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Within a few days of fertilization, the sea urchin em- 
bryo develops into a small differentiated organism 
consisting of about 1800 cells and capable of feeding, 
swimming, and the further ontogenic transformations 
required in the succeeding weeks of larval growth. A 
number of distinct cell lineages that are clearly special- 
ized at the morphological and functional levels can be 
discerned in the advanced embryo, and many of these 
can be traced back to particular sets of early blasto- 
meres. Classical cell lineage and experimental studies 
(H6rstadius 1939; for review, see Angerer and David- 
son 1984) have shown that certain of these lineages ap- 
pear to be specified, at least in part, in consequence of 
the maternal components inherited in those regions of 
egg cytoplasm occupied by their progenitor cells. Spec- 
ification of others among the early cell lineages clearly 
depends on inductive interactions that occur between 
blastomeres during cleavage. For the molecular biolo- 
gist, as for his predecessors, this rapidly developing and 
simply constructed embryo offers the advantages of 
experimental accessibility. Thus, in respect to direct 
molecular-level analyses of gene activity in the embryo, 
for both specific genes and overall transcript popula- 
tions and their protein products, the sea urchin is at 
present the best known embryonic system (e.g., reviews 
of Hentschel and Birnstiel 1981; Davidson et al. 1982; 
Angerer and Davidson 1984). 

A focus of recent efforts in our laboratory has been 
the acquisition of a library of cloned genes that are 
expressed in the early embryo in a lineage-specific 
manner, for use in examination of the molecular pro- 
cesses by which these genes are differentially specified 
for activity early in development. This is, of course, the 
fundamental and general problem in understanding 
how the zygote gives rise to a functionally differen- 
tiated embryo, even given the well-established cyto- 
plasmic anisotropy of most eggs (reviewed by David- 
son 1976). It is a problem that is far from being solved 
for any embryo. Furthermore, diverse solutions may 
well be utilized in different modes of development. In 
the following, we review current progress on the isola- 
tion and characterization of lineage-specific sea urchin 
embryo genes, and then describe briefly recent studies 
that demonstrate apparently correct ontogenic expres- 
sion of such genes after microinjection into the unfer- 
tilized egg. 

The Sea Urchin Actin Genes 

There are eight actin genes per haploid genome in 
Strongylocentrotus purpuratus, of which two are prob- 

ably pseudogenes (Lee et al. 1984). All of the remain- 
ing six are expressed in the embryo. Of these, one is a 
muscle actin gene (M) and the others code for cyto- 
skeletal (Cy) actin proteins (Durica et al. 1980; Scheller 
et al. 1981; Lee et al. 1984; Shott et al. 1984). Contrary 
to the implication of the clich6 that cytoskeletal actin 
genes are "housekeeping" genes, our analysis of the 
patterns of expression of the individual members of this 
gene family has shown that each gene is expressed ac- 
cording to a specific ontogenic program. The genomic 
linkages of these genes, the nomenclature by which they 
are designated, and their patterns of activity in embryo 
and adult cell types, are summarized in Figure 1. Al- 
though their protein-coding regions are largely 
homologous, these genes differ greatly in the 3' non- 
translated trailer sequences of their mRNAs (Scheller 
et al. 1981; Lee et al. 1984), and this affords a means 
of preparing gene-specific molecular probes to identify 
their transcripts individually. Such probes have been 
utilized in RNA gel blot and in situ hybridization stud- 
ies for determining the spatial and temporal patterns 
of actin gene expression in the embryo (Angerer and 
Davidson 1984; Shott et al. 1984; K.H. Cox et al., in 
prep.). As indicated in Figure 1 the expression of sev- 
eral of the actin genes is strictly lineage specific, and 
none is active ubiquitously. For example, it is shown in 
Figure 2 that transcripts of the M actin gene are con- 
fined to two bilateral patches, each containing 10-20 
cells that are associated with the newly formed coe- 
lomic pouches in the late embryo. These cells are of the 
secondary mesenchyme cell lineage, and their role is 
the construction of the pharyngeal muscle required for 
larval feeding. Expression of the CyIIIa and CyIIIb cy- 
toskeletal actin genes is also confined to a single em- 
bryonic cell lineage, although CyIIIa messages are 
present as well in maternal RNA at the low level of 
about 1200 molecules per egg (J.J. Lee et al., unpubl.). 
They are not spatially localized in the egg (K.H. Cox 
et al., in prep.). After fertilization, newly synthesized 
transcripts of the CylIIa and CyIIIb actin genes appear 
only in aboral ectoderm cells, although on different 
schedules. An in situ hybridization experiment carried 
out with a CyIIIa probe that demonstrates the early 
localization of these transcripts is shown in Figure 3 
(Angerer and Davidson 1984; K.H. Cox et al., in prep.). 

Expression of the CyIIa gene is restricted to mesen- 
chyme cells, and in late embryos to parts of the gut. 
The CyI and CyIIb genes are regulated similarly to one 
another, and their transcripts are more widely distrib- 
uted than those of the other actin genes. These mes- 
sages are also found in small quantities in the unfertil- 
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Figure 1. Organization and expression of actin gene family in the sea urchin S. purpuratus. Actin genes are named M (muscle) 
or Cy (cytoskeletal, i.e., expressed in nonmuscle cell types). Roman numerals designate the three nonhomologous 3' nontrans- 
lated trailer sequences found in the cytoskeletal actin genes, a, b, and c designate different though homologous trailer sequence 
variants. Linkage data are from analyses of cloned genes (Lee et al. 1984; R. Akhust, E Calzone, R. Britten, and E. Davidson, 
in prep.). Expression patterns in adult tissues were determined by RNA gel blot hybridizations, as reported by Shott et al. (1984). 
Expression of actin genes in embryonic cell types is summarized from the in situ hybridization study of K.H. Cox et al. (in 
prep.). 

ized egg, and both genes are then expressed in all 
regions of the early embryo. However, in the ectoderm 
of pluteus-stage embryos, the pattern of expression is 
exactly complementary to that of CyIIIa, as their mes- 
sages are located in the oral out not in the aboral ec- 
toderm. Thus, except for CyI and CyIIb, which func- 
tion similarly, each of the actin genes is utilized in a 
particular set of cells at particular times during embry- 
ogenesis and it may be supposed that each possesses its 
own unique cis-regulatory genomic control apparatus. 

The number of mRNA molecules produced during 

embryonic development by five of the six functional 
actin genes has recently been measured by J.J. Lee et 
al. (unpubl.). These estimates were obtained by a sin- 
gle-strand probe excess titration method (Wallace et al. 
1977; Scheller et al. 1978; Leve t  al. 1980) using RNA 
transcripts synthesized in vitro from an Sp6 promoter 
(Butler and Chamberlin 1982; Melton et al. 1984). Since 
the cell types in which the various actin genes are ex- 
pressed are known, the number of molecules of each 
mRNA species per active cell can be calculated from 
these data. These results are summarized in Table 1. 

Figure 2. Expression of M actin gene in bilateral 
pharyngeal muscle anlage cells, visualized by in situ 
hybridization. Phase photomicrograph of embryo, an 
82-hr pluteus, is shown at the left. (Reprinted, with 
permission, from K.H. Cox, L.M. Angerer, J.J. Lee, 
E.H. Davidson, and R.C. Angerer, in prep.) 
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Figure 3. Expression of CyIIIa actin gene in aboral ectoderm of pluteus-stage embryo (a) and of blastula (b) visualized by in 
situ hybridization. Labeling in other regions is at background level, as shown by control experiments with probes that are not 
represented in sea urchin RNA. Phase photomicrographs (left): aoe, aboral ectoderm; int, intestine; sto, stomach; ore, oral 
ectoderm. (Reprinted, with permission, from Angerer and Davidson 1984.) 

Gene transfer experiments described briefly in a fol- 
lowing section of this report have focused on the Cy- 
IIIa actin gene. This is the single most intensely ex- 
pressed of all the actin genes in the embryo and its 
activity is confined to embryonic and larval stages. 
Thus, it is not utilized at all in the postmetamorphosis 
sea urchin (Shott et al. 1984). As shown in Table 1, late 
in embryogenesis there are about 200 molecules of 
CylIIa mRNA per aboral ectoderm cell. The time 
course of CylIIa gene expression during early devel- 
opment, as established by titration measurements, is 
shown in Figure 4. Within a few hours beginning at the 
very early blastula stage, new transcripts of this gene 
appear, and they accumulate dramatically to a level of 
over 80,000 molecules per embryo. Nuclear run-off ex- 
periments (S. Johnson, R. Britten, and E. Davidson, 

unpubl.) indicate that this accumulation is regulated 
primarily at the transcription level. 

Other Lineage-specific Cloned Genes Active in the 
Sea Urchin Embryo 

Two other sea urchin genes that, like the CyIIIa and 
CyIIIb actin genes, are expressed specifically in aboral 
ectoderm have been characterized by Dr. William Klein 
and his associates (Bruskin et al. 1981, 1982; Lynn et 
al. 1983; Carpenter et al. 1984; S.L. Houck, C.D. Car- 
penter, P.E. Hardin, A.M. Bruskin, and W.H. Klein, 
unpubl.). These genes, called Specl and Spec2 (Spec, 
S. purpuratus  ectoderm), code for intracellular Ca + § 
binding proteins related to troponin C. The aboral ec- 

Table 1 Transcripts per Cell for Five Actin Genes Expressed in the 
Embryo of S. purpuratus 

Gene 

Approximate number of Number of actin Number of actin 
cells transcribing actin transcripts per transcripts per 

mRNA per embryo embryo expressing cell 

Cyl 1000 9 x 104 90 
CyIIa 160 1.4 x 104 90 
CyIIb 1000 5.8 x 104 60 
CyIIIa 470 8.8 x 104 190 
M 20-40 2.5 x 104 650-1300 

Data are from J.J. Lee, EJ. Calzone, R.J. Britten, R.C. Angerer, and E.H. 
Davidson (unpubl.); measurements refer to 65-hr pluteus-stage embryos. 
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Flgure 4; Quantities of Cyllla actin gene transcripts accu- 
mulated during embryonic development. Transcripts were 
measured by solution titration with excess single-strand com- 
plementary probes. Various quantities of whole-embryo RNA 
were reacted with a gene-specific RNA probe synthesized in 
vitro. The shape of the curve for the dashed line is derived 
from relative RNA gel blot data (Shott et al. 1984) (open cir- 
cles). Titration measurements are designated by closed circles. 

toderm descends initially from one animal pole quad- 
rant of the cleavage-stage blast�9 and its differ- 
entiation thus involves the activation in this lineage of 
a whole battery of diverse genes. This battery may in- 
elude many other genes in addition to the examples al- 
ready known, i.e., Specl, Spec2, CylIIa ,  and CylIIb.  

Another  battery of genes active in the embryo of 
which diverse representatives are already in hand is that 
functional in the muscle precursor cells. In addition to 
the M actin genes (Fig. 2), we have isolated the muscle 
myosin heavy-chain gene, using a Drosophila probe 
kindly provided by Dr. Charles Rozek (Case Western 
University). A significant homology between a region 
of the Drosophila and the sea urchin gene sequences is 
shown in Figure 5. As stressed in early considerations 
of the mechanisms underlying specification of cell type, 
pie�9149 control of batteries of distinct genes is an 
essential aspect of developmental gene regulation (e.g., 
see Morgan 1934; Britten and Davidson 1969, 1971). 

Two additional genes that display strict lineage spec- 
ificity in the early embryo have recently been cloned in 
our laboratory. In collaboration with Dr. William Len- 
narz (M.D. Anderson Hospital and Tumor Institute) we 
have recovered from a Xgtll eDNA clone library sev- 
eral probes for the hyalin gene ( J . J .  Robinson et al., in 
prep.). Hyalin is the major component of the tough 
extracellular coat surrounding the sea urchin embryo, 
the hyaline layer. This protein can be solubilized by re- 
moval of Ca** from the medium, as initially discov- 
ered by Herbst (1900). It is stored in the cortical gran- 
ules of the unfertilized egg, released by exocytosis on 
fertilization, and from the gastrula stage on is a prom- 
inent synthetic product of the embryonic ectoderm cells 
(Hylander and Summers 1982; McClay and Fink 1982). 
Its developmental localization is illustrated by indirect 
immunocytofluorescence in Figure 6, using the anti- 
hyalin antibody applied in the detection of hyalin 
cDNA clones in the Xgtll expression library. Initial ex- 

Glu Asp Val Arg Glu 
SU GCC GAG AAG GAC GTC CGT CGA CAG 

e ,  �9 , ,  , . o ,  , ,  , , ,  
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Figure 5. Sequence homology between a region of the sea ur- 
chin and the Drosophila myosin heavy-chain genes. The re- 
gion shown derives from a genomic S. purpuratus recombi- 
nant. Dots indicate identical nucleotides, and where changes 
result in coding differences the respective amino acids are in- 
dicated. In the sequence shown 23/32 amino acids are iden- 
tical. Drosophila sequence kindly provided by Dr. Sanford 
Bernstein (pers. comm.). Data from S. Rose, M. Rosenberg, 
D. Chen, R. Britten, and E. Davidson (unpubl.). 

periments with these probes reveal the expected pattern 
of appearance of hyalin mRNA during development 
and show that this protein probably consists of cross- 
linked subunits of about 50-kD mass. We have also iso- 
lated from the same Xgtll eDNA library a gene for the 
major  spicule matrix protein. The spicules are the 
CaCO3 "bones" that ultimately provide a structural ar- 
mature for the larva, and they are synthesized exclu- 
sively by primary mesenchyme cells and their descen- 
dants. These cells in turn derive from four vegetal pole 
blastomeres (the micromeres) formed at fourth cleav- 
age. S. Benson, N. Crise-Benson, and E Wilt (unpubl.) 
have shown that the protein matrix remaining when 
spicules are demineralized consists of nine proteins, one 
of  which accounts for 60% of the total. The gene for 
this protein has now been cloned and sequenced (H. 
Sue�9 S. Benson, J. Robinson, R. Britten, F. Wilt, and 
E. Davids�9 in prep.), This gene is expressed exclu- 
sively in primary mesenchyme cells, according to in situ 
hybridization (S. Benson, H. Sue�9 L. Stevens, E. 
Davids�9 and F. Wilt, in prep.). The fate of the mi- 
cromere-primary mesenchyme cell lineage appears to 
be determined by localized maternal cytoplasmic fac- 
tors, and hence the spicula matrix protein gene is of 
particular interest. Thus, it affords an opportuni ty to 
test experimentally the hypothesis that activation of this 
gene may be caused by interaction with maternal reg- 
ulators localized initially in the micromeres. 

Though knowledge of lineage-specific gene expres- 
sion in the sea urchin embryo is as yet largely descrip- 
tive, an interesting generality has already emerged. This 
is that specification of the first embryonic cell lineage 
occurs long before lineage-specific gene expression can 
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Figure 6.. Localization of hyalin displayed' by indirect immunofluorescence. Pluteus-stage (74-hr) embryos, fertilized eggs, and', 
unfertilized eggs were fixed, embedded,, and sectioned, then reacted with anti-hyalin rabbit antibody. Bound antibody was 
visualized with fluorescein isothiocyanate (FITC)-conjugated goat antirabbit IgG. (a) Unfertilized eggs. (b)Fertifized eggs, (c) 
Phase-comrast micrograph of 5-t~m sections of pluteus-stage embryos. (d) Immunofluorescence from same pluteus-stage em- 
bryos as in c. (From J.J. Robinson, N. Ruiz-Bravo, H.M. Sucov, B.R. Hough-Evans, R.J. Britten, W.J. Lennarz, and E.H. 
Davidson, in prep.) 

be detected. By specification is meant the process by 
which the differentiative fate of  the descendants of  
gi.ven blastomeres is first established (whether irrever- 
sibly or not is, for this argument, irrelevant). There are 
only a few "target" nuclei when specification takes 
place, while expression occurs after a number of divi- 
sions have intervened, and a meaningful number of 
properly situated blastomeres have been produced. 
Different kinds of  mechanisms can be envisioned. For 
example, genes such as those described here might be 
activated secondarily by the products of pleiotropically 
active master regulator genes, which might be the only 
genes directly affected in the initial specification events. 
Alternatively, such upper-level hierarchy control genes 
might not be involved at all in the early development 
of this embryo, and immediate regulators for the lin- 
eage-specific structural genes could be stored in the egg 
or released by appropriate interblastomere contacts. 
Specification would then consist of the direct interac- 
tion of such regulators with c/s-regulatory sequences of 
lineage-specific structural genes, such as those de- 
scribed in this article. 

Gene Transfer: Expression of Microinjected Cyllla 
Genes 

We recently described a method for introducing 
genes into the sea urchin egg by microinjection, and 

provided evidence that the exogenous DNA is repli- 
cated and stably retained during development (Flytz- 
anis et at. 1985; McMahon et al. 1985). Unfertilized 
eggs are bound by electrostatic attraction to prot- 
amine-coated dishes, and several thousand linearized 
DNA molecules are injected into the cytoplasm of 
each. Sperm is added, and the eggs develop in situ until 
hatching, when they secrete an enzyme that dissolves 
the fertilization envelope, releasing the swimming blas- 
tulae. We have shown that within an hour of injection 
the exogenous DNA has formed random end-to-end 
concatenates, and during cleavage these replicate an 
average of 30- to 100-fold. Incorporation of the exog- 
enous DNA into early blastomere nuclei apparently oc- 
curs with good efficiency, and the replicated sequences 
subsequently persist throughout the several weeks of 
larval life. In about 30~ of larvae, the quantity of ex- 
ogenous DNA continues to increase. Presumably in 
these larvae the DNA had originally been incorporated 
in nuclei of those cell lineages that remain mitotically 
active during larval growth. In several experiments (see 
Flytzanis et al. 1985), the genomic DNA of postmeta- 
morphosis juveniles descendant from the injected eggs 
was examined, and 6-15070 were found to bear inte- 
grated sequences. This fraction probably reflects the 
frequency with which the exogenous DNA is incorpo- 
rated into cells that are ancestral to the imaginal rudi- 
ment from which the postmetamorphosis juvenile de- 
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rives. The integrated DNA has been analyzed in cloned 
isolates from such juveniles, and can be recovered in 
the DNA of their sperm when sexual maturity has been 
attained. Such a gene transfer system could thus be uti- 
lized to produce transgenic lines of sea urchins. In the 
experiments described here, however, we have focused 
on expression of  the exogenous DNA in the embryos 
deriving immediately from the injected eggs. 

Initial studies on the expression of DNA injected into 
sea urchin eggs were reported by McMahon et al. 
(1984). In this work a construct containing the regula- 
tory elements of the gene coding for the 70-kD Dro- 
sophila heat shock protein fused to the bacterial struc- 
tural gene for chloramphenicol acetyltransferase (CAT) 
(Di Nocera and Dawid 1983) was injected into eggs by 
the method described, and the developed embryos were 
subjected to heat stress. It was found that at 25~ a 
temperature at which the endogenous heat shock re- 
sponse is elicited in this sea urchin species, CAT en- 
zyme synthesis was induced in the host embryos. Since 
in Drosophila, from which the exogenous heat shock 
gene sequences derive, this gene is silent at 25~ tran- 
scription of the injected construct must respond to the 
diffusible signals produced or activated in the heat- 
stressed sea urchin cells. A similar result has been ob- 
tained in other heterospecific studies on Drosophila 
heat shock gene expression (e.g., Corces et al. 1981). It 
follows that the exogenous DNA is present in the sea 
urchin embryo in an intracellular location, and in a 
form that permits regulated transcriptional expression. 

We were thus encouraged to investigate the expres- 
sion of sea urchin genes that in normal embryos dis- 
play an easily identified ontogenic pattern of expres- 
sion. An initial choice was the CylI Ia  actin gene, 
which, as shown in Figures 3 and 4, is expressed in a 

spatially and temporally specific way. Figure 7 displays 
the stucture of the in-frame fusion between the CylI Ia  
gene and the CAT gene that was utilized for the follow- 
ing experiments (C. Flytzanis, R. Britten, and E. Dav- 
idson, in prep.). The injected DNA contains several 
kilobases of upstream Cyl I Ia  sequence, plus a large 
(2.2-kb) intron wholly included in the 5' leader of  the 
CylI Ia  transcript and coding sequence for only a few 
of  the aminoterminal amino acids of the actin mole- 
cule. The remainder of the actin structural gene has 
been replaced by the CAT gene. Translation could start 
at either the actin or the CAT ATG codon. About  3000 
molecules of this construct were injected per egg, the 
eggs were fertilized, and at various stages of develop- 
ment aliquots of 20-50 embryos were harvested and the 
CAT enzyme activity present in the embryos measured. 
Results from two such experiments are shown in Figure 
8a and b. CAT activity appears essentially on the 
schedule expected for Cyl I Ia  transcripts (cf. Fig. 4). 
Thus, by 20 hours the amount of CAT enzyme has at- 
tained maximum value. Comparison to an absolute 
standard for CAT enzyme activity (McMahon et al. 
1984) suggests that about 1@ molecules of CAT enzyme 
are produced by the CylIIa-CAT genes per embryo, on 
the average, and assuming the usual translational pa- 
rameters (see Davidson 1976) it may be roughly esti- 
mated that in the 20-hour embryo the quantity of fu- 
sion gene mRNA is on the order of about one-fourth 
of  the natural quantity of Cyl I Ia  message. An impor- 
tant additional observation is shown in Figure 8c. Here 
is presented a parallel series of  experiments in which 
the upstream regulatory sequences of the S. purpuratus 
early H2a histone gene (for review of sea urchin his- 
tone gene regulation see Hentschel and Birnstiel 1981) 
have replaced those of the CylI Ia  gene in a similar CAT 
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Figure 7. CyIIIa-CAT fusion constructs. (T.S.) Transcribed sequence; (U.S.) upstream sequence. A diagram of the linearized 
construct as injected into sea urchin eggs is shown in the top line. The plasmid was linearized at an SphI site 2.5 kb upstream of 
the Y end of the CylIIa transcript. Since the molecules form a random end-to-end concatenate after injection (McMahon et al. 
1985), in half the cases the original 8-kb upstream sequence included in the plasmid will be regenerated. In the second line is a 
diagram of the CyIIla gene, from data of R.J. Akhurst et al. (in prep.). Introns are denoted as thin lines and exons are numbered. 
The third and fourth lines show the sequence of the junction region (shown by the arrow in the second line) between the CylIIa 
and the bacterial CAT genes, with the two in-frame ATG translation start codons, the first deriving from the Cyllla and second 
from the CAT gene. 
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Figure g. CAT expression from fusion genes injected into sea urchin eggs. The genes were injected into unfertilized eggs which 
were then allowed to develop until collected for assay of CAT activity, as described by McMahon et al. (1984, 1985; see text). (a 
and b) Two independent experiments using the CyIIIa-CAT fusion gene depicted in Fig. 7. (C) Control assay containing bacterial 
CAT enzyme. The arrow indicates the monoacetylated CAT product. Other samples contained sea urchin embryo extracts. (UN) 
Embryos derived from uninjected eggs; (I) embryos derived from injected eggs. The number of hours postfertilization and the 
number of embryos in the sample analyzed are indicated, respectively, in the bottom two rows of numerals. (c) CAT activity in 
embryos injected with an u-H2a-CAT construct. This contained all sequence upstream of the H2a gene to the preceding H3 
histone gene, but only 30 nucleotides of coding sequence. 

fusion construct. In embryos injected with this con- 
struct the CAT enzyme appears at 15 hours, just after 
the amount of endogenous H2a mRNA reaches its peak 
value in normal embryos (Mauron et al. 1982). 

In preliminary experiments so far available, the CAT 
activity then disappears, just as does the endogenous 
a-histone message. This result would imply that within 
the sea urchin embryo the newly synthesized CAT pro- 
tein is unstable, and also that the mRNA produced by 
the fusion gene is unstable. The same conclusion fol- 
lows from the constant amount of CAT activity ob- 
served after the blastula stage in embryos injected with 
the CylIIa-CAT fusion. Most significantly for the re- 
suits shown in Figure 8a and b, it is clear from Figure 
8c that the absence of CylIIa-CAT expression at 15 
hours cannot be due to insufficiency of  exogenous 
DNA or inaccessibility of this DNA for transcriptional 
activation in 15-hour (as opposed to 20-hour) embryos. 
Some time is required for accumulation of the CAT 
protein once the message has appeared, and it must 
also be taken into consideration that injected embryos 
are delayed in their development by about one division 
cycle (McMahon et al. 1985). These factors account for 
the minor retardation, in regard to the respective en- 
dogenous transcripts in control embryos, in the ap- 
pearance of CAT enzyme in both the CylIIa-CAT and 
H2a-CAT experiments shown. We may conclude that 
both the exogenous CylI Ia  gene sequences and the ex- 
ogenous c~-H2a sequences promote expression of their 
fusion constructs according to the predicted ontogenic 
schedule. 

It should thus be possible to explore directly the 
mechanism by which lineage-specific genes are acti- 
vated in the early sea urchin embryo. This is not nec- 
essarily the same problem as determining what acti- 
vates genes in the terminal differentiation processes of 
later development, or in the physiologically induced 
genes of adult organisms. The early embryo utilizes 
spatial regulatory information that originates mater- 
nally; it relies to some extent on oriented interblasto- 
mere interactions for lineage determination; and, un- 
like the case in advanced developmental systems, its 
nuclei are equivalent and totipotent,  i.e., until the ini- 
tial events of lineage specification have taken place. 
Furthermore, the results summarized by Solter et al. 
elsewhere in this volume show that some genes destined 
to function early in mouse development may be "im- 
printed" at the chromatin level during gametogenesis. 
The qualitative results illustrated in Figure 8 are al- 
ready instructive in this respect, however, in that they 
suggest that genes activated in the early sea urchin em- 
bryo respond to trans-activators that are at least ini- 
tially present in excess. At  the level of genomic func- 
tion, the key to the mechanisms underlying the initial 
specification of  embryonic cell lineages may lie in the 
nature, origins, and spatial disposition or release of  
such trans-acting embryonic regulatory molecules. 
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