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Decoding the Charitable Brain: Empathy, Perspective
Taking, and Attention Shifts Differentially Predict Altruistic
Giving
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Altruistic behavior varies considerably across people and decision contexts. The relevant computational and motivational mechanisms
that underlie its heterogeneity, however, are poorly understood. Using a charitable giving task together with multivariate decoding
techniques, we identified three distinct psychological mechanisms underlying altruistic decision-making (empathy, perspective taking,
and attentional reorienting) and linked them to dissociable neural computations. Neural responses in the anterior insula (AI) (but not
temporoparietal junction [TPJ]) encoded trial-wise empathy for beneficiaries, whereas the TPJ (but not AI) predicted the degree of
perspective taking. Importantly, the relative influence of both socio-cognitive processes differed across individuals: participants whose
donation behavior was heavily influenced by affective empathy exhibited higher predictive accuracies for generosity in AI, whereas those
who strongly relied on cognitive perspective taking showed improved predictions of generous donations in TPJ. Furthermore, subject-
specific contributions of both processes for donations were reflected in participants’ empathy and perspective taking responses in a
separate fMRI task (EmpaToM), suggesting that process-specific inputs into altruistic choices may reflect participants’ general propen-
sity to either empathize or mentalize. Finally, using independent attention task data, we identified shared neural codes for attentional
reorienting and generous donations in the posterior superior temporal sulcus, suggesting that domain-general attention shifts also
contribute to generous behavior (but not in TPJ or AI). Overall, our findings demonstrate highly specific roles of AI for affective empathy
and TPJ for cognitive perspective taking as precursors of prosocial behavior and suggest that these discrete routes of social cognition
differentially drive intraindividual and interindividual differences in altruistic behavior.
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Introduction
Altruism, which involves costly other-regarding behavior, is a
complex phenomenon resulting from numerous mental pro-

cesses (Fehr and Fischbacher, 2003; Penner et al., 2005; Tanker-
sley et al., 2007; Zaki and Mitchell, 2011; Hutcherson et al., 2015),
such as fairness preferences (Fehr and Schmidt, 2006) or received
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Significance Statement

Human societies depend on the altruistic behavior of their members, but teasing apart its underlying motivations and neural
mechanisms poses a serious challenge. Using multivariate decoding techniques, we delineated three distinct processes for altru-
istic decision-making (affective empathy, cognitive perspective taking, and domain-general attention shifts), linked them to
dissociable neural computations, and identified their relative influence across individuals. Distinguishing process-specific com-
putations both behaviorally and neurally is crucial for developing complete theoretical and neuroscientific accounts of altruistic
behavior and more effective means of increasing it. Moreover, information on the relative influence of subprocesses across
individuals and its link to people’s more general propensity to engage empathy or perspective taking can inform training pro-
grams to increase prosociality, considering their “fit” with different individuals.
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satisfaction when helping the needy (Harbaugh et al., 2007). With
the emergence of social neuroscience (Adolphs, 2010; Singer,
2012), the role of social processes such as empathy and perspec-
tive taking for driving differences in prosociality, have moved
into the focus of attention. Empathy refers to an affective state
that is elicited by and is isomorphic to another person’s affective
state (e.g., suffering) (Decety and Jackson, 2004; de Vignemont
and Singer, 2006). Thus, empathizing refers to affect sharing
(“feeling with”) of others’ states. In contrast, perspective taking
(mentalizing or theory of mind) refers to a cognitive process of
inferring and reasoning about others’ beliefs, thoughts, or inten-
tions (Frith and Frith, 2006) and does not require affective in-
volvement. Empathy and perspective taking have been repeatedly
linked to altruistic behavior (Hare et al., 2010; Hein et al., 2010;
Mathur et al., 2010; Masten et al., 2011; Telzer et al., 2011; Mor-
ishima et al., 2012; Rameson et al., 2012; Waytz et al., 2012; Mo-
relli et al., 2014). However, although both social capacities likely
act in concert (Lamm et al., 2011; Kanske et al., 2015b), they are
almost always studied in isolation, making it impossible to disen-
tangle their behavioral and neural contributions to prosociality.
This poses a challenge to our understanding of altruistic behav-
ior, its determinants, and more effective means of increasing it.

Interestingly, neuroimaging evidence suggests that both pro-
cesses draw on distinct brain networks: Empathy with others’
suffering has been suggested to involve the anterior insula (AI)
and mid cingulate cortex (mCC) (Singer and Lamm, 2009; Kurth
et al., 2010; Fan et al., 2011), whereas perspective taking recruits
the temporoparietal junction (TPJ), posterior superior temporal
sulcus (pSTS), temporal poles, and medial prefrontal cortex
(mPFC) (Van Overwalle, 2009; Mar, 2011; Bzdok et al., 2012;
Schurz et al., 2014). Consistent with the notion of functional
segregation, patients with autistic spectrum disorders often ex-
hibit deficits in perspective taking (Frith, 2001; Hoffmann et al.,
2015) but not necessarily empathy (Bird et al., 2010), whereas
psychopaths demonstrate a lack of empathy but are not impaired
in perspective taking (Blair, 2008; Meffert et al., 2013). Likewise,
in a paradigm (EmpaToM) that simultaneously assesses and in-
dependently manipulates both processes (Kanske et al., 2015b),
AI reflected self-reported empathy, whereas ventral TPJ was se-
lectively linked to perspective taking performance. Interestingly,
TPJ (but also AI) has also been linked to low-level, stimulus-
driven reorienting of attention (Decety and Lamm, 2007; Cor-
betta et al., 2008; Mitchell, 2008; Krall et al., 2015). Thus, the role
of TPJ during altruistic choices might reflect domain-general at-
tentional shifts rather than social computations related to men-
talizing (for debate, see Mitchell, 2008; Scholz et al., 2009; Young
et al., 2010).

We used an fMRI donation task together with multivariate
decoding techniques to disentangle conceptually related, but
functionally distinct, mechanisms underlying altruism. We hy-
pothesized that both empathy and perspective taking contribute
to trial-by-trial differences in generosity but are encoded in dis-
sociated response patterns in AI (or mCC; mediating empathy)
and TPJ (or pSTS, mPFC; mediating perspective taking). More-
over, given robust evidence of individual differences in both pro-
cesses (Lamm et al., 2011; Kanske et al., 2015b), we examined
whether their relative influence on donations reflects differences
in participants’ general propensity to either empathize or men-
talize in complex social settings. This was tested using cross-task
decoding together with the novel EmpaToM task that indepen-
dently measures empathy and perspective taking. Finally, addi-
tional behavioral and neural measures were used to distinguish
alternative computational accounts of the function of TPJ and AI

during altruistic giving, such as low-level, domain-general atten-
tional processes, or the mediating role of social processes, such as
judgments of similarity, closeness, or deservingness, (Hare et al.,
2010; Batson, 2011; Telzer et al., 2011).

Materials and Methods
Participants
Thirty-three volunteers (15 female, mean age � 26 years, range: 20 –34
years) participated in the fMRI donation task, fMRI EmpaToM task
(Kanske et al., 2015b), and a behavioral post-test (counterbalanced order
of donation task and EmpaToM task across participants). A subset of 23
participants took part in an additional fMRI attention task, which was
performed after the main donation task. All participants had normal or
corrected-to-normal vision, were free of psychiatric or neurological his-
tory, and were German native speakers. Subjects were paid €8 per hour
for their participation, plus 20% of the money that was not donated in a
randomly selected donation trial. The donation task data for one partic-
ipant was excluded from further analyses due to insufficient generosity
(�1%). The attention data of one participant was excluded from the
analysis because of exceedingly high error rates (90%). Moreover, due to
technical difficulties with the scanner, EmpaToM data of 2 participants
were not available. We obtained written informed consent from all par-
ticipants, and the local ethics committee approved the study.

Task design
Donation task. Altruistic behavior was measured using a charitable do-
nation task (Böckler et al., 2016) (see Fig. 1A). Before the fMRI session,
participants were given an endowment of €50. In each trial, they were
first presented with a short description of a charitable organization, in-
cluding its name, main goal, beneficiaries, and examples of the charity’s
activities (reading phase; up to 30 s). Participants indicated via a button
press when they had finished reading. A continuous rating scale was then
presented at the bottom of the screen (range of €0 to €50), and partici-
pants had to decide how much to donate to that charity (decision phase;
up to 10 s). Participants responded by moving a slider (randomized
initial position) using the index and middle finger of the right hand and
confirmed their donation choice with a button press of the right ring
finger. Intertrial intervals varied from 4 to 8 s, during which a black
fixation cross was presented against a white background. Before scan-
ning, participants were informed that one donation trial would be ran-
domly selected at the end of the experiment and that their donation
would be given to the charity (full amount donated in that trial). Notably,
donations were costly to the subjects because they could keep 20% of the
€50 that was not given to the randomly chosen charity. These rules en-
sured that participants treated each trial as if it was the only one (instead
of dividing their endowment among different charities) and made dona-
tions consistent with their actual preferences. Partial payout was imple-
mented to provide a moderate incentive for donations (Tusche et al.,
2013). The 60 charities used in the task were selected based on pretests
using independent samples. The charities were presented in 5 blocks,
with the presentation order of charities randomized across participants,
within and across donation blocks. Task blocks were divided by breaks of
�30 s in which participants were allowed to rest.

Behavioral post-test. Subsequent to scanning, participants completed a
behavioral task designed to measure the extent to which participants
deployed several social processes that have previously been associated
with altruistic behavior (Eisenberg and Miller, 1987; Eckel and Gross-
man, 1996; Moll et al., 2006; Hare et al., 2010; Hein et al., 2010; Mathur et
al., 2010; Batson, 2011; Ma et al., 2011; Waytz et al., 2012). During this
task, participants were again presented with the mission statements of
each charitable organization and were asked to provide the following
ratings for each charity: (1) empathic responses (“how much empathy
did you experience for the beneficiaries of the charity”); (2) perspective
taking (“how much did you try to take the perspective of the beneficiaries
of the charity”); (3) similarity (“how similar to you are the beneficia-
ries”); (4) closeness (“how likely is it that you or someone close to you
would benefit from the organization”); (5) deservingness (“how much
do the beneficiaries deserve to be supported”); and (6) opposition (“how
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much are you opposed to the general cause of the organization”). Impor-
tantly, participants were instructed to reconstruct and report their en-
gagement in these processes during the previous donation decisions in
the scanner. For each charity, the ratings were collected in randomized
order using a continuous rating scale that ranged from 0 (not at all) to 5
(very much). Self-report ratings aimed to investigate the role of empathy
and perspective taking in altruistic giving (on the within- and between-
subject level). Additional ratings were included to examine the mediating
role of social processes, such as judgments of similarity, closeness, or
deservingness, on prosocial behavior and allowed investigating the spec-
ificity of neural responses in, for example, AI and TPJ.

EmpaToM task. An additional fMRI task measured participants’
empathy- and perspective taking-related responses independent of the
donation task (Kanske et al., 2015b). These data were used to identify
subject-specific neural markers of empathy and perspective taking, re-
spectively. We also compared its behavioral data with self-reported
empathy and perspective taking in the donation task as measured subse-
quent to scanning in the behavioral post-test. The EmpaToM task refers
to cognitive perspective taking as “Theory of Mind” (ToM).

In each of the 48 trials, participants saw a short video (�15 s) of an
actor recounting an autobiographical episode that was either highly emo-
tionally negative (high emotionality) or neutral (low emotionality). The
assignment of videos to both conditions was defined a priori based on
extensive validations of the EmpaToM paradigm (Kanske et al., 2015b).
After each video, participants rated their own affect to measure sponta-
neous empathic responding (“How do you feel”; “very negative” to “very
positive,” scale from �3 to 3) and their compassion for the person in the
video (“How much compassion do you feel”; “none” to “very much,”
scale from 0 to 6) (4 s per rating, fixed order). Participants responded by
moving a slider using the index and middle finger of the right hand. After
a variable delay of 1–3 s, participants were asked to answer a multiple-
choice question concerning the content of the previous video clip (up to
15 s). Questions required either perspective taking (ToM) (e.g., “Anna
thinks that . . .”) or factual reasoning (noToM) (e.g., “It is correct that . .
.”). Participants responded by pressing one of three buttons, assigned to
the three choice options. Trials were separated by variable delays of 1–5 s
(plus a 2 s screen that displayed the name of the person in the following
video). For a detailed description of task validation and example stories
and questions for each experimental condition, see Kanske et al. (2015b).

Attention task. Previous meta-analyses point to a substantial overlap of
the neural networks involved in domain-general processes, such as reori-
enting of attention, and those involved in social processes, such as per-
spective taking and empathy (Decety and Lamm, 2007; Mitchell, 2008;
Krall et al., 2015; but see Silani et al., 2013). Based on this evidence, it has
been hypothesized that shifts of attention might be responsible for some
of the neural activity in areas such as the TPJ during altruistic decision-
making (Hare et al., 2010). If this is true and attentional shifts indeed
contribute to altruistic giving (and hence account for, at least part of, the
predictive information in the TPJ or other regions), neural responses that
encode attentional reorienting should be reactivated during generous
donations. To investigate this possibility, we asked a subset of partici-
pants to also perform a version of the Posner location-cueing task
(Posner and Cohen, 1984; Corbetta and Shulman, 2002). The task was
structured as follows: In each of the 240 trials, a centrally presented visual
cue (white arrow pointing to the left or the right, 200 ms) indicated the
spatial location of a following target stimulus that would appear at the left
or the right side of the screen (ISI of 200 – 800 ms between cue and
target). Targets were displayed for 200 ms and required participants to
respond with a corresponding button press of their right index finger
(target arrow upward) or middle finger (target arrow downward). Trials
were separated by an average of 2925 ms. Compared with validly cued
targets (80%, 192 trials), invalidly cued targets (20%, 48 trials) require
reorienting of attention as reflected in increased reaction times (Muller
and Rabbitt, 1989).

Functional image acquisition
Functional imaging was performed on a 3T Verio scanner (Siemens
Medical Systems) equipped with a 12-channel head coil. T2*-weighted
functional images were obtained using an EPI sequence (TR � 2 s, TE �

27 ms, flip angle � 90°, 3 � 3 � 3 mm, 1 mm interslice gap, matrix size
70 � 70, 37 slices tilted at �30° from axial orientation, ipat � 2). For the
donation task, a maximum of 932 volumes were acquired. For the atten-
tion task, we acquired 470 volumes. For the EmpaToM task, a maximum
of 1028 volumes were acquired.

fMRI data analysis
Functional images were analyzed using the statistical parametric map-
ping software SPM8 (http://www.fil.ion.ucl.ac.uk/spm) implemented in
MATLAB. Preprocessing consisted of slice-time correction, spatial re-
alignment, and normalization to the MNI brain template. Head move-
ment of all participants was found to be below the criterion of 3 mm/3°
throughout the scanning session. For each subject, we estimated several
GLMs of the BOLD responses, using a canonical hemodynamic response
function, and a 128 s high-pass cutoff filter to eliminate low-frequency
drifts in the data.

GLM 1 (high and low donations). This GLM was used to obtain a
measure of BOLD responses for generous and selfish donation decisions
at the task-block level. To this end, for each participant, we defined high
and low generosity trials based on participants’ average donations (mean
split). For each of the five donation blocks, a regressor for high (R1-R5)
and low donation decision (R6-R10) was estimated. Each of these regres-
sors lasted from the onset of the donation scale to the button press
confirming the donation for the trial (decision phase). Similar block-wise
estimates were created for the corresponding reading phases of high
(R11-R15) and low (R16-R20) donations (with the modeled duration
equal to the time between the presentation of the mission statement and
the button press indicating that participants had completed reading).
Movement parameters (R21-R26) were included as regressors of no in-
terest. The estimated responses for the regressors of interest (R1-R10)
were then used in the multivariate pattern analyses (MVPA) described
below. GLM 1 estimated regressors for each of the five donation blocks
separately, ensuring that the number of training and test data in the
MVPA were perfectly balanced for participants’ generous and selfish
decisions.

GLM 2 (trial-wise donations). This GLM was used to obtain a measure
of BOLD responses during the donation task at the trial level. The model
included a regressor for each decision phase (R1-R60), a separate regres-
sor for each reading phase (R61-R120), and movement parameters
(R121-R126). The duration of the regressors matched the durations
modeled in GLM 1. The estimated responses for the donation decisions
(R1-R60) were used as inputs for the multivariate support vector regres-
sions (SVRs) described below.

GLM 3 (EmpaToM task). This GLM was used to investigate whether
the subject-specific influence of empathy and perspective taking in the
donation task is related to participants’ empathy and perspective taking
responses in an independent task. In particular, we tested whether
empathy- and perspective taking-related neural signatures obtained in
the EmpaToM task can predict the degree to which these processes con-
tribute to donation behavior. To this end, GLM 3 estimated four regres-
sors of interest for (R1) high emotional video phases, (R2) low emotional
video phases, (R3) question phases with perspective taking demands
(ToM), and (R4) question phases without perspective taking demands
(noToM). The two rating phases (R5, R6) and six movement parameters
(R7-R12) were included as regressors of no interest. As in previous stud-
ies (Kanske et al., 2015b), two contrast images were estimated for each
participant: To identify empathy-related brain responses, we contrasted
“high emotional” minus “low emotional” video phases (R1-R2). To ob-
tain perspective taking-related brain responses, we contrasted “ToM” �
“noToM” question phases (R3-R4). Individual contrast images were
entered into two separate random-effects group analyses (simple t test in
SPM8). Only voxels that were significant at a statistical threshold of p �
0.05 (FWE-corrected, small volume corrected for the respective main
effect in a sample of n � 178) (Kanske et al., 2015b) were considered
relevant for the neural encoding of empathy and perspective taking and
were used as input (i.e., features) for the MVPA. All voxels identified in
the respective contrast were used together as input for the MVPA de-
scribed below. The selection of voxels (i.e., features) used for the subse-
quent MVPA based on statistical criteria, such as t tests, is a standard
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approach in MVPA (Mitchell et al., 2004; Polyn et al., 2005) to identify
“relevant” voxels (i.e., potentially high level of signal and low level of
noise) for the neural encoding of a condition/variable of interest and to
reduce the dimensionality of the MVPA (for detailed introductions to
this topic see, e.g., Haynes and Rees, 2006; Misaki et al., 2010). The
selection of voxels based on comparisons of task-related experimental
conditions of interest is conceptually well grounded, data-driven, and
completely independent from the donation task.

GLM 4 (attention task). This GLM was used to investigate whether
activity related to the generosity of donations is related to stimulus-
driven shifts of attention. GLM 4 estimated the average responses in each
target period of the Posner cueing task (R1-R240). Cueing periods and
movement parameters were modeled as regressors of no interest. Esti-
mated responses for the 48 invalidly cued target trials and for 48 validly
cued target trials (randomly drawn from the total of 192 valid trials) were
used as input in the MVPA described below. Only correct trials were
considered as input for the MVPA and the number of validly and inval-
idly cued trials was matched.

MVPA
Neural decoding of generous donation decisions. This decoding analysis
was designed to identify brain regions that decode generous versus selfish
giving decisions as measured by a mean split of donations at the subject
level. To this end, we used GLM 1’s parameter estimates for brain re-
sponses during high (R1-R5) and low (R6-R10) donations for each par-
ticipant. We applied a whole-brain “searchlight” decoding approach that
does not depend on a priori assumptions about informative brain re-
gions and ensures unbiased information mapping throughout the whole
brain (Kriegeskorte et al., 2006; Haynes et al., 2007). The searchlight
decoding was done as follows: For each participant, we defined a sphere
(radius � 4 voxels) around a given voxel vi of the measured brain volume
(Bode and Haynes, 2009; Kahnt et al., 2011a; Tusche et al., 2014; Wis-
niewski et al., 2015). For each of the N voxels within this sphere,
we extracted parameter estimates and transformed them into an
N-dimensional pattern vector. Pattern vectors were created separately
for high and low donations and for each donation block. Pattern vectors
of all blocks but one (“training data”) were used to train a linear kernel
support vector machine (SVM) classifier (http://www.csie.ntu.edu.tw/
~cjlin/libsvm) using a fixed cost parameter c � 1. This provided the basis
of the following classification of the pattern vectors of the remaining
donation block (“test data”) as representing either high or low donations.
The procedure was repeated five times, always using a different donation
block as test dataset (leave-one-pair-out cross-validation). The amount
of predictive information on generosity was represented by the average
percentage of correct classifications across the fivefold cross-validation
and was assigned to the central voxel vi of the searchlight sphere. This
support vector classification (SVC) was successively performed for all
spherical clusters created around every voxel of the measured brain vol-
ume, resulting in a 3D map of average classification accuracies for each
participant. These accuracy maps were then smoothed (8 mm FWHM)
and entered into a random-effects group analysis (simple t test in SPM8)
to identifying brain regions that encoded generosity across participants.
Chance level of the binary classification (high vs low donations) was 50%.
In this and later searchlight decoding analyses, brain regions are reported
as significant only if they yielded decoding accuracies significantly above
chance at a stringent statistical threshold of p � 0.05 (FWE-corrected for
multiple comparisons at the voxel level).

Post hoc permutation tests were performed for each identified cluster
(using all voxels within a cluster) to illustrate how likely cluster-wise
decoding accuracies were achieved by chance, compared with data-
driven permutation-based null distributions. For each participant, per-
mutation distributions were created by breaking up the mapping of
labels (high or low donation) and response patterns (1000-fold). To
allow for permutation tests at the group level, we then compared average
“real” decoding accuracies (cluster-wise mean across participants) to
sampled permutation null distribution (averaged across participants for
each of the 1000-fold). Cluster-wise permutation-based null distribu-
tions were also created for all other whole-brain searchlight decoding
analyses, verifying theoretical chance levels (e.g., of 50% for binary clas-

sifications) without exception. Complementary permutation tests,
which further illustrated that cluster-wise decoding accuracies are un-
likely achieved under the null hypothesis, are only displayed for the
whole-brain decoding of high and low donations.

To compare these decoding results with classic univariate effects, we
also estimated a GLM 5 that was identical to GLM 1 (including parameter
estimates for “high” and “low” donations) with the exception that spa-
tially smoothed functional data were used (Gaussian kernel of 8 mm
FWHM). Individual contrast images were then used to compute
random-effects group analyses using paired t tests as implemented in
SPM8. Similar to the multivariate decoding approach, we applied a strin-
gent statistical threshold of p � 0.05 (FWE-corrected).

In addition to binary classifications of high and low donations, we also
examined whether trial-by-trial variations in donation size were encoded
in multivoxel response patterns, using a support vector regression (SVR)
analysis in combination with a searchlight approach (as outlined above).
This analysis used trial-wise donations as labels and trial-wise response
patterns (GLM 2) as input features of the prediction (for a detailed de-
scription of SVR, see below).

Neural decoding of social processes at the time of donation decisions.
Next, we examined whether predictive neural information on generous
donations can be linked to the recruitment of social processes (measured
after scanning) that, as reported below, were found to impact donations
at the behavioral level. In particular, we tested whether the amount of
reported empathy and perspective taking for the beneficiaries of each
charity were encoded in brain regions that encoded the generosity of
donation decisions. This was done as follows: For each rating obtained in
the behavioral post-test, we applied a separate SVR analysis in combina-
tion with a searchlight approach as described above. To take full advan-
tage of stimulus-specific ratings (e.g., the degree of perspective taking),
we used trial-wise parameter estimates (R1-R60, GLM 2) as input for all
linear kernel SVRs (�-SVR; LIBSVM as used for binary classifications;
http://www.csie.ntu.edu.tw/~cjlin/libsvm) together with participants’
ratings as labels. A slightly reduced cost parameter of c � 0.01 was used
(preselected based on previous studies using a similar whole-brain
searchlight SVR approach) (Kahnt et al., 2011a, 2014) to account for
substantially increased computational costs compared with block-wise,
binary SVC. Similar to the decoding of high and low donations, pattern
vectors of four of the five donation blocks were used to train the regres-
sion model. This provided the basis for the prediction of the ratings of the
12 trials of the remaining donation block (independent test data) based
on their neural response patterns. This procedure was repeated several
times, always using trials of a different task block as test data (fivefold
cross-validation). Information about the mental process of interest (e.g.,
perspective taking) was defined as the average Fisher’s z-transformed
correlation coefficient between the rating predicted by the SVR model
and participants’ actual ratings in these trials (Kahnt et al., 2011a, b, 2014;
Gross et al., 2014). Similar to the SVC, this accuracy value was assigned to
the central voxel of the searchlight cluster, and the procedure was re-
peated for every voxel of the measured brain volume. For each rating,
resulting decoding maps of all participants were smoothed (8 mm
FWHM) and submitted to random-effects group analyses. Statistical
tests were restricted to brain regions predictive of the generosity of do-
nations (see Table 2) using the inclusive masking option as implemented
in SPM8. Only regions that passed the statistical threshold of p � 0.05
(FWE-corrected at voxel level) are reported.

As before, we compared these results with those of a univariate analysis
by estimating a GLM 6 (based on smoothed data, 8 mm FWHM) with the
following regressors: reading phases (R1), decision phases (R2), and the
decision phase interacted with empathic responses (R3), perspective tak-
ing (R4), deservingness (R5), similarity (R6), closeness (R7), and oppo-
sition (R8). Movement parameters were included as regressors of no
interest (R9-R14). Contrast images were calculated for each of the para-
metric regressors (R3-R8) and used for separate random-effects group
analyses using single t tests as implemented in SPM8 ( p � 0.05, FWE-
corrected). We also repeated this GLM without the serial orthogonaliza-
tion of R3-R8 as implemented in SPM.

Neural decoding of the subject-specific influence of empathy and perspec-
tive taking in donation decisions. Behavioral regressions in the donation
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task (described below) revealed that the relative influence of empathy
and perspective taking in donation decisions varied across individuals.
Following up on this evidence, we examined whether these subject-
specific contributions of empathy and perspective taking for donation
decisions are related to participants’ more general empathy and perspec-
tive taking responses, independent of altruistic giving. In particular, we
tested whether task-elicited neural signatures of empathy and perspective
taking can predict the degree to which participants rely on these pro-
cesses in a separate donation task. Contrary to the previously described
decoding analyses that tested for predictive neural information within
each participant (across trials or conditions), this analysis focused on
interindividual differences and hence used a cross-subject decoding ap-
proach. Moreover, instead of focusing on information contained in local
spatially distributed response patterns (as identified in searchlight de-
coding approaches), this analysis used multivoxel representations across
brain regions to characterize affective (empathy) and cognitive (perspec-
tive taking) mental states in individual subjects.

For each participant, based on functional data in the EmpaToM task,
we created two independent contrast images that represented neural
signatures for empathy and perspective taking (GLM 3). Two separate
group-level analyses were implemented to identify voxels relevant for
the encoding of both processes (i.e., feature selection independent of the
donation task). For the 119 identified empathy-relevant voxels (see
Table 5), we extracted parameter estimates from the subject-specific con-
trast image for empathy (yielding a 119-dimensional pattern vector for
each participant). Subject-specific empathy-patterns were then used to
train a linear support vector regression (�-SVR, c � 1) together with
participants’ measures of the relative influence of empathy in the dona-
tion task as labels (�empathy obtained in the behavioral regression of
donations). Cross-validation was achieved by a split-half of the sample
(i.e., ntrain � 15, ntest � 15), and repeated 1000 times. Predictive accura-
cies were defined as the average Fisher’s z-transformed correlation coef-
ficient between the regression weights predicted by the SVR model and
actual regression weights of participants in the test sample. To assess the
statistical significance of the predictions, accuracies were contrasted
against permutation-based null distributions (1000-fold) (paired-
sample Wilcoxon signed rank test as implemented in MATLAB, The
MathWorks). The decoding procedure was then repeated for perspective
taking and the other post-test measures (separately), based on both the
empathy-related and perspective taking-related responses in the Empa-
ToM task. Bonferroni correction was used to adjust p values for multiple
comparisons across the total of 12 independent tests.

Neural decoding of stimulus-driven reorientation of attention. To inves-
tigate the role of domain-general attentional shifts in altruistic decisions,
we performed two different types of decoding analyses for attention data:
within-attention task and cross-task decoding.

The within-attention task MVPA identified brain regions that encode
stimulus-driven reorienting of attention using a whole-brain searchlight
approach similar to the binary classification of generous and selfish do-
nations described above. Parameter estimates of validly and invalidly
cued target trials from GLM 4 were used to create trial-specific pattern
vectors. Pattern vectors for 48 valid and 48 invalid trials were then as-
signed to four sets according to their presentation order. Matching the
decoding of high and low donations, a linear SVC (c � 1) was trained on
data of three sets and tested on independent data of the remaining fold.
Average correct classification across the fourfold cross-validation was
assigned to the central voxel of the searchlight. Participants’ decoding
maps were smoothed (8 mm FWHM) and tested at the group level
against the chance level of 50% ( p � 0.05, FWE-corrected).

The cross-task MVPA tested whether overlaps in areas predicting at-
tention shifts and generous donations are indicative of shared neural
code across both tasks. Thus, assuming that attentional shifts indeed
contribute to altruistic giving, we hypothesized that neural responses that
encode attentional reorienting might be reactivated during generous do-
nations. Comparisons of neural activation patterns across tasks (Tusche
et al., 2014; Corradi-Dell’Acqua et al., 2016) allowed us to explicitly test
for common neural codes across both tasks. To this end, we performed
ROI-based cross-task decoding using clusters in right TPJ and right pSTS
as described in Table 2. Decoding parameters and neural response pat-

terns were identical to the within-task decoding of donations and atten-
tion shifts, with the exception that we now trained a classifier on all
response patterns of the attention task (validly vs invalidly cued targets)
and tested it on response patterns of one donation block (low vs high
donations). Decoding accuracies obtained in this fivefold out-of-sample
prediction (i.e., of independent data of one particular donation block)
were then averaged and reflected the amount of shared predictive infor-
mation in the ROI.

For each ROI, we then tested whether participants’ decoding accura-
cies were statistically significant above the chance level of 50% using
permutation tests (1000-fold). Significant results (corrected for the
number of ROIs) would point to shared information across both tasks
and support the notion that predictive information on generosity in this
brain region is, at least partly, due to reinstatement of neural codes re-
cruited for domain-general processes, such as reorienting of attention.

Results
Donation behavior
Average donations varied substantially across participants (min-
imum � €6.6; maximum � €37.68; mean � SD: €22.30 � 9.09)
(Fig. 1B). There was also considerable variation in donations to
different charities within participants (range of individuals’ SDs:
€4.47 to €15.71). This latter variation was exploited in defining
“high” and “low” donations at the individual level for the neural
decoding of generous and selfish donations. High (€31.38 �
2.95) and low (€13.95 � 2.36) donation trials were identified
based on participants’ average donations (mean split) (Fig. 1C).
Decision times were comparable for high (4.67 � 1.78 s) and low
(4.63 � 1.88 s) donation conditions (paired t test, p � 0.63),
ensuring that the neural decoding of generous donations is not
confounded by differential durations of decision periods. Like-
wise, the number of trials for high and low donations was
matched (paired t test, p � 0.20). Moreover, there was substantial
variation in donations to specific charities (Fig. 1D). This finding
makes it unlikely that the neural decoding of generous donations
is driven merely by properties of particular charity stimuli.

Behavioral post-test measures
To identify potential sources of the variation in observed dona-
tions, participants rated the extent to which each charity activated
six different social mental processes that have previously been
implicated in altruistic behavior (Eisenberg and Miller, 1987;
Eckel and Grossman, 1996; Moll et al., 2006; Hare et al., 2010;
Hein et al., 2010; Mathur et al., 2010; Batson, 2011; Ma et al.,
2011; Waytz et al., 2012). Self-report measures were obtained
subsequent to scanning (i.e., after the donation task) using con-
tinuous rating scales ranging from 0 (not at all) to 5 (very much).
On average, participants reported a considerable degree of per-
ceived empathy (mean � SD: 3.22 � 0.64) and perspective taking
(2.84 � 0.66) for beneficiaries of a charity. Thus, self-report data
indicate that participants engaged in empathic responses and
perspective taking, to various degrees, when making donation
decisions. Self-reports also indicated that beneficiaries were per-
ceived as highly deserving (mean � SD: 3.71 � 0.53), moderately
similar (1.88 � 0.60), and close (2.11 � 0.61) to themselves.
Closeness referred to the extent to which participants thought
that they, or someone close to them, might benefit from the char-
ity (Hare et al., 2010). Participants also reported relatively little
opposition to the general goals of the charities (1.56 � 0.59) (for
the correlation matrix of average post-test measures, see Table 1).

Behavioral prediction of donations
Next, we estimated a linear mixed regression model to investigate
the relationship between the six socio-affective/socio-cognitive
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ratings and donations. The dependent
variable was the donation made in a given
trial. The independent variables were the
six ratings provided by the same partici-
pant for that charity, which were entered
as fixed effects, whereas subjects were
modeled as random effects. Self-reported
empathy (� � 1.97, p � 0.001), perspec-
tive taking (� � 0.78, p � 0.003), deserv-
ingness (� � 4.52, p � 0.001), and
opposition to the general cause of the
charity (� � 1.97, rescaled so positive re-
gression parameter represent less opposi-
tion, p � 0.001) were found to be
significant predictors of donations. In
contrast, similarity (p � 0.14) and close-
ness (p � 0.885) were not significant pre-
dictors. Including interaction terms in the
linear mixed regression model did not
yield any significant interaction effects (p
values �0.05). Overall, these results dem-
onstrate that empathy and perspective
taking for beneficiaries of the charities (as
well as a number of control variables) are
associated with increased levels of gener-
ous behavior.

For use in later analyses, we also esti-
mated an individual version of these mod-
els. For each participant, we estimated a
separate linear regression of donations on
the six predictor variables (mean � SD:
�perspective taking � 0.47 � 1.82; �empathy �
1.86 � 2.47; �opposition � 2.59 � 2.98;
�closeness � �0.06 � 1.44; �similarity �
�0.07 � 3.76; �deservingness � 4.46 �
3.01). The estimated coefficients from
these regressions were used as individual
measures of the extent to which these dif-
ferent processes are associated with dona-
tions. Behavioral regression weights were
also used to test for neural correlates that
reflect the relative level of influence of
(particularly) empathy and perspective
taking in donation decisions across in-
dividuals. Subject-specific contributions
of affective empathy were significantly
stronger than those for cognitive perspective taking (paired t test,
p � 0.03).

Behavior in a separate empathy and perspective taking
task (EmpaToM)
Participants reported significantly more negative affect after
emotionally negative (mean � SD: �1.16 � 0.88, scale from �3
to 3) than after neutral (0.36 � 0.76) videos (paired t test, p �
0.001). This finding suggests that participants shared the emo-
tional state of the persons depicted in the videos (i.e., responded
empathically). Importantly, participants’ average empathic re-
sponses in the EmpaToM task (rescaled so that higher values
correspond to increased empathic responses) correlated with av-
erage empathy ratings for the beneficiaries of the charities in the
separate donation task (r � 0.34, p � 0.045, two-tailed; p � 0.55
for average perspective taking in the donation task). Correlation
coefficients were comparable (r � 0.35, p � 0.064, two-tailed)

when we controlled for social desirability as measured in a ques-
tionnaire score (Stöber, 2001), indicating that this effect was not
due to self-report biases or demand characteristics.

Participants also reported significantly more compassion after
emotionally negative (4.00 � 1.05, scale from 0 to 6) than after
neutral videos (1.80 � 0.93) (paired t test; p � 0.001). Partici-
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Figure 1. fMRI donation task and behavior. A, In each trial, participants were presented with a mission statement of a real-life
charity (reading phase, up to 30 s). Subsequently, a continuous rating scale (€0 to €50) was presented, and participants were
asked to decide how much of their endowment of €50 they were willing to donate (decision phase, up to 10 s). Intertrial intervals
varied from 4 to 8 s. B, Histogram of participants’ average donations (range of €6.69 to €37.68; mean � SD: €22.30 � 9.09),
confirming considerable variations in participants’ average generosity. C, Taking advantage of the variability of generosity across
trials, we defined high and low donations for each participant based on their average donation. Graph represents mean � SD for
individuals’ high and low donations used to decode participants’ generous and selfish giving decisions from neural response
patterns. D, Stimuli were selected based on independent behavioral pretests. Graph represents mean � SD of donations to each
charity for the fMRI sample. Substantial variations in donations to each charity ensured that neural decoding of generosity did not
merely reflect properties of individual stimuli.

Table 1. Correlations of average self-reported empathy, deservingness,
perspective taking, opposition, similarity, and closeness

Empathy Deservingness Perspective taking Opposition Similarity Closeness

E 0.82* 0.74* 0.73* 0.50 † 0.46 †

D 0.61* 0.92* 0.35 0.33
PT 0.57* 0.26 0.25
O 0.39 † 0.29
S 0.72*
C

*p � 0.05, Bonferroni corrected; †p � 0.05 uncorrected.
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pants’ average self-reported compassion in the EmpaToM task
was positively correlated with their average affective empathic
responses in both the EmpaToM (r � 0.62, p � 0.001) and the
donation task (r � 0.49, p � 0.005).

As in previous implementations of this task (Kanske et al.,
2015b), EmpaToM questions with perspective taking demands had
lower error rates (28 � 13%) and slightly faster reaction times
(8073 � 1213 ms) compared with those without perspective taking
requirements (errors: 42 � 13%; reaction times: 8286 � 1113 ms;
paired t test for errors: p � 0.001, for reaction times: p � 0.196,
two-tailed). Difference scores in both measures were z-scored and
averaged to obtain a composite measure of participants’ perspective
taking performance. Composite scores of participants’ perspective
taking performance in the EmpaToM were marginally positively
correlated with participants’ average perspective taking ratings in the
donation task (r � 0.32, p � 0.08, two-tailed; p � 0.96 for average
empathy for beneficiaries in donation task).

Notably, behavioral measures of empathy and perspective
taking are comparable with previous implementations of the Em-
paToM task (Kanske et al., 2015b), suggesting that the imple-
mentation of the donation task did not affect these independent
process measures. The positive correlation of empathy and per-
spective taking responses in the donation task with independent
process-measures suggests that self-reports in the donation task
indeed reflect these specific social processes.

Neural decoding of high and low donations
within participants
In the first step, we looked for brain regions that reflect the degree
of generosity in the donation task (within participants across
donation choices). To this end, for each participant, we used a
whole-brain searchlight decoding approach to identify local ac-
tivation patterns that reliably decode participants’ high versus
low donations. High and low donation trials might differ in nu-
merous ways, including, for example, in terms of their overall
value or saliency. Thus, this initial decoding analysis explicitly
allowed for the possibility that predictive neural information is
unrelated to socio-cognitive and socio-affective processes. Neu-
ral signatures in the right AI and right TPJ reliably encoded
participants’ generous (vs selfish) donation choices (p � 0.05,
FWE-corrected for multiple comparisons at the voxel level, clus-
ter threshold of 5 voxels). Activation patterns in the bilateral
mPFC, dlPFC, right pSTS, right superior frontal sulcus (SFS),
and left mid and inferior temporal gyrus also predicted high and
low donations (Fig. 2A; Table 2). This analysis was performed at
the level of block-wise estimates of conditions of interest (for
details, see Materials and Methods), comparable with previous
implementations of this MVPA approach in various task do-
mains (Haynes et al., 2007; Tusche et al., 2010, 2013; Bogler et al.,
2011; Bode et al., 2013; Wisniewski et al., 2015). The decoding
accuracies generated by response patterns in these different clus-
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Figure 2. Neural decoding of generous donations and of stimulus-driven reorienting of attention. A, A whole-brain searchlight decoding approach was used to identify neural signatures that
reliably encoded participants’ generous and selfish giving decisions across participants ( p � 0.05, FWE-corrected at voxel level, k � 5 voxels). For details, see Table 2. B, Post hoc permutation tests
further illustrated that decoding accuracies in predictive brain regions (displayed as triangles), based on response patterns of all voxels in a cluster, are unlikely achieved by chance (all p values
�0.007). Boxplots represent null distributions of classification accuracies in the cluster across 1000 permutations. Central marks of boxplots indicate medians, which were found to be 50% (chance
level) for all clusters. Edges of boxes indicate the 25th–75th percentiles. Whiskers extend to extreme data points. C, Cluster in the right TPJ/pSTS that encoded (nonsocial) stimulus-driven reorienting
of attention (displayed in turquoise) in a whole-brain searchlight analysis (within attention task decoding, p � 0.05, FWE-corrected at voxel level, k � 5 voxels). The predictive cluster overlapped
with two clusters in the right TPJ and pSTS that predicted generous and selfish donations in a separate donation task (displayed in orange, within donation task decoding, see A). D, ROI-based
cross-task decoding examined whether neural responses that encode attention shifts are reactivated during generous donation decisions. Activation patterns in the right pSTS coding for stimulus-
driven attention shifts contained significant information on generous giving decisions (illustrated by triangle, p � 0.05, corrected, permutation test). This finding suggests that the domain-general
process of reorienting of attention toward (socially relevant) stimuli may account for part of the predictive information in the pSTS in the donation task. No evidence for shared neural code was found
for the TPJ cluster ( p � 0.05). Graph represents cross-task decoding accuracies in both clusters (triangles) and for cluster-based null-distributions (1000 permutations). Boxplots represent medians
and 25th–75th percentiles. Whiskers indicate ranges of decoding accuracies.
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ters are depicted in Figure 2B (triangles). These accuracies are
comparable with those found in previous studies using a similar
decoding procedure (Hampton and O’Doherty, 2007; Soon et al.,
2008; Tusche et al., 2010, 2014; Bode et al., 2013; Wisniewski et
al., 2015). Post hoc permutation tests illustrate that decoding ac-
curacies in all clusters are unlikely achieved by chance alone (all p
values �0.007; Fig. 2B) (Tusche et al., 2010, 2014; Wisniewski et
al., 2015). Moreover, null distributions of classification accura-
cies based on permutation analyses in all clusters (1000 repeti-
tions) varied �50% (Fig. 2B, boxplots), confirming the chance
level expected for a binary classification.

Several control analyses confirmed that predictive accuracies
for this decoding analysis are unrelated to differential variance in
donations for high and low donation trials. For instance, differ-
ence scores of variance (�high

2 � �low
2 ) used as a covariate in the

random-effects group analysis (simple t test in SPM) found that
decoding accuracies in all clusters were unrelated to differential
variance, even at a very liberal statistical threshold of p � 0.001,
uncorrected. Similar results were obtained for using unsigned
difference scores (��high

2 � �low
2 �) as a covariate (p � 0.001,

uncorrected).
For comparison with previous work, we also estimated a uni-

variate GLM of the BOLD responses to look for areas that re-
spond differently in high versus low donation trials. We did not
find any significant regions exhibiting larger responses during
high donations at a statistical threshold of p � 0.05, FWE-
corrected. For the reverse contrast (low � high donations), only
one cluster in the early visual cortex was significantly more acti-
vated ([MNI �16, �62, �2], t � 6.13). These findings suggest
that information on the generosity of donations seems to be en-
coded in spatially distributed response patterns.

Together, these findings provide converging evidence that re-
sponse patterns in several brain regions, including the right TPJ
and right AI, contained reliable information about the level of
generosity in donation choices. Further support for this notion
was provided by the results of a supplemental support vector
regression analysis that tested for response patterns that encode
trial-by-trial variations in donation size (for a full list of signifi-
cant clusters, see Table 3) (p � 0.05, FWE-corrected at the whole-
brain voxel level, k � 5 voxels).

Neural decoding of high and low donations varies
systematically across participants
Next, having established that several brain regions contain infor-
mation about the generosity of donations, we investigated

whether their neural codes might be related to distinct mental
processes of interest, such as empathy or perspective taking. Be-
havioral regression estimates of all six post-test measures (see
Behavioral prediction of donations) were used as covariates in a
random-effects group analysis on accuracy maps (simple t test in
SPM, small volume [SV] correction for predictive clusters as
listed in Table 2). We found that increased contributions of em-
pathic responses as input for donation decisions were reflected in
higher predictive accuracies for generosity obtained in the AI
(peak at [MNI 46, 22, �6], t � 3.29) (height threshold of p �
0.001, FWE SV-corrected). Increased contributions of perspec-
tive taking, on the other hand, covaried with higher decoding
accuracies in the right TPJ (peak at [MNI 64, �50, 32], t � 4.09)
(height threshold of p � 0.001, FWE SV-corrected). Decoding
accuracies in all other cluster showed no significant interaction
with interindividual differences in empathy or perspective tak-
ing, even at this more liberal statistical threshold. Notably, these
results were found when controlling for the impact of all other
post-test measures (using serial orthogonalization as imple-
mented in SPM in different GLMs that only differed in the order
of covariates). Individual differences in other post-test measures
were not found to systematically covary with decoding accuracies
at this statistical threshold. Overall, the results suggest that em-
pathy and perspective taking might be the two psychological pro-
cesses that most closely resemble the computations performed in
the AI and TPJ during generous donations.

Neural decoding of trial-by-trial variations in empathy and
perspective taking for beneficiaries during donations
In this set of analyses, we further investigated the specific link
between empathy and neural activation in the AI, and perspective
taking and neural responses in the TPJ. In particular, we tested
whether brain responses obtained during donation decisions re-
flected participants’ self-reported levels of empathy and perspec-
tive taking (as measured after scanning) on a trial-by-trial basis.

First, we used multivariate regressions (SVRs) together with a
whole-brain searchlight approach to identify brain areas that en-
code the levels of participants’ empathy across donation trials
(Fig. 3A). Consistent with the results above, we found that trial-
by-trial variations in empathic responses for the beneficiaries of
different charities were encoded in the right AI (height threshold
of p � 0.05, FWE-corrected at voxel level) (average r � 0.14; for
illustration of cluster identified in this whole-brain analyses, see
Fig. 3C). Response patterns in the mPFC, dlPFC, SFS, and bilat-
eral visual cortex also predicted trial-wise variations in empathy
(for details, see Table 4). Notably, while the right AI was found to
contain information on empathic responses during donation de-
cisions, predictions based on response patterns in the right TPJ
varied around chance (Fig. 3C). A post hoc paired t test of predic-
tive accuracies in both clusters (average across voxels) confirmed
that predictive information on participants’ empathic responses
in the right AI was significantly higher than those found in the
right TPJ (p � 0.002). Post hoc cluster-based permutation tests
(using all voxels within a cluster to define response-patterns,
1000-fold) further illustrated that predictive accuracies in all
clusters were unlikely to arise by chance (p values �0.001).

Second, we performed a similar whole-brain SVR analysis to
look for clusters that encode participants’ levels of perspective
taking across trials (Fig. 3B). We found that spatially distributed
response patterns in the right TPJ encoded the degree of perspec-
tive taking during donation decisions ([MNI 58, �54, 32], t �
4.23, average r � 0.11, p � 0.05; Fig. 3D). No other brain region
(including the AI) was predictive at a stringent statistical thresh-

Table 2. Whole-brain searchlight decoding of generous versus selfish donation
decisionsa

Brain region Side BA T k

MNI

x y z

mPFC L/R 10/32 5.92 12 0 50 16
dlPFC L 46 7.20 529 �26 46 22
SFS R 46/9 5.81 6 26 52 32
AI R 6.23 108 42 24 0
Mid temporal gyrus R 21 6.38 13 46 �2 �20
Inferior temporal gyrus R 20 6.07 14 56 �10 �28
TPJ R 39/40/22 6.04 20 56 �54 34
pSTS R 39 6.28 17 38 �66 26
Visual cortex/cerebellum L 18/19 8.96 2351 �14 �62 0

R 18/19 7.29 322 14 �72 2
aResults are reported at a statistical threshold of p � 0.05, FWE-corrected for multiple comparisons at voxel level
(cluster threshold of 5 voxels); only peak activations of clusters are reported. L, Left hemisphere, R, right hemisphere;
BA, Brodmann area; k, cluster size in voxels.
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old of p � 0.05, FWE-corrected. Post hoc permutation tests fur-
ther illustrated that regression accuracies in the TPJ were unlikely
the result of chance (p � 0.001). A post hoc paired t test of decod-
ing accuracies (average across voxels in cluster) confirmed that
predictive information on the level of perspective taking encoded
in the right TPJ was significantly higher than that found in the
right AI (p � 0.008) (Fig. 3D).

Importantly, no other brain region was found to encode trial-
wise variations in empathy or perspective taking at the whole-
brain level, even when using a more liberal statistical threshold
(height threshold of p � 0.001, FWE-corrected at cluster level at
p � 0.05). This finding, together with the close match of predic-
tive clusters found in multivariate regressions and binary classi-
fication of high versus low donations, indicates that the decoding

Table 4. Whole-brain searchlight regression (SVR) of empathic responsesa

Brain region Side BA T k

MNI

x y z

mPFC L/R 10/32 4.37 6 2 50 18
dlPFC L 46 4.52 85 �32 58 26
SFS R 46/9 5.40 6 28 52 34
AI R 4.82 14 44 22 2
Visual cortex/cerebellum L 18/19 5.20 194 �14 �62 0
Visual cortex R 19 7.05 52 28 �80 36
Visual cortex L/R 18 3.68 15 4 �78 28
aResults are reported at a statistical threshold of p � 0.05, FWE-corrected for multiple comparisons at voxel level
(cluster threshold of 5 voxels); only peak coordinates of clusters are reported. L, Left hemisphere; R, right hemi-
sphere; BA, Brodmann area; k, cluster size in voxels.

Table 3. Whole-brain searchlight regression (SVR) of donationsa

Brain region Side BA T k

MNI

x y z

mPFC/dlPFC/SFS R/L 9/10/32/46 9.63 8595 20 36 32
Ventromedal PFC L 11 6.23 23 �6 36 �8
Inferior frontal gyrus/AI R 47 6.16 33 38 40 �2
Inferior frontal gyrus/AI R 44 5.90 23 50 10 12
Inferior/mid temporal gyrus R 20/21 6.98 77 54 �38 �12
TPJ R 39/40/22 5.78 28 60 �56 30
Precentral gyrus L 6 5.88 14 �32 0 46
Superior frontal gyrus/SMA R 6/8 6.19 104 38 6 66
Superior frontal gyrus/SMA R 6 5.71 11 24 0 68
Visual cortex/cerebellum (VC) R 19 6.13 338 22 �86 28
VC/precuneus/superior parietal cortex R/L 7/18/19/39/40 9.41 7107 6 �70 52
aResults are reported at a statistical threshold of p � 0.05, FWE-corrected for multiple comparisons at voxel level (cluster threshold of 5 voxels); only peak coordinates of clusters are reported. L, Left hemisphere; R, right hemisphere; BA,
Brodmann area; k, cluster size in voxels; SMA, supplemental motor area.
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Figure 3. Neural decoding of empathy and perspective taking for beneficiaries of charities. Left, Data are mean � SD for participants’ (A) empathy and (B) degree of perspective taking across
donation trials as reported after scanning, indicating participants’ engagement in both processes and comparable degrees of variance. C, During donation decisions, empathy for beneficiaries was
encoded in response patterns in the right AI (red), but not in the right TPJ ( p � 0.05, FWE-corrected). Pairwise comparisons confirmed that predictive information on empathic responses in AI was
significantly higher than those in TPJ ( p � 0.002) that varied around chance. D, The degree to which participants represented the perspective of the charities’ beneficiaries was encoded in the right
TPJ (green), but not the right AI ( p � 0.05, FWE-corrected). Information on perspective taking in the TPJ was significantly higher than those decoded from the AI that varied around chance ( p �
0.008). Graphs represent median predictive accuracies (white bar) achieved in the right AI and TPJ. Boxes represent the 25th–75th percentiles. Whiskers indicate range of multivariate regression
accuracies. *p � 0.01.
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of high and low donations provides a reasonable data-driven
approach to identify regions involved in socio-cognitive process
during donation decisions.

Third, for the sake of completeness, we ran separate SVRs for
each of the other four ratings. Response patterns in the mPFC
([MNI 0, 48, 16], t � 4.91, r � 0.10), SFS ([MNI 28, 54, 32], t �
4.12, r � 0.08), dlPFC ([MNI �30, 46, 22], t � 4.08, r � 0.08),
and visual cortex ([MNI 2, �64, 8], t � 5.70, r � 0.13; [MNI 16,
�64, 12], t � 5.62, r � 0.14) were found to encode participants’
judgments of deservingness (p � 0.05, FWE-corrected). Per-
ceived similarity, closeness, and opposition to the charities gen-
eral causes could not be decoded at this stringent statistical
threshold, suggesting that these variables are not reliably encoded
in localized response patterns during donation decisions. This
matches behavioral results, because similarity and closeness were
not found to be significant predictors of donations. Notably, re-
sponse patterns in the TPJ did not contain information about any
other rating. Likewise, searchlight SVRs for all other self-report
measures revealed that brain responses in the AI were only pre-
dictive of affective empathic responses. These findings suggest a
highly specific role of the right TPJ for the neural encoding of
perspective taking and of the right AI in encoding empathic re-
sponses during charitable giving.

For completeness, we also estimated related univariate analy-
sis looking for brain areas in which the BOLD responses at the
time of the donation decisions were parametrically modulated by
empathy and perspective taking. No such areas were found at a
stringent statistical threshold of p � 0.05 (FWE-corrected).

Together, these findings suggest a double dissociation of in-
formation encoded in neural activity, with AI reflecting the de-
gree of empathy elicited by the different charities, and the TPJ
reflecting the degree of perspective taking associated with each
decision. The findings also suggest that these computations
might be represented in spatially distributed response patterns
that encode trial-by-trial variations in the variable of interest in a
continuous fashion. In contrast to conventional mass-univariate
analysis of BOLD-response in single voxels, MVPA takes advan-
tage of information contained in differential response biases
across multiple voxels (which in turn are driven by population of
neurons whose activity increases or decreases as a function of a
variable/condition of interest) that are spatially distributed. In-
terestingly, distributed activation patterns of fMRI data have
even been suggested to reflect the underlying neural population
code (Kamitani and Tong, 2005).

Neural decoding of the subject-specific influence of empathy
and perspective taking in donation decisions
The relative influence of empathy and perspective taking in altru-
istic choices varied across individuals, as indicated by subject-
specific parameter estimates in the behavioral regression of
donations. Here, we examined whether multivariate neural rep-
resentations of empathic responses and perspective taking in in-
dividual subjects, obtained in a separate task that did not require
altruistic choices, can predict the degree to which participants
rely on these two processes in the donation task. Neural signa-
tures of empathy and perspective taking were created for each
participant based on the respective contrast in another task (Em-
paToM) that did not require altruistic choices (Table 5). This
ensured that the feature selection (i.e., selection of process-
relevant voxels) for these decoding analyses was completely inde-
pendent of the donation task.

We found that participants’ perspective taking-related neural
signatures in the EmpaToM task (recruiting TPJ, mPFC, STS,

and temporal poles; Table 5) predicted the relative weight of
perspective taking as input into independent donation decisions
(�perspective taking) (average Fisher z-transformed r � 0.34, p �
0.001, Bonferroni corrected). Consistent with our predictions,
neural decoding of the relative influence of empathy in the dona-
tion task varied around chance (�empathy) (r � �0.001, p � 0.05,
corrected) (Fig. 4A). An additional paired-sample Wilcoxon
signed rank test verified that predictions of subject-specific con-
tributions of perspective taking were also significantly higher
than those for empathy (p � 0.001). In contrast, participants’
empathy-related activation patterns in the EmpaToM task (en-
gaging AI, inferior frontal gyrus, and supramarginal gyrus; Table
5) reliably predicted the degree to which individuals relied on
empathy in the separate donation task (�empathy) (r � 0.16, p �
0.001, corrected) (Fig. 4B), but not of perspective taking
(�perspective taking) (r � �0.04, p � 0.05, corrected). A comple-
mentary paired-sample Wilcoxon signed rank test also con-
firmed that predictive accuracies for empathy were significantly
higher than those for perspective taking (p � 0.001). For the sake
of completeness, we repeated these decoding analyses for all con-
trol ratings (deservingness, closeness, opposition, similarity), but
comparisons with permutation-based null-distributions did not
yield any other significant predictions above those achieved by
chance only (p values �0.05, corrected).

Overall, the results suggest that the relative influence of em-
pathy and perspective taking for altruistic choices might reflect
participants’ more general propensity to recruit these processes
when engaging in complex social cognition. Moreover, the high
specificity of these predictions provides further validation and
evidence that the respective behavioral regression weights for
empathic responses and perspective taking in the donation task
indeed reflect information on these specific socio-cognitive
capacities.

Neural decoding of stimulus-driven reorienting of attention
To explicitly test whether predictive information in TPJ (or AI)
for generous donations is related to domain-general processes,
such as reorienting of attention (Corbetta et al., 2008), we asked a
subset of participants to perform an additional fMRI Posner
location-cueing task (Posner and Cohen, 1984). Participants had
to respond to validly and invalidly cued target stimuli (arrows),
with the latter requiring reorienting of attention. As expected,
participants’ response times in invalid (mean � SD: 754 � 101
ms) trials were found to be significantly longer (paired t test, p �
0.001) than in valid trials (644 � 84 ms), reflecting attention

Table 5. Independent empathy and perspective taking responses (EmpaToM task)
used as input for cross-subject decoding analysesa

Brain region Side BA T k

MNI

x y z

Perspective taking (ToM � noToM)
mPFC L/R 10/9 6.99 236 �9 56 31
TPJ L 22/39 5.73 177 �48 �52 28
STS L 21/20 4.82 67 �51 �25 �5
STS R 21/20 5.84 137 45 �28 �2
Temporal pole R 20/21/38 7.19 75 45 14 �35
Temporal pole L 20/21/38 4.86 19 �48 5 �29

Empathy (high � low emotional)
AI L 4.62 18 �30 23 �17
Inferior frontal gyrus R 47 5.00 56 48 47 �11
Supramarginal gyrus L 40 5.27 45 �54 �55 40

aResults are reported at a statistical threshold of p � 0.05, FWE-corrected; only peak activations of clusters are
reported. L, Left hemisphere; R, right hemisphere; BA, Brodmann area; k, cluster size in voxels.
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shifts. The fMRI data obtained during the attention task was
analyzed in two steps.

First, we identified brain regions that decode stimulus-driven
reorienting of attention within the attention task (i.e., establish-
ing that there is local information on attention shifts). We found
that the attention shifts could be decoded from neural responses
in the bilateral mid frontal gyrus and posterior cingulate cortex
(and adjacent mid cingulate cortex). Moreover, response pat-
terns in the right TPJ/pSTS and right superior/mid temporal
gyrus were found to decode attention shifts (p � 0.05, FWE-
corrected at voxel level, k � 5 voxels; Table 6). Significant results
at this stringent statistical threshold demonstrate that the sample
size is sufficient to detect neural responses related to stimulus-
driven reorienting of attention. Moreover, the results are consis-
tent with previous findings on the neural network recruited for
the Posner cueing paradigm (Corbetta et al., 2008). Interestingly,
as shown in Figure 2C, brain responses in the right TPJ and pSTS
were found to decode nonsocial attention shifts as well as gener-
ous donations (as identified in an independent within-donation
task decoding; Table 2). This spatial overlap of predictive clusters
demonstrates that similar brain regions, namely, the right TPJ

and adjacent pSTS, are recruited both during generous giving
decisions and stimulus-driven reorienting of attention.

Second, clusters in right TPJ and pSTS (for details, see Table 2)
were defined as ROIs, and we implemented cross-task classifica-
tions designed to explicitly test for shared neural codes for reori-
enting of attention and generous donations (Tusche et al., 2014).
In particular, we tested whether predictive information on dona-
tions is due to reinstated neural codes relevant for domain-
general reorienting of attention. Multivariate response patterns
in the cross-task classifications were based on all voxels in an ROI
(as defined by a predictive cluster identified in the independent
within-task searchlight decoding). Interestingly, we found evi-
dence for shared neural codes in the right pSTS across both tasks
(p � 0.05, corrected, permutation tests, 1000-fold; Fig. 2D). This
finding suggests that predictive information on generous dona-
tions in this brain area might indeed be related to domain-general
attention shifts toward (socially relevant) stimuli. However, no
evidence for shared neural codes was found in the TPJ cluster
(p � 0.44, uncorrected, permutation tests, 1000-fold; Fig. 2D),
suggesting differential neural processes coding for reorienting of
attention and generosity that might co-occur in this functionally
heterogeneous brain region. Complimentary analyses for all
other clusters confirmed that no other brain cluster (Table 2),
including the AI, contained shared neural code in the cross-task
decoding (all p values �0.13, uncorrected).

Discussion
The computations and motivations that underlie the heterogene-
ity in human altruism are poorly understood. Neuroscience has
started to shed light on the neural underpinnings of altruistic
behavior, such as charitable giving (Moll et al., 2006; Harbaugh et
al., 2007), revealing a prominent role of areas such as AI, TPJ,
pSTS, and mPFC for differences in prosociality across people and
decision contexts (Tankersley et al., 2007; Hare et al., 2010; Hein
et al., 2010; Mathur et al., 2010; Masten et al., 2011; Morishima et
al., 2012; Rameson et al., 2012; Waytz et al., 2012; Genevsky et al.,
2013; Morelli et al., 2014; Zanon et al., 2014; FeldmanHall et al.,
2015). While recruitment of these areas during altruistic behavior
has been suggested to reflect socio-affective and socio-cognitive
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Figure 4. Neural decoding of the relative influence of empathy and perspective taking in donation decisions. A, Neural signatures for perspective taking obtained in an independent fMRI task
(EmpaToM) predicted the relative weight of perspective taking as input into donation decisions (�perspective taking) (mean Fisher z-transformed r � 0.34, p � 0.001, Bonferroni corrected), but not
of empathy (r ��0.001, p � 0.05, corrected). Graphs represent median predictive accuracies (white bar) achieved in these cross-subject decoding analyses (SVR). Boxes represent the 25th–75th
percentiles. B, Independent empathy-related neural signatures (EmpaToM) reliably predicted the degree to which participants relied on affective empathy during donation decisions (�empathy) (r�
0.16, p � 0.001, corrected), but not contributions of cognitive perspective taking (�perspective taking) that varied around chance (r � �0.04, p � 0.05, corrected). *p � 0.001.

Table 6. Whole-brain searchlight decoding of attentional reorienting
(Posner task)a

Brain region Side BA T k

MNI

x y z

Mid frontal gyrus L 44 7.20 20 �44 12 34
Mid frontal gyrus/precentral gyrus R 44/6 6.97 8 40 4 32
Superior/mid temporal gyrus R 22/21 7.31 100 62 �44 8
TPJ/pSTS R 39 6.75 5 52 �62 32
Posterior cingulate cortex L/R 23 6.99 19 2 �28 34
Posterior cingulate cortex/paracentral lobe R 23/4 6.83 16 10 �32 50
Occipital cortex R 18/19 8.50 202 20 �88 20

L 19 7.87 87 �28 �62 28
L 19 6.96 9 �30 �80 4
L 18 6.68 5 �16 �76 28

aResults are reported at a statistical threshold of p � 0.05, FWE-corrected for multiple comparisons at voxel level
(cluster threshold of 5 voxels); only peak coordinates of clusters are reported. L, Left hemisphere; R, right hemi-
sphere; BA, Brodmann area; k, cluster size in voxels.
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processes, such as empathy or perspective taking, or domain-
general attentional shifts, previous research has not distinguished
specific contributions of these interrelated processes. To identify
process-specific inputs into altruistic giving both behaviorally
and neurally, we implemented three fMRI tasks (charitable giving
paradigm; an empathy and perspective taking paradigm (Empa-
ToM) (Kanske et al., 2015b); nonsocial attentional reorienting
paradigm (Posner and Cohen, 1984)) as well as a battery of post-
test ratings that capture social processes previously linked to
prosocial behavior (Eisenberg and Miller, 1987; Hare et al., 2010;
Batson, 2011). Using multivariate decoding techniques, we de-
lineated three distinct psychological processes for altruistic
decision-making (affective empathy, cognitive perspective
taking, and domain-general attention shifts), linked them to
dissociable neural computations, and identified their relative
influence across individuals.

Consistent with previous evidence (e.g., Harbaugh et al., 2007;
Hare et al., 2010; Hein et al., 2010), we demonstrate that neural
responses in AI and TPJ (but also pSTS, mPFC, and dlPFC) en-
coded participants’ generous and selfish giving decisions, but
represent different computations: neural responses in AI (but not
TPJ) encoded trial-wise experienced affective empathy for bene-
ficiaries during donations, whereas activation in TPJ (but not AI)
predicted the degree of cognitive perspective taking in the deci-
sion process. This double dissociation suggests distinct func-
tional roles of both social capacities for driving altruistic choices.
Individual differences in the relative influence of both processes
further supports this functional segregation: participants whose
donations were heavily influenced by affective empathic re-
sponses exhibited higher predictive accuracies for generosity in
the AI. In contrast, an increased influence of cognitive perspec-
tive taking on donations correlated with better predictions of
generous giving in the TPJ. Interestingly, independently mea-
sured empathic brain responses (EmpaToM) (Kanske et al.,
2015b) predicted subject-specific contributions of empathy in
the donation task (but not of perspective taking). Likewise, inde-
pendent neural signatures for perspective taking (EmpaToM)
decoded subject-specific inputs of perspective taking for altruis-
tic choices (but not of empathy). This finding strongly suggests that
participants’ utilization of empathy and perspective taking during
altruistic choices might reflect participants’ more general propensity
to engage in affective resonance or to take a more cognitive stance for
understanding others in complex social interactions, extending pre-
vious links of prosociality and reflexive engagement of perspective
taking (Waytz et al., 2012). Although effect sizes were generally
small, they were achieved using conservative cross-validation ap-
proaches and stringent statistical thresholding, and were consistent
with previous applications of unbiased searchlight decoding ap-
proaches (Haynes et al., 2007; Kahnt et al., 2011a, b, 2014; Tusche et
al., 2014; Wisniewski et al., 2015).

The identified double dissociation of both socio-cognitive
processes encoded in AI and TPJ is consistent with previous the-
oretical accounts (Singer, 2006, 2012; Kanske et al., 2015a) and
meta-analytical evidence that empathy for others’ suffering relies
on a core network that includes the AI and mid cingulate cortex
(Singer and Lamm, 2009; Kurth et al., 2010; Fan et al., 2011;
Lamm et al., 2011), whereas perspective taking reliably recruits
the TPJ, pSTS, mPFC, and temporal poles (Saxe et al., 2004;
Amodio and Frith, 2006; Van Overwalle, 2009; Mar, 2011; Bzdok
et al., 2012; Schurz et al., 2014). Evidence from clinical popula-
tions with marked social deficits also suggests that both capacities
might draw on different mechanisms. Patients with autistic spec-
trum disorders frequently display impaired perspective taking

(Baron-Cohen et al., 1985; Hoffmann et al., 2015) but not neces-
sarily impaired empathy (Silani et al., 2008; Bird et al., 2010),
whereas psychopaths often lack empathy but are not impaired in
perspective taking (Blair, 2008; Meffert et al., 2013). Our findings
demonstrate, for the first time, that this functional segregation of
empathy and perspective taking extends to prosocial decision-
making settings and that both socio-cognitive routes contribute
to variance in altruistic choices, within and across individuals.
Notably, we also show that the neural underpinnings of empathy
and perspective taking during donations are independent from
other relevant variables, such as closeness, similarity, or deserv-
ingness, which have previously been linked to increased generos-
ity (Hare et al., 2010; Batson, 2011; Telzer et al., 2011) and might
mediate increased engagement in perspective taking and empa-
thy. These findings demonstrate a high degree of functional
specificity for AI (mediating empathy) and TPJ (mediating per-
spective taking, but not deservingness) (Hare et al., 2010) during
altruistic behavior. Furthermore, evidence that flexible recruit-
ment of empathy and perspective taking accounts for trial-by-
trial variations of altruistic behavior suggests that the economic
notion of mostly stable and context-insensitive social preferences
(Fehr and Schmidt, 2006; Fehr and Camerer, 2007) should be
extended to account for characteristics of the choice and charity.
Thus, in addition to more trait-like altruistic or egoistic tenden-
cies, or being generally more emotionally or rationally motivated
when making altruistic choices, our results suggest that recruited
mechanisms and their input into choices will vary depending on
the context. Flexible recruitment of empathy might also account
for people’s tendency to preferentially give to identified versus
anonymous victims (Genevsky et al., 2013).

In addition to affective and cognitive social processes, we also
examined the role of stimulus-driven attention shifts in altruistic
giving. Previous evidence points to a substantial overlap of neural
networks involved in domain-general reorienting of attention
with those involved in perspective taking and empathy (Decety
and Lamm, 2007; Corbetta et al., 2008; Mitchell, 2008; Krall et al.,
2015). Based on this evidence, it has been suggested that
bottom-up shifts of attention of a predominant first-person to a
third-person perspective, or toward (socially) relevant stimuli
might underlie the involvement of the TPJ during altruistic giv-
ing (Hare et al., 2010). In line with this notion, we found that
response patterns in the right TPJ/pSTS encoded stimulus-driven
attentional reorienting in a separate (nonsocial) attention task
(Posner and Cohen, 1984). Overlap of this cluster with portions
of pSTS and TPJ that predicted generous donations might tradi-
tionally be interpreted as evidence for similar mental processes
across both tasks. Advanced MVPA techniques allowed us to go
beyond previous reports of colocalization and to explicitly test for
common neural codes across attentional reorienting and gener-
ous giving. Cross-task decoding (Tusche et al., 2014) revealed
that response patterns in the pSTS coding for reorienting of at-
tention were indeed reinstated during generous donation
choices, but no reactivation was observed in the TPJ (or AI).
Evidence of shared neural codes in pSTS points to potential con-
tributions of low-level, domain-general mechanisms to variance
in altruistic decision-making and highlights the complexity of
mechanisms that should be considered in theoretical and neural
models of human altruism. However, the absence of shared neu-
ral code in the TPJ supports a socio-cognitive function of infer-
ring other mental states during altruistic choices (Scholz et al.,
2009; Young et al., 2010), rather than nonsocial attentional reori-
enting. MVPA-based comparisons of participants’ brain re-
sponses across tasks offer a promising methodological approach
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to investigate the generalization, or differentiation, of neural
codes across tasks, conditions, and mental processes (Poldrack et
al., 2009; Corradi-Dell’Acqua et al., 2011; Tusche et al., 2014).
This allowed us to distinguish alternative computational ac-
counts of the function of TPJ during altruistic giving, such as
domain-general processes of attentional reorienting.

Decomposing altruistic choices into distinct mental and neu-
ral computations has direct implications for developing interven-
tions and studying the malleability of human prosociality. For
instance, comparisons of process-specific regression weights in
donations suggest that, at the group level, affective empathic re-
sponses may provide a stronger input into altruistic decisions
than cognitive perspective taking. We therefore predict that in-
terventions that strengthen engagement in empathic responses
might be more effective to increase altruistic behavior compared
with those that modify perspective taking. However, examina-
tions of subject-specific regression weights also found that a sub-
set of participants relied more heavily on perspective taking as
input into generous decisions, suggesting that there might be
both “empathizers” and “mentalizers” in altruistic giving. Infor-
mation on the relative influence of relevant subprocesses across
participants might inform target-specific training programs to
increase altruism, considering how different strategies “fit” with
different individuals. While our results stress the relevance of
basic social capacities for human altruism, future research needs
to examine the generalization of these findings across different
altruistic behaviors and decision contexts. Comparisons of re-
cruited mechanisms across altruistic tasks used in economics,
psychology, and neuroscience, combined with sensitive analysis
techniques such as MVPA, will facilitate the development of
more powerful computational models of altruism.
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