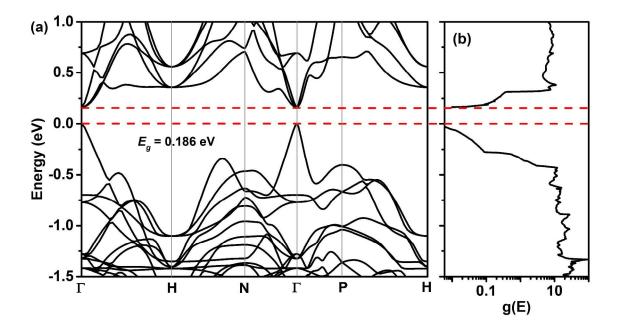
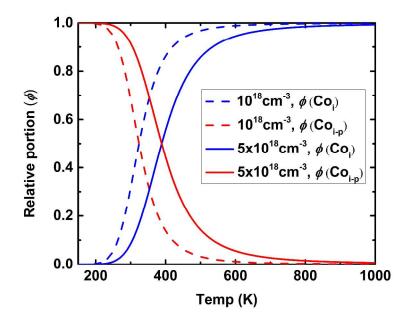
Supporting information

p-type Co interstitial defects in thermoelectric skutterudite CoSb₃ due to the breakage of Sb₄-rings

Guodong Li^{†,‡}, Saurabh Bajaj[§], Umut Aydemir[‡], Shiqiang Hao[‡], Hai Xiao[⊥], William A. Goddard III^{*,⊥}, Pengcheng Zhai[†], Qingjie Zhang^{*,†}, and G. Jeffrey Snyder^{*,‡}


[†]State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China.

[‡]Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.


[§]Environmental Energy & Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

^LMaterials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.

*Corresponding authors: jeff.snyder@northwestern.edu; wag@wag.caltech.edu; zhangqj@whut.edu.cn

Figure S1. (a) The band structure and (b) density of state of $CoSb_3$ from our *ab-initio* calculation using PBE functional. The direct band gap $E_g = 0.186$ eV.

Figure S2. Relative portion of Co_i and Co_{i-p} as a function of the temperature. Solid line and dot line represent 5×10^{18} cm⁻³ and 10^{18} cm⁻³ carriers in the system respectively. The relation portion is calculated by

 $\phi = \frac{1}{1 + \exp(\frac{\Delta H - T\Delta S}{kT})}, \text{ where } \Delta H \text{ is the formation enthalpy change between neutral Co_i and Co_{i-p}.}$

 ΔS is the configurational entropy change defined by equation (3) in the manuscript. The defect thermodynamics calculation is time-independent.