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Gravitational Lensing 

Kendrick M. Smith^1, Asantha Cooray2, Sudeep Das3'4, Olivier Dore5, Duncan 
Hanson1, Chris Hirata6, Manoj Kaplinghat2, Brian Keating7, Marilena LoVerde8-9, 

Nathan Miller7, Gra on a Rocha , , Me ril Shimon Ve , and Oliver Zahn">," 

Abstract 

Gravitational lensing of the cosmic microwave background by large-scale structure in 
the late universe is both a source of cosmological information and a potential contam­
inant of primordial gravity waves. Because lensing imprints growth of structure in the 
late universe on the CMB, measurements of CMB lensing will constrain parameters 
to which the CMB would not otherwise be sensitive, such as neutrino mass. 

In CMB polarization, gravitational lensing is the largest guaranteed source of B-
mode (or curl-like) polarization. Future CMB polarization experiments with sufficient 
sensitivity to measure B-modes on small angular scales (£ ~ 1000) can measure 
lensing with better sensitivity, and on different scales, than could be achieved by 
measuring CMB temperature alone. If the instrumental noise is sufficiently small (< 5 
/xK-arcmin), the gravitational lensing contribution to the large-scale B-mode will be 
the limiting source of contamination when constraining a stochastic background of 
gravity waves in the early universe, one of the most exciting prospects for future CMB 
polarization experiments. High-sensitivity measurements of small-scale B-modes can 
reduce this contamination through a lens reconstruction technique that separates the 
lensing and primordial contributions to the B-mode on large scales. 

A fundamental design decision for a future CMB polarization experiment such as 
CMBpol is whether to have coarse angular resolution so that only the large-scale B-
mode (and the large-scale E-mode from reionization) is measured, or high resolution to 
additionally measure CMB lensing. The purpose of this white paper is to evaluate the 
science case for CMB lensing in polarization: constraints on cosmological parameters, 
increased sensitivity to the gravity wave B-mode via lens reconstruction, expected 
level of contamination from non-CMB foregrounds, and required control of beam 
systematics. 
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1 Gravitational lensing and CMB polarization 
1.1 Introduction 
Much of the progress in cosmology in the last two decades has been due to the well 
understood physics underlying the CMB anisotropy. The CMB promises to remain 
a gold mine for precision cosmology, and two new frontiers lie ahead. The first one 
is the primary purpose of this report, that is the polarized component that offers the 
prospects of detecting primordial gravitational waves and constraining recombination 
physics. Second, large scale structures between the last scattering surface and us alters 
the primary CMB anisotropy, through gravitational lensing (for a recent review of 
the theory see [1]). Other effects like the scattering off hot electrons in large scale 
structure (the Sunyaev-Zel’dovich effects), and through redshifting during the traverse 
of time-dependent potential fluctuations (the ISW effect) are relevant for temperature 
and will be mostly ignored here. In this section, we will show how those two frontiers 
actually merge when looking at CMB polarization at sub-degree angular scales. We 
will present how gravitational lensing of the polarized CMB constitutes a unique 
cosmological probe and the conceptual and practical challenges that arise. The large 
scale density fluctuations in the universe induce random deflections in the direction 
of the CMB photons as they propagate from the last scattering surface to us. The 
displacement angle is related to the projected surface density or, equivalently, the 
projected gravitational potential. This effect can be rewritten as a remapping of the 
primordial unlensed CMB field the following way: 

T(in) = T(n + V0(n)) 
(Q±iU)(n) = (Q±iU)(n + V<f>(n)) (1) 

where the deflection angle V(f> is expressed in terms of the gravitational potential as 

= _ [z™ j k _ Ψ ( n( )-) f D(zrec) - D(z)\ 

where D(z) denotes the comoving distance to redshift z in the assumed flat cosmology 
and Ψ(^,x) is the zero-shear gravitational potential. In the Limber approximation, 
the power spectrum of <j> is given by: 

Since the structures as described by the gravitational potential Ψ are not very 
correlated on large scales, the gravitational lensing effect is only relevant at small an­
gular scales in the CMB. This fact has made CMB lensing observationally challenging 
so far. Nevertheless, using cross correlation between WMAP data and other tracers 
of large scale structures to increase the signal to noise, a detection of gravitational 
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Figure 1: Left panel: Signal angular power spectrum for the E (dashed line) and B (solid 
lines) modes. The black solid dashed line corresponds to the lensing induced 
B modes for all the models considered. The light to dark red colored curves 
correspond to different r values, namely 0.43, 0.1, 0.01 and 0.001. The cos-
mological parameters used for this plot correspond to the WMAP5 ΛCDM+r 
best fit model [9]. Note that r = 0.43 corresponds to the 95% upper limit on 
r using this data-set. Obviously, for any allowed value of r, the lensing sig­
nal will dominate for I > 200. Right panel: Redshift dependence of the two 
principal components (Zx and Z2 respectively) of the lensing potential angular 
power spectrum defined in Eq. (3) (from [10]). These curves illustrate the CMB 
polarization lensing sensitivity to moderate redshifts, i.e. up to z ~ 5. 

lensing in the CMB temperature has been achieved with marginal significance, i.e. 
around 3a [2-4]. A direct detection in temperature is expected to be achieved soon 
with high significance thanks to on-going high angular resolution temperature surveys 
(e.g. ACT [5], SPT [6], Planck [7]). 

Promisingly, it was realized that the lensing of the CMB is more significant in po­
larization than in temperature [8]. This stems from the fact that the lensing effects on 
the CMB can be qualitatively understood as a smearing of the CMB acoustic peaks 
in the angular power spectrum. Since the CMB polarization has sharper acoustic 
peaks than temperature, the gravitational lensing effect is more significant in polar­
ization than in temperature by approximately a factor of two. But the instrumental 
sensitivity required to detect the lensing effect in polarization is nevertheless higher 
than for temperature because of the weak degree of polarization of the CMB in the 
first place. 

However, the lensing of the polarized CMB presents several interesting features. 
First, as seen in Eq. (1), gravitational lensing lensing does not mix Q and U, it will 
nevertheless result in a mixing of the E and B modes because the transformation from 
(Q,U) to (E,B) is non-local [8, 11, 12]. In particular, E mode power will be transferred 
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into B modes, generating in this way the largest guaranteed B-mode signal. This 
particular signal is totally independent from the existence of primordial B modes, i.e. 
the existence of tensor modes in the early universe as illustrated in the left panel of 
Fig. 1. Since for realistic values of r, this B mode lensing signal is likely to dominate 
over the primordial one at sub-degree scales, it might limit our quest from primordial 
B mode [13-15] if not properly taken care of. The procedure of cleaning the lensing 
signal or “delensing” the B modes will be made explicit below. 

Although a contaminant when trying to measure r, CMB polarization by itself 
contains unique cosmological information. Being sensitive to both the geometry of 
the universe and the growth of structure at moderate redshift (z<5) as illustrated 
in the right panel of Fig. 1, the CMB lensing breaks the angular diameter distance 
degeneracy in the CMB. It gives us a unique handle on the universe expansion his­
tory between recombination and moderate redshifts that is a rare probe of early dark 
energy. It provides access to the deepest two dimensional mass maps possible, thus 
anchoring tomographic studies of the evolution of dark energy at lower redshifts. 
CMB polarization lensing also provides a unique opportunity to map the distribution 
of matter on large scales and high redshifts where density fluctuations are still in the 
linear regime and are thus robust cosmological probes. On smaller scales, CMB lens 
reconstruction can directly probe halo mass profiles, without any need to calibrate 
cluster masses against other observables such as SZ temperature [16-24]. Further­
more, since the lensing B-modes allow for an order of magnitude extension to smaller 
scales of the lensing potential as compared to temperature lensing, it is uniquely 
sensitive to parameters that affect structure formation in the late universe, such as 
neutrino masses [10, 25]. 

It must be said however that holding these promises is observationally demanding. 
Gravitational lensing of the polarized CMB is a small scale manifestation of the very 
large scale properties of the intervening mass distribution. It therefore requires both 
high angular resolution (< 10 arcmin) and wide-field surveys (> square degrees) to be 
exploited. This comes of course at an additional cost and complexity for a satellite 
mission that must be quantitatively weighted against the scientific returns. This 
section aims at providing the science elements relevant to this debate. 

1.2 Lens reconstruction and delensing 

The most powerful techniques for extracting the gravitational lensing signal from the 
CMB are based on the idea of “lens reconstruction”, in which the deflection operation 
in Eq. (1) is inverted statistically: starting from the lensed (observed) CMB, one 
defines an estimator fam for the lens potential (which is not directly observable) 
[13-15, 26-36]. 

To understand intuitively how this is possible, imagine that both the lensed E-
mode and B-mode have been measured with high signal-to-noise. Because there is no 
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unlensed B-mode, the deflection operation (Eq. (1)) converts two unobserved fields 
(the unlensed E-mode and the lens potential) into two observed fields (the lensed 
E-mode and B-mode). Inverting the deflection operation, to recover the unobserved 
fields from the observed ones, is possible (at least at the level of counting degrees 
of freedom) because it amounts to solving for two free fields given the values of two 
observed fields.1 

On a technical level, lens reconstruction is possible because the B-mode generated 
by gravitational lensing is highly correlated to the E-mode, with a correlation whose 
“shape” depends on the realization of the lens potential 0. In a fixed realization of 
the lens potential, the EB two-point function is of the form (see App. A): 

("iUCJcMB = £ F X ? ( X t2 L ) 0L (4) 
im 

where we have used the notation ( .)C MB to emphasize that the expectation value is 
taken over CMB realizations in a fixed realization of <f>. (Notation in Eq. (4) and 
elsewhere in the paper follows Dvorkin k Smith, to appear [37].) 

By summing (with minimum variance weighting) over two-point terms in the CMB 
which average to a given mode <f>tm of the lensing potential, we can write down an 
estimator fam for the mode: 

fc = Nf Y TlBM(tl k £)af*al* (5) 
z—' rrii m>2 m 

T4>4> I 1 l-W Î 
WEB 12 l " 1 

(C^B + A^ £ ) (C^ B + Nf2
B) *r = wr^cf-^n^N^ (6» 

This estimator is unbiased, in the sense that: 

Utm) = 4>em (7) 
CMB 

and its covariance is given2 by: 

(firJt'm) = ( C f + Nf*)5u,5mml (8) 

We therefore interpret $lm as a noisy reconstruction of the lens potential (f>, with 
noise power spectrum given by the quantity Nf* defined in Eq. (6). (Note that 
the expectation value (•) in Eq. (8) is taken over realizations of the CMB and lens 
potential.) 

iThis intuitive description fails to capture some qualitative features of lens reconstruction; for 

example tha t lens reconstruction can be done (at lower signal-to-noise) from CMB temperature alone, 

or tha t joint estimation of a gradient and curl mode in the deflection angles is possible. However, it 
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Figure 2: Signal power spectrum Cf for the CMB lens potential, and reconstruction 
noise power spectra for low-noise (1 /xK-arcmin noise, 1 arcmin beam) and high-
noise (10 /xK-arcmin noise, 10 arcmin beam) polarization measurements, and for 
temperature measurements which are cosmic variance limited to ima,x = 3000. 

In Fig. 2, we show some example signal and noise power spectra for the EB 

quadratic estimator, for low-noise (1 /xK-arcmin noise, 1 arcmin beam) and high-

noise (10 /xK-arcmin noise, 10 arcmin beam) polarization measurements. As the in­

strumental sensitivity varies over this range, the lens reconstruction goes from having 

signal-to-noise < 1 on all angular scales, to being a high signal-to-noise reconstruction 

out to sub-degree scales (£ < 1000). For comparison, we also show a noise power spec­

trum for the TT quadratic estimator, assuming cosmic variance limited observations 

out to £max = 3000.3 It is seen that the signal-to-noise of the reconstruction drops 

sharply for £ > 200 even for cosmic variance limited observations, i.e. reconstructing 

the smallest scales in <f> require measuring polarization and cannot be done from CMB 

temperature alone [26]. 

In this report, we will concentrate on two applications of the lens reconstruction 

does give a simple intuitive interpretation of the polarization estimator in the high signal-to-noise 

limit. 
2Eq. (8) is actually an approximation; it includes most, but not all, of the contractions in the 

CMB four-point function. The additional terms can be interpreted as a change of normalization in 

the power spectrum estimator and removed using an iterative method [38]. 
3 We have chosen an £max cutoff here, rather than assuming a noise level and beam size in temper­

ature, because futuristic lens reconstruction measurements from CMB temperature are more likely 

to be limited by foregrounds on small scales than by instrumental noise [39]. 
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estimator <j>tm. First, the power spectrum estimator 

m=—£ 

is useful as a direct probe of large-scale structure, and used to constrain quantities 
such as neutrino mass to which the primary CMB is not sensitive. (Note that we 
define Cf in Eq. (9) with the noise bias term from Eq. (8) subtracted.) Such con­
straints could also be obtained from the B-mode power spectrum CfB [10, 40, 41], but 
performing lens reconstruction allows more cosmological information to be extracted 
from the lensing signal. The overall signal-to-noise is higher, and parameter degen­
eracies can be broken, in cases where two parameters are degenerate in the B-mode 
power spectrum but produce distinct effects on the power spectrum Cf 

The second application of lens reconstruction that we will study in this report 
is “delensing”, or reducing the level of the lensing B-mode as a contaminant of the 
gravity wave signal from inflation. On an intuitive level, delensing can be described 
as follows. Suppose that the instrumental noise is sufficiently low (and foregrounds 
and systematics sufficiently well-controlled) that the lensing B-mode on large scales 
is the dominant source of noise when estimating the tensor-to-scalar ratio (T/S). 
In this low-noise regime, the large-scale B-mode afm has been measured with high 
signal-to-noise, but is a sum of lensing and primordial contributions, and sample 
variance of the lensing component dominates the uncertainty a (T/S). If we have 
a reconstruction J of the lens potential, and we also have measurements of the E-
mode on intermediate angular scales (20 < £ < 2000), then we can simply perform 
the deflection operation (Eq. (1)) to obtain a reconstruction afm of the lensed B-
mode on large scales. We then “delens” the observed B-mode by subtracting this 
reconstruction (afm ->• afm-afm), to obtain a new large-scale B-mode in which the 
level of lensing power has been reduced, while preserving the primordial contribution. 
An estimate of the tensor-to-scalar ratio which is based on this “delensed” B-mode will 
therefore have a smaller uncertainty a (T/S). A more formal version of this delensing 
procedure, which incorporates noise using minimum-variance weighting, will be given 
later in this report (§3, App. A). 

1.3 Foregrounds and systematics 

Studies of lens reconstruction to date have mainly focused on the statistical errors 
that can be obtained assuming that the microwave sky consists of a Gaussian primary 
CMB, lensed by a potential </>. In reality, there are astrophysical sources of radiation 
at microwave frequencies: either diffuse Galactic foregrounds (synchrotron radiation, 
free-free emission, dust emission from either vibrational or rotational modes of the 
grains) or extragalactic signals (point sources, thermal/kinetic SZ). These foreground 
signals are particularly worrying for lens reconstruction because they are not Gaussian 
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fields, and lens reconstruction can be interpreted as constraining lensing via its non-
Gaussian signature in the CMB (e.g., the estimated power spectrum Cf can be 
viewed as a trispectrum estimator [30, 38, 42, 43]). At the time of this writing, 
foreground bias in lens reconstruction is largely unexplored territory (see however [39] 
for some results on temperature foregrounds). In §4 we will argue that in polarization, 
the picture is relatively simple: extragalactic polarized point sources are expected to 
generate the largest foreground bias. We calculate the bias for a realistic model of 
the flux and redshift distribution of radio sources, and argue that foregrounds are not 
expected to bias lens reconstruction significantly, for a wide range of noise levels and 
beam sizes, if the reconstruction is done using polarization. 

Another practical concern for lens reconstruction from CMB polarization (or for 
any measurement which makes use of B-modes in a critical way) is instrumental 
systematics, particulaly beam systematics [44-47]. Beam systematics can be classified 
into reducible (effects which are coupled to the scan strategy) and irreducible (effects 
which persist for an ideal survey), and further subclassified into specific effects (e.g. 
differential pointing). For each beam systematic, the bias to lens reconstruction can be 
computed using the formalism from [48], and the instrumental limit on the systematic 
effect (e.g. as measured from Jupiter maps) can be compared to the threshhold for 
producing a statistically significant bias in cosmological parameters such as mv or 
(T/S). This provides a framework for studying systematics that will be presented in 
detail in §5. 

1.4 Outline 

The outline of this White Paper is as follows. In §2, we study CMB lensing as a source 
of cosmological information, presenting forecasts in cases where lensing adds qualita­
tively new cosmological information (compared to what could be obtained using the 
unlensed CMB alone): neutrino mass, the dark energy of state w, and mean curva­
ture. In §3, we consider the lensing B-mode as a contaminant to the gravity wave 
signal on large scales, and forecast prospects for delensing, or reducing the level of 
contamination using measurements of the small-scale lensing potential to reconstruct 
the lens potential and the lensing B-mode. We also consider “external” delensing 
using datasets other than small-scale polarization: either small-scale CMB tempera­
ture (§3.2) or large-scale structure (§3.3), but conclude that these approaches are not 
promising. In §4 we consider the impact of foregrounds. We argue that polarized ex­
tragalactic point sources are likely to be the dominant foreground component for lens 
reconstruction, and forecast the level of contamination due using realistic modeling of 
radio sources. Finally, in §5, we study beam systematics and compute tolerance levels 
for quantities such as differential pointing or beamwidth, guided by the criterion that 
the systematic error on cosmological parameters such as (T/S) or mv should be a 
small fraction of the statistical error. 
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2 Parameter forecasts 
In this section, we consider CMB lensing as a source of information on cosmological 
parameters. As described in §1.2, the lens reconstruction estimator fam allows us to 
extract a noisy measurement of the CMB lensing potential <f>tm from high-resolution 
observations of the CMB. In effect, we can observe an extra field: the resulting 
measurement of C}* can be folded into a cosmological parameter analysis along with 
the direct measurement of the CMB power spectra CfT, CfE, CfE. 

2.1 Cosmological information in the unlensed C M B 

How does the cosmological information in Cf compare to the information contained 
in the CMB power spectra CfT, CfB, CfE? To answer this question, let us temporar­
ily ignore CMB lensing, and ask what cosmological information is contained in the 
unlensed CMB power spectra. The qualitative picture we will give in this section is 
explored in much greater detail in e.g. [40, 49-53]. 

The shape of the CMB power spectra is directly sensitive to parameters which 
affect the physics of the evolving plasma in the early universe, such as the baryon 
density b/i2, the matter density m/i2, and the shape of the primoridal power spec­
trum (parameterized through a spectral index ns or perhaps additional parameters 
describing “running” of the spectral index with scale). Additionally, the overall ampli­
tude of the power spectra is proportional to Ase~2, where As denotes the amplitude 
of the initial fluctuations and r denotes the optical depth to recombination. This 
introduces a degeneracy between As and r that can be broken “internally” to the 
CMB by measuring the E-mode reionization bump on large scales, which is sensitive 
to r alone. (For more discussion of reionization and CMB polarization, we refer the 
reader to the companion white paper [54].) 

The unlensed CMB contains another parameter degeneracy, the “angular diameter 
distance degeneracy”, which arises when one attempts to constrain “late universe” 
parameters which mainly affect distances and growth after recombination. In this 
section, we will consider the following late universe parameters: the dark energy den­
sity A, dark energy equation of state w, curvature K, and neutrino mass ( £ m „ ) . 
Such parameters only affect the CMB through the angular scale of the acoustic peaks 
4 , which is a ratio of two distances: 

where Dm is the angular diameter distance to recombination and s, is the sound 
horizon, or total distance that a sound wave can travel between the big bang and 
recombination. In a parameter space containing N late universe parameters, one 
combination of the parameters will be well-constrained by the unlensed CMB (via 
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Figure 3: Derivatives of the unlensed CfE power spectrum with respect to the late uni­
verse parameters { „h2,w, K} along the angular diameter distance degeneracy, 
showing that the power spectra remain constant to a good approximation. 

the angular diameter distance A,) , leaving a near-perfect (JV - 1)-fold degeneracy 

between the others. 

Another way of describing the angular diameter distance degeneracy is that if 

we vary any of the parameters { , / i2 , w, K } , adjusting the dark energy density A 

so that the angular diameter distance to recombination Dm remains fixed, then the 

unlensed CMB power spectra remain fixed to an excellent approximation. This is 

directly illustrated in Fig. 3, where we plot the derivative of the unlensed power 

spectrum CfE with respect to each of these three parameters along the degeneracy 

surface Dm =constant. It is seen that for cosmologically interesting step sizes in these 

parameters (say , / i2 = 0.01, w = 0.2, fc = 0.01) the fractional change in CfE 

is very small and the unlensed CMB is essentially unchanged. 

2.2 Cosmological information from C M B lensing 

Lens reconstruction presents the possibility of breaking the angular diameter distance 

degeneracy in the unlensed CMB, by measuring the power spectrum Of* of the lens 

potential. This power spectrum can be written as a line-of-sight integral which in­

cludes both geometric distances and the power spectrum of the evolving potential 
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Figure 4: Derivatives ofCf with respect to the same late universe parameters as in Fig. 3, 
showing a large change in the power spectrum as the parameters are varied: the 
angular diameter distance degeneracy is broken by lensing. 

(Eq. (2)), so it depends on both distances and growth and is generally sensitive to 
late universe parameters such as { ,/i2, w, K}. This can be seen explicitly in Fig. 4, 
where we show the derivative of the power spectrum Of* with respect to each of the 
three parameters, taking the derivative along the degeneracy surface Dm =constant 
as in Fig. 3. Comparing the two figures, it is seen that measurements of the CMB 
lens potential do break the angular diameter distance degeneracy, allowing each of 
these three parameters to be constrained from the CMB alone. 

Constraining late universe parameters through lensing is a future application of 
CMB experiments which measure the small-scale modes, and for experiments which 
measure small-scale polarization in particular. As remarked in the introduction, in the 
limit of low noise and high resolution, CMB polarization experiments can ultimately 
reconstruct the modes of <j>tm with high signal-to-noise across a wider range of angular 
scales (£ < 1000) than are accessible using CMB temperature alone. In the next few 
subsections, we will present forecasts for parameter constraints from CMB lensing, 
using a Fisher matrix formalism described in detail in App. B. 

We include unlensed temperature and polarization power spectra (TT, EE, TE) 
in our analysis and include the lensing information through the deflection angle power 
spectrum. We do not use the lensed power spectra to avoid the complication of the 
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correlation in their errors between different £ values and with the error in Cf. Using 
the lensed spectra and neglecting these correlations could lead to overly optimistic 
forecasts [55]. A previous study [56] found that using lensed spectra instead of the 
unlensed ones (plus <f>tm power spectrum) shrunk the expected errors on w and mv 

for their version of CMBpol by about 40% and 30% respectively. 
We now consider neutrino mass, dark energy and curvature in turn and forecast 

the sensitivity of CMB alone to constrain these late-universe parameters. 

2.3 Neutrino mass 

Neutrinos are a part of the standard model of particle physics and it is now known 
from neutrino oscillation experiments that neutrinos are not massless and that the 
three known mass-eigenstates are not fully degenerate. The atmospheric [57-59] and 
solar neutrino experiments [60-62] as well as experiments with man-made neutrino 
beams [63, 64] have measured two mass-square differences to be close to 8 x 10-5 

eV2 and 3 x 10-3 eV2. This implies that there must be at least one active neutrino 
with a mass greater than about 0.05 eV. Fortuitously, both CMB lensing and cosmic 
shear experiments can get to this level of sensitivity [56, 65]. We note that the lensing 
experiments are sensitive to the sum of the neutrino masses and it is possible that 
the neutrinos are highly degenerate with a sum of masses close to or larger than 0.15 
eV. 
Limits on neutrino mass. The neutrino oscillation experiments measure the mass-
squared differences, but not the sum of the neutrino masses. The most stringent 
laboratory upper bound on absolute neutrino mass comes from tritium beta decay 
end-point experiments [66] which limit the electron neutrino mass to < 2 eV. This 
could improve by an order of magnitude in the future with the KATRIN experiment 
[67]. There are other proposed experiments that plan to get to similar sensitivity and 
detection limits by searching for neutrinoless double beta decay [68]. A Dirac mass 
would elude this search, but theoretical prejudice favors and the see-saw mechanism 
requires Majorana masses. Like the CMB and galaxy shear observations, these future 
tritium end-point and neutrinoless double beta decay experiments will be extremely 
challenging. 

The current large scale structure surveys (2dFGRS, SDSS) and WMAP together 
already provide powerful constraints on neutrino mass. We know that the sum of the 
active neutrino masses is less than about 0.7 eV [9]. The sum of the active neutrino 
masses, m,, is related to their energy density ,/i2 « m„/(94eV) assuming thermally 
populated neutrinos. As mentioned earlier, at the lower end, atmospheric neutrino 
oscillations constrain the mass of at least one active neutrino to be larger than about 
0.05 eV. This window from 0.05 eV to about 1 eV can be probed with both laboratory 
experiments and cosmological observations. 

A change in m„ gives rise to many effects. First, it changes the expansion rate 
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of the universe. At last scattering, this leads to a change in the sound horizon and 
damping length (of the photon-baryon fluid). The change in the sound horizon shifts 
the position of the peaks and troughs in the anisotropy spectrum while the change in 
the damping length (relative to the sound horizon) changes its amplitude. Second, 
the presence of a relativistic or semi-relativistic species has an effect on the CMB even 
after last scattering because it causes the gravitational potential to change (decay) 
with time. The photons traversing these potential wells red-shift or blue-shift, and 
this enhances the amplitude of the anisotropy spectrum. The above two effects are 
however degenerate with other parameters, most notably the matter density. 

There is, however, a third effect that is distinct - on small scales, the presence of 
a massive neutrino damps the growth of structure. The net suppression of the power 
spectrum of density fluctuations is scale dependent and the relevant length scale is the 
Jeans length for neutrinos [69-71] which decreases with time as the neutrino thermal 
speed decreases. This suppression of growth is ameliorated on scales larger than the 
Jeans length at matter-radiation equality, where the neutrinos cluster like cold dark 
matter. Neutrinos never cluster on scales smaller than the Jeans length today. The 
net result is no effect on large scales and a suppression of power on small scales. 
This effect can be used to put constraints on the neutrino mass using the observed 
galaxy power spectrum combined with CMB observations [72]. Eisenstein et al. [73] 
predicted that the primary CMB spectrum from the Planck satellite can measure 
neutrino mass with an error of 0.26 eV. 

The alteration of the gravitational potential at late times changes the gravitational 
lensing of CMB photons as they traverse these potentials. Including the gravitational 
lensing effect, the Planck error forecast improves to about 0.15 eV [56, 74], with more 
ambitious experiments capable of probing down to 0.05 eV level [25, 56]. Tomo­
graphic observations of the galaxy shear due to gravitational lensing can a achieve 
similar sensitivity in m„ [65]. The physics in both cases is the same: gravitational 
lensing. However the observations and the associated systematics are very differ­
ent. Complementary techniques are valuable since these measurements will be very 
challenging. 

In order to forecast constraints on the neutrino mass, we marginalize over the 
“early universe” parameters { b/i2, c/i

2, A, FHe, r, A, ns} and A, but assume that 
the parameters w, K are fixed. (We will consider joint constraints among { ,/i2, w, K} 
in §2.5.) The result is shown in Fig. 5. We find that a satellite mission can constrain 
^ m „ where the sum is taken over neutrino species u, at the 0.03-0.12 eV level 
depending on the noise level P , beam width #FWHM and maximum CMB multipole 
£max used in the lens reconstruction. 
Summary of neutrino mass. The signature of a 0.1 eV neutrino in the unlensed CMB 
anisotropy spectra is small and such small masses are only detectable through their 
effect on lensing, which comes through their influence on the gravitational potential. 
Future experiments like Planck will be able to statistically detect the lensing effect 

134 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  131.215.225.131 On: Tue, 19 Apr 2016 21:59:32



•—• Ap = 1 fiK — arcmin 
• -• Ap = 4 fiK — arcmin 
•••••• Ap = 6 fiK — arcmin 

•—• Ap = 1 fiK — arcmin 
*- • Ap = 4 fiK — arcmin 
•••••• Ap = 6 fiK — arcmin 

.•'' 
-* 

.-• ' ' J* 

-**' --* 
. • • ' • ' ' - r ' ' — — • " " ' " * 

• - • • ' ' - ' * * - - ^ ^ * 

. • • • • " ' ^ " * ' - ~ - — • m < ^ ^ 

^ ^ 

SFWHM(arcmin) 0FWHM(axcmin) 

Figure 5: Uncertainty a{mv) on the neutrino mass as a function of beam size and noise 
level for tmax = 2000 (left panel) or tmax = 4000 (right panel) using CMB lens 
reconstruction, assuming fixed w,ttK-

and thus measure or put upper limits on the neutrino mass. The expected 1-a error 
on mv from Planck is 0.15 eV, while CMBpol could get down to the 0.05 eV level to 
measure the neutrino mass. 

2.4 Dark energy 

Dark energy affects lensing in two distinct ways. First, the presence of dark energy 
implies faster expansion and hence a decrease in the overall growth rate. Second, 
dark energy can cluster appreciably if the equation of state is not identically 1. The 
second effect cannot be modeled unless we have a microphysical description. Two 
simple approaches that are common in the literature are to (1) model dark energy as 
one or more scalar field(s) with possibly non-canonical kinetic terms (e.g., [75-79]) 
and (2) model dark energy as a perfect fluid with a parameterized sound speed (e.g., 
[80, 81]). We will use the first approach with canonical kinetic terms in the following 
analysis. These models are collectively called quintessence. The effect of the dark 
energy density on the growth is easy to calculate for small scales where the clustering 
is irrelevant. On larger scales, where dark energy clusters appreciably it is no longer 
possible to factor the matter density fluctuations in Fourier space into a part that 
depends on time and another that depends on wave number. This was investigated in 
detail for a constant equation of state by Ma et al. [82], who found that dark energy 
clusters on scales k < kQ = 2V~^2 where dark energy has been modeled as a scalar 
field Q with effective mass l ^ g which is typically not much larger than O(H0). The 
clustering of dark energy boosts the metric perturbations and hence lensing and thus 
CMB lensing offers a way to constrain dark energy properties [55]. The primary effect 
is an overall suppression of the growth factor except on large scales. 

The CMB lensing window function is fairly broad in redshift-space. A downside of 
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Figure 6: Uncertainty a(w) on the dark energy equation of state as a function of beam 
size and noise level for tmax = 2000 (left panel) or tmax = 4000 (right panel) 
using CMB lens reconstruction, assuming fixed Quh

2,QK. 

this is that CMB lensing will never be competitive with SNIa observations or proposed 
cosmic shear and BAO experiments as far as measuring the equation of state of dark 
energy is concerned. However, the virtue of CMB lensing is that it is an independent 
alternative probe of the acceleration of the universe. CMBpol can measure w to a 
precision of 0.08–0.2 depending on the noise level and beam size (Fig. 6). 

The sensitivity to a broad range of redshifts also implies that CMB lensing is a 
unique probe of dark energy (more generally clustering) at z > 2. Note that if wX is 
demonstrably different from - 1 , then dark energy must cluster on (at least) large (1000 
Mpc) scales and then the clustering properties of dark energy, say parameterized in 
terms of its sound speed, might then be measurable (e.g., [83]). 

The broadness of the window function also implies that the CMB is sensitive to 
dark energy properties at high redshift. For the simplest quintessence models, the 
contribution of dark energy at high redshifts is negligible. However, there is no good 
reason to take these models as more than possible examples. An important question 
is then that of the contribution of dark energy to the expansion of the universe and 
growth of structure in the early universe. There are many motivations to consider 
such extensions. Among the most striking concerns is that of the timing coincidence: 
why is the vacuum energy density (or scalar field potential) precisely small enough 
to just begin dominating the energy density of the universe when the universe grew 
to its present size? In this context, models with early dark energy are arguably 
more natural [79, 84–88] than simple quintessence where dark energy emerges as a 
low-redshift phenomenon. Dark energy could also be an effect that arises on horizon 
scales such as an infra-red modification to GR (e.g., [89]). Note that the dark energy 
does not have to cause the expansion of the universe to accelerate at early times. 
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Figure 7: Uncertainty a( k) on mean curvature as a function of beam size and noise 
level for tmax = 2000 (left panel) or tmax = 4000 (right panel) using CMB lens 
reconstruction, assuming fixed mv and w. 

We do not make predictions here for early dark energy because the predictions 
depend on the models used [85, 90, 91]. If the low-redshift dark energy equation of 
state parameters are constrained by other experiments (such as SNIa), then CMB 
lensing should be able to measure the (average) high-redshift equation of state at 
least as well as the constant equation of state w considered here and thus provide an 
unique window into the expansion history and growth of structure at high redshifts. 

2.5 Curvature and joint constraints 

As a further example of a parameter constraint from CMB lensing, we consider the 
mean curvature K. (Historically, this was the first example of a new parameter 
constraint from breaking the angular diameter degeneracy via CMB lensing [53].) 
The mean curvature is expected to be small in most inflationary cosmologies [92] 
but there are interesting inflationary models with fc = O(10~2); this is roughly the 
current 1a upper limit from combining CMB, BAO, and SN datasets [93]. In Fig. 7 
we show 1a forecasts for the uncertainty a( fc), assuming that mv and w are fixed 
to fiducial values. A polarization satellite can obtain a( fc) = (few x 10"3) from the 
CMB alone. 

Finally, we discuss joint constraints. In Figs. 5, 6, 7 we have computed uncer­
tainties on each of the three “late universe” parameters {m„w, fc} with the other 
two parameters in this set fixed to fiducial values. One can ask, in a parameter space 
in which all three late universe parameters are floating, can they be simultaneously 
constrained, or are there degeneracies? To quantify this, we compute the 3-by-3 cor­
relation matrix between the late universe parameters in the Fisher formalism with all 
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the early universe parameters marginalized. The result is 

1 0.34 -0.82 \ 
0.34 1 -0.63 (11) 

-0.82 -0.63 1 

where the ordering of rows and columns is m„,w, k. (This matrix was computed 
assuming P = 1.4 /xK-arcmin and #FWHM = 3 arcmin. The correlations are signif­
icantly different from zero but not so large that we would describe this parameter 
space as containing a degeneracy. The strongest correlation is between curvature and 
the other parameters. This is makes intuitive sense given the Cf derivatives shown in 
Fig. 4, where the fractional change in Cf with respect to curvature is approximately 
constant and highly correlated with the derivative with respect to neutrino mass and 
w. 

In conclusion, all-sky measurements of CMB polarization with high sensitivity 
and resolution can qualitatively add information to the unlensed CMB: using lens 
reconstruction, the neutrino mass can be constrained to roughly a ( ^ m ^ ) = 0.05 eV, 
dark energy equation of state to roughly a(w) = 0.15, and mean curvature to roughly 
a( fc) = 2.5 × 10-3. The precise values will depend on the noise level and beam as 
shown in Figs. 5, 6, 7. Because the shape of the Of power spectrum is reconstructed, 
and the shape dependence with respect to each of the three parameters { £ m„, w, fc} 
is different (Fig. 4), there are no degeneracies in this parameter space although the 
correlations between parameters are significantly different from zero (Eq. (11)). 
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3 Delensing the gravity wave B-mode 

Perhaps the most exciting prospect for future generations of high-sensitivity CMB 
polarization experiments is constraining the tensor-to-scalar ratio (T/S), by measur­
ing B-mode polarization on large scales. In inflationary models, the value of (T/S) is 
tied directly to the energy scale during inflation, so that measuring this value opens 
a window on the physics that gave rise to the initial conditions of our universe (c.f. 
the companion white paper [93]). In a real experiment, the parameter uncertainty 
a(T/S) will receive contributions from detector noise, foreground contamination, in­
strumental systematics, and contamination due to lensing B-modes. In this section, 
we will consider the last of these contributions: under what circumstances is gravi­
tational lensing the limiting factor in measuring (T/S), and what are the prospects 
for reducing the lensing contamination using delensing methods? Many results from 
this section have been taken from [94], where more details will be presented. 

It is easy to compare the contributions to a (T/S) from gravitational lensing and 
detector noise. (The contribution from polarized foregrounds is studied in the com­
panion white papers [95, 96]; we will present some analysis of instrumental systemat­
ics in §5.) If we restrict attention to large angular scales (I < 100), then the lensing 
B-mode power spectrum CfB is constant to an excellent approximation, and the 
statistics of the lensed B-mode can be treated as Gaussian [97-99]. Therefore lensing 
can be simply be thought of as an excess source of white noise. The RMS amplitude 
^ of the lensing B-mode on large scales is « 5 /xK-arcmin; if the instrumental 
noise ainst is > a^nsing, then the lensing contribution to a(T/S) is smaller than the 
noise contribution; if <jinst < ^ n s i n g , then lensing dominates. 

For experiments with <jinst < 5 /xK-arcmin, the only possibility for reducing the 
level of lensing contamination is to use “delensing” techniques. As described in §1.2, 
delensing can be performed whenever we have a noisy template 4>im for the CMB lens 
potential, and noisy measurements of the primary E-mode on intermediate scales. 
We will consider several possibilities for the template fam: it could either be obtained 
“internally” from CMB polarization on small angular scales (§3.1), or “externally” 
from a different dataset, either small-scale CMB temperature (§3.2) or observations 
of large-scale structure (§3.3). 

In each of these cases, we will present forecasts for the parameter uncertainty 
a(T/S) with and without delensing. Our forecasting methodology is presented in 
detail in App. A, but let us note one key point here. The effect of delensing is 
to change the equivalent white noise level of the large-scale B-mode from the value 
i i n g ~ 5 /«K-arcmin to some smaller value <r£lensed < a^nsed.

4 While the precise 

4This statement is actually empiricial; in the forecasting methodology from App. A, we calculate 

a complete power spectrum Cf'B' for the residual lensing B-mode B', but for all the examples in this 

section, we find tha t Cf'B' is approximately constant on large scales, so tha t the residual B-mode 

can be treated as a source of white noise in the forecast for a(T/S). 
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values of a (T/S) achievable with and without delensing are difficult to forecast due 
to considerations such as loss of modes at low £ due to EB mixing from survey 
boundaries5 [100-103], the ratio is simply given by: 

a(T/S)ao delensillg = « s e d )2 + (qgst )2 

* ( T / S ) with delensing ( f l e n s e d ) 2 + K s t ) 2 ( ) 

For this reason, rather than presenting forecasts for a (T/S), we will forecast the ratio 
in Eq. (12). This ratio isolates the improvement in a(T/S) due to delensing alone, 
independent of the large-scale survey geometry and mode coverage. 

3.1 Delensing using small-scale polarization 

The first approach to delensing that we will consider is to construct the template 4>lm 

for the lens potential “internally” from CMB polarization, by applying a lens recon­
struction estimator to the small-scale E and B-modes. In polarization, the quadratic 
estimator fam that has been discussed previously (Eq. (5)) can be significantly im­
proved for low noise levels using an iterative, likelihood-based approach [33, 34]. On 
an intuitive level, the improvement arises because lensed B-mode power acts as a 
source of noise for the quadratic estimator, but the estimated lens potential can be 
used to “delens” and reduce the level of the lensing B-mode for a subsequent evalu­
ation of the quadratic estimator, leading to an iterative estimator. One qualitative 
difference between the two estimators is that if we consider the mathematical limit 
of zero instrumental noise (neglecting real-world issues such as foregrounds and sys-
tematics), the quadratic estimator will have nonzero reconstruction noise, but the 
iterative estimator can reconstruct the lens potential 4> and delens the B-mode per­
fectly. In this idealized zero-noise limit there is no fundamental limit to the level of 
(T/S) which can be detected [15], unlike the case of the quadratic estimator [13, 32]. 
Our forecasting methodology for delensing includes the improvements from using the 
iterative estimator, as described in App. A. 

In Fig. 8, we show forecasts for the improvement in a(T/S) due to delensing (i.e. 
the ratio in Eq. (12)) from an “internal” lens reconstruction using small-scale CMB 
polarization, for varying noise level and beam and taking £max = 4000 throughout. 
Let us note some qualitative features of this figure. For large beam size, delensing 
is not very effective since it depends on being able to reconstruct the lens potential 
indirectly through its effect on the small-scale modes of the CMB. The effective noise 
level for low-£ B-modes will simply be the sum of lensing (a?ensed « 5 /xK-arcmin) and 

5 The most critical issue when forecasting a (T/S) is whether the gravity wave B-mode can be 

constrainted through the reionization bump at £ fa 8, or whether only the recombination bump at 

£ « 60 is measurable in the presence of foregrounds and sky cuts. At the level of a naive mode-

counting forecast, the reionization bump has « 10 times the signal-to-noise of the recombination 

bump when constraining (T/S). 
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Figure 8: Ratio of a(T/S) with and without polarization delensing, forecasted using 
Eq. (12) for varying instrumental noise level and beam. 

instrumental contributions. As the beam size decreases, delensing can improve the 

lensing contribution, but the instrumental contribution is unchanged. In the limit of 

a very small beam, the delensed noise level crfelensed will reach an intermediate value 

which is less than cr^nsed but somewhat larger than the instrumental noise cr^st. For 

example, with 1 /xK-arcmin instrumental noise and a 2’ beam, we find crfelensed = 1.7 

/iK-arcmin, resulting in a factor ca 7 improvement in a (T/S) relative to the no-

delensing case, as shown in Fig. 8. 

Therefore, for B-mode experiments which are lensing-limited (u^st < 5 fj,K-

arcmin), the large and small scales are intimately linked: measuring the gravity wave 

B-mode on large scales ultimately depends on reconstructing the lens potential via 

the lensing B-mode on large scales. The effective noise level for constraining (T/S) 

has a nontrival dependence on the beam size as shown in Fig. 8; if the noise level and 

beam size are small, then large improvements in a(T/S) are possible. In practice, 

since beam size is a primary driver of cost and complexity (particularly for a satellite 

mission), the improvement in a (T/S) which we have forecasted in Fig. 8 will be one 

factor to be weighed against others when designing an experiment. 

3.2 Delensing using small-scale temperature 

In this subsection and the next, we consider situations in which lensing-limited (< 5 

/xK-arcmin) CMB polarization measurements have been made on large angular scales, 

using an instrumental beam which is too large to observe the small-scale lensing B-
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Figure 9: Reconstruction noise power spectra Nf from CMB temperature alone, assum­
ing cosmic variance limited measurements for varying values of i'max. 

mode needed for “internal” delensing. Is it possible to delens the large-scale B-mode 

using “external” measurements from other datasets? In order to perform delensing, 

we must have: 

1. A (noisy) template (f>£m for the CMB lens potential 

2. A (noisy) measurement E^m of the CMB E-mode on intermediate (£ < 2000) 

angular scales (e.g. from the Planck satellite [7]). 

The improvement in a(T/S) which can be achieved using delensing will depend on 

the noise levels in both (f>£m and Eem. 

One possible way to get the template 4>tm would be to apply the quadratic esti­

mator to small-scale CMB temperature measurements from another experiment with 

high angular resolution. Experiments are already underway (e.g. ACT [5] or SPT [6]) 

with sufficient sensitivity to measure the CMB temperature with high signal-to-noise, 

far into the damping tail of the temperature power spectrum (£ > 2000). For such 

experiments, the limiting factor in lens reconstruction is likely to be the presence 

of non-Gaussian secondary anisotropies (which become increasingly important as £ 

increases), rather than instrumental sensitivity or resolution. However, at the time 

of this writing it is unclear what range of scales will be “sufficiently Gaussian” to use 

for lens reconstruction in a real experiment [39]. 

We will model this unclear situation in an approximate way by introducing a cutoff 

multipole ^ a X , and assuming that temperature multipoles £ < £^ax can be used for 

lens reconstruction with the full statistical power of a Gaussian field (i.e. without 
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Figure 10: Improvement in a(T/S) due to delensing (Eq. (12)) from CMB temperature 
alone, assuming cosmic variance limited measurements for varying values of 
U (from [94]). 

introducing extra systematic error from secondary anisotropies), but multipoles £ > 

£^ax are not useful for lens reconstruction. In Fig. 9, we show noise power spectra 

Nf obtained using lens reconstruction from CMB temperature, for varying ^ f f l . As 

^max increases, a high signal-to-noise reconstruction is obtained on large scales, but 

on angular scales which are smaller than the CMB acoustic peak scale (£ > 200), the 

reconstruction always has poor signal-to-noise. 

We would now like to forecast the improvement in a(T/S) due to delensing, i.e. 

the ratio in Eq. (12). In addition to the power spectrum N[ of the noise in the lensing 

template, this ratio will depend on the noise NfE in the E-mode measurement on 

intermediate scales (i.e. item # 2 in the list above) and the instrumental noise a?st 

on the large-scale B-mode. However, an upper bound on the ratio can be obtained 

by neglecting these noise sources and assuming NfE = a^st = 0 (but keeping the 

nonzero Nf shown in Fig. 9). This upper bound is shown in Fig. 10 for varying £^ax 

(taken from [94]). It is seen that, even for large ^ a x , the improvement is modest: 

a factor of two at £^ax =3500. In practice, this will be further degraded by the 

noise sources that have been neglected in obtaining this upper bound. We interpret 

this as a negative result: it is not possible to delens CMB polarization using lens 

reconstruction from CMB temperature alone, because only the large-scale modes in 

(j) can be reconstructed with high signal-to-noise (Fig. 9). 
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Figure 11: Improvement in a(T/S) assuming perfect delensing of all large-scale structure 
from redshifts < zmax. 

3.3 Delensing using large-scale structure 

We next consider another case of “external” delensing: using large-scale structure 
between the observer and recombination to obtain an external template (f>. One could 
imagine using different flavors of large-scale structure data (for example, cosmic shear 
[104] or 21-cm temperature [105-107]) to construct (f>, weighted to minimize the power 
spectrum of the residual field ((f) — (f>), where (f> is the true CMB lens potential. 

In the previous subsection, we obtained an upper bound on the improvement in 
a(T/S) that could be obtained using temperature multipoles £ < ^ax, by making 
some idealizing assumptions: we neglected noise in the in the E-mode on intermediate 
scales, and in the B-mode on large angular scales. Since our final result showed only 
a modest improvement (Fig. (10)) even under these assumptions, we could intepret 
it as a general “no-go” theorem: lens reconstruction from CMB temperature is of 
very limited utility in delensing the large-scale B-mode. In this subsection, we will 
construct an analogous upper bound for the improvement in a(T/S) that can be 
obtained using measurements of large-scale structure from redshifts z < zmax. 

If we write the CMB lens potential 0 as a line-of-sight integral (Eq. (2)) with 
contributions from different redshifts, then by causality alone, contributions from 
redshifts > zmax cannot be reconstructed using large-scale structure, and must there­
fore be treated as “noise” power in the reconstruction. (The reconstruction noise is 
defined to be the difference between the true CMB lens potential (f> and the template 
(j) constructed from large-scale structure.) More formally, a lower bound on the noise 
power spectrum Nf can be obtained by simply cutting off the redshift integral for 
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Cf at redshift zmax: 

N? > ^ f°° j(-D(z)P*(z, k = £/D(z)) (D^)^^) (13) 

We now forecast the improvement in a(T/S) from delensing, making idealizing as­
sumptions: we assume that the reconstruction noise is equal to the lower bound in 
Eq. (13), and that N?E = a^nst = 0 as in the previous subsection. The result is shown 
in Fig. 11 (taken from [94]). Since we find only a modest improvement (a factor of 
2.2 for zmax =3) even with our idealizations, we interpret this as a general negative 
result: it is not possible to delens CMB polarization using large-scale structure. 

This conclusion assumes that only large-scale structure from redshifts < 3 is avail­
able with sufficient statistical power to construct the template fam. One possible 
exception to this assumption may be a futuristic 21-cm experiment such as SKA or 
FFTT [108]. This possibility is studied in [105] but is unlikely to be available for the 
next few generations of CMB polarization experiments. 
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4 Polarized foregrounds 

Lens reconstruction relies on the non-Gaussian nature of the lensed CMB: each mode 
4>lm of the lens potential induces a small deviation from Gaussian statistics, and this 
permits the potential to be reconstructed. Because astrophysical foregrounds are 
non-Gaussian they are particularly worrisome for lens reconstruction. For example, 
it is not clear a priori how to relate the “strength” of a foreground contaminant at 
the power spectrum level to the bias that it produces in the reconstructed poten­
tial. Detailed arguments which will be presented in [109] will show that polarized 
extragalactic point sources are expected to be the largest contaminant of the recon­
structed potential. For this reason we will not analyze, e.g. polarized synchrotron or 
dust emission in this section, but we will do a detailed analysis of the contamination 
from polarized point sources. The extragalactic point sources can be modeled suffi­
ciently well that a reliable estimate of the lens reconstruction bias can be made, at 
least at a rough level. This section is an abridged version of [109], where more details 
will be given. 

4.1 Polarized point sources: forecasting machinery 

Naively, the contribution of point sources to reconstruction of the lensing power Cf is 
a four-point function in the locations and polarization angles of the sources. However, 
this picture simplifies if the polarization angles of distinct sources are assumed to be 
uncorrelated: the only terms which generate a nonzero expectation value are 1-source 
and 2-source terms. In the absence of any observational evidence to the contrary, we 
will make this assumption. It can then be shown [109] that the contribution of point 
sources to lensing reconstruction is contained in two effective power spectra Gf, Cf 
which are defined by: 

(T,(1- 1^)S^S^^ )Y i 'm '^ ) = C7Sa>Smm> (14) 
/ 

/ ] T s f r , m ( n ^ w \ = Cf5u,5mm, (15) 

where (•) denotes an average over realizations of the point source model, summation 
indices i,j run over point sources in a given realization, and (n*, Si) denote the 
location and polarized flux of source i. 

The Cf power spectrum is due to the correlation of point sources with the lensing 
potential <f>. Extragalactic point sources are biased tracers of the large-scale matter 
distribution, and thus correlated with 0(B) through the line-of-sight lensing integral 
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of Eq. (2). This leads to a bias in the reconstructed power spectrum given by 

ACf = Cf^= - - ^ - Y A t f
 £l i2 £ (16) 

\2J2£ + 1 ^ ^2ty2 - 2 0 / 

where we have defined: 

,<b /(2£1 + i)(2£2 + i)(2£ + i) TO(rfL) 
A ^ = V T, {CEE + N EE ){C BB + N BB ) W) 

The Cf power spectrum, on the other hand, encapsulates the bias due to auto­
correlations among the point sources. The relationship between the Cf and lensing 
U l d o l o ^ l l l t c l l l V U l v c L l [ l U c / J . ± U i t i l e | J U i | J U o t : o Ul t l l l o i c | J U i t , I IUWCVCI , W c W i l l U c 

neglecting the auto-clustering of point sources and may set (S\Sf) = (Sf)(S'j). In 
this c ase, Cf has the form 

Cf = I 1 + I 2-5t0 . (18) 

We will refer to the biases originating from h and h respectively as the 1-pt and 2-pt 
Poisson terms. This form of Cf greatly simplifies the the calculation of the bias due 
to Cpp and we find an additive effect on lens reconstruction iven b 

h y - A w A ^ 2 i Lfli £2 £\ f £[ £'2 £\ (h £2 £ \ (£[ £'2 £ 
4 ^ (2^ + l)2 2 - 2 0 2 - 2 0 + 2 2 - 4 2 2 - 4 

+ ^i^(2i + l)(clE + NiE)2(ctB + KB)2 

Our picture of the point-source bias to lensing reconstruction thus consists of two 
terms: 

• A "multiplicative" bias C^ps due to the cross-correlation of point sources with 
large-scale-structure. 

• An "additive" bias C/pŝ ps due to the non-zero four-point function of the point 
sources. This in turn separates into 1-pt and 2-pt Poisson contributions. 

Our analysis of point source bias now has two remaining steps. First, we must estimate 
the power spectra C f and Cf from current observational constraints on polarized 
sources; second, we forecast the point source bias given values of these power spectra. 
These steps are carried out in the following two subsections. 

4.2 Polarized point sources: modeling 

We will estimate the point source bias at a fiducial frequency v = 100 GHz, under 
the following simplifying assumptions: 
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1. We will only consider radio point source contamination, assuming that the con­
tribution from infrared sources is smaller or comparable in order of magnitude 
at 100 GHz. 

2. As previously discussed, we will ignore point source clustering, i.e. only consider 
the one-halo contribution to Cf. 

We expect the resulting estimate of the bias to be correct at the order-of-magnitude 
level, deferring a more detailed forecasting to future work [109]. 

We will model the source counts of radio sources at 100 GHz using the fitting 
function from [110], based on extrapolating multifrequency observations from 15-43 
GHz [111]: 

™ = *° (20) 
dS S? 

where (3 = 2.15 and JV0 = 12 JyL15 sr"1. Fitting functions based on independent 
datasets have been also proposed in [112, 113] and agree within a factor « 2. 

We will model the polarization fraction by assuming that the Q, U components of 
the polarization are Gaussian distributed and that the polarization angle is uniform 
distributed. Under these assumptions, the PDF for the polarization is: 

dQ dU Q2 + U2 

7TJ2Sj 

( Q2 + U2\ 
exp -?-+f- (21) 

where we take RMS polarization fraction 7 = 0.1. This choice is somewhat con­
servative; bright sources at 20 GHz are typically 1-5% polarized but there is some 
observational evidence for an increasing polarization fraction with decreasing flux 
[114]. 

To calculate the flux integrals of Eqs. (14, 15), we will take a simplified view of 
the point source removal process. We suppose that all sources above some limiting 
flux S^ax have been identified and masked with 100% completeness, and those below 
are untouched. We further assume that this masking is performed in temperature, as 
it is here that our current understanding of CMB source extraction is best developed. 
Neglecting the use of polarization data to mask sources is an additional conservative 
choice in our analysis. Although the signal strength is weaker in polarization by a 
factor of 7

2 , the confounding CMB signal is smaller as well, and improvements in 
detection may be made. For a temperature threshold S^ax, the effective point source 
power spectra are given by 

c r = ( ^ ) - +[g(s) -f g ( S ) 5-,+ [g(sr).-»M(0 (22) 

cf = -2&721T ds Jdz(-^r ^rn()~p^s^k = £/D(z)) (23) 
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where b denotes the (assumed constant) bias of the radio point sources, and the 
remaining notation follows Eq. (3). 

To compute the cross spectrum C f , we need a model for (d2n/dSdz), the joint 
flux-redshift distribution of the point sources. We use the fitting function proposed 
in [115] (“RLF-1”, flat-spectrum) and extrapolate to 100 GHz by adding a (weakly 
^-dependent) normalization so that the source counts (dn/dS) are consistent with the 
power law in Eq. (20). 

4.3 Polarized point sources: forecasts 

We may now proceed to evaluate the magnitude of point source contamination for 
EB lensing reconstruction. 

In Fig. 12, we show the predicted bias for a (7' FWHM, P = 4/xK - arcmin) 
experiment, with S?ax = 200mJy. This is the 100% completeness limit expected 
for the Planck 100GHz channel [116], and should therefore be readily achievable. 
For illustration, we plot the biases due to the components of Eqs. (22), (23). Their 
behaviour here is characteristic of all of our forecasts. The 1-pt poisson term has a 
contribution which increases rapidly with £, and typically dominates by £ = 1000. The 
2-pt poisson term is always subdominant, except at extremely low-1 The cross term 
Cf gives the largest contribution on intermediate scales. Note that these terms have 
different scalings with Smax. The two poisson-type biases are due chiefly to point 
sources immediately below the removal threshold, whereas the Cf term receives 
contributions from all of the unresolved sources, and thus scales more slowly with 
Cmax 

To consider the effect of point source contamination more thoroughly we will need 
an estimate of the Smax which is achievable for a given experiment. The subject of 
point source extraction is an active one, with many techniques in active development 
[117]. For summary purposes, however, we will take the following simplified model of 
this process. Suppose that we clean for point sources internally, by identifying all of 
the peaks in the CMB which are greater than 5a, relative to the total variance of the 
map. In temperature, the X

2 due to a single point source with a flux of ST is given 
by 

2 = ^ l y 2! + 1 (24) 

Solving for X
2 = 25 then gives 

r» imax ( \ -1/2 

— E 2 ' + 1r • (25) 

100n ^ CJT + NfT 
This simple model gives values for the residual point source flux in reasonable agree­
ment with those determined in more complete analyses [116]. In line with our other 
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Figure 12: Comparison of the signal power spectrum Cf and the bias terms in 
Eqs. (22), (23), for an experiment with Ap = 4 //K-arcmin, #FWHM = 7 arcmin, 
S^ax = 200 mJy. 

assumptions, it is also a somewhat pessimistic estimate. It neglects, for example, our 
ability to increase the contrast of point sources by differencing CMB maps at multiple 
frequencies. 

We also consider confusion as a lower limit on our ability to mask sources. Taking 
the differential number counts of Eq. (20), the number of point sources above a cutoff 
Smax is given by 

Aro(£,Tax)1"/9 

N(S > S^ax) = 
0-1 

(26) 

*~>T ^ °conf (1V1 ) = 7FWHM 

1 
13-1 

(27) 

To avoid confusion due to overlapping sources, we must ensure that the typical spacing 
between sources is M beamwidths, for some reasonable value of M. We therefore 
require that 

In what follows, we will take M > 10. Satisfying Eq. (27) then ensures that < 0(5%) 
of the sky will be excised for point source removal. This has the benefit of limiting 
the issues with E/B mixing due to the masking process which we have otherwise 
neglected. 

We would also like to establish a connection between biases at the power spectrum 
level which we calculate here and parameter constraints. For this, we use mv as a 
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canary parameter, and plot the quantity 

m„(C^) 
dCf 
dmv 

o(mv) (28) 

If the bias to the power spectrum is well below this level, we expect that the effect 
on parameters will be negligible. 

In Fig. 13 we have plotted expected bias levels for 30', 15', and 2' FWHM experi­
mental configurations. For all three beam sizes, we find that for reasonable values of 
Sf?ax, the point source bias generally small. Where it grows large enough to poten­
tially bias parameter determinations, the (S/N) of the lens reconstruction is always 
< 0.1, and so we expect that the potentially contaminated high-£ reconstruction may 
be disposed of without significant loss of information. 

There are two caveats with these findings, however: 

• For a blunt (30' FWHM) beam experiment, removal of point sources to the 
expected level may be hampered by the large beam size. 

• For a sharp (2' FWHM) beam experiment, our findings are particularly de­
pendent on the source count relation of Eq. (20) holding true to at fluxes of 
< 20mJy, where complete measurements have not yet been made. 

Exempting these two possible issues, to the best of our current modeling ability it 
appears that radio point sources will not constitute a significant difficulty for a future 
polarization based lensing reconstruction. 
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Figure 13: Lensing reconstruction biases. Black/Green solid curves are Cf'/NP divided 
by 100. The black dashed curves are mv(Cf ) (Eq. 27). The curves labelled 
in mJy are the total biases for the corresponding value of S1™ .̂ Solid blue 
curves are for a ‘fiducial’ 5™ax- the smaller of 200mJy and the value determined 
from Eq. (25). The upper and lower dashed blue curves correspond to S™^ for 
M = 20 and M = 10 (only M = 10 is shown for the 2' experiment for clarity as 
the M = 20 curve overlaps with the fiducial curve). The S1™^ = 19.1mJy curve 
for the 2' experiment is the value of Eq. (25) assuming that only multipoles 
i < 3000 are used for source cleaning. 
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5 Beam systematics 
To calculate the effect of beam systematics we invoke the Fisher information-matrix 
formalism. Our objective is to determine the susceptibility of certain cosmological pa­
rameters to beam systematics. We represent the extra noise due to beam systematics 
by analytic approximations [47] and include lensing extraction in the parameter infer­
ence process, following [25, 56] for neutrino mass (and other cosmological parameters) 
inference from CMB data. 

Our main concern is the effect on the tensor-to-scalar ratio r and the total neutrino 
mass Mv (assuming three degenerate species). The lensing-induced B-mode signal is 
sensitive to neutrino masses and therefore a large enough beam systematic which leaks 
temperature or E-mode polarization to B-mode polarization can bias the inferred 
neutrino mass. 

5.1 General 

Beam systematics due to optical imperfections depend on both the underlying sky, the 
properties of the polarimeter and on the scanning strategy. An instructive example is 
the effect of differential pointing. This effect depends on the temperature gradient to 
first order. CMB temperature gradients at the 1°, 30', 10', 5' and 1 scales are « 1.4, 
1.5, 3.5, 2.5 and 0.2 /xK/arcmin, respectively. Therefore, any temperature difference 
measured with a dual-beam experiment with a « 1' pointing error and non-ideal 
scanning strategy which is dominated by its dipole and octupole moments [47] will 
result in a « 1/xK systematic polarization which has the potential to contaminate the 
B-mode signal. 

Similarly, the systematic induced by differential ellipticity results from the vari­
ation of the underlying temperature anisotropy along the two polarization-sensitive 
directions which, in general, differ in scale depending on the mean beamwidth, degree 
of ellipticity and the tilt of the polarization-sensitive direction with respect to the 
ellipse’s principal axes. For example, the temperature difference measured along the 
major and minor axes of a 1° beam with a 2% ellipticity scales as the second gradi­
ent of the underlying temperature which on this scale is « 0.2/xK/arcmin2 and the 
associated induced polarization is therefore expected to be on the « pK level. The 
spurious signals due to pointing error, differential beamwidth and beam ellipticity all 
peak at angular scales comparable to the beam size (since they are associated with 
features in the temperature anisotropy on sub-beam scales on the one hand but suffer 
beam dilution on yet smaller scales). If the beam size is « 1° the beam systematics 
mainly affect the deduced tensor-to-scalar ratio, r. If the polarimeter’s beamwidth is 
a few arcminutes the associated systematics will impact the measured neutrino mass 
m,, spatial curvature fc, running of the scalar spectral index a and the dark energy 
equation of state w (which strongly affects the lensing-induced B-mode signal). It 
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can certainly be the case that other cosmological parameters will be affected as well. 
Two other spurious polarization signals we explore are due to differential gain and 

differential rotation; these effects are associated with different beam ‘normalizations’ 
and orientation, respectively, and are independent of the coupling between beam 
substructure and the underlying temperature perturbations. In particular, they have 
the same scale dependence as the primordial temperature anisotropy and polarization 
power spectra, respectively, and their peak impact will be on scales associated with 
the CMB’s temperature anisotropy (« 1°) and polarization (« 10'). 

5.2 The effect of systematics on lens reconstruction 

Gravitational lensing of the CMB is both a nuisance and a valuable cosmological tool 
(e.g. [8]). It certainly has the potential to complicate CMB data analysis due to 
the non-gaussianity it induces. However, it is also a unique probe of the growth of 
structure in the linear, and mildly non-linear, regimes (redshift of a few). In [25, 56] 
as well as elsewhere it was shown that with a nearly ideal CMB experiment, neutrino 
mass limits can be improved by a factor of approximately four by including lensing 
extraction in the data analysis using CMB data alone. 

This lensing extraction process is not perfect; residual noise will affect any ex­
periment, even an ideal one. This noise will, in principle, propagate to the inferred 
cosmological parameters if the latter significantly depend on lensing extraction, e.g. 
neutrino mass, a and w. It is important to illustrate first the effect of beam systemat­
ics on lensing reconstruction. By optimally filtering the temperature and polarization, 
the lens potential can be recovered using quadratic estimators [118]. It was shown 
that for experiments with ten times higher sensitivity than Planck, the EB estimator 
yields the tightest limits on the lens potential. This conclusion assumes no beam 
systematics which might significantly contaminate the observed B-mode. 

We illustrate the effect of differential gain, beamwidth, beam rotation, elliptic-
ity and differential pointing (see [47]) on the noise of lensing reconstruction with 20 
different combinations of noise levels and resolution for CMBPOL spanning the sen­
sitivity and resolution ranges 1-6 /xK-arcmin and 3-30 arcmin, respectively. These are 
perhaps the most pernicious systematics. Beam rotation induces cross-polarization 
which leaks the much larger E-mode to B-mode polarization and differential ellip-
ticity leaks T to B. The modified noise in reconstructing the lens potential, Nl

d d, is 
consistently substituted into our Fisher-matrix analysis. 

5.3 Error forecast 

Accounting for beam systematics in both Stokes parameters and lensing power spectra 
is straightforward. In addition, the detector noise associated with the main beam is 
accounted for, as is conventional, by adding an exponential noise term. Assuming 
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gaussian white noise 

Nt = ( 1 a ) - i (29) 

where a runs over the experiment’s frequency bands. The noise in channel a is 
(assuming a gaussian beam) 

Nr = w-V(*+i)*2/8in(2) = (#a a)V('+1)^/81n(2) , (30) 

where a is the noise per beam in /xK, Qa is the beam width, and we assume noise 
from different channels is uncorrelated. The power spectrum then becomes 

Cf - • Cf + N? (31) 

where X is either the auto-correlations TT, EE and BB or the cross- correlations 
TE, TB and EB (the latter two power spectra vanish in the standard model but not 
in the presence of beam systematics and exotic parity-violating physics (e.g. [9, 118-
120]) or primordial magnetic fields (e.g. [121]). For the cross-correlations, the N? 
vanish as there is no correlation between the instrumental noise of the temperature 
and polarization (in the absence of beam systematics). 

5.4 Results 

We consider the effect of both irreducible and reducible systematics. By ‘reducible’ we 
refer to systematics which depend on the coupling of an imperfect scanning strategy 
to the beam mismatch parameters. These can, in principle, be removed or reduced 
during data analysis. This includes the differential gain, differential beamwidth and 
first order pointing error beam systematics. By ‘irreducible’ we refer to those sys­
tematics that depend only on the beam mismatch parameters (to leading order). For 
instance, the differential ellipticity and second order pointing error persist even if the 
scanning strategy is ideal. For reducible systematics the scanning strategy is a free 
parameter in our analysis (under the assumption it is non-ideal, yet uniform, over the 
map) and we set limits on the product of the scanning strategy (encapsulated by the 
/ i and /2 parameters) and the differential gain, beamwidth and pointing, as will be 
described below. The exact definitions of fx and f2 are given in [47, 48] but here we 
give approximate expressions under the assumption that the scanning strategy does 
not contain significant hexadecapole moment. 

h = 1w' 
h = 1 (\B\' + \C\') (32) 
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where 

A « (exp(2*a)} 

B « (exp(3ia)} 

C « (exp(ia)) (33) 

and therefore while f\ captures the quadrupole moment of the scanning strategy, f2 

is a measure of its dipole and octupole moments. To calculate the power spectra 
we assume the concordance cosmological model throughout; the baryon, cold dark 
mater, and neutrino physical energy densities in critical density units b/i

2 = 0.021, 

ch
2 = 0.111, ,/i2 = 0.006. The latter is equivalent to a total neutrino mass 

M» = E t i m^ =0.56eV, slightly lower than the current limit set by a joint analysis 
of the WMAP data and a variety of other cosmological probes (0.66eV, e.g. [122]). We 
assume degenerate neutrino masses, i.e. all neutrinos have the same mass, 0.19 eV, 
for the purpose of illustration, and we do not attempt to address here the question 
of what tolerance levels are required to determine the neutrino hierarchy. As was 
shown in [25], the prospects for determining the neutrino hierarchy from the CMB 
alone, even in the absence of systematics, are not very promising. This conclusion 
may change when other probes, e.g. Ly-a forest, are added to the analysis. Dark 
energy makes up the rest of the energy required for closure density. 

We limit our analysis to the tensor-to-scalar ratio r, and total neutrino mass 
M„. While r is mainly constrained by the primordial B-mode signal that peaks 
on degree scales (and is therefore not expected to be overwhelmed by the beam 
systematics which peak at sub-beam scales), it is still susceptible to the tail of these 
systematics, extending all the way to degree scales, because of its expected small 
amplitude (less than 0.1/xK). The tensor-to-scalar ratio is also affected by differential 
gain and rotation which are simply rescalings of temperature anisotropy and E-mode 
polarization power spectra, respectively, and therefore do not necessarily peak at 
scales beyond the primordial signal. 

Ideally, the lensing signal, which peaks at I « 1000, provides a useful handle on 
the neutrino mass as well as other cosmological parameters which govern the evolu­
tion of the large scale structure and gravitational potentials. However, the inherent 
noise in the lensing reconstruction process [26] which depends, among other things, 
on the instrument specifications (detector noise and beamwidth), now depends on 
beam systematics as well. The systematics, however, depend on the cosmological 
parameters through temperature leakage to polarization, and as a result there is a 
complicated interplay between these signals and the information they provide on cos­
mological parameters. As our numerical calculations show, the effect on the inferred 
cosmological parameters stems from both the direct effect of the systematics on the 
parameters and the indirect effect on the noise in the lensing reconstruction, N?d, in 
cases where the MV estimator is dominated by the EB correlations. 
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The Fisher information-matrix gives a first order approximation to the lower 
bounds on errors inferred for these parameters. We follow [46] in quantifying the 
required tolerance on the differential gain, differential beamwidth, pointing, elliptic-
ity and rotation. To estimate the effect of systematics and to set the systematics to 
a given tolerance limit one has to compare the systematics-free 1a error in the i-th 
parameter to the error obtained in the presence of systematics. The latter has two 
components; the bias and the uncertainty (which depends on the curvature of the 
likelihood function, i.e. to what extent does the information matrix constrain the 
cosmological model in question). As in [46] we define 

. A,. 
o = [A? 

CF\ 

0 = U. (34) 

where the superscript 0 refers to values evaluated at the peak of the likelihood func­
tion, i.e. the values we assume for the underlying model, and A, and aXi are the 
bias and the change in the statistical error for a given experiment and for the param­
eters A, induced by the beam systematics, respectively. As shown in [46] these two 
parameters depend solely on the primordial, lensing and systematics power spectra. 
We require both 5 and (3 not to exceed 10% of the uncertainty without systematics. 

5.5 Expected Beam Uncertainties 

Before quoting and discussing the allowed levels of differntial ellipticity, gain and 
beamwidth it is instructive to estimate the uncertainty within which these beam 
parameters will be determined from a beam-calibration with a nearly black-body 
point-source such as Jupiter (Tp « 200K, 6P « 0.5 arcmin). By Wiener filtering a 
map of the observed source one expects to recover the source image with a signal-to-
noise level 

N) = J P(l) (2vr)2' (35) 

where S(\) is the Fourier transform of the point source and P(l) is the instrumental 
noise, i.e. the (S/N)2 is the ratio of the signal and noise power-spectra integrated over 
all accessible multipoles in the experiment in question. The higher S/N the smaller 
are the uncertainties in the recovered beam parameters. The Fourier transform of the 
convolved point source reads 

˜ o b s = ( 1 + g^e-lPxal-lqa2_a.p ( 3 6 ) 

where we assume an elliptical gaussian beam with principal axes ax and ay, gain 1+g 
and pointing p. This results in 

(s\2 = (1+£)22ln(2) /Tpy /epy 2 

N 7r(1-e2) ~b jFb
 V ' ( ) 
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Since the pointing merely adds a phase to the beam function it drops from the ex­
pression for S/N. Similarly, S/N is also independent on the beam rotation angle since 
temperature measurements are insensitive to e. rj is an experiment-specific optical-
efficiency parameter (< 1). Therefore, the following procedure, which is based on 
S/N considerations, will be used to determine the uncertainty of e, /x and g only. To 
determine these uncertainties we require that varying the beam parameters will result 
in signal changes smaller than the noise 

(S/N)2 -+ (S/N)2 + 1. (38) 

This condition readily yields the uncertainty in beam parameters 

(e2) = (/x2) = (g2) = [S/(Nr])]-2. (39) 

For each ‘experiment’ of the 20 considered here we plug in h and 6h and obtain rjN/S. 
Table 3 summarizes i]N/S in %-units (as in Miller, Shimon & Keating 2008). The 
color-coded threshold values reported in Tables 4, 6 & 7 (differential gain, beamwidth 
and ellipticity, respectively) should be compared with those of Table 3. Values in green 
are those which meet the requirements from the uncertainties (reported in Table 3) by 
better than factor 20. Blue figures are those which meet the fundamental uncertainties 
specified in Table 3 in case the optical efficiency is 77 = 1 but fail to do so if it is as 
low as rj = 0.05. 

5.6 Conclusions 

The upper limits we obtained on the allowed range of beam mismatch parameters 
for given experiments and given arbitrarily-set tolerance levels on the parameter bias 
and uncertainty, constitute conservative limits in the treatment of systematics but 
on the other hand they neglect potential confusion sources with lensing in the worst 
case scenarios as we explain below. It may be the case that a few of the systematics 
studied here may be fully or partially removed. This includes, in particular, the 
first order pointing error which couples to the dipole and octupole moments of non-
ideal scanning strategies (see [47]). By removing this dipole during data analysis the 
effect due to the systematic first order pointing error (dipole) may drop dramatically. 
We made no attempt to remove or minimize these effects in this work. Our results 
highlight the need for scan mitigation techniques because the coupling of several 
beam systematics to non-ideal scanning strategies result in systematic errors. This 
potential solution may reduce systematics, which ultimately propagate to parameter 
estimation, and affect mainly the parameters to which the B-mode polarization is 
sensitive. A brute-force strategy to idealize the data could be to remove data points 
that contribute to higher-than-the-monopole moments in the scanning strategy. This 
would effectively make the scanning strategy ‘ideal’ and alleviate the effect of the 
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a priori most pernicious beam systematics. This procedure ‘costs’ only a minor 
increase in the instrumental noise (due to throwing out a fraction of the data) but 
may potentially reduce the most pernicious reducible beam systematic, i.e. the first 
order pointing error (‘dipole’ effect). 

Our results are summarized in Tables 4-8, where we list upper limits on the allowed 
beam systematics (differential gain, pointing, beamwidth, ellipticity and rotation, 
respectively) for various combinations of CMBPOL noise and resolution parameters 
(in units as in [48], i.e. allowed differential gain, pointing, beamwidth, ellipticity and 

beam rotation are given in yj&%, y^arcsec, yj&%, % and degrees, respectively) 
based on the requirement that "the bias" induced in "the tensor-to-scalar ratio r (first 
value) and M„ (second value) do not exceed the 10% level. Before describing specific 
results for the various systematics and cosmological parameters r and Mv we comment 
that all threshold values found from our analysis for the differential gain, beamwidth 
and ellipticity are larger than the beam uncertainties obtained in section 5.5 (Table 
3) and therefore the beam systematics meet the requirements. 

As for the pointing and beam rotation; these are unconstrained by the beam cal­
ibration with unpolarized point-source as was illustrated in section 5.5. However, 
as explained above, the effect of pointing may be harnessed by removing non-ideal 
moments of the scanning strategy and addressing the effect of polarization-mixing 
will require an accurate measurement of polarization direction. Tables 4 and 5 show 
the tolerance for the differential gain and pointing respectively, subject to the bias 
in r and Mv. Our discussion begins with r. As expected, when the sensitivity and 
resolution of the experiment increase - the bounds on the allowed systematics are 
more demanding. Tables 6 and 7 refer to the differential beamwidth and ellipticity. 
Here the dependence on sensitivity is as before but the allowed systematics actually 
increase as the angular resolution improves. The reason for this behavior is simple; 
both differential beamwidth and ellipticity scale as second gradients of temperature. 
As a result, they steeply rise as a function of multipole number and effectively peak 
on scales smaller than the beamsize. This implies, for example, that if we are in­
terested mainly in the tensor-to-scalar ratio r we should consider having our beams 
very narrow so as to push the systematic signal to small angular scales, beyond the 
inflationary peak at - 2°. Table 8, which describes the allowed beam rotation based 
on the requirement on r is consistent with the general picture we saw with the differ­
ential gain and pointing (Tables 4 and 5); increasing resolution and sensitivity implies 
stronger limits on the allowed systematics levels. 

For Mv forecasts the picture is more complicated mainly due to several competing 
effect and the fact that lensing extraction benefits most from few arcminute scales 
and few of beam systematics peak on sub-beam scales. Higher sensitivity experiments 
(with 1 and 2/xK - arcmin) exhibit interesting behavior: the most stringent limits 
come from 5’-20’ resolution experiments. This is where the B-mode from lensing 
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peaks and since these low-noise experiments are sensitive to the lensing signal even 
small systematics might potentially bias the inferred Mv. 

Table 5 describes the allowed pointing levels. A low sensitivity experiment (6 /xK-
arcmin) allows increasing levels of differential pointing as we increase the resolution. 
However, as we increase the sensitivity the most stringent constraints come from 
experiments with - 10' resolution as the lower noise level allows to ‘see’ larger portions 
of the B-mode lensing signal and therefore the allowed systematics are relatively 
smaller. Now, for a given resolution; moderate-low resolution experiments (10’-30’), 
which do not target the peak of the B-mode lensing signal even with systematics-
free experiment, allow increasing levels of pointing as we ‘turn on’ the instrumental 
noise. When the resolution is relatively high (3’-5’) we still obtain increase of allowed 
systematics with increasing noise but this increase is not monotonic, rather - there is 
a distinguishable ‘dip’ at around 4/xK-arcmin: a possible explanation is that there are 
two competing effects in action. The first is that increasing the instrumental noise 
naturally allows increasing systematics without significantly affecting the uncertainty 
on inferred parameters. On the other hand increasing the instrumental noise limits 
lensing extraction and therefore relatively increases the weight of the information 
contained in the primary signal. The latter also suffers from contamination of E-
and B-modes by beam systematics. The interpretation of the ellipticity constraints 
(Table 7) is similar to that of Table 6. Finally, the ‘undulations’ in the allowed beam 
rotation, as shown in Table 8, merely reflect the relative ratios of primordial E- and 
lensing-induced B-mode at different multipoles accessible at the various resolutions. 

As seen from the above, the allowed beam asymmetry parameters are non-trivial 
functions of both sensitivity and angular resolution as well as the cosmological param­
eter in question; r or Mv. They strongly depend on the tolerance criterion (whether 
it is r that depends on the primordial B-mode signal at angular degree scales or Mv 

which is extracted largely from the higher multipole regime - lensing extraction from 
the few-arcmin B-mode signal). A possibly important factor in this context is the 
typical angular scales of these various types of systematics (i.e their /-dependence). 

Throughout this study we invoked the standard quadratic estimators for lensing 
reconstruction by Hu & Okamoto - this is allowed since we assume the scanning 
strategy is uniform across the sky (and as a result it induces no new typical scale 
and hence no new non-gaussianity). In practice however, this need not necessarily 
be the case; there are new non-gaussianities induced by the coupling of scanning 
strategy to the underlying sky and beam asymmetry. Consequently, the quadratic 
estimators will be biased and a more thorough, Monte-Carlo-Based study, needs to be 
carried out in order to fully address this issue. The effect of differential pointing, in 
particular, may mimic lensing by ‘shifting’ features in the polarization maps and since 
its leading order contribution depends on the coupling of temperature anisotropy, 
beam pointing and scanning strategy, the later will cause a mode-mode coupling if it 
is non-uniform, inducing non-gaussianities. However, this very property of coupling 
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depends on 
beam substructure 

No 
Yes 
Yes 
Yes 

No 

effect 

gain 
monopole 

dipole 

quadrupole 

rotation 

parameter 

9 
fJL 

P 

e 

e 

definition 

9\ ~ 9i 
<J\—<J<2 

Pi — P2 
Vx—Vy 

CTx+CTy 

\(Sl+82) 

Table 1 : Definitions of the parameters associated with the systematic effects. Subscripts 1 
and 2 refer to the first and second polarized beams of the dual beam polarization 
assumed in this work. 

to scanning strategy can be used, in principle, to remove it, at least partially. In 
addition, the data may be uniformized to some degree by throwing out data points 
which contribute to the non-ideal scanning strategy (see section 5.4). 
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effect 
gain 

monopole 

pointing 
quadrupole 

rotation 

parameter 
g 

fJL 

p 

e 

e 

ACfE 

0 
0 

-ceJl{ip)C[ * h 
-I0(z)h(z)c^Cf 

0 

ACf 
92fi*C? 

±ii2(i<jycf*fx 

Jf(lp)Gf*f2 

rt(z)cicr 
4e2Cf 

ACf 
g2h*cf 

AiJ2{i(jycj*jl 

J2(lP)Gf*f2 

rosier 
Ae2Cf 

Table 2: The scaling laws for the systematic effects to the power spectra Cf, CfE, Cf and 
Cf assuming the underlying sky is not polarized (except for the rotation signal 
where we assume the E, and B-mode signals are present) and a general, not nec­
essarily ideal or uniform, scanning strategy. The next order contribution ( 10% of 
the ‘pure’ temperature leakage shown in the table) is contributed by CjE. It can 
be easily calculated based on the general expressions in [47] where the definitions 
of z, p, e, etc., are also found. For the pointing error we found that the ‘irre­
ducible’ contribution to B-mode contamination, arising from a second order effect, 
is extremely small and therefore only the first order terms (which vanish in ideal 
scanning strategy) are shown. The functions / i and /2 are experiment-specific 
and encapsulate the information about the scanning strategy which couples to 
the beam mismatch parameters to generate spurious polarization. In general, the 
functions / i and /2 are spatially-anisotropic but for simplicity, and to obtain a 
first-order approximation, we consider them constants in general. In the case of 
ideal scanning strategy they identically vanish. The exact expressions are given 
in [47]. 

3’ 

5’ 

10’ 

20’ 

30’ 

1 

[/xK-arcmin] 

6.13e-5 

1.03e-4 

2.04e-4 

4.09e-4 

6.13e-4 

2 

[/xK-arcmin] 

1.23e-4 

2.04e-4 

4.09e-4 

8.16e-4 

1.23e-3 

4 

[/xK-arcmin] 

2.45e-4 

4.09e-4 

8.16e-4 

1.64e-3 

2.45e-3 

6 

[/xK-arcmin] 

3.68e-4 

6.13e-4 

1.23e-3 

2.45e-3 

3.68e-3 

Table 3: Epected uncertainty in the beam parameters e, g and p (= 7]N/S) from beam cal­
ibration with point-like source Jupiter (6P « 0.5 arcmin), all given in % units, as 
a function of instrument sensitivity and beamwidth (as described in section 5.5). 
t] (< 1) is the experiment-specific optical efficiency; this parameter encapsultes 
our current ignorance of the experiment optics. 
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3’ 

5’ 

10’ 

20’ 

30’ 

1 
[/xK-arcmin] 

0.00155 
0.029 

0.00156 
0.025 

0.00159 
0.018 

0.00170 
0.018 

0.00183 
0.021 

2 
[/xK-arcmin] 

0.00245 
0.054 

0.00246 
0.049 

0.00248 
0.039 

0.00255 
0.041 

0.00265 
0.050 

4 
[/xK-arcmin] 

0.00384 
0.100 

0.00383 
0.096 

0.00385 
0.083 

0.00391 
0.037 

0.00399 
0.033 

6 
[/xK-arcmin] 

0.00520 
0.150 

0.00520 
0.140 

0.00522 
0.120 

0.00527 
0.050 

0.00536 
0.049 

Table 4: Tolerance levels for differential gain as a function of instrument sensitivity and 
beamwidth (set by requiring that the fractional error induced in the inferred r 
(first) and M ν (second) do not exceed 10%). We assume here worst-case-scenario 
scanning strategy. 

3’ 

5’ 

10’ 

20’ 

30’ 

1 
[/xK-arcmin] 

0.03747 
0.52 

0.03826 
0.41 

0.04057 
0.29 

0.04853 
0.31 

0.05876 
0.38 

2 
[/xK-arcmin] 

0.08735 
1.00 

0.08896 
1.10 

0.09274 
0.62 

0.10531 
0.59 

0.12186 
0.70 

4 
[/xK-arcmin] 

0.19147 
0.69 

0.19248 
0.76 

0.19964 
1.60 

0.21992 
1.30 

0.24634 
1.50 

6 
[/xK-arcmin] 

0.29286 
0.75 

0.29564 
0.79 

0.30476 
1.10 

0.33236 
2.20 

0.36842 
2.40 

Table 5: Tolerance levels for differential pointing as a function of instrument sensitivity and 
beamwidth (set by requiring that the fractional error induced in the inferred r 
(first) and M ν (second) do not exceed 10%). We assume here worst-case-scenario 
scanning strategy. 
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3’ 

5’ 

10’ 

20’ 

30’ 

1 
[/xK-arcmin] 

0.11628 
0.23 

0.04476 
0.12 

0.01348 
0.047 

0.00490 
0.023 

0.00308 
0.015 

2 
[/xK-arcmin] 

0.33176 
0.27 

0.12708 
0.12 

0.03700 
0.12 

0.01267 
0.054 

0.00760 
0.032 

4 
[/xK-arcmin] 

0.86288 
0.37 

0.32614 
0.16 

0.09432 
0.09 

0.03116 
0.059 

0.01795 
0.079 

6 
[/xK-arcmin] 

1.41819 
0.45 

0.53941 
0.20 

0.15470 
0.94 

0.05015 
0.059 

0.02857 
0.064 

Table 6: Tolerance levels for differential beamwidth as a function of instrument sensitivity 
and beamwidth (set by requiring that the fractional error induced in the inferred r 
(first) and M ν (second) do not exceed 10%). We assume here worst-case-scenario 
scanning strategy. 

3’ 

5’ 

10’ 

20’ 

30’ 

1 
[/x]K-arcmin 

0.23213 
0.76 

0.08964 
0.28 

0.02693 
0.086 

0.00974 
0.044 

0.00605 
0.029 

2 
[/xK-arcmin] 

0.65811 
1.5 

0.25226 
0.58 

0.07404 
0.18 

0.02526 
0.087 

0.01512 
0.054 

4 
[/xK-arcmin] 

1.68434 
3.0 

0.63814 
1.2 

0.18571 
0.36 

0.06187 
0.17 

0.03588 
0.10 

6 
[/xK-arcmin] 

2.72548 
4.4 

1.03733 
1.8 

0.29928 
0.54 

0.09868 
0.25 

0.05665 
0.14 

Table 7: Tolerance levels for differential ellipticity as a function of instrument sensitivity 
and beamwidth (set by requiring that the fractional error induced in the inferred 
r (first) and M ν (second) do not exceed 10%). 
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3’ 

5’ 

10’ 

20’ 

30’ 

1 
[/xK-arcmin] 

0.01982 
0.23 

0.02040 
0.24 

0.02232 
0.42 

0.02867 
0.54 

0.03492 
0.46 

2 
[/xK-arcmin] 

0.04432 
0.38 

0.04514 
0.34 

0.04754 
0.45 

0.05423 
0.60 

0.06038 
0.70 

4 
[/xK-arcmin] 

0.09047 
0.62 

0.09100 
0.58 

0.09443 
0.65 

0.10274 
0.88 

0.11119 
1.10 

6 
[/xK-arcmin] 

0.13569 
0.84 

0.13695 
0.79 

0.14102 
0.87 

0.15165 
1.20 

0.16264 
1.70 

Table 8: Tolerance levels for beam rotation as a function of instrument sensitivity and 
beamwidth (set by requiring that the fractional error induced in the inferred r 
(first) and M ν (second) do not exceed 10%). 

6 Discussion 
Gravitational lensing imprints the large-scale potentials along the line-of-sight to last 
scattering on the observed CMB and generates a guaranteed B-mode signal. The 
most powerful technique for using this extra information is the quadratic estimator 
formalism, which extracts the lensing signal in the form of a noisy map fam of the 
lensing potential. For the sky coverage, noise levels, and beam size expected for 
CMBpol, this indirect measurement of <f>tm will have high signal-to-noise on a wide 
range of angular scales, and can be a source of cosmological information which is 
complementary to the primary CMB. It is possible to place constraints on “late 
universe” parameters such as neutrino mass (Fig. 5), the dark energy equation of 
state (Fig. 6), and curvature (Fig. 7) from the CMB alone. 

In addition to being a source of cosmological information, gravitational lensing 
is also a contaminant of the gravitational wave B-mode signal on large scales. The 
experimental requirement for lensing to be a limiting source of uncertainty is quite 
stringent: the instrumental sensitivity must be - 5 /xK-arcmin or better, and con­
tamination from foregrounds and instrumental systematics must also be controlled 
to better than this level. However, if these requirements can be met, CMB experi­
ments will enter a regime in which large-scale B-mode measurements are intimately 
connected with small-scale measurements of the lensing B-mode: the only possibil­
ity for further improvement in a(T/S) will be to use “delensing” techniques which 
use the B-modes on small scales to reduce the level of lensing contamination. The 
improvement in a(T/S) from delensing will depend on the instrumental noise level 
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and beam. Since both instrumental sensitivity and beam width are primary drivers 
of the total cost and complexity of a mission, weighing the tradeoffs is likely to be 
a complex question when designing experiments, particularly since foregrounds and 
instrumental systematics will also be considerations. Our main result (Fig. (8)) shows 
the dependence of the residual B-mode noise level on large scales, as a function of 
the noise and beam, to help in this design decision. “External” delensing of the grav­
ity wave B-mode, either via lens reconstruction from small-scale CMB temperature 
anisotropies or large-scale structure, is not a promising approach; we establish “no-
go” theorems (§3.2, §3.3) showing that the improvement in a(T/S) is minimal, even 
under optimistic simplifying assumptions. 

We have done a detailed analysis of the contamination to the lens reconstruction 
expected from polarized foregrounds, and concluded (§4) that currently favored fore­
ground models do not predict that residual foregrounds will be a significant source 
of bias. Our r and Mv forecast in the presence of beam systematics illustrates (§5) 
that the five types of systematics considered here will not significantly bias either the 
B-mode constraint on (T/S) or the lens reconstruction constraint on neutrino mass. 
We conclude that neither foregrounds nor beam systematics are likely to be a limiting 
factor to the promising science that lies ahead, as future generations of experiments 
probe gravitational lensing through the CMB polarization on small angular scales. 
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A Methodology: lens reconstruction and delens-

ing 

A.1 Lens reconstruct ion from C M B tempera tu re and polar­
ization 

We will construct the lens reconstruction estimator fam and its noise power spectrum 
in a uniform way which applies to both temperature (used in §3.2) and polarization. 
The notation in this appendix follows [37]. 

In the presence of a nonzero lensing potential, the CMB two-point function ac­
quires off-diagonal (i.e. t^t',m^ m') correlations. To lowest order in 0, these take 
the form 

1 1 2 2 /_^ 12 TUl n i 2 m 
tm 

where X, Y e {T,E,B}. (The two-point function in Eq. (40) is the most general 
form which is linear in 0 and satisfies overall rotation invariance.) The V couplings 
are given by: 

ri4«, = ci Ktits + ci Ki2h (41) 

Y 
j^TE riTE hhh tehh , riTE TT0 (A 
1 hhh = Lh + Gfe biii2h yA2) 

F7l + F l F r 2 + F 

2 
Y-EE riEE hhh hhh , riEE I1I2I3 < î̂ 2̂ 3 (Ar>\ 
1 hhh = Lh I 2 I h ^ ^ ' 

(>-2 _ ?̂2 \ 
r ™ t3 = ClE hilh , e2hh (44) 

FfXls = CtE W 3 ^ ^ (45) 

] ̂  (2£i + 1)(2£;6 +1 ) (2 £ I±5 ( 

2i 

where the F symbol is defined by: 

K ^ = [ - W + D + ^ 2 + D + 4 ( 4 + i ) ] y ^ 1 + 1 ) ( 2 ^ 1 ) ( 2 4 +1 }" * '2 0 

(46) 
The estimator <^m is constructed as follows. Assume signal + noise power spectra 

/ CJT + NjT CJE 0 \ 
Ce + Ne= CJE CfE + NEE 0 (47) 

V 0 0 CfB + NfB ) 

The minimum variance unbiased estimator and its noise power spectrum are given 
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by: 

r i_1 
N? = 2C2TTT) ? , ^lUCh+Nh)-x^VfZ\C,2+Nt2)-\,\ (48) 

7 = N? y- TXY ( £l i2 M (C"1^* (C"1^* (49) 
2 ^ ht2tmi ni2 m >hmi )t2m2 

(Here and elsewhere in this appendix, we give expressions in harmonic-space form, 
but we note that for practical evaluation it is necessary to rewrite them in a compu­
tationally efficient position-space form, see e.g. [123].) 

This construction assumes that both temperature and polarization are combined 
into a single minimum-variance estimator <^m, but temperature-only and polarization-
only reconstructions are the special cases {JVfB,JVfB} ->• 0 and NjT ->• 0 respec­
tively. 

A.2 Delensing 

In the gradient approximation, the lensed B-mode is given in terms of the unlensed 
E-mode and the lens potential by: 

«L* = Y, rgLaf* at (50) 

where r f j ^ was defined in Eq. (45). In this notation, the lensed B-mode power 
spectrum is given by [124]: 

CfB = — ^ — V \Tff ,\2CFECtt> (51) 
h 2£2 + l Z ^ 12 h l 

To perform delensing, we construct an estimator afm for the lensing B-mode, given 
the reconstruction $tm described in the previous subsection, and a (noisy) observation 
of the E-mode afm. Heuristically, the estimator is constructed by simply substituting 
the Wiener-filtered Etm and ftm into Eq. (50): 

r^EE E* r"f"f>Ji* 

a? = Y^ TEB „ ^ ^ l 9em (52) 
i\m\im ll ll 

The delensed B-mode power spectrum, i.e. the power spectrum of the residual field 
(afm-afm), is given by: 

CT(dele„Sed) l ( (r~iEEr~i<t>4>\2 \ 

h l {CfE + NEE){Cf' + Nf*) 
h v J 24 + 1 f^1 w l ll l (CEE + NEE)(Cf + Nf) 

(53) 
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(A more formal derivation of the estimator in Eq. (52) can be obtained by solving for 
the weights in the estimator which minimize the delensed B-mode power spectrum.) 

The noise power spectrum Nf+ in Eq. (48) and the residual B-mode power spec­
trum CfB (delensed) in Eq. (53) were obtained assuming quadratic lens reconstruc­
tion. If we want to assume iterative lens reconstruction [33, 34], then we simply repeat 
the calculation of Nf+, CfB (delensed) replacing the lensed B-mode power spectrum 
(which enters the calculation of Nf* as a source of noise in Eq. (48)) by the current 
value of CfB(delensed), and iterate until CfB(delensed) converges. 

We calculate JVf\ CfB (delensed) using the scheme described above when making 
forecasts throughout this report. It is important to note that this scheme is actually 
an approximate forecasting procedure for computing these power spectra and is not 
exact. For example, a complete calculation of the power spectrum CfB (delensed) to 
lowest order in 0 would include an 8-point correlation function containing 6 factors 
of E and 2 factors of 0. In this language, the approximate result in Eq. (53) would 
equal a subset of all the contractions obtained using Wick’s theorem. To show that our 
approximate scheme is in fact a good approximation, we compared forecasts obtained 
using this scheme with the Monte Carlo simulations of delensing in [15] for specific 
choices of noise level and beam, and find good agreement. 

Finally, we discuss forecasts for the parameter uncertainty a(T/S). As mentioned 
in §3, the value of a(T/S) achievable in a given experiment will depend not only 
on the instrumental noise and beam, but also on sky coverage and loss of modes at 
low £ due to EB mixing from survey boundaries, or from projecting out foregrounds. 
To quantify this latter set of complications, we introduce a mode density function 
(dNmodes/d£) to represent the number of modes that can be measured at a given 
value of £, and write the parameter uncertainty a(T/S) with and without delensing 
as: 

T RR 21 -1 /2 

a(T/S)no delensing = \1J2 ( ^ P ) (cBB (lense (ten + or) B ) 2) (54) 

r RR 2 i - 1 / 2 
v(T/S) with delensing = 1 W ^ p A (CBB( ^J*™)+(B )2) (55) 

(We have normalized dNmodes/d£ so that dNmodes/d£ = ( 2 + 1 ) for an all-sky survey.) 
Empirically, we find that both the lensed and delensed B-mode power spectra are 

constant at low £ to an excellent approximation: 

CfB(lensed) « (^ensed)
2 (£ < 100) (56) 

CfB (delensed) « (Sensed)2 (^<100) (57) 

(To quantify this better, the difference between each power spectrum and its best-fit 
constant approximation is below the cosmic variance limit for detectability using only 
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multipoles with £ < 100.) From this and Eqs. (54), (55) it follows that: 

(58) 
lensedr ^ ^ i n s t r 

We have used this simplication throughout §3. 

<r(T/S) no delensing (^nsed )2 + (agst )2 

— 
<r(T/S)with delensing (a£ lensed)2 + K s t ) 2 
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B Methodology: Fisher forecasts 

As discussed in the text, CMB lensing reconstruction allows us to add an addi­

tional source of information to the usual CMB temperature and polarization fields 

— namely, the lens reconstructed deflection field, df. The deflection field contains 

information about late time geometry and structure in the universe and helps break 

the angular diameter distance degeneracy in the CMB. 

For the purpose of Fisher Matrix calculations, it is profitable to assume that 

the lens reconstruction has been used to de-lens the temperature and polarization 

fields, yielding four Gaussian independent variables {T/", Ep, Bp, d^}, which are the 

unlensed CMB fields plus the deflection modes. If we further assume, as we have done 

here, that the fiducial model has no primordial B mode, then the de-lensed E-mode 

is purely noise. Omitting the latter from the Fisher calculation, the data covanance 

matrix reads, 

/ CTT + NTT C TE CTd \ 

Ct=\ l CfE" CfE + NEE 0 ) (59) 

V Cjd 0 Cf + Nf j 

where the CfY 's are the unlensed power spectra and the Nfx,s denote noise power 

spectra. The deflection field power spectrum Nf can be computed in the context of 

a quadratic estimator for the deflection field, as prescribed in [1231. 

Under these assumptions, the Wisher Matrix can be simply written as, 

n v-^(2£ + l) 
bH = y . /sky -Lrace C ~7 ^J (60) 

where pt denotes the i-th cosmological parameter and the lower bound on the error 

on pi after marginalization over all other free parameters is given by, 

. 
<r(Pi) = y/{F-l)u. (61) 

For the cases considered in this report we considered a standard 6 parameter ACDM 
cosmology, parameterized via {ttbh

2, ttDMh2, 6A, T, ns, As} and extended it to include 
a massive neutrino density as a fraction /„ of the total dark matter density, a 
dark energy equation of state w, and a curvature energy density Qk. Note that 
we chose 0A, the angular scale of the sound horizon at recombination, as a parame­
ter, rather than ttA. This is crucial because 9A is the observed quantity and should 
be kept constant when evaluating the derivatives with respect to other parameters. 
We ensured the convergence of the Fisher calculations by repeating all exercises 
after halving the step sizes and making sure that the derivatives and constraints 
on parameters remain effectively unchanged. We chose a fiducial model given by 
{ttbh

2, ttnMh2, 9A, T, ns, (109 Aa),fv, w, ttk} = {0.023, 0.121, 0.010464, 0.11, 0.96,2.453, 0.008, - 1 , 0} 
with one massive neutrino species. 
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