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ABSTRACT

HAT-P-13b is a Jupiter-mass transiting exoplanet that has settled onto a stable, short-period, and mildly eccentric
orbit as a consequence of the action of tidal dissipation and perturbations from a second, highly eccentric, outer
companion. Owingto the special orbital configuration of the HAT-P-13 system, the magnitude of HAT-P-13bʼs
eccentricity (eb) is in part dictated by its Love number (k2b), which is in turn a proxy for the degree of central mass
concentration in its interior. Thus, the measurement of eb constrains k2b and allows us to place otherwise elusive
constraints on the mass of HAT-P-13bʼs core (Mcore,b). In this study we derive new constraints on the value of eb
by observing two secondary eclipses of HAT-P-13b with the Infrared Array Camera on board the Spitzer Space
Telescope. We fit the measured secondary eclipse times simultaneously with radial velocity measurements and find
that eb=0.00700±0.00100. We then use octupole-order secular perturbation theory to find the corresponding

= -
+k 0.312 0.05

0.08
b . Applying structural evolution models, we then find, with 68% confidence, that Mcore,b is less

than 25 Earth masses (M⊕). The most likely value isMcore,b=11M⊕, which is similar to the core mass
theoretically required for runaway gas accretion. This is the tightest constraint to date on the core mass of a
hot Jupiter. Additionally, we find that the measured secondary eclipse depths, which are in the 3.6 and 4.5 μm
bands, best match atmospheric model predictions with a dayside temperature inversion and relatively efficient
day–night circulation.

Key words: methods: data analysis – planets and satellites: atmospheres – planets and satellites: dynamical
evolution and stability – planets and satellites: individual (HAT-P-13b) – planets and satellites: interiors –
techniques: photometric

1. INTRODUCTION

The interiors of gas giant planets provide ground truth for
planet formation theories and the properties of materials under
high pressure and temperature. Accordingly, many studies
aimed at deriving the interior states of giant planets in our solar
system have been undertaken in the past half century(e.g.,
Safronov 1969; Mizuno 1980; Stevenson 1982; Bodenheimer
& Pollack 1986; Pollack et al. 1996; Ikoma et al. 2000;
Hubickyj et al. 2005; Rafikov 2006; Fortney & Nettel-
mann 2010; Nettelmann et al. 2012; Helled & Guillot 2013).
The study of giant planets in our solar system has been recently
augmented by the growing body of mass and radius
measurements for transiting extrasolar planets. These measure-
ments have enabled the first studies of the heavy-element
components of gas giants orbiting other stars, as has been done
for the super-Neptune HATS-7b(Bakos et al. 2015) and the
hot Saturn HD 149026b(Sato et al. 2005), and in the statistical
characterization of heavy-element enrichment in extrasolar gas
giant planets(e.g., Burrows et al. 2007; Miller & Fort-
ney 2011). Nonetheless, characterizing the interior structure
of exoplanets—in particular, determining the presence of a
heavy-element core—remains challenging, since mass and
radius measurements alone cannot in general uniquely
constrain the interior density profile or the chemical makeup
of a planet. In particular, determining whether heavy elements
are concentrated in the core or distributed uniformly within the
envelope is especially difficult for Jupiter-sized planets since

the large, predominantly light-element envelope masks the
signal of the radial distribution of heavy elements.
However, the orbital configuration in a subset of multiplanet

systems is such that the dynamical evolution of the system
depends on the Love number (k2) of its innermost planet(Ba-
tygin et al. 2009). The Love number (k2) quantifies the elastic
deformation response of a planet to external forces and thus
encodes information about its interior structure, including clues
about its core mass(Love 1909, 1911). Utilizing the secular
theory of Mardling (2007), Batygin et al. (2009) showed that,
in a system of two planets orbiting a central body, k2 of the
inner planet can be determined if (i) the mass of the inner planet
is much smaller than the mass of the central body, (ii) the
semimajor axis of the inner planet is much less than the
semimajor axis of the outer planet, (iii) the eccentricity of the
inner planet is much less than the eccentricity of the outer
planet, (iv) the planet is transiting, and (v) the planet is
sufficiently close to its host star, such that the tidal precession is
significant compared to the precession induced by relativistic
effects. The HAT-P-13 system is the first and only currently
known system to fulfill these criteria.
The HAT-P-13 system consists of three bodies in orbit

around a central star with a mass of MA=1.3Me and radius
RA=1.8 Re (Southworth et al. 2012). HAT-P-13b is a low-
eccentricity transiting planet with mass Mb=0.9MJ, radius
Rb=1.5 RJ, and an orbital period of 2.9 days(Southworth
et al. 2012). HAT-P-13c is a radial velocity companion with a
minimum mass Mc=14.2MJ, an orbital period of 446 days,
and an eccentricity of 0.66(Winn et al. 2010). This system also
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exhibits a long-term radial velocity trend indicative of a third
companion located between 12 and 37 au with a minimum
mass of 15–200MJ (Winn et al. 2010; Knutson et al. 2014).
However, Becker & Batygin (2013) demonstrated that the
existence of this third companion does not disrupt the secular
dynamics that allows the eccentricity of HAT-P-13b (eb) to be
related to its Love number (k2b).

Using existing constraints on the orbital eccentricity of
HAT-P-13b from radial velocity measurements, Batygin et al.
(2009) were able to place an upper bound on the core mass
(Mcore,b) of 120M⊕ (41% Mb). In this study we present new
observational measurements of secondary eclipses of HAT-P-
13b (i.e., when HAT-P-13b passes behind its host star)
obtained using Spitzer Space Telescope (SST), which we use
to place stronger constraints on the eccentricity of HAT-P-13b.
We combine these new secondary eclipse times with the most
recent transit and radial velocity measurements of the system
(Winn et al. 2010; Southworth et al. 2012; Knutson et al. 2014)
in order to derive an improved constraint on k2b and Mcore,b.

The paper is structured as follows. First, we describe our data
acquisition, postprocessing, and analysis (Section 2). We then
present the results of the secondary eclipse measurements and
corresponding determination of the eccentricity, k2, core mass,
and atmospheric properties of HAT-P-13b (Section 3). Finally,
we discuss the implications of our findings in Section 4.

2. METHODS

2.1. Observations and Photometric Time Series Extraction

Two observations of HAT-P-13 were taken using the
InfraRed Array Camera (IRAC) on boardSST (Fazio
et al. 2004), one using the 3.6 μm band on UT 2010 May 09
and the other using the 4.5 μm band on UT 2010 June 08, 11
orbits later (PI J. Harrington, Program ID 60003). Each dataset
comprises 68,608subarray images taken with 0.4 s integration
times over 8.7 hr of observation.

We extract the UTC-based Barycentric Julian Date
(BJDUTC), subtract the sky background, and remove transient
hot pixels from each of the images as described in Knutson
et al. (2012) and Kammer et al. (2015). To calculate the flux
from the HAT-P-13 system in each image, we first estimate the
position of the star on the array using the flux-weighted
centroid method(Knutson et al. 2012; Kammer et al. 2015)
with radii ranging between 2.0 and 5.0 pixels in 0.5-pixel
increments. We then calculate the corresponding stellar flux
using a circular aperture with either a fixed or time-varying
radius. We consider fixed radii ranging between 2.0 and
5.0 pixels in 0.5-pixel incrementsand calculate the time-
varying aperture using the square root of the noise pixel
parameter as described in Lewis et al. (2013). This parameter is
proportional to the FWHM of the starʼs point-spread
functionand is calculated for each image using a circular
aperture with radii ranging between 2.0 and 5.0 pixels in 0.5-
pixel increments. We then either multiply the square root of the
noise pixel parameter by a constant scaling value of [0.6, 0.7,
0.8, 0.85, 0.9, 0.95, 1.00, 1.05, 1.10, 1.15, or 1.20] pixels or
add a constant offset of [−0.9, −0.8, −0.7, −0.6, −0.5, −0.4,
−0.3, −0.2, −0.1, 0.0, 0.1, 0.2, 0.3, 0.4, or 0.5] pixels in order
to determine the aperture radius for each image.

2.2. Instrumental Noise Model and Optimal Aperture Selection

We next create a time series for each photometric aperture
where we trim the first 90 minutes (11,904 images) of each time
series in order to remove the well-known ramp that occurs at
the start of each new telescope pointing(e.g., Deming
et al. 2006; Knutson et al. 2012; Lewis et al. 2013; Kammer
et al. 2015). We replace non-numerical (NaN) flux values with
the median flux value of each time series and replace values
that deviate by more than three standard deviations from the
local mean, determined from the nearest 100 points, with the
local mean. We compare this approach to one in which we
instead trim outliers from our light curves and find that our
best-fit eclipse depths and times change by less than 0.2σ in
both channels;0.2% of the measurements were outliers or NaN
in each channel. We then normalize each time series to one by
dividing by the median value.
The photometric time series in both channels is dominated

by an instrumental effect related to IRACʼs well-known
intrapixel sensitivity variations, combined with the pointing
oscillation of the SST. We correct for this effect using pixel-
level decorrelation (PLD), as described by Deming et al.
(2015). This method models the variation in flux intensity in
each image due to this instrumental effect by tracking the
change in intensity over time within a small box of pixels
centered on the flux-weighted centroid. We use a total of
9pixels arranged in a 3× 3 box centered on the position of the
stellar centroid. We remove images from the time series where
one of these 9pixels deviates from its mean flux by more than
3σ (0.3% of the data at 3.6 μm and 0.1% of the data at 4.5 μm).
Most of these deviations correlate with large pointing
excursions in the photometric time series. We identify two
pointing excursions in the 3.6 μm data, one of 0.7 pixels for
10 s and one of 0.5 pixels for 20 s, and one of 0.9 pixels for 10 s
inthe 4.5 μm data.
We divide the flux in each individual pixel by the summed

flux across all 9pixels, weighting each pixel by its contribution
to the flux and thereby isolating the instrument noise from
astrophysical signals(see Deming et al. 2015), and werepeat
this operation for each image in our photometric time series.
We also incorporate a constant and a linear term in time to
model baseline instrument noise. Unlike Deming et al. (2015),
we do not include a quadratic term because we found that the
linear fit has an equivalent rms residualto the quadratic fit, and
so adding the quadratic parameter is not justified. In addition,
the quadratic term was correlated with the eclipse depth in our
model fits.
We fit a combined instrumental noise and eclipse(Mandel &

Agol 2002) model to the light curve for each combination of
photometric apertures listed in Section 2.1 using the “leastsq”
routine in SciPy v0.14.0 with Python 2.7.6 and examine the
residuals from the best-fit solution in order to determine the
optimal aperture set for each bandpass. As discussed in Deming
et al. (2015) and Kammer et al. (2015), we first bin the
photometric light curves and time series for individual pixels
by a factor of 512 (∼4-minuteintervals) before fitting the
model andthen apply the resulting best-fit model coefficients
to the unbinned light curve. This allows us to identify solutions
that minimize noise on longer timescales, which are most
important for determining the best-fit eclipse parameters, in
exchange for a moderately higher scatter in the unbinned
residuals. We allow the center-of-eclipse time, eclipse depth,

2

The Astrophysical Journal, 821:26 (11pp), 2016 April 10 Buhler et al.



pixel weights, constant, and linear terms to vary as free
parameters in our fits.

We excluded from consideration any apertures with an
unbinned rms more than 1.1 times that of the aperture with the
lowest rms in each band, focusing instead on the subset of
apertures with low scatter. We then compared the relative
amounts of time-correlated or “red” noise in the remaining
apertures by calculating the standard deviation of the residuals
as a function of bin size. For light curves with minimal red
noise, we would expect the standard deviation of the residuals
to vary by the ´ -M n M 1( ( )) Gaussian scaling rela-
tion(Winn et al. 2008), where n is the number of points in each
bin andM is the number of bins. We evaluate the actual amount
of red noise in the time series for each aperture by calculating
the least-squares difference between the observed and theore-
tical noise scaling (Figure 1) and select the aperture that
minimizes this quantity in each bandpass.

We next find the optimal bin size to use to fit the light curve
in each channel via the same least-squares approach with which
we find the optimal aperture. After determining the optimal bin
size in each bandpass, we repeat our aperture optimization at

the new bin size. We iterate on searching for the optimal
aperture and bin size until we converge on the optimal pairing
of aperture and bin size for each bandpass.
After optimizing our choice of bin size and aperture, we

found that the 4.5 μm light curve displayed a residual ramp-like
signal despite our decision to trim the first 90 minutes of data.
We therefore experimented with fits where we trimmed up to
3 hr of data from the start of the light curve (i.e., up to the
beginning of the eclipse). We found that the best-fit eclipse
times were correlated with the amount of data trimmed from
the start of the light curve over the full range of trim durations
considered, indicating that the ramp extended to the start of the
eclipse. We then considered an alternative approach in which
we returned to our original 90-minutetrim duration and
deliberately used larger than optimal bin sizes in our fits,
effectively forcing the models to identify solutions with less
structure on long timescales. We found that fits with bin sizes
larger than 100 points (40 s) effectively removed the ramp from
the light curve, avoiding the need to increase the trim interval
to values larger than 90 minutes. These fits resulted in best-fit
secondary eclipse times approximately 2 minutes (0.6σ) earlier
than our original fits with a smaller bin size. We tested for a
residual ramp by repeating the large bin size fits with trim
intervals ranging from 30 minutes up to 3 hrand found no
evidence for a correlation between the trim interval and the
best-fit eclipse time. We then repeated our optimization for bin
size considering bin sizes between 128 and 2048 points in
powers of two. We found that our best-fit eclipse depths and
times varied by less than 0.4σ across this rangeand were in
good agreement with the best-fit values for the 3 hr trim
interval using the smaller bin size. We also considered fits
using a smaller bin size where we included an exponential
function of time to account for the observed ramp, but we
found that this exponential function was a poor match for the
shape of the observed ramp. We speculate that a sum of several
exponentials might provide a better fit(e.g., Agol et al. 2010),
but wefelt that the added free parameters were not justified
given the success of using larger bin sizes. We also find that
enforcing larger bin sizes in the 4.5 μm channel leads to better
agreement of the secondary eclipse timing between the two
channels.
We also tried decorrelating instrumental noise in our data

using pixel mapping (e.g., Ballard et al. 2010; Lewis et al.
2013; Wong et al. 2014). This nonparametric technique
constructs an empirical map of the pixel response across the
chip by comparing the measured flux from each image to those
of other images with similar stellar positions. We model the
pixel sensitivity at each point in our time series using a
Gaussian spatial weighting function over the 50 nearest
neighbors in stellar centroid x and y position and noise pixel
parameter space. The inclusion of the noise pixel parameter in
the weighting ensures that the pixel map incorporates
systematics unrelated to changes in the starʼs position that
affect the shape of the stellar point-spread function. The
number of neighbors was chosen to be large enough to
adequately map the pixel response across the range of star
positions in each eclipse data set while maintaining a
reasonably low computational overhead (Lewis et al. 2013).
Deming et al. (2015) found that PLD is generally more

effective in removing time-correlated (i.e., red) noise than other
decorrelation methods as long as the range of star positions
across the data set remains below ∼0.2pixels. The range of star

Figure 1. Standard deviation of the residuals isnormalized to match the
standard deviation of the unbinned residuals for the PLD performed on data
that was optimally binned before fitting (green), PLD that was not binned
before fitting (blue), and the Wong et al. (2014) pixel mapping fit (red) and
plotted for each bandpass as a function of bin size. The vertical dashed line
indicates the timescale of the eclipse ingress and egress. The expected

´ -M n M 1( ( )) Gaussian scaling relation(Winn et al. 2008) of the
standard deviation of the residuals as a function of the number of points per bin
is also plotted (black dot-dashed line is normalized to the Poisson noise,and
black dashed line is normalized to the standard deviation of the unbinned
residuals for the PLD performed on data that was optimally binned before
fitting; M is the number of bins, n is the bin size). The 1σ uncertainties in the
rms (rms/ M2 ) of the binned PLD model are plotted in light green.
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centroid positions in our eclipse data sets lies below this
threshold, and thereforewe expect PLD to perform optimally.
We also directly compare the performance of PLD for cases
where we fit to either the unbinned or optimally binned
photometry, as well as to the fit acquired from photometry
using the Wong et al. (2014) pixel mapping technique
described in the previous paragraph. We find thatthe optimally
binned PLD haslower levels of correlated noise than the other
methods (Figure 1). In addition, binned PLD gives center-of-
eclipse phases in the two bandpasses that are most consistent
with each other (at the 1.3σ level); the unbinned PLD and pixel
mapping techniques produced center-of-eclipse phases consis-
tent at the 2.6σ and 5.0σ levels, respectively. We therefore
select the PLD technique applied to the binned data set for our
final analysis.

For the fits described in the rest of this paper we use the
following optimal aperture set and bin size. For the 3.6 μm
channel we select a bin size of 21 points (∼8 s), a 3.0-pixel
radius aperture to find the centroid, anda 2.0-pixel aperture to
find the noise pixel parameter, and we add 0.3 pixels to the
square root of the noise pixel parameter to obtain the aperture
within which we sum the flux. For the 4.5 μm channel we
select a bin size of 128 points (∼50 s), a 4.5-pixel radius
aperture to find the centroid, anda 4.0-pixel aperture to find the
noise pixel parameter, and weadd 0.3 pixels to the square root
of the noise pixel parameter to obtain the aperture within which
we sum the flux.

2.3. Eclipse Statistical Errors

We determine the uncertainties on our model parameters
using the MarkovChain Monte Carlo (MCMC) code emcee
v2.1.0(Foreman-Mackey et al. 2013) on Python 2.7.6. We
allow the center-of-eclipse time, eclipse depth, pixel weights,
constant, and linear terms to vary as free parameters in our fits.
We set the uncertainties on individual points in each light curve
equal to the standard deviation of the residuals after subtracting
the best-fit solution in each bandpass. We run the MCMC with
250 walkers for 20,000 steps; the first 5000 steps from each
walker were “burn-in” steps and removed from the chain.

For the observations in the 4.5 μm band we found that the 1σ
uncertainties on the rms overlap with the errors theoretically
expected in the absence of correlated noise on the timescale of
the eclipse ingress and egress (30 minutes; Figure 1) and
therefore report the uncertainties in measurements from the
4.5 μm band directly from the MCMC analysis. However, for
the observations in the 3.6 μm band, the calculated rms
consistently deviates above the expected improvement with
increased binning for timescales longer than 1 minute. We
therefore choose a conservative approach and multiply the
uncertainties in the center-of-eclipse time derived from the
MCMC in the 3.6 μm band by a factor of 1.3, the factor by
which the rms lies above the theoretical improvement at the 30-
minute timescale(Pont et al. 2006; Winn et al. 2007). Since the
timescale of the eclipse is approximately half of the length of
the data set, we are unable to accurately estimate the red noise
on that timescale and so adopt the same factor of 1.3 scaling for
the eclipse depth uncertainty in this band.

2.4. Eccentricity Determination

We next calculate an updated value for the eccentricity of
HAT-P-13b using the approach described in Fulton et al.

(2013). We fit the available radial velocity observations for this
planet from Knutson et al. (2014) simultaneously with the best-
fit transit ephemeris from Southworth et al. (2012) and
measured secondary eclipse times from this study. We first
allow the apsides of each planet (ωb and ωc) to vary
independently and then repeat the fits imposing a prior that
the posterior distribution of ωb matches the posterior distribu-
tion of ωc that was calculated from the fit in which ωb and ωc

were allowed to vary independently. We use the latter version
of the fits in our final analysisand discuss the rationale for this
assumption in Sections 2.6 and 4.1.

2.5. Interior Modeling

We use the MESA code(Paxton et al. 2010), a one-
dimensional thermal evolution model, for interior modeling. In
the pressure–temperature space relevant to HAT-P-13b, MESA
uses the SCvH tables(Saumon et al. 1995) for the equation of
state. We adopt a solar composition envelope and evolve an
array of interior models of HAT-P-13b with varying core
masses and energy dissipation rates. Specifically, we consider
core masses of 0.1–80M⊕ and dissipation rates equal to 0.05%,
0.10%, or 0.50% of the insolation. The thermal dissipation
range we adopt here encapsulates both (i) the energy deposition
typically quoted for hot Jupiters residing on circular orbits
(e.g., ohmic dissipation, kinetic deposition) and (ii) an
additional component of energy arising as a result of the
sustained tidal dissipation(e.g., Bodenheimer et al. 2003;
Batygin et al. 2009). We calculate the insolation (I) using an
equilibrium temperature of 1725 K(Southworth et al. 2012).
We assume that the total mass of HAT-P-13b is the best-fit

value reported by Winn et al. (2010), 0.906 MJ, and
acknowledge that a more recent value(0.899MJ; Knutson
et al. 2014) is available but that the mass–radius relationship
for giant planets is famously independent of mass and so our
choice of the Winn et al. (2010) mass makes a negligible
difference in our analysis. We also note that the errors on the
mass are negligible compared to the uncertainties inherent in
the equation of state(see Fortney & Nettelmann 2010). We
assume a Bond albedo of zero and a core density of 10 g cm−3;
varying the core density by 2 g cm−3 has a negligible effect on
the radial density profile obtained by MESA. We let the MESA
models evolve for 3.0 Gyr, based on the best-fit age of 3.5 Gyr
reported by Southworth et al. (2012). However, the radial
density structure reaches a quasi-steady solution after ∼1 Gyr,
so the results are insensitive to the assumed system age.
For each pairing of core mass and dissipation rate we

calculate k2b based on the density profile, using the equations of
Sterne (1939)6:

h
h

=
-
+

k
R

R

3

2
. 12

2

2
b

( )
( )

( )

R is the radius of the planet, and η2(R) is a dimensionless
quantity that is obtained by integrating the ordinary differential

6 Note that the definition of k2,1 in Sterne (1939) is the apsidal motion
constant, i.e., k2b/2 in the notation used here.
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equation radially in η2(r) outward from η2(0)=0:

h
h h

r
r

h+ - - + + =r
d r

dr
r r

r

r
r6

6
1 0.

2
m

2
2

2
2 2

( )
( ) ( ) ( )

( )
( ( ) )

( )

In the above expression, ρ is the density obtained from the
density distribution ρ(r) output from MESA, and ρm(r) is the
mean density interior to r. Note that if the core density is
constant, then h =r 02 core( ) , where rcore is the core radius(i.e.,
k2 is 3/2 for a body of constant density;e.g., Ragozzine &
Wolf 2009).

We use a linear spline to interpolate the coarse grid of k2b

and Rb values, corresponding to various core mass and
dissipation input pairings evolved in MESA, along both the
core mass axis and the dissipation axis, and extend the grid
from 0.1–80M⊕ to 0–80M⊕ with a linear extrapolation.

Once we determine the model values of k2b and Rb for each
pair of core mass and dissipation, we evaluate the probability of
each core mass and dissipation pairing, given the probability
distributions of the measured values of k2b and Rb for the HAT-
P-13 system. While the probability distribution for Rb is
measured from observation, the probability distribution of k2b

must be calculated. We describe this calculation below.

2.6. Secular Perturbation Theory

The octupole-order secular theory of Mardling (2007),
augmented with a description of a tidallyfacilitated apsidal
advance(Ragozzine & Wolf 2009), can be used to describe the
non-Keplerian components of motion in the HAT-P-13 system
and provides a method by which the relationship between eb
and k2b can be obtained(Batygin et al. 2009). In the HAT-P-13
system, tidal dissipation quickly drains energy and acts to
circularize the orbit of HAT-P-13b. However, the presence of
the distant and highly eccentric HAT-P-13c acts to prevent
complete circularization of the orbit of HAT-P-13b. Instead, the
system tends toward a nearly elliptic equilibrium point, which
acts as an attractor in phase space. As long as the orbits of
HAT-P-13b and HAT-P-13c are coplanar, this minimization is
achieved through aligning the apsides. Apsidal alignment is
typically reached within roughly three circularization time-
scales(Mardling 2007). However, once orbital equilibrium is
achieved, both orbits decay slowly and the orbital configuration
remains quasi-stable for the rest of the lifetime of the system.

In order to maintain alignment of the apsides, the apsidal
precession of both HAT-P-13b and HAT-P-13c must be
equal,that is,

v v v v v= + + + . 3c b b b bsec sec tid GR rot˙ ˙ ˙ ˙ ˙ ( )

The secular apsidal precession of HAT-P-13c, vcsec˙ ,
dominates all other contributions to the total apsidal precession
of HAT-P-13c. The terms that dominate the apsidal precession
of HAT-P-13b are the secular precession, vbsec˙ , the tidal
precession, vbtid˙ , and general relativistic precession, vbGR˙ . The
minor effects due to rotational precession, vbrot˙ , are also
included, but we neglect the negligible contribution to the
apsidal precession from the stellar rotational bulge(e.g.,
Batygin et al. 2009). The equations of apsidal precession are
comprehensively discussed in Ragozzine & Wolf (2009) and

given here for convenience:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

*
v

v v

=
-

´ -
+
-

-

n
M

M

a

a e

a

a

e

e

e

e

3

4

1

1

1
5

4

1 4

1
cos 4

c c
b b

c c

b

c

b

c

c

c
b c

2

2 2

2

2

sec˙
( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

*
v

v v

=
-

´ -
-

-

n
M

M

a

a e

a

a

e

e e

3

4

1

1

1
5

4

cos

1
5

b b
c b

c c

b

c

c

b

b c

c

3

2 3 2

2

sec˙
( )

( ) ( )

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

*v = -

´ + +

-k n
R

a

M

M
e

e e

15

2
1

1
3

2

1

8
6

b b
b

b b
b

b b

2

5
2 5

2 4

btid˙ ( )

( )

⎜ ⎟⎛
⎝

⎞
⎠v =

-
n

e

a

c

3

1
7b

b

b

b
3

2

2

GR˙ ( )

⎛
⎝⎜

⎞
⎠⎟v =

-

k R

a

n a

Gm e2 1
. 8b

b

b

b b

b b

2
5 3 3

2 2
b

rot˙
( )

( )

In the preceding equations, G is the Newtonian gravitational
constant and c is the speed of light. The subscripts “b,” “c,” and
“
*
” denote properties of HAT-P-13b, HAT-P-13c, and the star,

respectively. a is the semimajor axis, e is the eccentricity, n is
the mean motion, R is the radius, and M is the mass. Under the
assumption that the apsides are aligned, the ϖb−ϖc terms in
Equations (4) and (5) are zero. Since all of the system
properties that appear in the equations of apsidal precession
have been measured, with the exception of k2b, Equation (3)
can be rearranged to solve for the Love number of HAT-P-13b
purely in terms of known quantities. Note that it is not
necessary to measure the apsidal precession rate of either HAT-
P-13b or HAT-P-13c;it is sufficient to know only that they are
equal.

2.7. Core Mass Determination

We construct the posterior probability distribution for k2b

from MCMC chains comprising 107 normally distributed
values for each of the measured HAT-P-13 system properties
(Table 1) using Equations (3)–(8). We then multiply the
probability distributions for k2b and Rb obtained from MESA
and map that distribution into a two-dimensional probability
distribution of core mass and heat dissipation. Finally, we
obtain the one-dimensional probability distribution of the core
mass of HAT-P-13b by marginalizing the two-dimensional
distribution over dissipation, assuming a uniform prior on
dissipation between 0.05% and 0.5% I.

2.8. Atmospheric Measurements

We determine the dayside temperature of HAT-P-13b from
the measured secondary eclipse depths in each bandpass. To do
so, we first calculate the stellar flux by integrating a PHOENIX
stellar flux model(Husser et al. 2013) for each bandpass
weighted by the subarray average spectral response curve.7We

7 Curve obtained from “Spectral Response” at http://irsa.ipac.caltech.edu/
data/SPITZER/docs/irac/calibrationfiles.
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utilize a PHOENIX model with an effective temperature of
Teff=5700 K, a surface gravity of glog =4.0, and a modestly
enhanced metallicity of [Fe/H]=0.5. For comparison, HAT-
P-13 has a measured Teff=5720±69 K, [Fe/H]=0.46
±0.07 (Torres et al. 2012), and glog = 4.070 ±0.020
(Southworth et al. 2012). We calculate the flux of the planet as
a fraction of the total system flux based on the depth of the
secondary eclipse. We then find the temperature that gives a
blackbody curve that, when integrated over its respective
bandpass, matches the planetary flux. We calculate the errors
on the temperature by constructing the posterior distribution for
the temperature in each wavelength using MCMC chains of
length 2.5×104, based on the measured eclipse depths and
Rb/R*. The effective dayside temperature was calculated by
taking the error-weighted mean of the best-fit temperatures in
each bandpass.

3. RESULTS

3.1. Secondary Eclipse Measurements

We find that the HAT-P-13b secondary eclipses are centered
at 2,455,326.70818±0.00406 and 2,455,355.87672 ±
0.00226 BJDUTC in the 3.6 and 4.5 μm bands, respectively.
These times are 24.2±5.8 minutes and 15.5±3.3 minutes
earlier (orbital phase 0.49424±0.00139 and
0.49633±0.00079), respectively, than the predicted time
based on a circular orbit (Figure 2), where we have accounted
for the 41 s light-travel time delay(Loeb 2005) and the
uncertainty in the Southworth et al. (2012) ephemeris (9.7
and 11 s for the 3.6 and 4.5 μm observations, respectively). The
eclipse depths for the 3.6 and 4.5 μm channel are 0.0662%
±0.0113% and 0.1426%±0.0130%, respectively (Figure 2).

These secondary eclipse times are consistent at the 1.3σ
level. We therefore take the error-weighted mean and find that
the observed center of secondary eclipse time occurs

17.6±2.9 minutes earlier (orbital phase 0.49582±0.00069)
than the predicted value for a circular orbit.

3.2. Eccentricity and Core Mass

Assuming apsidal alignment, the eccentricities of the orbits
for the two innermost planets in this system are
eb=0.00700±0.00100 and = -

+e 0.6554c 0.0020
0.0021. We use these

eccentricities to calculate a Love number for the innermost
planet k2b( ) of -

+0.31 0.05
0.11, where values of >k 0.302b are

inconsistent with the MESA interior models (i.e., would require
a negative core mass). When we combine this constraint on k2b

with the measured planet radius (Rb), we find that the core mass
of HAT-P-13b is less than 25M⊕ (less than 9% Mb; 68%
confidence interval), with a most likely core mass of 11M⊕
(4% Mb; Figure 3). The constraint from k2b strongly favors
smaller core masses, while the constraint from Rb modestly
favors larger core masses, up to ∼60M⊕ (Figure 3).

3.3. Atmospheric Properties

We find best-fit brightness temperatures of 1680±119 K at
3.6 μm and 2265±150 K at 4.5 μm and compare our
measured eclipse depths in each bandpass withatmosphere
models from Burrows et al. (2008) and Fortney et al. (2008)
(Figure 4). Both models assume a solar composition, plane-
parallel atmosphere with molecular abundances set to the local
thermal equilibrium values. The Fortney et al. (2008) models
assume even heat distribution across the day side and vary the
amount of energy incident at the top of the dayside atmosphere
in order to approximate the effects of redistribution to the night
side. In these models the zero redistribution case is labeled as
“2π” and the full redistribution case is labeled as “4π.”We also
consider versions of the model with and without an equilibrium
abundance of TiO; when present, this molecule absorbs at high
altitudes and produces a temperature inversion in the dayside
atmosphere. The Burrows et al. (2008) models account for the
presence or absence of a dayside temperature inversion by
introducing a gray absorber at low pressures where the opacity
κ can be adjusted as a free parameter. Atmospheric circulation
is included as a heat sink between 0.01 and 0.1 bars, where the
parameter Pn defines the fractional amount of energy
redistributed to the nightside and ranges from 0% to 50%
(from no redistribution to the night side to complete
redistribution across both hemispheres). The Fortney et al.
(2008) model satisfactorily reproduces the observed eclipse
depths in both bandpasses when including a dayside tempera-
ture inversion due to absorption from TiO and relatively
efficient circulation between the day and night sides. Although
none of the Burrows et al. (2008) models are able to match the
observed 3.6μm eclipse depth within the 3σ uncertainty, we
obtain the closest match with models that include an absorber
(κ=0.1) and relatively efficient circulation (Pn=40%).

4. DISCUSSION

4.1. Effects of Coplanarity and Apsidal Alignment

Correlations between the apsidal orientation (ω) and
eccentricity (e) introduce errors on the determination of
eccentricity of HAT-P-13b (eb). Since eb is relatively small,
we obtain a correspondingly poor constraint on ωb of -

+231 42
17

degrees in fits where we allow ωb to vary independently of ωc.
However, since ec is large, we are able to measure ωc with an

Table 1
HAT-P-13 System Properties

eb 0.00700±0.00100
ec -

+0.6554 0.0020
0.0021

Mb (MJ)
a

-
+0.899 0.029

0.030

M i Msinc c J( ) ( )a -
+14.61 0.48

0.46

M* (Me)
b 1.320±0.062

R Rb J( )b 1.487±0.041
R* (Re)

b 1.756±0.046
T dayb ( )b 2.9162383±0.0000022
Tc (day)

a 445.82±0.11
ab (au)

b 0.04383±0.00068
γ (m s−1) - -

+11.76 0.9
0.93

g - -m s day1 1˙ ( ) 0.0545±0.0012
jitter (m s−1) -

+4.7 0.43
0.48

3.6 μm eclipse depth 0.0662±0.0113%
3.6 μm eclipse time (BJDUTC) 2,455,326.70818±0.00406
3.6 μm eclipse offset (minutes) −24.2±5.8
3.6 μm eclipse phase 0.49424±0.00139
4.5 μm eclipse depth 0.1426±0.0130%
4.5 μm eclipse time (BJDUTC) 2,455,355.87672±0.00226
4.5 μm eclipse offset (minutes) −15.5±3.3
4.5 μm eclipse phase 0.49633±0.00079

Notes.
a Knutson et al. (2014).
b Southworth et al. (2012).
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uncertainty of less than a degree (w =  -
+175 .28c 0.22

0.21). The
measured apsidal angles for planets b and c are thus consistent
with apsidal alignment, although the relatively large uncertain-
ties on ωb preclude a definitive determination.

When we allow wb to vary freely in our fits, we find that
= -

+e 0.0108b 0.0035
0.0069. This eccentricity is nonzero at the 3.1σ

level, providing independent confirmation that the orbit of
HAT-P-13b has not yet been circularized and therefore that the
secular orbital coupling mechanism discussed by Mardling
(2007) and Batygin et al. (2009) is applicable to this system.
Note that the uncertainty in eb is more than five times greater
than in the case when we assume apsidal alignment.
If the planets are coplanar, their apsides will align in much

less than the age of the HAT-P-13 system(Mardling 2007;
Batygin et al. 2009). Mardling (2010) showed that an initial
mutual inclination between the orbits of HAT-P-13b and HAT-
P-13c would evolve to a limit cycle in eb and apsidal
orientation, rather than to a fixed eb and apsidal alignment.
That study explored the effects of the inclination angle between
the orbits of HAT-P-13b and HAT-P-13c (Δib–c) on eb and
found that if the orbits are nearly coplanar ( D i 10b c– ),then
the limit cycle in eb will have a width of less than 3% eb and the
width of the limit cycle of the angle between the apsides is 4°
(calculated from Equations (15), (16), and (17) of Mard-
ling 2010). Thus, the eb measured at a particular epoch of the
HAT-P-13 system is insensitive to this limit cycle if Δib–c
is low.
We propose that Δib–c is indeed likely to be small, based on

both observational constraints and theoretical arguments. First,
the exploration by Mardling (2010) found that a configuration
of either (i) prograde, near-coplanar orbits or (ii) 130°Δib–
c135° is strongly favored. Second, Winn et al. (2010)
measured the Rossiter–McLaughlin effect(McLaughlin 1924;
Rossiter 1924) during a transit of HAT-P-13b and found that
the spin axis of the star and the angular momentum vector of

Figure 2. Top row: normalized raw flux (black points) compared to the best-fit instrumental noise model (gray line). Bottom row:best-fit eclipse model (black line)
and flux measurements after dividing out the instrumental noise model (black points). All data and models are plotted with a bin size of 512 measurements
(∼3.5 minutes) for visual clarity.

Figure 3. Probability distribution of the true core mass of HAT-P-13b (black),
along with the most probable core mass (11 M⊕), 68% confidence interval
(0–25 M⊕), and 95% confidence interval (0–47 M⊕). The probability
distribution of the core mass is the product of the constraints on the core
mass probability given by the measurement uncertainty in the Love number
(k2b, dot-dashed line) and the radius (Rb, dashed line).
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HAT-P-13bʼs orbit are well aligned on the sky
(λ=1°.9±8°.6). This is significant because HAT-P-13b
orbits far enough from the star that the orbital precession rate
is dominated by torque from HAT-P-13c rather than the J2
quadrupole moment of the star(Mardling 2010; Winn
et al. 2010). If Δib–c were large, as in case (ii) of Mardling
(2010), nodal precession of HAT-P-13bʼs orbit around HAT-P-
13cʼs orbital axis would ensue, manifesting as cyclic variations
in the angle between stellar equator and the orbital plane of
HAT-P-13b (ψ*,b). Therefore, it is unlikely that a small value
for ψ*,b would be measured at a randomly selected epoch
unless Δib–c is small(Winn et al. 2010). However, the initial
orbital configuration of the system is unknown and the sky-
projected angle (λ), rather than the true ψ*,b, is measured, so it
is not possible to definitively determine Δib–c from the
Rossiter–McLaughlin measurement alone. We therefore argue
that Δib–c must be small, without attempting to place a
definitive upper limit on Δib–c.

A direct measurement of Δib–c may be forthcoming by
studying transit timing variations (TTVs) in the orbit of HAT-
P-13b, since mutual inclination can induce a detectable TTV
signature(Nesvorný 2009). Southworth et al. (2012) found that
there is no compelling evidence for large TTVs in the orbit of
HAT-P-13b, although TTVs of less than 100 s are possible
(Fulton et al. 2011). Payne & Ford (2011) explored theoretical
TTVs for HAT-P-13b and found that HAT-P-13c should
induce TTVs on the order of tens of secondsand that a precise
determination of TTVs would make it possible to discriminate
between the two allowed scenarios (Δib–c near 0° or 130°–
135°) found by Mardling (2010).

Astrometry of HAT-P-13 could also be used to probe Δib–c.
We calculate an expected astrometric signal from HAT-P-13b
of either (i) 61 μas, if the orbit of HAT-P-13c is effectively
edge-on as seen from Earth, or (ii) 86 μas, if it is inclined at
135° as seen fromEarth. Astrometry from the Gaia mission
should be accurate to ∼10 μas(Lindegren 2009) and thus will
be sensitive enough to discriminate between these two
scenarios. Although a direct measurement of the apsidal
precession of the system (i.e., vc˙ ) would allow a direct check

of the secular perturbation theory that allows us to calculate k2b,
we calculate that the precession rate for this planet is on the
order of 10−4 deg yr−1 and is therefore beyond the reach of
current radial velocity observations. However, the presence of a
third companion(Winn et al. 2010; Knutson et al. 2014) in the
system may complicate the determination of Δib–c using any of
these methods.

4.2. Interior Structure

The initial characterization ofMcore,b by Batygin et al. (2009)
was limited by the relatively large uncertainty in the published
eccentricity for the innermost planet. Based on radial velocity
data alone, they concluded that Mcore,b must be less than
120M⊕ at the 1σ leveland argued that core masses greater
than 40M⊕ were disfavored based on the required effective
tidal dissipation (Qb)

8. More recently, Kramm et al. (2012)
used updated measurements of the HAT-P-13 system from
Winn et al. (2010) to find an allowed range of k2b based on the
1σ error on eb by using the polynomial relating eb and k2b given
in Batygin et al. (2009). They then used that k2b range to place
constraints on the interior structure of HAT-P-13b using the
values of Mb and Rb from Bakos et al. (2009) and complex
interior models. Their analysis indicated that Mcore,b is less than
27M⊕. However, caution must be exercised when using the
polynomial equation of Batygin et al. (2009), since the shape of
the curve strongly depends on all of the measured system
parameters (Figure 5). In addition, the polynomial does not
include uncertainties in the eb–k2b relationship due to observa-
tional measurement uncertainties.
Our analysis offers an improved estimate ofMcore,b (less than

25M⊕ with 68% confidence) by taking into account both the
change in the dependence of k2b on eb due to updated
measurements of Mb, Mc, M*, Rb, Tb, Tc, and ec and the effect
of the uncertainties in those measured values on the eb–k2b

relationship and Mcore,b determination, which had been
neglected in previous studies. When combined with new radial

Figure 4. Left: six dayside atmosphere models for HAT-P-13b based on Fortney et al. (2008);right: four models based on Burrows et al. (2008). The measured
secondary eclipse depths at 3.6 and 4.5 μm are overplotted as black filled squares, and the band-integrated model predictions are shown as colored crosses for
comparison. Fortney et al. (2008) modelan atmospheric absorber with TiO and either no circulation (2π), partial circulation (3π), or full circulation (4π). Burrows
et al. (2008) modelopacity with a gray source (κ, units of cm2 g−1) and the fraction of energy redistributed to the night side (Pn; 10% is minimal redistribution, 40% is
near-maximal redistribution).

8 However, their model did not account for other sources of heating such as
ohmic dissipation.
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velocity measurements from Knutson et al. (2014), the
secondary eclipse measurements of HAT-P-13 provide strong
constraints on eb and our assumption of apsidal alignment
further reduces uncertainty on this parameter. Our method also
allows us to explore the full probability distribution for Mcore,b

instead of only placing an upper bound on its value.
There are several caveats worth mentioning in regard to our

estimated core mass. We note that k2 is only the lowest
harmonic describing the internal yielding of a body to external
forcesand is thus an inherently degenerate quantity(as noted
for specific models of HAT-P-13b by Kramm et al. 2012). The
effects of metallicity on atmospheric opacity may also affect
the thermal evolution and thus the radial structure of the
planet(as noted for brown dwarfs by Burrows et al. 2011) but
are neglected here. We adopt a solar composition envelope for
definitiveness and expect that increasing the metallicity will
have only a small effect on our predicted core mass based on
the extensive exploration of this effect on interior models
performed by Kramm et al. (2012). We also note that an
inhomogeneous heavy-element distribution may lead to an
overestimation of Mcore,b (Leconte & Chabrier 2012). Thus, our
estimate is specific to a model with a refractory element core
and a solar composition envelope. Imperfect knowledge of the
equations of state of materials at high pressure and temperature
also introduces additional uncertainties(e.g., Fortney &
Nettelmann 2010) that are not accounted for in this study.

In addition, strong constraints on the internal heat dissipation
are not available, although we can determine how the
uncertainty in the internal dissipation impacts our conclusions
for Mcore,b by recalculating the Mcore,b probability distribution
assuming either extremely high or extremely low dissipation
rates. We find that the main effect of the dissipation rate is to
shift the peak of the probability distribution for Mcore,b lower
for higher values of dissipation, while maintaining a compar-
able distribution shape. When we specify dissipation as 0.05%
I, the probability distribution peaks at Mcore,b=22M⊕. For a
dissipation of 0.50% I, the probability distribution peaks at
Mcore,b=3M⊕. We therefore conclude that uncertainties in the

internal heat dissipation introduce modest, but not over-
whelming, uncertainties in the estimate of Mcore,b (i.e., lack
of knowledge of the heat dissipation yields uncertainties that
are within the 1σ errors from the observational uncertainties).

4.3. Dayside Atmosphere

Schwartz & Cowan (2015) compare the irradiation tempera-
tures ( * *=T T R ab0 ) of a large sample of hot Jupiters to their
measured dayside brightness temperatures (Td) from secondary
eclipse observationsand find that hotter planets appear to have
relatively inefficient day–night circulation. For HAT-P-13b
T0=2469 K, yielding a predicted Td≈2090 K(from Figure 2
of Schwartz & Cowan 2015), which is 2σ above the effective
dayside temperature we measure (1906±93 K). The Td/T0
that we obtain for HAT-P-13b (0.7720±0.0377) indicates
relatively efficient redistribution of energy to the night side for
the case of zero Bond albedo(see Figure 7 of Cowan &
Agol 2011), in good agreement with our findings in Section 3.3.
The T0/Td of HAT-P-13b also fits the trend of decreasing T0/
Td with lower planetary mass found by Kammer et al. (2015)
(their Figure 13). The circulation model of Perez-Becker &
Showman (2013), which depends on the equilibrium tempera-
ture of the planet, also predicts moderately efficient energy
redistribution such that the nightside flux from HAT-P-13b
should be 0.55–0.75 that of its dayside flux, depending on the
drag timescale.

4.4. Comparison to Other Systems

Our analysis indicates that Mcore,b is comparable to the core
masses of Jupiter(Mcore,b<18M⊕; Fortney & Nettel-
mann 2010) and Saturn(Mcore,b=5–20M⊕; Helled & Guil-
lot 2013) in our own solar system. Core accretion models for
gas giant planet formation suggest that minimum core masses
of approximately 10M⊕ are needed in order to form Jovian
planets, although this limit depends on both the composition of
the core and the properties of the gas disk near the planetʼs
formation location(e.g Mizuno 1980; Bodenheimer & Pol-
lack 1986; Pollack et al. 1996; Ikoma et al. 2000; Hubickyj
et al. 2005; Rafikov 2006). Although our observation is
consistent with core accretion theory(Safronov 1969; Steven-
son 1982), our 1σ confidence interval extends down to zero
core mass and therefore does not preclude alternative formation
models such as disk instability(e.g., Boss 1997), nor does it
provide a definitive test of post-formation core erosion(e.g.,
Stevenson 1982; Guillot et al. 2004).
Work has been undertaken to probe the heavy-element

fractions of gas giant planets across a broad range of planets,
from the hot super-Neptune HATS-7b(Bakos et al. 2015) and
hot Saturn HD 149026b(e.g., Sato et al. 2005; Fortney et al.
2006; Ikoma et al. 2006; Burrows et al. 2007; Southworth 2010)
to super-Jupiters(e.g., GJ 436b and HAT-P-2b; Baraffe
et al. 2008). The constraints on the heavy-element component
of these planets are often accompanied by statements about
their inferred core mass, with the caveat that there are
degeneracies between models with heavy-element cores and
models with heavy elements distributed throughout the
envelope(e.g., Baraffe et al. 2008). Avenues for partially
breaking the degeneracies between thermal evolutionary
models with heavy elements distributed throughout the planet
and models with heavy-element cores are available for
extremely metal-rich planets, such as HATS-7b and HD

Figure 5. Relationship between eb and k2b for the HAT-P-13 system
parameters measured by different studies, including the fourth-order poly-
nomial approximation given in Batygin et al. (2009). The best-fit (triangles)
and 1σ (circles) uncertainties in eb reported by each study are plotted on their
respective eb–k2b curves. The curves do not include uncertainties in the eb–k2b

relationship due to measurement errors, unlike our Bayesian model (Figure 3),
which does take them into account.
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149026b. However, in general, measurements of mass and radii
can only be used to constrain the overall fraction of the
planetary mass composed of heavy elements. The inference of
a radial distribution of refractory elementsand therefore
assertions related to the mass of a solid corerequire additional
information (e.g., knowledge of k2). In this regard HAT-P-13b
is unique because it is the only member of the extrasolar
planetary census for which this additional information exists.

Our constraint on the core mass of HAT-P-13b is consistent
with the determination of heavy-element enrichment, with the
accompanying inference of the presence of cores in hot Jupiters
by Torres et al. (2007) and Burrows et al. (2007). Torres et al.
(2007) invoke the presence of heavy-element cores to explain
the small radii of the metal-rich 0.60MJ HAT-P-3b and 0.62MJ

XO-2b, and Burrows et al. (2007) investigated a sample of 14
hot Jupiters and found that a subset of those planets had smaller
radii than allowed by models without either a solid core or
metal-rich envelope. We stress, though, that the independent
measurement of the degree of central mass concentration, such
as done in this paper, is necessary to determine the radial
distribution of heavy elements for Jovian-mass planets.

Finally, we also compare the results of our study to empirical
scaling relations from Miller & Fortney (2011), which are
based on mass and radius measurements from a sample of 15
planets with moderate irradiation levels (incident flux
<2×108 erg s−1) around stars with metallicities ranging from
[Fe/H]*=−0.030 to +0.390. That study found a positive
correlation between the bulk metallicity of a planet and that of
its host star and a negative correlation between a planetʼs mass
and its metallicity. It also provided an empirical relationship
relating the heavy-element complement of giant planets (MZ) to
their host star:

*=  + log M 0.82 0.08 3.40 0.39 Fe HZ10 ( ) ( ) ( )[ ] . Apply-
ing this relation to HAT-P-13b, which orbits a relatively
metal-rich star ([Fe/H]*=0.46±0.07; Torres et al. 2012),
we find an estimated heavy-element mass of -

+
ÅM242 160

568 , i.e.,
84% of the total mass of HAT-P-13b, a much higher percentage
than we determine for the core mass of HAT-P-13b and also a
higher percentage than is found for most of the planets
considered by Miller & Fortney (2011). This may indicate that
the empirical relation cannot be extrapolated to planets around
stars with metallicities higher than those of the stars they
studied, or that there are additional parameters, such as
formation location, that can affect the final core masses for
these planets.

4.5. Future Measurements

Other systems analogous to the HAT-P-13 system, i.e.,
systems that allow us to measure the k2 of the inner planet, will
be useful for exploring the distribution of core masses over a
larger sample of giant planets. In order to exploit the models
utilized in this study, we require that such a planet (i) be
transiting, (ii) have a circularization timescale less than one-
third of the age of the system, (iii) have an equilibrium
eccentricity large enough to be measured with high precisio-
n(Equation (36) of Mardling 2007), and (iv) have a vbtid˙
comparable to or larger than vbGR˙ (Equation (12) of Batygin &
Laughlin 2011). Radial velocity observations of the Kepler-
424(Endl et al. 2014), WASP-41(Neveu-VanMalle et al.
2015), HAT-P-44, HAT-P-45, and HAT-P-46(Hartman et al.
2014) systems indicate that they may have architectures that
would make them amenable to this kind of study. We note that

many of the hot Jupiters detected by ongoing transit surveys
have relatively sparse radial velocity observations, making it
difficult to determine whether or not they have a suitable outer
companion. Knutson et al. (2014) find that approximately half
of all hot Jupiters have massive long-period companions,
suggesting that there is a high probability that future radial
velocity campaigns will discover additional systems analogous
to HAT-P-13b.
Although the current observations of HAT-P-13 provide an

improved estimate of the innermost planetʼs orbital eccentri-
city, the uncertainty in this parameter is still the single largest
contribution to the uncertainty in the Love number. We
therefore conclude that this system could benefit from
additional secondary eclipse measurements.
One of our model limitations is the lack of constraint on the

metallicity of HAT-P-13bʼs envelope(see Kramm et al. 2012).
Therefore,further atmospheric studies are critical to refine our
understanding of HAT-P-13bʼs structure and composition.
Atmospheric circulation models for tidally locked planets
suggest that high-metallicity atmospheres may have less
efficient atmospheric circulation than their lower-metallicity
counterparts(Lewis et al. 2010), which does not appear to be
the case for HAT-P-13b based on the atmospheric models we
perform. Since HAT-P-13 is currently one of the most metal-
rich stars known to host a hot Jupiter, it is intriguing that
neither HAT-P-13bʼs core mass nor its atmosphere suggests
significantheavy-element enrichment. The HAT-P-13 system
will likely provide invaluable leverage when exploring the
relationship between host star and planetary metallicity. In
addition, full-orbit phase curve observations with Spitzer would
also allow us to break degeneracies between the planetʼs
dayside albedo and the efficiency of its atmospheric
circulation(e.g., Schwartz & Cowan 2015). The possibility
of independently constraining both the core mass and the
atmospheric properties of HAT-P-13b makes this planet an
ideal target for future observations.

5. CONCLUSIONS

In this study we present observations of two secondary
eclipses of HAT-P-13b centered at 2,455,326.70818±
0.00406 and 2,455,355.87672±0.00226 BJDUTC. This corre-
sponds to an error-weighted mean eclipse time that is
17.6±2.9 minutes earlier (at orbital phase
0.49582±0.00069) than the predicted time for a circular
orbit, indicating that this planet has a nonzero orbital
eccentricity. We fit the measured eclipse times simultaneously
with the available radial velocity data in order to derive an
eccentricity of eb=0.00700±0.00100 for this planet, under
the assumption that the orbits of HAT-P-13b and HAT-P-13c
are coplanar. Using this eccentricity, we calculate a corre-
sponding constraint on the planetʼs Love number (k2). We then
use this k2 and the measured radius of HAT-P-13b as
constraints on interior structure models, which allow us to
directly estimate the mass of the planetʼs core. Moderate
mutual inclinations (up to ∼10° between the orbits of HAT-P-
13b and HAT-P-13c) do not significantly alter the constraint
from eb on the determination of the core mass.
We calculate that the core mass of HAT-P-13b is less than

25M⊕ (9% of the planetʼs mass; 68% confidence interval),
with a most likely core mass of 11M⊕ (4% of the planetʼs
mass). We also use the secondary eclipse depths to find that the
dayside temperature is 1906±93 K. Comparing these depths
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and the dayside temperature to models, we find that it is likely
that HAT-P-13b has a strong atmospheric absorber and
efficient dayside energy redistribution.

Obtaining the Love number of HAT-P-13b is crucial to
determining its core mass because the presence of a modest
core in a Jupiter-mass planet is typically masked by its
overlying envelope. The unique opportunity to independently
constrain the core mass and atmospheric properties of this hot
Jupiter with a modestly sized core makes the HAT-P-13 system
an important case study for dynamical constraints on the core
masses of gas giant planets.
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