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Abstract — The Ring-Opening Metathesis Polymerization (ROMP) of second-generation dendronized
monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex
[(H2IMes)(pyr)2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa) are
efficiently synthesized with low dispersities (Ð = 1.01-1.17). This study highlights the power of the
metathesis approach toward polymer synthesis in a context where monomer structure can
significantly impede polymerization.

Résumé— La synthèse et la polymérisation par ouverture de cycle par métathèse des monomères
poly(éther) de deuxième génération initié par le catalyseur de ruthénium de troisième génération
— La polymérisation par ouverture de cycle par métathèse (ROMP, Ring-Opening Metathesis
Polymerization) de monomers dendronisés de deuxième génération est décrite. En utilisant le
complexe de ruthénium ayant une activité élevée et une initiation rapide de troisième génération
[(H2IMes)(pyr)2Cl2RuCHPh], des polymères de masses moléculaires modérées à élevées (430 à 2230 kDa)
sont synthétisés de manière efficace avec de basses polydispersités (Ð = 1,01 à 1,17). Cette étude met en
évidence la puissance de l’approche de métathèse vers la synthèse de polymères dans un contexte où la
structure de monomère peut empêcher de manière significative la polymérisation.

INTRODUCTION

Since its discovery nearly six decades ago, olefin metathesis
has evolved into a powerful method for the formation of
C—C bonds, enabling the synthesis of simple to complex
organic molecules [1]. Y. Chauvin proposed the commonly
accepted mechanism for metathesis (Scheme 1), which illus-
trates the crucial involvement of a metal carbene and metal-
lacyclobutane intermediate [2].

Ring-Opening Metathesis Polymerization (ROMP), an
application of the metathesis reaction to polymer synthesis,
has made a tremendous impact on synthetic polymer chem-
istry [3-8]. Well-defined and complex polymer architectures
are readily synthesized through judicious identification of
monomer and initiator. Norbornene and its functionalized
derivatives have proven to be archetypical polymer precursors
because of facile synthesis, affordability, and reactivity [9].
Moreover, the combination of inherent living characteristics
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and practicality associated with ROMP has made it a powerful
tool among chemists and materials scientists [10].

Recently, our interest in ROMP has been directed towards
the synthesis of molecular brush and dendronized block
copolymers and their self-assembly to visible light reflecting
one-Dimensional Photonic Crystals (1D PC) [11-19]. Pho-
tonic crystals are periodic nanostructured materials that pos-
sess a photonic band gap that inhibits select frequencies of
light from propagating through the bulk material [15-19].
The access of periodicities large enough to interact with vis-
ible light is a challenge with block copolymers because of
their inherent macromolecular chain-entanglement [20].
However, though the design and synthesis of polymer
architectures that reduce chain-entanglement, we have
demonstrated that such block copolymers can rapidly

self-assemble to photonic crystals that reflect wavelengths
of light across the visible spectrum and into the IR.

For instance, in the presence of the third-generation
bis-pyridine initiator (G3), an efficient polymerization of
discrete first-generation wedge-type monomers containing
a functionalized exo-norbornene backbone tethered to a 1,
3, 4, 5-tetrasubstituted aromatic pendant/anchor group was
achieved (Scheme 2) [21]. Ratios ([monomer]:[initiator])
ranging from 200-2000:1, provided a broad range of Molec-
ular Weights (MW) (weight average MW (Mw) = 427
to 2932 kDa) along with low dispersities (Ðs)
(PDI = 1.01-1.27). The sequential copolymerization with
an appropriate first-generation wedge-type monomer pro-
vided facile entry to block copolymers capable of self-
assembling to 1D PC. However, at high MW (e.g. Mw =
1390-1940 kDa), self-assembly proved challenging, presum-
ably due to chain entanglement. Thus, we hypothesized that
an additional generation to the existing wedge-type system
would increase polymer rigidity and decrease the propensity
for chain entanglement.

Notably, previous studies have shown that if the linker
length between the polymerizing exo-norbornene group
and the pendant/anchor group is too short (<10 methylene
units), similar second-generation dendronized monomers
could not be efficiently polymerized to high MW polymers
using similar carbene initiators [22]. In this manuscript, we
challenge the ROMP method and showcase the ability of
the highly active G3 initiator to ring-open and polymerize
sterically hindered dendronized MacroMonomers (MM)
with short linker lengths to yield high MW homopolymers
under ambient conditions. We envisioned that the incorpora-
tion of a highly reactive exo-norbornene carbodiimides poly-
merizable functionality (due to the excess ring strain) would
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The Chauvin mechanism of olefin metathesis.
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allow successful polymerization of second-generation
wedge monomers with short linkers.

1 RESULTS AND DISCUSSION

Our approach to second-generation dendronized macromo-
nomers was realized through the execution of standard
organic transformations. Ester 4 was synthesized in a 4-step
sequence starting from methyl gallate 1 (Scheme 3). A
three-fold O-alkylation with 2-ethylhexyl bromide provided
compound 2, which was reduced to its corresponding
benzyl alcohol (3) with Lithium Aluminum Hydride
(LAH). The treatment of 3 with mesyl chloride followed
by nucleophilic displacement of the corresponding
mesylate with 1 yielded the desired ester in 68% yield over
four steps.

The exposure of 4 to alkaline conditions in boiling alco-
holic solvent led to the formation of the corresponding car-
boxylic acid 5 which was isolated in 90% yield
(Scheme 4). N, N’-dicyclohexylcarbodiimide (DCC) cou-
pling with N-(hydroxyethyl)-cis-5-norbornene-exo-2, 3,
dicarboximide furnished the desired second-generation
ethylhexyl wedge dendronized macromonomer (2G-EHW)
in 77% yield.

The ROMP of 2G-EHW led to the controlled synthesis of
second-generation wedge-type polymers capable of being
carried out over a broad range of [2G-EHW]:[G3] ratios.
High conversions and remarkably low Ðs (entries 1-3) were
achieved despite a short linker length (2 methylene units)
and an extensive alkylether periphery (Tab. 1, Fig. 1).

However, the reaction efficiency decreases or fails to
polymerize at ratios greater than 800:1 [2G-EHW]:[G3]
(Fig. 2) [23]. Nonetheless, the controlled synthesis of
polymers with MW nearing 2100 kDa were efficiently
achieved.

Detailed kinetic studies established a complete kinetic
profile for monomer 2G-EHW. A linear increase in MW
with an increase in monomer conversion (Fig. 1a) and nearly
constant Ð was observed during the course of polymeriza-
tion; consistent with living polymerization characteristics
(Fig. 3). Accordingly, for all the [2G-EHW]:[G3] ratios
investigated a first-order dependence on [2G-EHW] was
observed (Fig. 1b).

2 EXPERIMENTAL

2.1 General Considerations

(H2IMes)(PPh3)2(Cl)2RuCHPh was received as a research
gift fromMateria Inc. and converted toG3 via literature pro-
cedures [24]. All other chemicals were purchased from
Sigma Aldrich. Solvents were purified by passage through
solvent purification columns and further degassed with
argon [25]. N-(hydroxyethyl)-cis-5-norbornene-exo-2,3 di-
carboximide was prepared according to literature procedure
[26]. All reactions were carried out in flame-dried Schlenk-
type glassware on a dual-manifold Schlenk line or in a
nitrogen-filled glovebox. NMR spectra were recorded on a
Varian Inova 500 MHz spectrometer. Chemical shifts were
referenced to internal solvent resonances and are reported
as parts per million relative to tetramethylsilane. High reso-
lution mass spectra were provided by the California Institute
of Technology Mass Spectrometry Facility. Compound
2G-EHW was analyzed by MALDI-TOF in reflector mode
using a Voyager DE PRO time-of-flight mass spectrometer
(Applied Biosystems). The MALDI matrix used was
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Synthesis of dendronized monomer 2G-EHW.

TABLE 1

Results of the ROMP of 2G-EHW mediated by G3a

Entry [MM]/[G3] Convb Mw (kDa)c Ð (Mw/Mn)
c

1 200 100 4.29 1.01

2 400 99 1055 1.03

3 600 90 2086 1.17

4 800 65 2230 1.42

5 1000 0 - -

a Polymerizations performed in 1 mL of THF over 2 hours at ambient
temperature. [2G-EHW] = 90 mM.
b Determined by 1H NMR.
c Determined by light scattering.
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dithranol prepared at 10 mg/mL in THF. The instrument
was externally calibrated with the manufacturer
SequazymeTM Kit. Polymer MW were determined utilizing
THF as the eluent by MultiAngle Light-Scattering (MALS)
Gel Permeation Chromatography (GPC) using a mini-
DAWN TREOS light-scattering detector, a Viscostar vis-
cometer, and an OptilabRex refractive index detector, all
from Wyatt Technology. An Agilent 1200 UV�Vis detector
was also present in the detector stack. Absolute MW were
determined using dn/dc values calculated by assuming
100% mass recovery of the polymer sample injected into
the GPC.

2.2 Procedures

To a flame dried 500 mL round-bottom flask equipped with a
magnetic stir bar was added K2CO3 (55.0 g, 398 mmol,
8.00 eq), anhydrous DMF (260 mL), methyl gallate

(9.15 g, 49.7 mmol, 1.00 eq) and 2-ethylhexyl bromide
(53.0 mL, 298 mmol, 6.00 eq). The reaction was fitted with
a water-cooled condenser, placed under an inert atmosphere
of argon and heated to 80�C for 14 h. The reaction was
stopped by the addition of H2O (500 mL). The mixture
was transferred to a separation funnel and the aqueous layer
was washed with Et2O (3 9 300 mL). The organic layers
were combined, washed with brine, dried over MgSO4,
vacuum filtered and concentrated under reduced pressure.
The material was used crude and subjected to reduction
conditions.

To a 500 mL round-bottom flask containing crude ester 2
(49.7 mmol, 1.00 eq) was added anhydrous THF (155 mL).
The solution was cooled to 0�C. Once cool, LAH (3.77 g,
99.4 mmol, 2.00 eq) was carefully added. The reaction
placed under an inert atmosphere of argon and allowed to stir
and gradually warm to room temperature overnight. The
reaction was cooled to 0�C. Once cool, the reaction was
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a) Plot of Mw as a function of 2G-EHW conversion ([2G-EHW]:[G3] = 200 (r), 400 (&), 600 (N), 1000 (d). b) Semilogarithmic plots of
ln([2G-EHWo]/[2G-EHWt]) as a function of time for the ROMP of 2G-EHW by G3. Conditions: [2G-EHW] = 90 mM; [G3] = 450 lM (r),
220 lM (&), 150 lM (N), 110 lM (d). Polymerizations were performed in anhydrous/degassed THF at ambient temperature.
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Kinetic data comparing the polymerization of 2G-EHW.
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stopped by the addition of H2O (20 mL) and diluted with
Et2O. A saturated aqueous solution of Rochelle’s salt was
added and the mixture was aggressively stirred for one hour.
The two layers were separated and the aqueous layer was
washed with Et2O (39 300mL). The organic layers were com-
bined, washed with brine, dried over MgSO4, vacuum filtered
and concentrated under reduced pressure. The material was
used crude for the next step.

To a 500 mL round-bottom flask containing crude alcohol
3 (49.7 mmol, 1.00 eq) was added anhydrous DCM
(165 mL). The solution was cooled to 0�C. Once cool, dis-
tilled Et3N (10.3 mL, 74.6 mmol, 1.50 eq) was added. MsCl
(4.61 g, 59.6 mmol, 1.20 eq) was carefully added dropwise
over two minutes. The reaction was placed under an inert
atmosphere of argon and allowed to stir and gradually warm
to room temperature overnight. The reaction was stopped by

the addition of H2O (150 mL). The two layers were
separated and the aqueous layer was washed with Et2O
(3 9 200 mL). The organic layers were combined, washed
with a saturated aqueous NaHCO3 solution, dried over
MgSO4, vacuum filtered and concentrated under reduced
pressure. To a separate 1 L round bottom flask was added
methyl gallate (2.41 g, 13.1 mmol, 1.00 eq), K2CO3 (14.3 g,
104 mmol, 8.00 eq) and anhydrous DMF (300 mL). The
crude mesylate (49.7 mmol, 1.00 eq) was dissolved in
DMF (50 mL) and added to the reaction flask by cannula
transfer. The reaction flask was equipped with a reflux con-
denser and heated to 80�C for 12 h then cooled to room tem-
perature and stirred for an additional 12 h. The reaction was
stopped by the addition of H2O (300 mL) and EtOAc
(300 mL). The mixture was transferred to a separation funnel
and the aqueous layer was washed with Et2O (3 9 400 mL).
The organic layers were combined, washed copious amounts
of H2O, brine, dried over MgSO4, vacuum filtered and con-
centrated under reduced pressure. The crude material was
purified by flash chromatography (95:5 pentane:Et2O then
80:20 pentane:Et2O) on silica gel to provide the desired
product as a light yellow oil (14.37 g, 68% yield over 4 steps)
Rf = 0.57 (80:20 hexanes/Et2O).

1H NMR (500 MHz; CDCl3)
d 7.36 (s, 2H), 6.67 (s, 2H), 6.65 (s, 4H), 5.14 (s, 2H), 5.07
(s, 4H), 3.86 (s, 3H), 3.84-3.76 (m, 14H), 3.72-3.66
(m, 4H), 1.75-1.25 (m, 81H), 0.96-0.85 (m, 54H); 13C NMR
(126 MHz, CDCl3) d 166.4, 153.5, 152.4, 142.5, 137.6,
137.5, 132.3, 131.7, 125, 109.7, 105.6, 104.8, 75.8, 75.7,
75.3, 71.6, 71.1, 70.9, 52.1, 40.6, 39.4, 30.4, 29.3, 29, 23.8,
23.7, 23.1, 23, 14.2, 14.1, 11.2, 11.1; IR (neat): 2958, 2928,
2873, 2859, 1721, 1591; HRMS-(FAB+)-m/z 1607.262
[(M+H)+ requires 1607.259].

To a round-bottom flask containing 4 (9.90 g, 6.15 mmol,
1.00 eq) was added EtOH (30 mL) and KOH (3.45 g,
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benzoate (4).
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61.5 mmol, 10.0 eq). The flask was equipped with a water-
cooled reflux condenser and heated to 80�C for 5 h. The
reaction was allowed to cool to room temperature and stirred
for an additional 12 h then cooled to 0�C. Once cool, conc.
HCl was added until a neutral pH was achieved. The mixture
was concentrated under reduced pressure then diluted with
EtOAc and brine. The solution was transferred to a separa-
tion funnel and the two layers were separated. The aqueous
layer was washed with EtOAc (3 9 150 mL). The organic
layers were combined, washed with brine, dried over
MgSO4, vacuum filtered and concentrated under reduced
pressure. The crude material was purified by flash chroma-
tography (90:10 pentane:EtOAc) on silica gel to provide
the desired product as a light yellow oil (8.78 g, 90% yield)
Rf = 0.15 (80:20 pentane/EtOAc). 1H NMR (500 MHz;
CDCl3) d 7.43 (s, 2H), 6.66 (s, 2H), 6.65 (s, 4H), 5.15
(s, 2H), 5.07 (s, 4H), 3.85-3.74 (m, 14H), 3.69-3.65
(m, 4H), 1.73-1.26 (m, 81H), 0.94-0.84 (m, 54H); 13C
NMR (126 MHz, CDCl3) d 170.8, 153.7, 152.7, 143.5,
137.7, 132.4, 131.6, 124.1, 110.4, 105.7, 105.1, 75.98,
75.94, 75.5, 71.9, 71.3, 71.1, 40.8, 39.7, 30.7, 30.6, 29.5,
29.3, 29.2, 23.9, 23.8, 23.3, 23.2, 14.3, 14.2, 11.4, 11.3;
IR (neat): 2958, 2928, 2873, 1686, 1591; HRMS-[(FAB+)
m/z 1594.247 requires 1594.251)].

To a round-bottom flask containing 5 (8.78 g, 5.50 mmol,
1.00 eq) was added anhydrous DCM (150 mL) and cooled to
0�C. Once cool, N-(hydroxyethyl)-cis-5-norbornene-exo-2,3
dicarboximide (1.60 g, 6.06 mmol, 1.10 eq), DMAP (335 mg,
2.75 mmol, 0.500 eq) and N, N’-dicyclohexylcarbodiimide
(1.25 g, 6.06 mmol, 1.10 eq) were added. The reaction was
allowed to stir and gradually warm to room temperature
for 12 h. The reaction was stopped by concentration under
reduced pressure. The crude material was purified by
flash chromatography (85:15 hexanes:EtOAc) on silica gel
to provide the desired product as a light yellow oil

(7.80 g, 77% yield) Rf = 0.37 (80:20 hexanes/EtOAc). 1H
NMR (500 MHz; CDCl3) d 7.33 (s, 2H), 6.67 (s, 6H),
6.24 (t, J = 2 Hz, 2H), 5.11 (s, 2H), 5.09 (s, 4H), 4.37 (t,
J = 4.5 Hz, 2H), 3.89 (t, J = 5 Hz, 2H), 3.82-3.74 (m,
14H), 3.67 (dd, J = 2.5, 5.0 Hz, 4H), 3.20 (t, J = 1.5 Hz,
2H), 2.67 (d, J = 1 Hz. 2H), 1.71-1.20 (m, 81H), 0.94-0.83
(m, 56H); 13C NMR (126 MHz, CDCl3) d 177.9, 165.7,
153.4, 152.6, 142.8, 137.8, 137.6, 132.5, 131.8, 124.6,
109.6, 105.5, 105, 76, 75.9, 75.5, 71.5, 71.2, 71.1, 61.9,
47.9, 45.4, 42.7, 40.7, 39.7, 37.5, 30.7, 30.6, 29.5, 29.2,
23.9, 23.8, 23.3, 23.2, 14.3, 14.2, 11.3, 11.2; HRMS: the
detected mass corresponds to a radical cation with m/z
1804.3023 corresponding to [M+Na-H]+ requires 1804.3043.

2.3 Synthesis of Second Generation Dendronized
Homopolymer

To a 4 dram vial was added 2G-EHW (160 mg,
0.0900 mmol, 200 eq). To the vial was added a magnetic
stir bar and taken into a nitrogen filled glovebox. To the vial
was added THF (1 mL). With rapid stirring, 49 lL of an
appropriate concentration of G3 in THF was quickly added
via syringe. For kinetic analysis, a 0.05 mL aliquot of the
reaction solution was taken at predetermined time intervals
and injected into a 1 mL septum sealed vial containing a
solution of 25 lL of ethyl vinyl ether in 0.7 mL of THF.
The aliquot was analyzed by GPC to determine the MW of
the polymer. After the solvent was allowed to evaporate
from the vials, the polymer residue was dissolved in CDCl3
and analyzed by 1H NMR spectroscopy to determine the
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percent of monomer conversion by comparing the peaks cor-
responding to the wedge polymer and the unreacted mono-
mer. The polymerization was stopped by the addition of
ethyl vinyl ether (0.2 mL) and addition of methanol
(25 mL). The mixture was allowed to stir for 1 h. The
polymer was isolated by vacuum filtration and dried under
vacuum at ambient temperature to a constant weight.

2G-EHW Homopolymer: 1H NMR (500 MHz, CDCl3,
25�C): d 7.37-7.33 (m), 6.67-6.61 (m), 5.11-5.04 (m),
3.79-3.73 (m), 3.61 (bs), 1.70-1.56 (m), 1.49-1.24 (m),
0.94-0.80 (m). dn/dc value = 0.1082.

CONCLUSION

The synthesis of wedge-type dendronized polymers was
achieved via the ruthenium-mediated ROMP of second-
generation functionalized exo-norborene poly(ether)
monomers. These substantially hindered monomers were
efficiently polymerized using the highly active G3 ruthe-
nium carbene initiator. Well-defined (Ð = 1.01-1.17) high
molecular weight (2100 kDa) polymers are accessible.
Furthermore, we have demonstrated that a relatively short
two carbon linker length is well tolerated in the ring-opening
event. This investigation has provided the foundation neces-
sary to explore the synthesis of rigid block copolymer sys-
tems with potential for infrared reflecting photonic
properties and will be disseminated in due course.
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