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ABSTRACT

How morphogen gradients govern the pattern of gene expression in
developing tissues is not well understood. Here, we describe a
statistical thermodynamic model of gene regulation that combines the
activity of a morphogen with the transcriptional network it controls.
Using Sonic hedgehog (Shh) patterning of the ventral neural tube as
an example, we show that the framework can be used together with
the principled parameter selection technique of approximate
Bayesian computation to obtain a dynamical model that accurately
predicts tissue patterning. The analysis indicates that, for each target
gene regulated by Gli, which is the transcriptional effector of Shh
signalling, there is a neutral point in the gradient, either side of which
altering the Gli binding affinity has opposite effects on gene
expression. This explains recent counterintuitive experimental
observations. The approach is broadly applicable and provides a
unifying framework to explain the temporospatial pattern of
morphogen-regulated gene expression.

KEY WORDS: Approximate Bayesian computation, Enhancer,
Gene regulation, Gli, Morphogen patterning, Shh, Mathematical
modelling, Transcriptional networks

INTRODUCTION

In many developing tissues, pattern formation depends on the
differential regulation of gene expression by morphogen gradients
(Kicheva et al., 2012; Rogers and Schier, 2011). To understand
tissue patterning, predictive mechanistic models of morphogen-
dependent gene regulation are needed.

A simple model postulates that a morphogen activates target
genes by directly activating a latent transcriptional activator
(Driever et al., 1989). The increase in the activity of the
morphogen-regulated transcription factor (MR-TF) results in
increased binding to its cis-regulatory elements in target genes,
thereby increasing the probability of target gene expression. This
model predicts that genes with few or low-affinity binding sites for
the MR-TF would only be induced close to the morphogen source,
where MR-TF concentration is at its highest. Conversely, genes
expressed at a greater distance would have more or higher affinity
binding sites. This relationship has been termed the affinity
threshold model (Rushlow and Shvartsman, 2012) (Fig. 1A-C).
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Support for the affinity threshold model came from experiments
dissecting the molecular mechanism of gene regulation in the early
Drosophila embryo (Driever et al., 1989; Jiang et al., 1993, 1992).
Subsequent observations, however, were inconsistent with the
model (Ochoa-Espinosa et al., 2005; reviewed by Cohen et al.,
2013). Moreover, binding sites in the enhancers of target genes for
transcription factors (TFs) other than the MR-TF have been shown
to influence gene expression (Hong et al., 2008; Ip et al., 1992;
Jaeger, 2004; Kanodia et al., 2012; Porcher and Dostatni, 2010).
These additional TFs can be expressed uniformly throughout the
tissue or controlled by graded signals. This led to the suggestion that
the response to a morphogen is the product of the structure of the
transcriptional network comprising the target genes. (Balaskas
et al., 2012; Hong et al., 2008; Jaeger, 2004; Kanodia et al., 2012,
Manu et al., 2009; Porcher and Dostatni, 2010).

It is also unclear how the affinity threshold model would apply to
MR-TFs that are bifunctional, acting as transcriptional repressors in
the absence of morphogen and as activators otherwise (Barolo, 2002).
If activator and repressor bind similarly to the same DNA binding
sites, changing binding affinity would affect the probability of bound
repressor or activator equally. In Drosophila, Hedgehog regulates the
activity of the bifunctional effector Ci (Basler and Struhl, 1994). In
the wing disc, its target gene dpp is induced at low Hedgehog
concentrations and contains three low-affinity Ci binding sites (Jiang
and Hui, 2008), whereas pfc is induced by high Hedgehog levels and
contains high-affinity Ci binding sites (Parker et al., 2011). Besides
this counterintuitive allocation of binding site affinity, experimentally
increasing the Ci binding site affinity in the dpp enhancer decreased
its range of expression, which contradicts the affinity threshold model
(Parker et al., 2011). To explain this, a differential cooperativity
model was proposed, in which there is self-cooperative binding of the
repressor but not activator isoform of Ci. The difference in
cooperativity would mean that target genes with higher binding site
affinity are more sensitive to repressor than activator.

In vertebrates, Sonic hedgehog (Shh), acting through Gli proteins
(the Ci orthologues) (Jiang and Hui, 2008), patterns the neural tube
by inducing the nested expression of a set of TFs within neural
progenitors (Alaynick et al., 2011). The pan-neural transcriptional
activator Sox2 provides neural specificity to these Shh target genes
(Bailey et al., 2006; Graham et al., 2003; Oosterveen et al., 2013;
Pevny and Placzek, 2005). Both the activator and repressor form of
Gli bind to the same consensus Gli binding sites (GBS) in the
genome (Hallikas et al., 2006; Muller and Basler, 2000; Peterson
et al., 2012; Vokes et al., 2007, 2008) and analysis of GBSs within
enhancers of Shh target genes failed to find a positive correlation
between binding site affinity and range of gene induction
(Oosterveen et al., 2012; Peterson et al., 2012) (Fig. 1D,E).

Differential cooperativity mechanisms (Parker et al., 2011) are
unlikely to explain the behaviour of Shh target genes in the neural
tube. There is no evidence that Gli repressor (GliR) isoforms bind
more cooperatively than Gli activator (GliA) isoforms (Nguyen,
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2005). In addition, many Shh target enhancers in the neural tube
have a single GBS, thus precluding cooperative binding (Peterson
etal., 2012; Vokes et al., 2007). An alternative is that the dynamics
of the transcriptional network, which is composed of Gli proteins,
uniformly expressed TFs and TFs downstream of Shh signalling,
explains the spatial pattern of gene expression in the neural tube
(Balaskas et al., 2012).

Here, we develop a mathematical model to test this idea. This
reveals a mechanism that relies on the enhancer integrating input from
the MR-TF with the other transcriptional inputs. We first demonstrate
the logic of this model in the context of a single gene regulated solely
by an MR-TF. We then extend the model to include other TFs, using
patterning in the ventral neural tube as an example (Balaskas et al.,
2012). The model is parameterised using a Bayesian computational
technique (Liepe et al., 2010) and reproduces the experimentally
observed expression pattern upon changes in Gli binding affinity. We
suggest that this mechanism provides a general strategy for the
regulation of morphogen-controlled gene responses.

RESULTS

A thermodynamic ensemble model of gene regulation

To explore the function of a bifunctional MR-TF we describe
transcriptional regulation using a statistical thermodynamic
formulation (Bolouri and Davidson, 2003; Shea and Ackers,
1985; Sherman and Cohen, 2012). In this approach, the
thermodynamic states of the cis-regulatory system represent all
possible bound configurations of DNA to polymerase and a
specified set of TFs. Transcriptionally active states are those in
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Fig. 1. Morphogen regulation of gene
expression by an activator/repressor effector.
(A) A morphogen gradient determines the range of
expression of two genes: X and Y. The boundaries
of X and Y are defined by the concentration
thresholds T1 and T2. (B) The affinity threshold
model predicts that genes expressed further from
the morphogen source will have higher binding
affinities (gene Y) compared with genes expressed
over a shorter range (gene X). For both genes, in
this model, increasing the binding affinity will
increase the ranges of gene expression, whereas
decreasing binding affinity will reduce them. (C) The
affinity threshold model is viable in a simple case in
which a morphogen directly activates (or acts as)
a transcriptional effector that acts solely as an
activator (or, equivalently, in which the morphogen
directly represses a transcriptional repressor). (D) In
contrast to B, observations from Hedgehog (Hh)

the morphogen effector is higher for genes that are
expressed closer to the morphogen source

(gene X) than genes expressed at a greater range
(geneY). In experiments altering the binding affinity
of the transcriptional effector, some genes behave
in line with the affinity threshold model (gene X),
whereas others behave in the opposite way

(gene Y), decreasing their range in response to an
increase in binding affinity and increasing their
range in response to a decrease (Oosterveen et al.,
2012). (E) The Hh pathway is an example of a
signalling pathway that culminates in a bifunctional
transcriptional effector. Morphogen signalling
increases the concentration of the activator form
and decreases the concentration of the repressor
form of the effector. Both activator and repressor act
on target genes through the same binding sites.
A.U., arbitrary units.

which polymerase is bound at the promoter; inactive states have no
polymerase bound. The probability of gene expression, ¢, is defined
by the ratio of probabilities of all transcriptionally active states to all
possible states.

The statistical weight associated with each state is derived from
the Gibbs free energy of each binding interaction (Shea and Ackers,
1985). In equilibrium, these weights can be represented as the
product of the concentration, [X], of each binding species multiplied
by the equilibrium binding constants, K, associated with that
interaction (Sherman and Cohen, 2012), thereby providing a direct
molecular correlate for the model. The level of cooperative binding
between activator or repressor with polymerase is defined by the
factor ¢. Thus ¢>1 for an activator and 0<c<1 for a repressor.
Cooperative binding among TFs at different sites (including self-
cooperative binding of the same species) can be characterised in the
same way. The weighted terms for all the states are proportional to
the effective concentration of DNA, which therefore can be factored
out of the equation. Hence, ¢ can be defined as:

Ez states with P bound @)
1+ Zl all bound states @)

¢ = P(Gene Expression) = P(Ppoung) =

with
w; = H KX, H Cu
u=sites W, v=sites
bound in bound in
state 1 state i

3869



RESEARCH ARTICLE

Development (2014) 141, 3868-3878 doi:10.1242/dev.112573

where P denotes probability, P polymerase, i denotes each state, u
each of the bound DNA sites comprising that state, [X,] the
concentration of the species bound at site i, K, the binding affinity
of that interaction, and c,, the level of binding cooperativity
between two occupied sites ¢ and v.

This formulation can recapitulate the more familiar Hill function
description (based on Michaelis—Menten kinetics) of transcriptional
regulation if binding of a single species is considered (see Eq. 2,
representing just the binding of polymerase). However, as we
discuss below in the context of the combinatorial effect of multiple
TFs, the basal levels of transcription in the presence of ubiquitous
regulators cannot be ignored. These effects are typically
approximated by multiplying or summing separate Hill functions;
however, in contrast to the thermodynamic formalism, this does not
accurately represent multiple binding at different sites (Sherman and
Cohen, 2012).

A model of Gli binding at a single GBS

Here, we will consider a gene regulated by Shh-Gli signalling.
However, the conclusions generalise to any morphogen pathway
transduced by bifunctional transcriptional effectors. Using the
framework described above we can define ¢ for the simplest model
of interest in this study, in which the morphogen activator GliA (A),
and repressor GliR (R), bind to a single DNA binding site (GBS).
Activation (or repression) arises through their cooperative (or
inhibitory) binding with polymerase. We illustrate the different
bound configurations of DNA schematically in Fig. 2A. The gene
expression probability is given by:

o KP[P]+CAPKP[P]KA[A]+CRPKP[P]KR[R]
- 1 +KR[R] +KA [A] +KP[P] +CAPKP[P]KA [A] +CRPKP[P]KR[R] '

(1)

¢

The numerator in this function represents all the transcriptional
states in which polymerase is bound and transcription can be active:
polymerase on its own, activator and polymerase bound, or
repressor and polymerase bound. The denominator includes the
active and the additional inactive states: free DNA (=1), and
activator or repressor bound in the absence of polymerase. The
constants Kp, Ko and Ky represent the binding affinities of
polymerase, activator and repressor, respectively. The cooperative
terms cap>1 and car<l represent activation and repression,
respectively.

It is worth noting that in the absence of any TFs ([A]=[R]=0) this
function reduces to:

Kpl[P]

YA @)

¢basal =

This represents the basal probability of gene expression without
activation or repression.

If GliA and GliR have equal binding affinities for the GBS, then
K,=Kr=K. To illustrate the behaviour, we define gradients of GliA
and GliR that represent the transduction of an Shh gradient
(Fig. 2B). The solid blue line in Fig. 2C represents the probability of
gene expression across this gradient, as determined by Eq. 1, for
K=1 and assuming A acts as a strong activator (cop=10) and R a
strong repressor (cgp=0.1). The horizontal grey line in Fig. 2C
represents basal gene expression.
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Using the thermodynamic model, the probability of occupancy of
the GBS by either GliA or GliR can be determined:

P(Abound)
_ KA[A]+CAPKP[P]KA[A]
- 1 —|—KR [R] +KA [A] +KP[P] +CAPKP[P}KA [A] —|—CRPKP[P]KR[R] ’

3)

|]:D(Rbound)
_ KR[R] +CRPKP[P]KR[R]
- 1 —|—KR [R] —|—KA [A] +KP[P] —|—CAPKP[P}KA [A] —|—CRPKP[P]KR[R] '

4)

These functions are illustrated in Fig. 2D (see first column
referring to positions 1, 3 and 4 in Fig. 2C). As expected, higher
polymerase occupancy (equivalent to the probability of gene
expression, ¢) is associated with higher occupancy of GliA and
lower occupancy of GliR.

Predicting the relationship between Gli binding affinity and
gene expression

We asked how ¢, the probability of gene expression, changes when
GBS binding affinity, K, for GliA and GliR is changed. In the
affinity threshold model, an increase in binding site affinity is
expected to increase the probability of expression, resulting in an
increased range of gene expression. In the thermodynamic model
(Eq. 1), ¢ varies with respect to K as:

e _ Kp[P] ([A)(cap — 1) + [R](crp — 1))
dK (1 +Kp[P)+K ([A] + [R] + capKp[P][A] + crpKp[P][R]))*
(5)

Because the denominator in this equation is always positive, the
sign of the function depends only on the sign of 6, where 6 is the
part of the numerator that can be either positive or negative:

6= [Al(cap — 1) + [R](crp — 1) (6)

For an increase in binding affinity, K, to result in an increase in
gene expression probability, ¢, requires d¢/dk>0. This will occur
when 6>0. Conversely, if 6<0 then d¢/dk<0, and therefore ¢ will
decrease when the binding affinity is increased.

As 0 depends only on the concentration of Gli isoforms and the
strength of activation or inhibition, € can be viewed as a function of
position within the morphogen gradient (independent of K, Kp and
[P]). For the case described, where A is an activator (cap>1) and R is
a repressor (cgp<l), 6, and therefore d¢/dk, will be positive only in
regions of the gradient close to the source where A is high and R is
low. Conversely, d¢/dk will be negative further from the source,
where R is high and A is low (Fig. 2E).

Simulations confirm that gene expression probability changes
when Gli binding affinity is altered (Fig. 2C; supplementary material
Fig. S1). As predicted analytically, an increase in binding affinity
increases the probability in the regions closer to the source (d¢/dk>0)
and decreases probability in regions further from the source
(d¢/dk<0). Moreover, at the position in the gradient where 6=0 and
hence d¢/dk=0, no change will occur when K is increased. If we insert
this condition back into Eq. 1 we obtain ¢=(Kp[P])/(1+Kp[P]), which
is the basal level (see Eq. 2) in the absence of any TF binding. Thus,
there is a ‘neutral point’ in the gradient at which gene expression is
fixed at basal levels (solid grey line in Fig. 2C). Close to the source,
where gene expression is above basal levels, an increase in GBS
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Fig. 2. Model of a bifunctional morphogen effector explains how binding affinity affects gene responses. (A) All possible DNA binding configurations for the
model described by Eq. 1. An enhancer composed of a single MR-TF (Gli) binding site regulates the recruitment of RNA polymerase (P) to the promoter. GliA or GIiR
binds at the enhancer in a mutually exclusive manner and increases or decreases (respectively) the probability of P binding at the promoter of the target gene. All
transcriptionally active configurations (those with bound P) are shown with black arrows; inactive configurations are shown with crossed grey arrows. (B) For
simulations, opposing gradients of activator [A] and repressor [R], which are representative of the bifunctional morphogen effectors (Gli/Ci) in a Hh morphogen
gradient, were used. These were defined such that A=e015 R=1-A. (C) Spatial gradients of the activator [A] and repressor [R] isoforms of Gli from (B) applied to a
model of gene expression with a single Gli binding site (GBS) (Eq. 1). The probability of gene expression, ¢, decreases as a function of distance from the source for
target genes containing a low-affinity site (solid blue line, K=1) or a high-affinity site (dashed blue, line K=5). Close to the source there is an increase in gene
expression when the binding affinity, K, for Gli is increased (compare positions 1 and 2). Far from the source there is a decrease in gene expression when
binding affinity is increased (compare positions 4 and 5). The solid grey line indicates the basal level of gene expression and the dashed line the neutral point in the
gradient (position 3). Remaining parameters: [P]=0.1, Kp=0.5, cop=10, cgp=0.1. (D) The percentage occupancy for GliA (green oval) and GIiR (red oval) at the
GBS (derived from Eq. 3 and Eq. 4) and P (blue circle) at the promoter (derived from Eq. 1) for different positions in the gradient depicted in the simulations in C
(grey circles 1-5 located at x=0.1, x=0.35, x=0.6 A.U.) with different values of Gli binding affinity (K=1 and K=5) as indicated. (E) The rate of change of gene
expression probability with respect to Gli binding affinity dg¢/dK (Eq. 5) shown for the two cases illustrated in C. The neutral point occurs at 6=0, where the rate of
change is equal to zero. 6 (Eq. 6) is determined only by the concentrations of GliA and GliR and the strength of their effect on P binding (cap and cgp). (F) Al DNA
binding configurations for the model described by Eq. 7. A ubiquitously expressed TF, S, binds to the enhancer and increases the probability of P recruitment,
independently of GIiA and GIiR binding. (G) Gene expression for two MR-TF-controlled genes, A and B (blue and purple curves), that have different basal levels of
expression (Eq. 7). The blue curves (Kg=0.1) have relatively low basal expression; the purple curves (Ks=10) have a higher basal level of expression. Remaining
parameters: [P]=0.1, Kp=1, cp\p=10, cgp=0.1. A threshold probability for gene activation is defined as T=0.25 (red line). An increase in GBS affinity (from K=1 solid
lines, to K=5 dashed lines) increases the range of expression (above the threshold) of gene A (as indicated by the green arrow). Conversely, the range of expression
of gene B is contracted towards the source (red arrow) when affinity is increased. For both genes, the neutral point (grey dashed line), at which the probability of gene
expression does not change when K is altered, occurs at the basal level and is determined by the position in the gradient where 6=0 (as shown in E).
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binding affinity causes an increase in the probability of gene
expression. Further from the neutral point, where gene expression is
below basal levels, increasing binding affinity decreases the
probability of gene expression. The position of the neutral point is
determined only by the concentrations of GliA and GliR and the
strength of their cooperative binding with polymerase (Eq. 6) and is
independent of the basal level of gene expression.

The effect of binding affinity on enhancer occupancy is illustrated
in Fig. 2D. Increasing the affinity of both GliA and GliR binding at
all positions in the gradient (compare left and right columns) results
in an overall increase in the probability that a GBS will be bound
relative to the unbound state. Close to the source of morphogen, an
increase in K causes a net increase in GliA bound and hence
polymerase occupancy and gene expression probability increases
(compare positions 1 and 2); further from the source, a net increase
in GliR bound results from higher values of K and polymerase
concomitantly decreases (compare positions 4 and 5). At position 3,
the neutral point, there is a balance of activation and repression and
gene expression is at the basal level. This is not equivalent to having
the same amount of GliA and GliR bound at the enhancer: when K
is increased, both isoforms of Gli still increase their binding
proportionately but there is no net change in the level of gene
expression.

Implicit in the thermodynamic model (Shea and Ackers, 1985) is
a reciprocity in the binding cooperativity between a TF and
polymerase. In supplementary material Section 2, we review an
alternative model in which polymerase does not affect the binding
or unbinding of Gli. In this model, there is still a neutral point in the
gradient, either side of which gene expression probability will
increase or decrease when binding affinity is altered. However, the
neutral point changes position within the gradient when the basal
level of expression changes (supplementary material Fig. S2). For
both models it is possible to represent the gene expression
probability in a form that is linearly proportional to the relative
abundance of GliA to GliR (see supplementary material Section 3).

A second assumption of the model is that TF binding to DNA is
fast relative to changes in TF concentration. Hence, the probability
of gene expression given by the model is the probability reached at
equilibrium with respect to the TF and polymerase concentrations.
To determine the dynamic response of these systems prior to steady
state, a more complex model comprising the on/off binding rates for
each of the different factors would be required.

Thus far this analysis has described models consisting of a single
binding site with equal affinity for the activator and repressor.
A qualitatively similar result is obtained if the number of binding sites
is altered instead of their affinity (see supplementary material Section 1
and Fig. S1B). More complex regulatory systems, in which there is
differential binding affinity or cooperativity among multiple binding
sites, can also be applied (see supplementary material Section 4 and
Fig. S3) (Parkeretal., 2011). The key result still holds for these models;
close to the source increasing binding affinity will increase expression
probability and far from the source it will decrease. Hereafter, we apply
the thermodynamic model comprising a single GBS, but the
fundamental findings are consistent among these alternative models.

Transcriptional inputs other than the morphogen can
determine boundary positions

The binding of TFs other than the morphogen effector is also likely
to influence the level of gene expression. Indeed, previous studies
have demonstrated how the levels of binding of a spatially uniform
factor to target genes in a morphogen patterning system can
significantly influence their expression profiles (Kanodia et al.,
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2012). In the neural tube, the TF Sox2 has been suggested to provide
a spatially uniform activation input into neurally expressed genes
(Bailey et al., 2006; Oosterveen et al., 2012; Peterson et al., 2012).
Using this as an established example, we illustrate the possible
bound configurations of DNA in the case of a uniformly expressed
TF and a bifunctional MR-TF in Fig. 2F. An additional uniform
activator, S, is incorporated into the gene expression function using
the same thermodynamic formulation as described above:

Kp [P]"‘CAPKP [P}KA [A]—FCRPKP[P]KR [R]HRPCSPKP [P]KR [R}KS [S]
d): +CAPCSPKP [P]KA [A]KS [S]—FCSPKP [P]KS [S}

z
)

where

Z =1+ Kg[R] + K, [A] + Ks[S] + K4[4]Ks[S] + K [R]K]S]
+ KP[P] + cAPKP[P]KA [A} + CRPKP[P]KR[R]
+ CRPCSPKP [P]KR [R]KS [S} + CAPCSPKP [P}KA [A]KS [S]
+ CSPKP[P]Ks[S].

Here, S binds to DNA with an affinity Kg and cooperatively binds
with polymerase with a factor cgp. The binding of S with either GliA
or GliR has an additive effect on the binding energy with P, and
hence a multiplicative effect on the weighted binding probability. P

and S now define the basal level of gene expression, in the absence
of Gli:

KP[P} + CSPKP[P]Ks[S]
1 —+ KP[P} —+ Ks[S] -+ CSPKP[P]Ks[S] '

d)basal = (8)

The conditions for an increase or a decrease in gene expression
probability when the binding affinity of Gli (K=K,=Kj3) is
increased is still the same as previously defined in the absence of
S; however, at the ‘neutral point’ (where d¢/dK=0 at the position
6=0) gene expression is at this new basal level.

Fig. 2G shows an example for two solutions of ¢, one with
Ks=0.1 (blue), reflecting a gene with low levels of Sox2 binding,
and one with Kg=10 (purple), reflecting a gene with high levels of
Sox2 binding. Increased binding affinity for S increases the basal
level of gene expression. Moreover, in both cases, if the binding
affinity for Gli is increased from K=1 to K=5 (solid to dashed line)
then the predicted increase or decrease in the probability of gene
expression is observed either side of the neutral point. Moreover, if
we consider, hypothetically, that a threshold probability at which a
gene is regarded as ‘on’ occurs at a fixed level (e.g. gene expression
is observed at ¢~0.25) then it is easy to see how the level of basal
expression will contribute to a gene’s expression boundary in the
gradient (note that this will not generate a sharp boundary of gene
expression; we explore this in detail in the next section). If this
threshold position is closer to the gradient source than the neutral
point (which is defined only by the Gli gradient) then an increase in
GBS affinity will cause an expansion in the range of gene
expression. This result is relevant to the transgenic assays in
which increasing the GBS affinity in enhancers of Shh targets
expressed in ventral regions of the neural tube resulted in an
expansion in the range of gene expression (Peterson et al., 2012).
Conversely, for a gene that has a threshold level of expression that is
further from the gradient source than the neutral point, then a
contraction in expression is predicted, as observed in more dorsally
expressed genes in the neural tube (Oosterveen et al., 2012). The
contraction in expression of these latter genes can be explained by
the repressive effect of the MR-TF. For these genes, when the
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morphogen concentration is below some threshold, the repressor
form of the MR-TF represses target gene expression below its basal
level. Hence, increasing binding affinity of the morphogen
transcriptional effector increases the overall repression in regions
beyond the neutral point and thereby contracts the domain of gene
expression.

For a bifunctional MR-TF the position of a target gene boundary
is prognostic of how it will respond to changes in the affinity for the
MR-TF. Genes with boundaries close to the source (before the
neutral point) are more likely to undergo an expansion in their
expression when MR-TF affinity is increased, whereas gene
boundaries further from the source (beyond the neutral point) are
more likely to contract if affinity is increased.

Patterning within a gene regulatory network

In many morphogen systems, a network of interactions between TFs
that are regulated by the morphogen contributes to the spatial pattern
of gene expression (Balaskas et al., 2012; Davidson, 2006; Manu
et al., 2009). These morphogen-regulated transcriptional networks
provide a spatially and temporally varying input into gene
regulation (Bolouri and Davidson, 2003) that is distinct from the
morphogen effector and any uniform modulators. To explore how a
bifunctional transcriptional effector could affect patterning
behaviour in this context, we applied it to the transcriptional
network that functions in the ventral neural tube (Balaskas et al.,
2012; Briscoe et al., 2000; Novitch et al., 2001) (Fig. 3A,B). We
used the thermodynamic formulism to describe a previously
documented transcriptional network (Balaskas et al.,, 2012;
Panovska-Griffiths et al., 2013). We incorporated a fourth gene
(Irx3) that has been shown to function in this network (Fig. 3B)
(Balaskas et al., 2012; Briscoe et al., 2000; Dessaud et al., 2007;
Novitch et al., 2001). This allowed us to investigate two distinct
gene expression boundaries (for Nkx2.2 and Olig2) that have
different responses to perturbations in their Gli binding affinity
(Oosterveen et al., 2012; Peterson et al., 2012).

We use the same functional form for ¢ as previously described to
determine the probability of polymerase occupancy (and therefore
gene expression); however, to simplify the model we incorporate
uniformly expressed TFs such as Sox2 into the expression for the
basal level of polymerase binding for each gene. We assume that
GIliA acts a strong activator (c4p=10), that GliR acts as a strong
repressor (cgp=0) and that the four TFs (Pax6, Olig2, Nkx2.2 and
Irx3) are strong repressors, with zero cooperativity terms. For each
gene repressed by one or more of these four TFs we include two
binding sites. These act equally and independently, without
cooperative binding, to repress polymerase binding. The inclusion
of two independent binding sites provides the necessary non-
linearity to generate sharp boundaries in gene expression patterns
(Balaskas et al., 2012; Manu et al., 2009) and is consistent with the
multiple binding motifs in experimental data (Oosterveen et al.,
2012). We assume that the probability of gene expression, ¢, is
directly proportional to the rate of transcription.

The resulting ordinary differential equation (ODE) network
model has the following form:

[TF]
d7_a¢TF_B[TF]7 )

where [TF] represents the protein concentration of either Pax6,
Olig2, Nkx2.2 or Irx3 and ¢ is the thermodynamic function
describing polymerase occupancy for each of the respective genes.
o is the production rate of the protein and 3 the degradation rate.

The thermodynamic functions are given by:
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where [Pax], [O], [N], [I] represent the protein concentration of
Pax6, Olig2, Nkx2.2 and Irx3 respectively. Kp p.x, Kp 0, Kp nand
Kp | represent the polymerase binding affinities for each of their
enhancers. Kg o and Kg n represent the binding affinity of GliA
and GliR for enhancers of Olig2 and Nkx2.2. Ko p,x denotes the
binding affinity of Olig2 for the Pax6 enhancer; other TF to TF
binding affinities follow the same notation. We implemented the
model within a GliA/R gradient (Fig. 2B).

As many of the parameters are unknown, we used established
Bayesian methodology (Toni et al., 2009, Liepe et al., 2010; Liepe
et al., 2014) to identify the distribution of parameters sets ( posterior
distributions) that could qualitatively reproduce the wild-type (WT)
expression pattern observed in the ventral neural tube (Fig. 3A)
(Alaynick et al., 2011; Balaskas et al., 2012), whereby Nkx2.2 is
expressed most ventrally, followed by Olig2 and then Irx3, with
dorsal Pax6 expression gradually decreasing across the Olig2
domain. We further constrained the parameter search by requiring
the model to reproduce all of the observed null mutant phenotypes
(Balaskas et al., 2012; Briscoe et al., 2001; Novitch et al., 2001)
(Fig. 3D). This included the effect of simultaneous removal of both
GliA and GIiR [experimentally simulating Shh~'~;Gli3~'~ or Gli2~'~;
Gli3™~ compound mutants (Litingtung and Chiang, 2000; Persson
et al., 2002)]. In these embryos, Nkx2.2 expression is absent but
Olig2 expression is observed in ventral regions of the neural tube,
indicating that basal (Gli-independent) activation of Olig2 is
sufficient for its expression.

We defined a distance function that compares simulated patterns
with idealised representations of the WT and mutant patterns
described above. The Bayesian method (see Materials and Methods
and Fig. 3C for an overview of the process) enabled us to obtain a
representation of the parameter space for which the model can
approximate the observed phenotypes (i.e. achieving an
appropriately low distance score for each of the targets;
supplementary material Fig. S4A). We fixed the production and
degradation rates of the TFs (¢=f=2) in order to investigate the
effect of the other parameters in the model. For each of the unknown
parameters, which represent the binding affinities of the
components and the concentration of polymerase, we searched
over a prior parameter space spanning five orders of magnitude,
sampling on a log scale between —3 and 2.

A typical simulation with a parameter set drawn from the full
posterior distribution is shown in Fig. 3D. Consistent with the in
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Fig. 3. Approximate Bayesian computation (ABC) of parameter distributions for a gene network model. (A) In the neural tube, the notochord and floor plate
provide a source of Shh. This gradient acts through Gli proteins to produce a spatial pattern of distinct progenitor domains in the ventral region (the three
ventralmost domains are shown: p2, pMN, p3). Each domain is characterised by the expression of different sets of TFs; the spatial distribution of four of these
(Nkx2.2, Olig2, Irx3 and Pax6) is illustrated. (B) Nkx2.2, Olig2, Irx3 and Pax6 form a cross-repressive network with the regulatory links indicated in the diagram.
Pax6 and Irx3 are expressed in the absence of any Shh signal. Nkx2.2 and Olig2 are regulated by Gli activity. (C) In ABC, parameter sets are drawn from a multi-
dimensional prior distribution. We illustrate the idea for a model with just two parameters. The set of parameters drawn is then used in a model simulation —in this
case a pattern of each of the four genes was derived by simulating the dynamical model described in Eq. 9 to steady state. The pattern that results from the
simulation is scored against a target output (see Materials and Methods for details); in this example, roughly 20% of the pattern of one of the genes (highlighted in
grey) does not match the target, giving a distance score of 0.2. Parameter sets that score a sufficiently low distance are kept, the rest discarded. The posterior
distribution is approximated from the distribution of the retained parameter sets. (D) The sets of target patterns for the WT and six different mutants are shown in
the top row. The x-axis represents the ventral-dorsal position in the neural tube extending away from the morphogen source. The y-axis represents the protein
concentration for each of the four TFs (colour-coded according to A). The bottom row shows a typical example of a simulated set of patterns using a set of
parameters derived from the Bayesian analysis. The patterns represent the steady-state level of protein expression after 100 h of simulation at each position in the
gradient. The parameters in this example are: 0=p=2, cp\p=10, K5 5=18.0, Kg y=37.3, Kp =4.8, Kp 0=47.8, Kp p.x=4.8, Kp |1=23.4, [P]=0.8, K\ pax=26.7,

Ko pax=1.9, Ky 6=60.6, Ko N=27.1, Kpay n=4.8, Ko 1=58.8, Ky |=76.2, K| =28.4, K| =47.1. The mutants were simulated by setting the relevant production rate
to zero. For the Gli mutants, Gli binding was set to zero. In each case, the target pattern is approximately reproduced by the simulated pattern. (E) The temporal
dynamics of the model (using the example parameter set in D) at x=0.1 (a position that will express Nkx2.2 in the WT) are shown. The zero time point represents
the start of the Shh signal (after the system has settled to a steady state). The figure shows the sequential expression of the different TFs consistent with in vivo
data (Balaskas et al., 2012). (F) The marginal (single parameter) posterior distributions for each of the binding affinities derived in the Bayesian analysis are
represented as box plots. The boxes show the median, lower and upper quartile ranges. The whiskers encompass ~99% of the distribution. The black cross
shows the mean value.
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vivo observations (Balaskas et al., 2012; Dessaud et al., 2007), the
genes in the WT case are expressed in the temporal sequence: Pax6
+Irx3—O0lig2—Nkx2.2 in the future p3 (Nkx2.2-expressing)
domain (Fig. 3E). The marginal posterior parameter distributions
(Fig. 3F; supplementary material Fig. S4B shows the joint posterior
distributions) revealed that different strengths of binding are
required among the different TFs. For example, Nkx2.2 binds
relatively strongly to Olig2 and Pax6, whereas Olig2 binds weakly
to Nkx2.2 and Pax6 (the marginal posterior distributions have mean
values of Ky 0=57.6, Ky p=39.6, Ko N=3.3, Ko p=1.9). This is

consistent with previous observations suggesting that Nkx2.2 acts
as a stronger repressor than Olig2 or Pax6 in order to avoid
oscillations in gene expression levels (Balaskas et al., 2012;
Panovska-Griftiths et al., 2013).

In order to establish the effect of changing different parameters, we
analysed the change in position of the gene expression boundaries
(Fig. 4; see Materials and Methods). For Olig2, decreasing GBS
affinity significantly increased the range of its dorsal (Olig2/Irx3)
expression boundary with Irx3, while simultaneously shifting the
ventral boundary slightly more dorsally (Fig. 4B,F,G). Increasing
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Fig. 4. Boundary shifts caused by perturbations to Gli binding in the network model. (A) The steady-state WT pattern produced by the parameter set

described in Fig. 3C after 100 h of Shh signalling. The neutral position, 8=0, for Olig2 and Nkx2.2 is indicated by the solid grey circle. The Nkx2.2/0lig2 (N/O)
and Olig2/Irx3 (O/I) boundaries are indicated by dashed lines. (B-E) The patterns obtained when the model was simulated with perturbations to GBS affinity
for either Olig2 or Nkx2.2. The resulting boundary shifts (AN/O and AO/I) are indicated by dotted lines. A twofold reduction (B) or increase (C) in the affinity of
the GBS in the Olig2 enhancer results in a shift in the ventral boundary away (B) or towards (C) the morphogen source, and leads to an expansion (B) or
contraction (C) in the overall domain size. A tenfold reduction (D) or increase (E) in the affinity of the GBS in the Nkx2.2 enhancer results in a slight reduction (D) or
expansion (E) in its range of expression. (F-M) The positions of the Nkx2.2/0lig2 (N/O) and Olig2/Irx3 (O/I) boundaries were calculated using the algorithm
described in the Materials and Methods. The shift in each boundary (AN/O and AO/I) caused by the perturbation to Gli binding affinity was calculated. The
distribution of these boundary shifts from among the full posterior population of parameter sets is shown as a box blot (the median is identified by a large dot with
strikethrough solid line, boxes are 25th and 75th percentiles, whiskers encompass ~99% of the population, outliers are not shown). A population of 100,000
parameter sets was explored (derived by resampling the 1000 weighted particles obtained from ABC-SysBio). For each parameter set the model was perturbed
from the WT case by altering the Gli binding affinity to either Nkx2.2 or Olig2. The distribution of boundary shifts from the WT location is indicated for the N/O
(red) and O/I (blue) boundaries. Gli binding to Olig2 was reduced by a factor 0.1 (F) and 0.5 (G) or increased by a factor of 2 (H) and 10 (I). Gli binding to Nkx2.2 was
reduced by a factor 0.1 (J) and 0.5 (K) or increased by a factor of 2 (L) and 10 (M).
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GBS affinity significantly decreased the range of expression at the
dorsal boundary (Fig. 4C,H,I). These shifts in Olig2 boundaries are
consistent with the experimental observation that inhibiting the
binding of both activator and repressor Gli proteins resulted in a dorsal
shift of the Olig2 domain (Oosterveen et al., 2012). Notably, Olig2
expression, in the model, spanned the neutral position (6=0 at x~0.35,
as denoted by the solid grey circle in Fig. 4A). Thus, its dorsal
boundary was located in the region of the gradient where one would
predict an increase in gene expression if GBS affinity were decreased
(resulting in a dorsal expansion in the Olig2 domain due to the
increased repression of Irx3 and Pax6). Moreover, the Olig2 ventral
boundary was located in a region where decreasing GBS affinity
would result in a decrease in gene expression (allowing the Nkx2.2
domain to expand dorsally due to the derepression at this boundary
caused by the reduction in Olig2).

In the case of Nkx2.2, decreasing the affinity restricted Nkx2.2
expression more ventrally (Fig. 4D,J,K), whereas increasing the
affinity expanded its expression dorsally (Fig. 4E,L,M). This is also
consistent with the experimental data (Oosterveen et al., 2012;
Peterson et al., 2012). Together, this analysis demonstrates that
changes in GBS affinity of the genes in the network result in the
same behaviour as predicted for a solitary gene.

This system also displays hysteresis (Balaskas et al., 2012), such
that the steady state is maintained if the signal is reduced once the
network has reached steady state (supplementary material Fig. S5).
Both the Nkx2.2/0Olig2 boundary and the Olig2/Irx3 boundary
are robust to significant reductions (up to 80%) in the input signal
of GliA once steady state is achieved (supplementary material
Fig. S5A-D). By contrast, both boundary positions are highly
sensitive to levels of GliA at the start of a simulation (supplementary
material Fig. SSE-H).

We also asked how gene expression is affected if the strength of
the uniform input is altered (supplementary material Fig. S6A-J).
We considered two cases. First, changing the basal signal for all
four genes simultaneously (by changing the level of [P];
supplementary material Fig. S6A,B) had relatively small effects
on the pattern. This suggests robustness in the system that preserves
the pattern when the concentration of a uniform input parameter is
changed. By contrast, altering the basal input for individual genes
(by changing either Kp pax, Kp 11x, Kp o or Kp ; supplementary
material Fig. S6C-J) significantly altered the pattern of gene
expression. For example, a twofold increase in the basal input to
Olig2 dramatically expanded the size of its expression domain,
whereas a twofold decrease resulted in a dramatic decrease in
expression (supplementary material Fig. S61,J). Thus, altering the
number or strength of uniform inputs modifies the spatial pattern of
gene expression.

Morphogen (e.g.Shh) Uniformly

expressed factors

(e.g Sox2)
Activator ~agemm TanSCrption g Repressor

Factor (e.g G|I)/

Enhancer

Moreover, as demonstrated previously (Balaskas et al., 2012;
Panovska-Griffiths et al., 2013), changing the binding affinities of
the TFs forming the cross-repressive network altered the pattern
and behaviour of gene expression (supplementary material
Fig. S6K-BB). Together, these mechanisms could be exploited in
the neural tube to modify the gene expression domains at different
anterior-posterior positions, thereby providing a means to generate
and fine-tune different patterns of gene expression without changing
the morphogen gradient itself. A similar strategy could be exploited
during evolution to alter the patterns of gene expression between
species. This offers a level of flexibility to pattern formation that
could have favoured the use of this type of morphogen system
during the evolution of tissue patterning mechanisms.

DISCUSSION

Taken together, the model provides a straightforward way to capture
the idea that the activity of target genes is determined by the
combined input of the transcriptional effectors. This view of
patterning is consistent with the notion that cis-regulatory elements
integrate the activity of TFs to determine the probability and/or rate
of transcription (Davidson, 2006). Three distinct classes of inputs
can be defined: the MR-TF, the activity of which is determined by
the distribution of the morphogen in the tissue; uniformly expressed
TFs that are active throughout the tissue; and morphogen-controlled
target genes that are dynamically regulated downstream of the
morphogen. Each of these inputs can comprise multiple individual
TFs with either inhibitor or activator function (Fig. 5). The
thermodynamic regulation function provides a method for
logically combining these different regulatory factors.

The analysis reveals how the cross-regulatory network is able
to establish sharp gene expression boundaries (among target
genes that, if expressed in isolation, would have a graded or
uniform expression profile). By explicitly including the
bifunctional forms of Gli we were able to account for the
different boundary shifts that arise in different Shh targets when
Gli binding affinity is perturbed. Notably, these differences could
occur in genes containing a single GBS with the same affinity for
the repressor and activator forms of Gli. In particular, the model
predicts that the Olig2 expression domain must overlie the neutral
point in the gradient in order to explain the different shifts
observed in its ventral and dorsal boundaries. Moreover, by using
the Bayesian methodology to explore the parameter space we
were able to make specific predictions about the relative strength
of binding affinities as well the effects of different parameter
perturbations.

Previously, the thermodynamic modelling approach has been used
to explain how uniformly expressed transcriptional activators can

Target Gene Transcrlptlonal Network

..........................................................

o Wito—

Promoter Target gene - X

Fig. 5. Model for morphogen target gene regulation. Shown is a morphogen-regulated gene in which an enhancer integrates the activity of three distinct
classes of TFs. The activity of the MR-TF, which acts as a bifunctional activator-repressor, is determined by the level of morphogen signalling and provides
positional information. Uniformly expressed TFs, exemplified by Sox2, are active throughout the tissue and contribute to the basal level of activity of a target gene.
The target genes that are dynamically regulated downstream of the morphogen feedback into gene regulation. Each of these inputs can comprise multiple
individual TFs with either inhibitor or activator function and the modelling framework is extendable to account for multiple inputs to a single gene.
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collaborate with latent MR-TFs that are activated by a morphogen
(Kanodia et al., 2012). Here we show that the same framework can be
extended to describe transcriptional networks regulated by a
morphogen, thereby allowing the function and architecture of cis-
regulated elements and the dynamics of a gene regulatory network to
be explored simultaneously. Thus, this modelling formalism provides
a unifying theoretical framework with which to analyse differential
gene expression in developing tissues.

MATERIALS AND METHODS

Approximate Bayesian computation (ABC)

Simulations of the gene expression functions were carried out using
Mathematica 9.0 (Wolfram Research). The network model was analysed
using ABC-SysBio (Liepe et al., 2010; Liepe et al., 2014), an ABC (Toni
et al., 2009) suite designed to run in parallel on graphics processing units
(GPUs) using the python package cuda-sim (Zhou et al., 2011). The input
gradient of GliA and GIliR described in Fig. 2 was discretised into 100
positions. At each position the ODEs describing the TF dynamics were
solved to steady state (100 hours) for each parameter set. Mutant patterns
were generated by setting the levels of production of the relevant TF to
zero or, for Gli™"~, by setting the binding affinity of Gli to zero. A distance
function in the software compared the WT and mutant simulated patterns
with a set of stereotyped targets (Fig. 3D). A point was accrued if the
simulated protein concentration differed from the target by more than 0.2
A.U. at each of the 100 discrete positions in the gradient. The total mean
distance score was obtained by summing the score for each gene at each
position and dividing by the total number of positions scored. Hence, a
simulated pattern that perfectly matched a target would score zero and one
that completely mismatched the target would score 1. The posterior
parameter distribution was estimated using 1000 particles (parameter sets).
It uses a sequential Monte Carlo (SMC) algorithm to efficiently search the
parameter space [for details, see Liepe et al. (2010)]. Initially, a pilot run
was performed in which the target was the WT pattern. The priors were
then updated with the posterior distributions obtained from this fit and
then the WT and mutant patterns were used together as targets; this was
used to speed up the search process (the total time to obtain the
approximate posterior distributions was around 3 weeks running on a
single GPU). After this time the mean distance scores illustrated in
supplementary material Fig. S4A were obtained. The joint and marginal
parameter probability distributions based on the weighted particles
(supplementary material Fig. S4B) were plotted using ksdensity and
meshgrid functions in Matlab (MathWorks).

To determine the effect of parameter perturbations, gene expression
boundaries were compared with the WT pattern (Fig. 4; supplementary
material Figs S5, S6). A resampled posterior population of 100,000
parameters sets was derived from the final 1000 weighted particles. For
each pattern obtained from this set, the gene expression boundaries were
defined using the following algorithm that searched for the maximum or
minimum positions at which expression levels of the different TFs were
higher or lower than each other; specifically, the Nkx2.2 (N)/Olig2 (O)
boundary was defined as: mean[max(N>O in region N>I), min(O>N
in region O>I)]. The Olig2 (O)/Irx3 (I) boundary was defined as: mean
[max(O<I in region O>N), min(I>O in region I>N)]. If no positions in
the pattern satisfied the requirements for both the N/O and O/I boundary,
or if they were located in reverse order of the WT pattern, then that
parameter set was deemed as non-patterning. For each ‘patterning’ solution
the distance between the WT and perturbed boundary was determined.
The boxplots in Fig. 4 and in supplementary material Figs S5 and S6
showing the distribution of these distances for each boundary were derived
using the Matlab boxplot function. The boxes show the median and 25th
(ql) and 75th (q3) percentiles, the whiskers extend to q3+1.5(q3—ql),
covering approximately 99% of the normally distributed data (outliers are
not shown).
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