits from
a weak source of randomness using a seed, a short uniform random string, as a catalyst. Originally
introduced as tools for derandomization [36], extractors have found uses and surprising connections in
many areas such as pseudorandomness [35] [50], complexity theory [17, 45| 31], cryptography [5l [14],
and combinatorics [Il, 8, [7] to name a few.

We say that an n-bit random variable X is an (n, k)-source if the min-entropy Hpin(X) > k. For
two random variables X, Y we write X ~. Y to mean that the statistical distance between X and Y
is at most e. We use U,, to denote a random variable uniformly distributed over m-bit strings. With
these definitions in place we can define our main object of study.

Definition 1.1 (Extractor) A function Ext: {0,1}" x {0,1}¢ — {0,1}™ is called a (k,¢) extractor
if for any (n,k)-source X, Ext(X,S) =, U,,, where S is uniformly distributed over d-bit strings and
independent of X. Ext is said to be strong if (Ext(X,S),S) =c (Un, S).
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Depending on the application, different regimes of parameters for extractors are of interest. The
general goal is to construct, given any desired integers n, k and ¢ > 0, an extractor with the shortest
possible seed length d and longest output length m. Computational aspects aside, one can prove the
existence of extractors for any n, k and € > 0 such that & > 2log(1/€)+O(1) with m = k—2log(1/e) —
O(1) output bits and seed length d = log(n — k) + 2log(1/e) + O(1). Further, this is known to be
tight [37]. Significant work in the area of pseudorandomness (see e.g. [42] [52]) has led to efficient
constructions that come very close to matching the optimal existential parameters. In particular,
Guruswami et. al. [I§] gave a construction for any n,k and € > 0 with seed length d = O(log(n/¢))
and output length m = 0.99k.

Applications of extractors to cryptography motivate a slightly different perspective on the defini-
tion. Consider the task of privacy amplification [5, 29, [3]. Two parties, Alice and Bob, are assumed
to share an initial secret that is “somewhat random” from the point of view of a computationally
unbounded adversary Eve. Alice and Bob can communicate over a public channel on which Eve may
(passively) eavesdrop. Their goal is to agree on an m-bit string R that is e-close to uniform even
conditioned on all information available to Eve. It is not hard to see that this can be solved by using
a strong randomness extractor: Alice chooses a random seed, communicates it to Bob, and they both
evaluate the extractor on their initial shared secret. The protocol will achieve the desired task provided
both the input and output conditions for the extractor are measured conditioned on the adversary’s
side information E: it is required that, for any X (the initial secret) such that Hpyi,(X|E) > k, the
output condition (Ext(X,S), S, E) ~¢ (Un, S, E) holds.

1.1 Quantum-proof extractors

The ubiquitous use of privacy amplification in quantum (as well as post-quantum) cryptography
prompts the question of constructing extractors in the presence of quantum adversaries, who may
possess quantum side information E about the source. The fundamental problem thus becomes the
following.

Problem 1. Construct a quantum-proof extractor with parameters comparable to known construc-
tions of extractors in the classical setting.

The existential arguments, based on the probabilistic method, used to delineate optimal parameter
regimes for classical extractors are not known to extend to the quantum setting. Nevertheless, taking
an optimistic stance, a very direct approach to solving Problem 1 would be to establish that any
classical extractor is automatically quantum-proof with comparable parameters.

Problem 2. Is any classical extractor also quantum-proof (up to some parameter loss)?

Aside from being a natural question in extractor theory, Problem 2 reaches deep into what is
perhaps the most fundamental problem in quantum information theory — what is the information
content of a quantum state? From Holevo’s theorem [20] to bounds on quantum random access
codes [33] through a host of measures of quantum conditional entropy [32], the question is continuously
being probed from different angles, and we believe that extractors can provide one of the most fruitful
approaches to the problem.

Both problems outlined above have been extensively studied in the literature. Regarding Prob-
lem 2, the work of [25] proves that any (k,e€) classical strong extractor with one-bit output is also
a (k + log(1/€),O(y/¢€)) strong quantum-proof extractor. Combining this result with the quantum



version of the XOR lemma [2I] it is possible to show that any (k,e€) classical strong extractor
is a (k + log(1/e),0(2™/¢€)) strong quantum-proof extractor. Using a connection with operator
space theory, the recent work of [6] further shows that any (k,€) classical strong extractor is a
(k + log(2/€),0(2™/2/€)), as well as a (k + 1,0(2" ¥¢)) strong quantum-proof extractor. Obtain-
ing results without the exponential blow-up in the output length or input entropy deficit, however,
has proven challenging; preventing such loss is crucial for applications to tasks such as privacy ampli-
fication.

The single counter-example known to a direct reduction is due to Gavinsky et. al. [I6] and implies
that some loss in parameters is unavoidable. The implied loss, however, lies in a range of parameters
that is not the most relevant for typical applications, so that a partial solution to Problem 2 remains
possible.

Regarding Problem 1, current results are limited to several specific constructions of extractors,
such as two-universal hashing [48] or Trevisan’s extractor [12], which can be shown quantum-proof

with little loss in parameters compared to the classical setting. In particular, for general min-entropy
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bits are knownE These constructions remain far from optimal; while a quadratic loss in the seed length
may be tolerable in many applications, for others, such as exponential randomness amplification, it
can lead to much more stringent limitations.

k and € > 0, explicit quantum-proof extractors with seed length d = O( ) and m = output

1.2 Owur contribution

In this work we make progress on both problems. First, we consider the analog of Problem 1 for
condensers.

Definition 1.2 (Condenser) A function Cond: {0,1}" x {0,1}¢ — {0,1}™ is called a (k, k', €) con-
denser if for any (n,k)-source X, Cond(X,S) ~, Z where Huyin(Z) > k'. Cond is said to be strong if
(Cond(X,S),S) =~ (Z,S) where Hyin(Z|S) > K.

Note that for an m-bit random variable Z, Hy,in(Z) = m if and only if Z = U,,, thus a (k,m,€)
condenser is a (k,€) extractor. A condenser is a weakening of an extractor where the output is only
required to be close to a high-entropy random variable. As indicated by their name, interesting
condensers are typically ones for which the output has higher min-entropy rate (entropy divided by
length) than the input: &'/m > k/n. As a weaker object, condensers are central building blocks in
the construction of extractors. In fact, they are key to all best constructions of known extractors [I8]
[I5] [47]. Beyond their use as a building block, condensers have found many further applications [26],
27, B3, 9]

Our first contribution is an affirmative answer to Problem 2 in the setting of condensers. As for the
setting of extractors, we term a condenser quantum-proof if both the input and output min-entropy
conditions are measured conditional on an arbitrary quantum system F. Informally, we show that any
classical condenser is also quantum-proof, with only a factor-1/2 loss in the output entropy rate.

Theorem 1.3 Let Cond be a strong (k,k',€) condenser. Then Cond is also a strong (k,k'/2 —
O(log(1/€)),0O(€)) quantum-proof condenser.

21t is also possible to extract essentially all the input min-entropy, but the seed length becomes O(log?(n/€) logm) [12,
Corollary 5.3].



We remark that any (k,k’,€) condenser with seed length d is automatically a strong (k,k' —d —
O(log(1/€)),O(¢e)) condenser [10], and so the assumption of Theorem [[3] that Cond is strong can be
removed without a significant effect. By applying Theorem to a construction from [I8] we obtain
the following construction of a strong quantum-proof condenser, which is geared towards optimizing
the output min-entropy rate.

Corollary 1.4 For any constant 6 € (0,1), any integers k < n, and any € > 0, there is an explicit
strong (k,k/2 — log(4/€),€) quantum-proof condenser Cond: {0,1}" x {0,1}¢ — {0,1}™ with seed
length d = (1 +96) - log(nk/e*) + O(1) and m < (1 + 6 1)k + 2d.

To the best of our knowledge this is the first non-trivial construction of a quantum-proof condenser
— and it reaches almost-optimal parameters!

As mentioned earlier, condensers form one of the main building blocks in many of the best con-
structions of extractors known. Our second main result consists in showing that a classical approach to
extractor constructions due to [36] 41l [57], based on the use of block-sources and sampling, can also be
made quantum-proof. By combining the result (see Theorem in Section [)) with our Theorem
we obtain the first explicit construction of a family of quantum-proof extractors that is optimal, up
to constant factors, both in terms of seed length and output length.

Theorem 1.5 For any constant 0 < « < 1, integers n,k and ¢ > 0 such that k = Q(logn +
log!™®(1/€)) there exists an explicit (k,€) quantum-proof strong extractor Ext : {0,1}" x {0,1}¢ —
{0,1}™ with seed length d = O(log(n/€)) and output length m = (1 — a)k.

Theorem is proved in Section 3l The theorem significantly improves upon previous work
on quantum-proof extractors. A substantial line of prior works establish quantum-proof security of
several classical extractors [22], [39] [40}, 25 46] [13], 12}, 2], but none of them reach the optimal parameters
up to constant factors. In particular, O(log(n/e)) seed length has only been shown achievable either
for extractors with short (shorter than the seed) output [25] [6], or for extractors that only work for
high input min-entropy rate or high error. For instance, as mentioned earlier Trevisan’s extractor

has seed length d = O(logli(TTZE)) (with output length m = k%% in this case). Thus, it has seed

length O(log(n/€)) only for k > n*M) and ¢ > 1/poly(n), and has a quadratic loss in general. A
different instantiation of Trevisan’s extractor due to Ben-Aroya and Ta-Shma [2] can achieve seed
length O(log(n/¢)) for the same range of € as our Theorem [[.5], but is restricted to large min-entropy
rates, k > (1/2 4+ ~)n for v > 0.

1.3 Applications

Aside from their intimate connection to fundamental questions on the information content of quantum
states, quantum-proof extractors have found significant applications in quantum cryptography, in
particular to the task of privacy amplification in quantum key distribution (QKD) [4, 3] and to device-
independent randomness expansion [53, B0]. For the former, by replacing Trevisan’s extractor [12]
with ours leads to improved protocols in terms of communication complexity and entropy loss. The
significance of the improvement depends on the assumption one is willing to make on the availability
of trusted randomness to the honest parties; here the practical bottlenecks are admittedly often more
tied to the computational effort than to the generation of random bits.

The relevance of the extractor’s seed length is most striking when one considers the task of ran-
domness expansion. Protocols for this task typically follow a two-step procedure. In the first step,



part of the initial seed randomness is used to make partially random input choices to the devices,
which are used repeatedly to eventually produce a long string of output bits with guaranteed min-
entropy rate (we refer to e.g. [I1] for a more complete description of this step). In the second step the
remainder of the random seed is used as seed for an extractor applied to the bits produced in the first
step, eventually yielding an as-large-as-possible number of (close to) uniformly random bits. It was
previously shown [30] that the first step could be be achieved with exponential expansion, expanding
a d-bit seed into N = 2¢"* bits that have constant min-entropy rate. Prior to our work the best
extractor constructions required Q(d?) bits to extract from such a source, meaning that almost all
the seed was in fact consumed in the second step of the scheme, resulting in an overall expansion of

— —0.49
d+— 2% bits only. In contrast, our results allow a more even splitting of the seed between the two

— —0.99
steps and yield a super-polynomial improvement in the final expansion, d — 2¢  uniformly random
bits.

1.4 Techniques

Interestingly, the proof of Theorem is quite short and fairly simple. We use the operational
interpretation of the output min-entropy of the condenser as the maximum probability with which
a (quantum) adversary may successfully guess the output string. In the first step of the proof we
establish a general reduction showing that for any such quantum adversary there must exist another
adversary whose measurement operators take a particularly simple form (derived from the pretty-good-
measurement (PGM) [19]), and still succeeds with at most a quadratic loss in the guessing probability.
In the second step we observe that, due to the simplified form of its guessing measurement, this new
adversary could equivalently have measured its quantum side information before the application of the
condenser to obtain classical side information about the source, from which it would later (after having
been revealed the seed) classically infer a successful guess for the condenser’s output, contradicting
the classical condenser guarantee.

Combining both steps gives our generic reduction from quantum-proof security to classical security.
(See Section [B] for more details.) We note that the proof is made slightly more involved technically by
the need to handle € approximations; for this it is crucial that the condition on the output min-entropy
of the condenser be measured according to the e-smooth conditional min-entropy.

Once Theorem has been proven, to prove Theorem it only remains to construct quantum-
proof extractors for min-entropy rate, say, 1/3. Unfortunately, even for such high min-entropy, existing
results are not able to extract a constant fraction of the min-entropy using logarithmic seeds. To obtain
such extractors we make use of the “block-sampling-and-extraction” framework developed in [36], [41],
[57]. We observe that all key ingredients used in this construction have been shown to be quantum-proof
with comparable parameters:

e A strong extractor based on almost pairwise independent hashing. This was proved quantum-
proof by Tomamichel et. al. [49] with essentially the same parameters as classically.

e A randomness-efficient sampler to sample blocks from the source while preserving the min-
entropy rate. Such a procedure was analyzed in the presence of quantum side information by
Konig and Renner [23]. Unfortunately the results of [23] induce a loss in the entropy rate, which
we discuss in more detail in Section

3Tt is worthwhile mentioning that we cannot adopt the later improvement of [23] by Wullschleger [56] because the
latter does not apply to randomness-efficient samplers.



e A chain rule for the conditional min-entropy. A sufficient relation for our purposes was shown
by Ko6nig and Terhal [25] in the quantum setting.

Combining these ingredients and making appropriate adjustments to the analysis of [36, 41l [57], we
obtain an extractor for min-entropy rate 1/3 sources (and, in fact, for any constant min-entropy rate)
that extracts a constant fraction of the min-entropy using logarithmic seeds (see Theorem for a
precise statement). We observe that the output length can be increased to (1 — «)k for any constant
a > 0 using standard techniques, that can also be shown to be quantum-proof.

Open questions. Our construction achieves optimal seed length, up to constant factors, even for
very low input min-entropy. Nevertheless, gaps remain in our understanding of quantum-proof extrac-
tors. For example, several classical works achieved even more stringent demands, such as seed length
d = (1+ «)logn [43], or sub-linear entropy loss (i.e., m = k — o(k)) [15L [47]. We do not know whether
quantum-proof extractors with such parameters exist, even non-constructively. Another intriguing
question is whether the generic error reduction technique of [38] could be made quantum-proof.

We leave open the question of whether the 1/2-loss of entropy in our reduction from quantum-proof
condensers to classical condensers is inherent or rather only an artifact of our proof technique. Proving
that such a reduction holds with no loss will in particular resolve Problem 2 to the affirmative. We
remark that if the loss can be reduced to a small enough constant A < 1/2, one would be able to
construct quantum-proof extractors with even better parameters than those stated in Theorem [I.5]
and using a somewhat simpler construction.

2 Preliminaries

We summarize necessary background about quantum information and our terminology in Section 2.1
(We refer to the books [34], 53] for additional background on quantum computing and quantum informa-
tion theory respectively.) In subsequent sections, we survey relevant results on three topics: quantum
min-entropy sources (Section 2.2]), condensers & extractors (Section 2.3]), and samplers (Section 2.4]).

2.1 Quantum information

Quantum states. The state space A of m-qubit is the complex Euclidean space C2". An m-qubit
quantum state is represented by a density operator p, i.e., a positive semidefinite operator over A with
trace 1. The set of all quantum states in A is denoted by S— (A) := {p > 0 : tr(p) = 1}. We sometimes
consider a larger set of states on A, the sub-normalized states S< (A) := {p > 0: tr(p) < 1}.

Let L (A) denote the set of all linear operators on space A. The Hilbert-Schmidt inner product on
L (A) is defined by (X,Y) = tr(X*Y), for all X,Y € L (A), where X* is the adjoint conjugate of X.
Let idy denote the identity operator over X.

For a multi-partite state, e.g. papc € S= (A® B ® C), its reduced state on some subsystem(s) is
represented by the same state with the corresponding subscript(s). For example, the reduced state on
A system of papc is pa = tree(papc), and pap = tre(papc). When all subscript letters are omitted,
the notation represents the original state (e.g., p = paBE).

A classical-quantum-, or cg-state p € S— (A ® B) indicates that the A subsystem is classical and
B is quantum. Likewise for ccq-, etc., states. We use lower case letters to denote specific values
assignment to the classical part of a state. For example, any cq-state pap = Y, pala)(a| ® p% in
which p, = Pr[A = a] and p% is a normalized state.



Quantum measurements. Let Y be a finite nonempty set of measurement outcomes. A positive-
operator valued measure (POVM) on the state space A with outcomes in 3 is a collection of positive
semidefinite operators {P, : @ € ¥} such that ) . P, = id4. If instead of equality, ) 5, P, < ida,
the collection is a sub-normalized POVM. When this POVM is applied to a quantum state p, the
probability of each outcome a € ¥ is (p, P,). When outcome a is observed, the quantum state p

becomes the state \/P,p\/ P,/ (p, Pa).

Distance measures. For any X € L (A) with singular values o1, ,04, where d = dim(A), the
trace norm of A is || X ||; = 2?21 0;. The trace distance between pg, p1 € S< (A) is defined to be

def 1 1
o — pilly = 3 llpo — prll; + §|TY(PO — p1)].
Quantum operations. Let X and ) be state spaces. A super-operator from X to ) is a linear map
U:L(X)—=L(Y).

Physically realizable quantum operations are represented by admissible super-operators, which are
completely positive and trace-preserving. Thus any classical operation (such as extractors) can be
viewed as an admissible super-operator.

Fact 2.1 (Monotonicity of trace distance) For any admissible super-operator ¥ : L (X) — L(Y)
and pg, p1 € S= (X)), we have

1% (po) = W(p1)lle < llpo = prll - (2.1)
2.2 Quantum min-entropy sources

Min-entropy. Before we introduce the quantum min-entropy, let us recall the min-entropy definition
of classical sources.

Definition 2.2 (Classical Sources) The min-entropy of a random variable X is given by

Hun(X) = minlog, (1/Pr[X = a])

For X € {0,1}™, we call X an (n, Hyin(X))-source (or Huyin(X)-source) with entropy rate Ryin(X) =
Hmin(X)/n.

In the regime of quantum extractors, it is necessary to consider the existence of adversaries who
are furthermore given quantum computational power. In the seeded extractor setting, it suffices to
model the adversary as quantum side information which is stored in the system £ as follows. For a cq
state pxp € S< (X ® &), the amount of extractable randomness (from X against F) is characterized
by its conditional min-entropy.

Definition 2.3 Let pxp € S< (X ® £). The min-entropy of X conditioned on E is defined as

Hoin(X1E), & max{)\ > 0: Jop € S< (£) ,5.t. 2 Yidx @ 05 > pxi}-



This definition has a simple operational interpretation shown in [24] that

Hmin(X|E)p = - IOg(pguOSS(X|E)p)v

where pguess(X|E), is the maximum probability of guessing X by making arbitrary measurements on
FE system.

We also consider the smooth min-entropy that consists in maximizing the min-entropy over all
sub-normalized states that are e-close to the actual state pxp in trace distanceH. Note that allowing
an extra error € can significantly increase the min-entropy of certain states.

Definition 2.4 Let € > 0 and pxp € S= (X ® E), then the e-smooth min-entropy of X conditioned
on E is defined as
Ho(XIE), Y max  Hyw(X|E)o,

min
loxe.px el <€

Definition 2.5 (Quantum Sources) We call pxg an (n, k)-cq source (or k-cq source) if X € {0,1}"
and Huynin(X|E), > k. The min-entropy rate of pxg, denoted Ruyin(X|E), is defined by
def Hmin(X’E)P

Rmin(X|E), = TH(X),

where Ho(X), =log(|X]). Similarly, we could define all these terms with smooth errors.

Definition 2.6 (Quantum Block-source) A cq state px,..xop € S= (X1 ®--- @ Xc ® &) is called
a quantum (ky, ko, , ko) block-source if for any i € [C]| and any x1 € X1, ,xi—1 € Xj—1 it holds
that Hmin(Xi|X1 = T,y ,Xi—l = :Ei_l,E) Z k‘l If k‘l = k‘Q = = k‘c = k‘, then X s called a
quantum k block-source.

If the weaker conditions H. (X;| X1 = x1,-- . X1 = xi-1,E) > ki, for i = 1,...,C and
Yy ---syc > 0, hold, then X is called a smooth quantum (ki,...,kc) block-source with smooth error
M, yv0) If m=-=7vc=7and ky = --- ko = k it is called a smooth quantum k block-source

with smooth error .

Properties of Quantum Min-entropy Similar to the classical min-entropy, the quantum condi-
tional entropy also satisfies the following property.

Lemma 2.7 ([25]) Given any ccq state pxwg in which W <> X < E ﬁ, we have

P%"/V [Hpin(X|W = w, E) > Hpin(X|E) —logdim(W) —log(1/€)] > 1 —¢

We note that alternative measures, such as the purified distance, are often used in the definition of the smooth
min-entropy. Ultimately all reasonable distance measures lead to essentially equivalent definitions, and we choose the
trace distance for technical convenience.

"Namely, we have pxwr = Yo Pr[X =2, W = w]|z, w)(z,w| ® pg.



2.3 Seeded extractors: classical & quantum

Classical Seeded Extractors: are deterministic functions that convert any classical min-entropy
source to a marginally uniform output with the help of short uniform seed. Precisely,

Definition 2.8 (Strong Seeded Extractor) A function Ext : {0,1}" x {0,1}¢ — {0,1}™ is a
classical (k,e)-strong seeded (randomness) extractor, if for any min-entropy > k source X € {0,1}",
and for a uniform seed Y € {0,1}¢ independent of X, we have

J(EXUX,Y),Y) = (U, V), < e (2:2)
One of the best known classical extractors is as follows.

Theorem 2.9 ([18]) For every constant o« > 0, and all positive integers n,k and € > 0, there is an
explicit construction of a strong (k,€) extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with d = O(logn +
log(1/€)) and m > (1 — a)k.

Quantum Seeded Extractors. We also review quantum seeded randomness extractors, which turn
a quantum min-entropy source to a quantum-secure uniform output, with the help of a short seed.
Since now the system involves a quantum adversary, we refer this as the quantum security.

Definition 2.10 (Quantum Strong Seeded Extractor) A function Ext : {0,1}" x {0,1}¢ —
{0,1}™ is a quantum-secure (or simply quantum) (k,e€)-strong seeded (randomness) extractor, if for
all cq states pxp with Hyin(X|E) > k, and for a uniform seed Y independent of px g, we have

| PExt(x v )Y E — Un © py ® pEHtr <e (2.3)

We state the following quantum strong seeded extractor that is useful to instantiate our construc-
tion in the paper.

Theorem 2.11 (Theorem 10, [49]) There exists a family of hash functions from {0,1}" to {0,1}™
with seed length d = 2(m + log(n/m) + log(1/€?) — 1) and e < 3¢ + %\/2m_Hr€nin(XlE)P+1Og(2/E2+1) for
any € > 0.

A concrete instantiation of the above theorem is as follows.

Corollary 2.12 There exists an explicit extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ that is quantum
(k,€) strong, where d = O(log(n/e)), m = 0.01d and k = 0.02d.

The following simple lemma will be useful to obtain extractor constructions that extract almost
all the input min-entropy (see e.g. [25, Theorem 2] for a proof).

Lemma 2.13 Suppose Ext : {0,1}" x {0,1}¢ — {0,1}™ is a quantum (k,€) strong seeded extractor,
and Ext’ : {0,1}" x {0,1}¥ — {0,1}" is a quantum (k',€') strong seeded extractor for k' = k —m.
Then Ext” : {0,1}" x {0,1}9t% — {0,1}™™ defined as Ext'(X,Y] o Ya) = Ext(X,Y}) o Ext(X, Y3)
is a quantum (k,e + €') strong seeded extractor.



Proof. By definition provided Hyn(X|E) > k it holds that ||pp.(x,vi)viE — Um @ py; @ pElu < €
Let E' = Ext(X,Y7)Y1E. Using that Y} is independent from X,

Hupin(X|E") = Hyin(X|Ext(X,Y1)E)
> Hpin(X|FE) — log dim Ext(X, Y1)
>k —m,

where the second line is by [A8, Lemma 6.8]. Thus ||pg./(x,v2)varr — Ui @ py, @ pprller < €. Using
the triangle inequality for the trace distance proves the lemma. |

We will also make use of the following lemma from Widgerson and Zuckerman [54], which states
that we can increase the output length of an extractor at the cost of increasing the seed length and
error proportionally. This is done by using independent seeds to extract from the source multiple
times. The lemma holds for the quantum-proof setting with the same proof.

Lemma 2.14 For every constant o,y € (0,1), for every n,k,d,m,e with m = vk and ¢ > 2 k/2, if
there exists a (k,€)-strong quantum-proof extractor Ext : {0,1}" x {0,1}¢ — {0,1}™, then there exists
a (K = 2k/a,e)-strong quantum-proof extractor Ext’ : {0,1}" x {0,1}% — {0,1}™ with output length
m' = (1 — )k, seed length d' = O(d/ary), and error € = O(e/avy).

Classical & Quantum Condensers. A relevant but weaker notion is called condenser which
converts any min-entropy source to a min-entropy source of higher min-entropy rate.

Definition 2.15 A function Cond : {0,1}" x {0,1}¢ — {0,1}™ is a (k,k',€) condenser if for every
k-source X in {0,1}", Cond(X,Y) is e-close to some k'-source, where Y is uniformly distributed and
independent of X. Cond is strong if HS (Cond(X,Y)|Y) >k, and is lossless if k' =k + d.

We say that Cond is a quantum-proof strong condenser if both min-entropies can be taken condi-
tional on an additional quantum system E, correlated with X but independent from Y .

We will make use of the following classical construction of a condenser.

Theorem 2.16 ([18]) For any constant 7 > 0 (1 can be taken to be larger than 1), all integers
n,k such that k < n, and for any € > 0, there exists an efficiently-computable (k,k + t,€) condenser
Cond: {0,1}"x{0,1} — {0,1}™ having seed lengtht = (1+1/7)log(nk/e)+O(1) and m = (1+7)k+2t
output bits.

2.4 Samplers on quantum sources

Sampling is a fundamental step in the construction of extractors in Nisan and Zuckerman [36], which
says that if one samples a random subset of bits from a weak random source, the min-entropy rate
of the source is (nearly) preserved. However, directly choosing a random subset S is too expensive
in the seed length. Instead, we refer to a more randomness-efficient notion known as averaging (or
oblivious) samplers, which have been studied extensively (e.g., [57, [51]). Precisely, let n be the size of
the universe to sample and [n] denote the set {1,--- ,n}, we define the (one-sided) averaging sampler
as follows.
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Definition 2.17 (Averaging Samplers) A function Samp : {0,1}" — [n]* is a (4, 8,7) averaging
sampler if for every function f : [n] — [0, 1] with average value %ZZ f(i) > u, it holds that

t
1 .
Pr(il,---,it)NSamp(Ur) ; Z f(zj) < (1 - 5)/‘ <.
j=1

Note the one-sided formulation, which only requires an upper bound on the probability of a lower
average than expected. Moreover, the above definition of the sampler has a multiplicative error rather
than an additive error, which allows us to get better sample complexity dependence on the error.

We use the following sampler from k-wise independent hashing, implicitly analyzed in [306], [41], [57].
We state the lemma in a convenient form for our purpose.

Lemma 2.18 For every constant o, 5 € (0,1), there exist a constant ¢ > 0 such that the following
holds. For sufficiently large n € N, p,v € (0,1) with v > 2_0“”1%, there is a (u,B,7) averaging
sampler Samp : {0,1}" — [n]' such that

e Samp uses 7 = O((1/c) -log(n/v)) = O(log(n/7)) random bits.

e Samp produces t samples, for any desired t = Q((n*log(1/7))/(aB?w)).

Quantum Source Sampling. Since we are interested in sampling on quantum sources, we define
quantum source samplers as follows.

Definition 2.19 (Quantum Source Samplers) A function Samp : {0,1}" — [n]" is a (u,8,7)
quantum sampler if for every cq source px g over {0,1}" with quantum conditional min-entropy k > un,
it holds that H); (Xsamp(u,)|Ur = a, E) > (1 = B)ut, for every a € {0,1}".

The following result from [23] that states one can use any averaging sampler to sample over quantum
sources with worse parameters, i.e., the additional s term in the entropy rate loss. Let Xg denote the
restriction of X to those coordinates in the set S.

Theorem 2.20 (Corollary 6.19, [23]) Let pxng be a quantum state where X™ = (Xy,--- , X,,) on

T

X" is classical with smooth min-entropy rate R}, (X|E), > p. Let Samp be a (fSamp; BSamps YSamp)
averaging sampler and S be the sampled subset. Assume that k = m < 0.15. Then

RG,J”(XS]SE)p > RLin(X"|E), — 3Bsamplsamp — 2k log 1/k with

min min
1/4

E/ = 2. Z_ﬁSampﬂSampnIOg ‘X‘ 4+ 3’)/Samp'

for all T > 0.

In order to make use of Theorem 2.20] we need to combine groups of X; into big chunks and then
sample over these chunks. We will formulate this idea in Section @l
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3 Classical condensers are quantum-proof

This section is devoted to the proof of our first main result, which establishes a general reduction
showing that any strong condenser is automatically quantum-proof, with a small loss in parameters.
Precisely, we show the following.

Theorem 3.1 Let Cond be a classical (k,k',€) strong condenser. Then Cond is also a (k, (k' —
log(1/(2€)))/2,€) strong condenser against quantum adversaries.

Before giving the proof of the theorem we state a couple interesting corollaries which follow by
plugging in know constructions of strong classical condensers. Using a condenser due to Guruswami-
Umans-Vadhan, with parameters stated in Theorem (take 6 = 1/7), we obtain the following,
which is a slightly stronger statement of Corollary [[.41

Corollary 3.2 For all 6 > 0 and integers n,k such that k < n, for any € > 0, there exists an
efficiently-computable quantum-proof (k,k/2—1og(4/¢), €) strong condenser Condguy: {0,1}"x{0,1}! —
{0,1}™ having seed length t = (1 + §) log(nk/e?) + O(1) and m = (1 + 1/8)k + 2t output bits.

Proof. Choosing 7 = 1/6 in Theorem gives an efficiently-computable (k,k + t,€) condenser
Condguy: {0,1}"x{0,1}t — {0, 1}™ with seed length t = (1+6) log(nk/e)+O(1) and m = (1+1/8)k+
2t output bits. By [10, Lemma 4.8] the same is automatically a (k, k—log(2/+/€), 31/€) strong condenser.
Applying Theorem [B.1] we deduce that Condguy is a quantum-proof (k, (k — log(4/€)/2,31/€) strong
condenser. Renaming € < 3y/¢ and updating parameters accordingly completes the proof. |

We note that in case one is interested in fully optimizing the seed length, a different application
of the results of [I8] gives us the following corollary.

Corollary 3.3 For all integers k < n and ¢ > 0 there exists an explicit quantum-proof (k,k/2 —
log(2/e), €)-strong condenser Cond: {0,1}" x {0,1}¢ — {0,1}™ with d = log(nk/e) + 1 and m =
d(k +2).

We now give the proof of Theorem [B.11

Proof. [Theorem B.I] We first set some notation. Let X be a random variable in {0, 1}", taking value
x with probability p,. Let p, be the state of E conditioned on X = z, unnormalized (ie Tr(p,) = pg).
The state of the system before applying the condenser is ) |z)(x| ® py. Afterwards, it is

p = pzvyE = 2_tz |2) (2| @ |y)(y| ® p¥,
Z7y

where p? = > Clay)=z P
We now define a possible classical adversary to the condenser. The classical adversary measures
Pz using the measurement (known as the pretty good measurement) with POVM elements
-1/2  —1/2
My = pp / pwPE/ )
where pp = > p. (note that pg is a density matrix). This classical adversary obtains outcome z’
with probability

/

—-1/2 —-1/2
q(a',x) = My, pz) = Tr(pg / P Pg " Px)-

12



Upon receiving y, she guesses 2/ = C(2/,y) for the value of z. Let
op = Y pla'|a) |2’} (2|
m/

describe the side information of the classical adversary. Clearly Hoo(X|E) > k — Hoo(X|X') > k.
Since C is assumed to be a (k, k', €) strong condenser, it must be that HS (C(X,Y)|YE') > k. In
particular, if we define a set B C {0,1}" of “heavy hitters” by

_ {Z c {O, 1}m . 2—tZTr(p—l/2pgp—l/2pg) > 2_]gf-i-log(25)p(z)}7
Y

where p(z) = 27¢ Zy Tr(pY) is the marginal output distribution on Z, applying Lemma [3.4] below it

must be that
Z p(z) < e (3.1)
z€B

We are ready to prove the theorem. Reason by contradiction: suppose

e K- 10g2(1 /(20))

min

(C(X,Y)|YE) < (3.2)

Consider the (sub-normalized) state

prve = » 27 tZI (2| ® )y @ p¥.

z¢B

By B it holds that ||pzyvEe — pzyEl|l1 < €. Hence there exists an attack for the adversary: a family
of POVM {M;}. indexed by y such that

D 27y " Ir(MpY) > 2K Heaa)2, (3.3)
z¢B Y

We repeat the steps showing near-optimality of the pretty-good-measurement, up to a square root:

2(—k/+log(25))/2 < Z 9=t Z Tr(Myzpl/4p—1/4pgz/p—1/4pl/4)

2¢B Y
<Z2 tZTr Mz 1/2Mz 1/2 ) /2<22 tZTr 1/2pp 1/2pz)>1/2
z¢B z¢B
< (ZWZ% —1/2 5y ‘l/zpi’))l/Q,
2¢B Y

where the second line is by Cauchy-Schwartz and the third uses 0 < MY < Id for all y, 2. Using the
definition of B, it follows that

<> 27¥ ) < 27%/(2¢),

z¢B

a contradiction. [ |
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Lemma 3.4 Let Z,Z' be two random variables with joint distribution p such that HS; (Z|Z"), > k
for some e,k > 0. Let B= {2 :p(,2) > 27F+108@) (2N}, Then Y epb(?) <e

Proof. By definition, for any distribution ¢,
o Huin(Z17)0 = |, o~ M7= > B, q(2]2)

Therefore the assumption of the lemma implies that there exists a ¢ such that ||p —¢l/,, < € and
E.q(2'|2") < 27%. By Markov’s inequality, for any 1 > 0, Pr,i,(q(2'|2") > 27% /) < n, and this can
be equivalently rewritten as

> q(z") <.

2q(2,2')>27 q(2") /0

Choose 1 = 2e. Using ||p — ¢||,, < € it must be that also

Z p(2') < 2e — ¢,

2p(2,2')>27 K p(") /(2€)

as claimed. [

4 The block sampling and extraction paradigm

Zuckerman’s extractor construction [57] is composed of two fundamental tools. The first is a generic
converter from any min-entropy source to a block-source via sampling. We explain this construction
and its extension to quantum side information in Section A1l The second is a randomness-efficient
extraction procedure from block-sources. We extend this procedure to quantum side information in
Section Finally in Section we combine these two components and prove that Zuckerman’s
construction can be made quantum-proof, with essentially the same parameters as in the classical
setting.

4.1 Conversion to block-sources

The conversion of a min-entropy source to a more structured block-source from [57] is based on the use
of samplers. In the presence of quantum side information the only available tool for quantifying the
effectiveness of the sampling procedure is the main result from [23], which as stated in Theorem
only provides a meaningful bound when the source is thought of as a sequence of symbols taken from
a large enough alphabet. This constraint forces us to sample joint “chunks” of bits from the source.
We proceed with the details.

Quantum sampler over chunks. Combining Lemma 2.I8 and Theorem 2.20] yields the following.

Lemma 4.1 For every constants «, 3,6 € (0,1) such that 20 < « there exists a constant ¢ > 0 such
that the following holds. For every sufficiently large n € N, u,v € (0,1) with p > n=/2H0 and
v > 2-enw'n' =/ log(1/w) qnd t < n such that t = Q(y/(nttalog(1/7))/u?), there is a (1, 8,7) quantum
source sampler Samp : {0,1}" — [n]* that uses r = O(log(n/v)) random bits and returns t distinct
coordinates.

14



Proof. Let px»g be an (n,k) quantum source with min-entropy rate y = Ruyin(X|E), = k/n, ¢
a chunk size parameter to be determined later, and write X = Y = (Y; 0--- o Yy,) for n’ = n/¢
(assume £|n for simplicity). Let S’ C [n/], and let S C [n] be associated with S’ in the straightforward
way.

Let HSamp = M, /BSamp = 5/67 YSamp = (7/2),4/3 The averaging (,U*Sampa /BSampy ’YSamp) sampler from
Lemma 218 yields a set S” of samples over Y™ of cardinality

"n_ _ (" log(1/7)
151 = tsamp = 9 e ).

Now set £ = O(\/(n/tsamp) - (log(1/Bu)/Bp)), with an implied constant large enough so that the
parameter x from Theorem 2.20]

n

B B B
"TSIx e O(log(l/ﬁu))’

satisfies the constraint x < 0.15. The resulting sampler, obtained by splitting the sampled chunks into
bits again, has output length

nltelog(1/~
t=1s1=1s'l=2( #)

and makes use of r = O((1/«) - log(1/7v)) = O(log(1/7)) random bits. The obvious constraint that
t < n imposes the conditions p > n~'/2%9 and v > 9—cn’n'=*/log(1/n) gtated in the lemma. Assuming
these constraints satisfied, our choice of parameters is such that by Theorem the sampled state
PXSamp (s Ur E is 7-close in trace distance from a u(1 — )t-source, conditioned on U, and E. [ |

Block-sources from sampling. We show that any min-entropy source can be converted to a block-
source by sampling. We use the same procedure, called a converter in [44], as introduced in [36]. The
procedure is described in Fig. [l (the parameters (pi, 8;,7i)i=1,..+ will be chosen later). The analysis
is also essentially the same, but we repeat it here as the parameters of the sampler are not identical.

Theorem 4.2 Let the converter Conv : {0,1}" x {0,1}"2 x --- x {0,1}"* — (S1,S92,---,S;) be as
in Fig. . Let 0 <7 <1, ki =k— (3 ;t) —log(l/7) and p; = ki/n; for i € {1,...,t} Then if

(S1,...,8) = Conv(U,,,...,Uy,) and pxng is a quantum (n, k)-source, the state PXg, X5, Xg,51 525 E
1s tT-close, in trace distance, to a state OXg, Xy Xs, 51525 E such that for each si,...,s:, the state
OX, - Xay|S1=s1,...5=s:E 15 @ (k1,... ki) smooth quantum block-source with smooth error (yi,...,%)

and ];Z = (1 — Bz)ﬂz’sz‘

Proof. Let p = PXs, Xy X5, 51525t - We first apply the chain rule for quantum min-entropy,
Lemma[2.7], and the quantum sampling lemma, Lemma[4.1] to each block ¢ to show that the quantum
sampler QSamp, “works” most of time. We then show how to modify p to a t7-close state o with the
desired properties.
For every s<; = (s1,...,8i—1), by Lemma [Z7] (applied with W = X,_,),
Pr [Hypin(Xs5X

S<i S<i|
~Xso;

Xs., =25, B)) > Hyin(X|E), — log dim(X,_,) — log(1/7)]

Tses

>1-7. (4.1)
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Converting min-entropy sources to block-sources
Let pxnp be a quantum (n, k)-source and t a target number of blocks for the block-source.

Let So =0, ng =n, and for i = 1,...,t let n; = n;_1 — |S;_1| and QSamp; : {0,1}"" — S; € [n;]% be
a (i, Bi,7vi) quantum source sampler.

The converter is a deterministic function Conv : {0,1}™ x {0,1}"2 x --- x {0,1}"* — (S1, S2,- -+ ,St)
such that Sy,S5,---,S; are disjoint and constructed as follows.

1. Let S = QSamp, (Uy,).
2. Fori=2,...,tlet S; = QSamp,(U,,) be sampled over the set [n;] = [n] — (S1U---US;_1).

Figure 1: Obtaining a block-source by sampling.

Let us call those xs_, such that the above event holds good. For every s.; and good z;_,, we have

Hmin(X_’Xs<i =Ts_; S<i - 3<i7E)p - Hmin(X_-X

S<i S<i 5<z“X8<i = x5<i7 E)P

>ki=k— th —log(1/7),

j<i
namely the min-entropy rate is at least k;/n; = p;. Thus, for every s.; and good z,_,, QSamp, gives

H%‘

i (X, | X, = x5, Sci = 524, SiE) ) > (1 — Bi)pa] Si| = k;.

5<i

We are ready to show that p = PXs XsyXs,5152-St E is tr-close, in trace distance, to a state
0 = 0Xg Xg,Xg, 5152 E such that for each sq, ..., s¢, OXqy - Xoy|S1=51,.... =5, 1S & (k1,..., k) smooth
quantum block-source with smooth error (y1,...,7). We define o by modifying the state p as follows:
for every classical value (s1,..., s, 2s,,...,2s,) of p, if there exists some prefix z,_; that is not good,
then we replace (zs,,...,2s,) by an independent uniformly random sample of values. Since for every
5<i, the probability that a random x<; ~ X<; has a prefix z-; that is not good is at most 7, by a
union bound, the probability that some x,_, that is not good is at most ¢7. Therefore, p and o are
tT-close in trace distance.

Now, for every fixed (s1,...,s:), we show that OX,, - Xsy|S1=51,....S1=s,F 15 & smooth quantum block-
source with the desired parameters. For every fixed (zs,,...,zs, ,), if some Zs_; 1s not good, then by
construction, Xy, is uniform and independent of the side information E, so clearly H. (Xg,|X;s_, =
Ts_;, S<i = 8<iy SiE)y > k;. On the other hand, if xs_, is good, then H;fin(XSi‘X = Ts_;,S<i =
S<iy SiE), > ki, which implies H. (Xg,|X;s_, = xs_,, S<i = $<i, SiE) s > k;.

min

5<i

S<i

4.2 Extraction from block-sources

We introduce a generic procedure of extraction from (smooth quantum) block-sources. The simple
idea, again taken from [36], is to first extract from the last block in the block-source, then treat the
newly extracted bits together with the original seed as the new seed to extract from the second to last
block of the source, and so on. The complete procedure is described in Figure 2
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Extraction from quantum block-sources

Let X = (Xy1,---,Xy) € {0,1}™ x ---{0,1}"™ and px,..x,z a (smooth) quantum (ki, ko, -, k)
block-source with ¢ blocks.

For i € {1,...,t} let Ext; : {0,1}™ x {0,1}% — {0,1}™ be quantum strong (k;,¢;) extractors such
that d;—; < d; + Z;’:t—i—l—l mj. Let N = ZE:I n; and M = ZE:I m;.

Construct BSExt : {0,1}" x {0,1}% — {0, 1} as follows:

1. Let Y; = Uy, be the seed. Let Z; = Exty(X¢,Y?).

2. For i = 1,...,t — 1 let Y;_; be the length d;_; prefix of the concatenated string
(Ye. Zs, .o Zi—ip1) = (Yiei, Yiei). Let Zy_y = Exty_ (X4, Yi—y).

3. Return Z = (Zl,ZQ,- < ,Zt).

Figure 2: Construction of the block-source extractor BSExt.

Theorem 4.3 Let px,..x,r be a smooth quantum (ki, ..., k) block-source with smooth error (i, ...,%),
and BSExt : {0, 1} x {0,1}% — {0,13M the procedure described in Figure[d Then

t
| PBSEXt (X1, X0) Y)Y E — Unt @ Ug, ® pEHtr < Z(Ei + 27i).
i—1

Proof. By assumption, H"

min

e.g. [I2, Lemma 3.5] we get

(X¢|Xi—1--- X1E), > ky, thus if Y; = Uy, is a uniform seed, using

HpZt}/tthl“‘XlE - Umt ® Udt ® pthl"'XlEHtr < €+ 2.

Now rearrange (Yz, Z;) as (Y;—1, Y;—1) and note that again by definition H % " (X;—1|X¢—o- - X1E), >
k1. Applying Ext;_1, by the triangle inequality and Fact 21 we get

|02 2¥iXe—0X1E = Umyy @ Uy @ Ug, @ px,_pex18 ||, < (66 +279) + (-1 + 21-1).

Repeating this argument ¢ times proves the theorem. |

4.3 Zuckerman’s extractor is quantum-proof

We combine the tools developed in the previous section to show that Zuckerman’s extractor con-
struction is quantum-proof. Let px g be an (n, k) quantum source. For the whole section we assume
the source has min-entropy rate u = k/n that is a positive constant less than 1@ We show how to
construct a strong quantum-proof extractor Exty that uses seed length d = O(log(n/€)) to extract
m = k/2 bits from X for every ¢ > Q(27°(®' ")) for any constant o > 0 (see Theorem for a
complete statement). We do so by iteratively composing extractors using the block-sampling and then
block-extraction framework to improve parameters, starting from the almost two-universal hashing
Extpasn from Corollary This is done in two steps, as follows.

5The construction can be extended to sub-constant rates, but analyzing the constant regime is simpler and will
ultimately be sufficient for our purposes.
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1. In the first step, we combine the block-sampling and then block-extraction framework described
in the previous sections, instantiated with a quantum sampler from Lemma[£.1] with an existing
quantum-proof seeded extractor, the almost two-universal hashing Exty.q, from Corollary
This yields a quantum-proof extractor with seed length O(log(n)log(n/e)) and output length
Q(k), which we denote by Extz!. We then use Lemma 14 to increase the output lenght to k/2;
denote the resulting extractor by Extz!". Note that Exty! is already a significant improvement
over Extyach-

2. In the second step, we repeat a similar procedure as in the first step but in addition to Exty,sh,
we use the improved extractor Extzll from the first step. This yields a quantum-proof extractor
Extz? with seed length O(loglog(n) - log(n/€)) and output length Q(k), which can again be
increased to k/2 by Lemma [ZT4l Iterating log*(n) times we obtain a quantum-proof extractor
Extz!°¢ ()" with seed length O(log(n/e)).

We formalize the above two steps in the following two lemmas.

Lemma 4.4 For every constants a, p € (0,1), for everyn, and ey > 2_0("1%), there exists an efficient
(k = un, €) strong quantum-proof extractor Extyz" : {0,1}" x {0,1}% — {0,1}™ with ¢ = O((logn)- ),
d = O((logn) -log(n/ey)), and m = k/2.

Proof. We first construct an extractor Extz! with the same parameters as Extzll but output length
m = Q(u-k), then apply Lemmal[2Z.T4] to increase the output length to m = k/2 at the cost of increasing
the seed length and error by a factor of Q(1/u).

Extyz! is obtained by composing a sampling step (Theorem E2)) and extraction from block-sources
(Theorem E3) with Extyagy. In other words, Exty! first converts the source into a block source, and
then extracts from the block source using Exty,sn. For this we need to set the parameters for the
converter (Theorem 2] and the block-source extractor (Theorem [3]). The key requirement is for
the size of each block |S;| to be such that each block has the right amount of entropy to perform
block-source extraction. We set the parameters as follows:

e Error parameters 7,7;, and ¢;, for i € [t], are all set to ¢y. The sampling error parameter f3; is
set to 3; = 0.01 for every i € [t].

o We set the total “sampling budget” >_,[5;| < 0.01k. This will ensure that k; > k — >, |S;| —
log(1/7) > 0.98k for each i € [t], so pu; = ki/n; > 0.98u, and the sampled blocks have entropy
rate (1 — B;)p; > 0.97pu.

e Let di = O(log(n/ey) be the seed length of Exty.sn, as specified in Corollary We set
|S¢| = 0.02d;/(0.971) so that the sampled block Xg, has 0.02d; bits of entropy, and m; = 0.01d;.
Then we set d;—; = (1.01)7dy, |S;—;j| = (1.01)7 - |S;], and my_; = (1.01)?m,;. We set ¢ to be the
largest possible value such that our requirement ), [S;| < 0.01% holds

This setting of parameters in particular ensures that we can indeed apply Extpa.qn to extract from
the sampled block-source. In addition, the number of blocks ¢t = O(logn), the seed length d =
t-O(log(n/eo)) +di = O(logn - log(n/eo)), the output length > . m; = Q(u - >_;[5;]) = Q(uk), and
the error € = O(t - €g) = O(logn - €y), as claimed. [ |

"In the boundary case where 0.02do/(0.971) > 0.01k, we can directly use Extnasn to extract Q(k) bits from X.
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Lemma 4.5 For every constants p, o € (0,1), for every integers s and n, and any ey > 2_0(”17(1),

there exists an efficient (k = un,e€) strong quantum-proof extractor Extyz® with € = O((logn)® - €),
d = O((log® n) - log(n/e)), and m = k/2.

Proof. We prove the lemma by induction on s. Note that the base case s = 1 is exactly Lemma [£4]
Assuming the lemma holds for s — 1, we prove the lemma for s.

As in the proof of Lemma 4] we first construct an extractor Extz® with the same parameters
as Extz® but output length m = Q(u - k), then apply Lemma 2.I4] to increase the output length to
m = k/2 at the cost of increasing the seed length and error by a factor of Q(1/u). Exty® is constructed
in the same way as Extyz' by composing Theorems and [£.3] but using Extz =" instead of Extpagn
as a starting point.

Recall that in the construction of Extz!, we need ¢t = O(logn) blocks to extract Q(uk) bits of
entropy using Extpash, since Extpasn requires seed length Q(m) to extract m bits. With Extz(s_l)/, we
only need to collect O((log®~Y n)-log(n/eg)) bits of seed from blocks X, ,. .., Xg, using Extyagn, and
then use Extz (=Y’ to extract Q(u - k) bits from the first block X, of length Q(k). This reduces the
number of blocks to O(log®) n) and improves the seed length to d = O((log®) n) - log(n/ey)). More
precisely, we set the parameters as follows.

e We set all the error parameters 7,~;, and ¢;, for i € {2,...,t}, to equal ¢y, We set the sampling
error parameter f3; = 0.01 for every i € [t].

o We instantiate Ext; as Extz®™1' so d; = O((log®~V n) -log(n/e)) and ¢ = O((logn)*~! - ¢).
We keep v1 = €.

e We set the total “sampling budget” to satisfy 3, [S;[ < 0.01k. This implies that k; > k —
>-; 195 —log(1/7) > 0.98k for all i € [t], so p; = ki/n; > 0.984, and the sampled blocks have
entropy rate (1 — £;)p; > 0.974.

e Let d; = O(log(n/ep) be the seed length of Extpash, as specified in Corollary We set
|S¢| = 0.02d;/(0.971) so that the sampled block Xg, has 0.02d; bits of entropy, and m; = 0.01d;.
Then we set di—; = (1.01)7dy, |Si—j| = (1.01)7 - |Sy], and my—; = (1.01)9m; for j < t —1. We
choose t to be the smallest ¢ > 2 such that dt+Z;:2 m; > dy, and we set |S1| = O.Olk—Z;:2 |S;]
to use up the “sampling budget”.

With this setting of parameters we can indeed use Exty,q, to extract from blocks ¢,t—1, ..., 2, and then
use Exty*~1)" to extract from the first block. In addition, the number of blocks ¢t = O(log(®) n), the seed
length d = t - O(log(n/eg)) + dy = O(log'® n - log(n/ep)), the output legnth doimy=Qu-> 2, 1850) =
Q(pk), and the error € = O(t - €g) + €1 = O(log®) n. - &), as claimed. [ |

Theorem 4.6 For every constants o, € (0,1), for every n and ¢ = 2_0(”17(1), there exists an
efficient (k = pn, €) strong quantum-proof extractor Ext : {0,1}" x {0,1}% — {0,1}™ with seed length
d = O(log(n/e)) and m = k/2.

Proof. The theorem follows immediately by setting Ext to Extz* in Lemma BB with s = ©(log* n).
|

Combining the above theorem together with Lemma [ZT3] to extract (almost) all the entropy using

a few independent seeds and then with Corollary gives the following construction of an extractor.

19



Theorem 4.7 For any constants 0 < «,0 < 1, integers n,k and ¢ > 0 such that k = Q(logn +
log!™®(1/€)) there exists an efficient quantum-proof strong extractor Ext : {0,1}" x {0,1}¢ — {0,1}™
where d = (1 + d)logn + O(log(k/€)) and m = (1 — §)k/2.

By applying Lemma 2.13] an additional constant number of times we can extract almost all the
entropy from the seed, at the cost of a constant multiplicative blow-up in the seed length. This proves
Theorem
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