Reduced and Superreduced Diplatinum Complexes

Tania V. Darnton,^{a,‡} Bryan M. Hunter,^{a,‡} Michael G. Hill,^b Stanislav Záliš,^{*,c} Antonín Vlček Jr.,^{*,c,d} and Harry B. Gray^{*,a}

^aBeckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
^bOccidental College, Los Angeles, California 90041, United States
^cJ. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
^dQueen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom

‡ Indicates that these authors contributed equally.

SUPPLEMENTARY INFORMATION

FIGURES

Figure S1. Cyclic voltammogram of $Pt(pop-BF_2)^{4-}$ in MeCN containing 0.1 M Bu₄NPF₆ at room temperature (~294 K). Potentials vs. Fc⁺/Fc. Scan rate 50 mV/s.

Figure S2. Full-range cyclic voltammogram of $Pt(pop-BF_2)^{4-}$ in MeCN containing 0.1 M Bu_4NPF_6 at 273 K. Potentials vs. Fc⁺/Fc. Scan rate 200 mV/s.

Figure S3. UV-vis absorption spectra monitored in the course of the first $Pt(pop-BF_2)^{4-}$ reduction to $Pt(pop-BF_2)^{5-}$ (left) and subsequent product reoxidation (right). The slightly lower intensities in the right panel are caused by product diffusion out of the spectroscopically probed region.

Figure S4. UV-vis absorption spectra monitored in the course of the second $Pt(pop-BF_2)^{4-}$ reduction (left) and subsequent product reoxidation (right). The slightly lower intensities in the right panel are caused by product diffusion out of the spectroscopically probed region.

Figure S5a. TD-DFT simulated UV-vis absorption spectra of $Pt(pop-BF_2)^{n-}$ (n = 4 (black), 5 (red) and 6/conformer **6** (blue)). The same FWHM of 3000 cm⁻¹ was assumed for all transitions. TD-DFT (PBE0/PCM-MeCN)

Figure S5b. TD-DFT simulated UV-vis absorption spectra of $Pt(pop-BF_2)^{n-} \cdot nMe_4N^+$ (n = 5 (red), 6/conformer **6** (blue)). The same FWHM of 3000 cm⁻¹ was assumed for all transitions. TD-DFT (PBE0/PCM-MeCN)

Figure S6. Left and middle: DFT-optimized structures of $Pt(pop-BF_2)^{5-}$ (5) and the 6 and 6' conformers of $Pt(pop-BF_2)^{6-}$ in MeCN.

Figure S7. DFT-optimized structure of $Pt(pop-BF_2)^{6-} \cdot 6Me_4N^+$ in MeCN.

Figure S8. Calculated absorption spectrum of Pt(pop-BF₂)^{6–}, conformer **6**[']. TD-DFT (PBE0/PCM-MeCN)

Figure S9. Cyclic voltammogram of $Pt(pop-BF_2)^{4-}$ in MeCN containing 0.1 M Bu₄NPF₆ and 1 mM CH₂Cl₂ at 273 K. Potentials vs. Fc⁺/Fc. Scan rate 100 mV/s.

TABLES

Table S1. DFT (ADF/PBE0/COSMO-MeCN) calculated spin densities ρ and g and A(Pt) (in MHz) EPR parameters for Pt(pop-BF₂)⁵⁻.

	calc.	exp.				
ρ Pt (total)	0.552	-				
ρ P (total)	0.389	-				
g 1	1.987	1.98				
g ₂	2.035	2.03				
g ₃	2.047	2.04				
<i>g</i> ₁ - <i>g</i> ₃	0.060	0.060				
g _{iso}	2.023 ^a					
A ₁ (Pt)	599	900				
A ₂ (Pt)	-430	550				
A₃(Pt)	-428	550				
A1(Pt')	623	900				
A ₂ (Pt')	-419	500				
A ₃ (Pt')	-420	350				
^a Coloulated as $\pi = (1 - 2) + \pi^2 + \pi^2 + \pi^2 + \pi^2) / 2 \sqrt{2}$						

^a Calculated as $g_{iso} = ((g_1^2 + g_2^2 + g_3^2)/3)^{1/2}$.

Bond	n = 5	n = 6/conf 6	n = 6/conf 6'	
Pt1-Pt2	2.803	2.739	2.745	
Pt-P1	2.277	2.268	2.255	
Pt-P2	2.277	2.258	2.255	
Pt-P3	2.278	2.265	2.257	
Pt-P4	2.278	2.255	2.257	
Pt-P5	2.277	2.256	2.256	
Pt-P6	2.277	2.260	2.255	
Pt-P7	2.278	2.260	2.255	
Pt-P8	2.278	2.266	2.256	
P-O(-P) (average)	1.634	1.644	1.645	
angle				
Pt2-Pt1-P1	91.9	87.3	93.1	
Pt2-Pt1-P2	91.9	96.2	91.7	
Pt2-Pt1-P3	90.8	87.5	91.7	
Pt2-Pt1-P4	90.8	96.3	93.1	
Pt2-Pt1-P5	91.9	97.1	92.3	
Pt2-Pt1-P6	91.9	88.4	92.3	
Pt2-Pt1-P7	90.8	96.8	90.8	
Pt2-Pt1-P8	90.8	88.3	90.8	

Table S2. DFT-calculated (PBE0/PCM-MeCN) structural parameters of $Pt(pop-BF_2)^{5-}$ and the two conformers of $Pt(pop-BF_2)^{6-}$. Atom P5 is in alignment with atom P1, etc.

Table S3. TD-DFT (PBE0/PCM-MeCN) calculated lowest singlet excitation energies (eV) for $Pt(pop-BF_2)^{6-}$ / conformer **6'** with oscillator strength larger than 0.003.

State	Main contributing excitations	Transition energy	Oscillator	Exptl.
	(%)	eV (nm)	strength	eV (nm)
b ¹ A	95 (HOMO \rightarrow LUMO)	2.69 (461)	0.284	461
c ¹ A	93 (HOMO \rightarrow LUMO+4)	3.18 (404)	0.076	490
d¹A	99 (HOMO \rightarrow LUMO+6)	3.75 (331)	0.009	356
e ¹ A	98 (HOMO \rightarrow LUMO+7)	3.84 (323)	0.012	