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 Mechanism Design with Incomplete

 Information: A Solution to the

 Implementation Problem

 Thomas R. Palfrey

 California Institute of Technology

 Sanjay Srivastava

 Carnegie-Mellon University

 The main result of this paper is that the m. ultiple equilibrium prob-

 lem in mechanism design can be avoided in private-value models if

 agents do not use weakly dominated strategies in equilibrium. We

 show that in such settings, any incentive-compatible allocation rule

 can be made the unique equilibrium outcome to a mechanism. We

 derive a general necessary condition for unique implementation that

 implies that the positive result for private-value models applies with

 considerably less generality to common-value settings.

 I. Introduction

 Institutions play a fundamental role in the organization of economic,

 political, and social activity. A central problem in the theory of institu-

 tions is the characterization of outcomes that can be achieved by in-

 stitutions. Mechanism design theory studies precisely this problem.
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 INCOMPLETE INFORMATION 669

 An institutional design problem arises whenever a group of indi-

 viduals with conflicting interests have to make a collective decision.

 One example of such a problem is the allocation of' public goods.

 Other examples include the design of auctions, constitutional design

 questions, organized markets such as stock exchanges, and, more gen-

 erally, contractual agreements between parties such as labor contracts

 and agency contracts. Since most economic, social, and political activ-

 ity is organized around institutions, a fundamental problem is the

 characterization of what institutions can achieve, that is, exactly which

 collective choices can be attained by institutions.

 An important practical reason for studying this characterization

 stems from the observation that most changes in policy actually

 change the institutional settings that govern activity. Changes often

 take place when the outcomes generated by existing institutions are

 perceived to be undesirable according to some welfare criterion. The

 question being posed here can be restated as, Given a welfare crite-

 rion, does there exist an institution that generates only outcomes that

 are satisfactory according to the welfare criterion? This question is

 also related to the line of reasoning employed in the Coase theorem,

 which asserts that if institutional arrangements are inadequate in the

 sense of leading to (Pareto) undesirable outcomes, rational agents will

 move toward an alternative institution that does not have undesirable

 outcomes. Our analysis can then be viewed as precisely characterizing

 when such alternative institutions exist. If they do exist, then the

 outcomes associated with the welfare criterion are said to be imple-

 mentable. More generally, we are interested in discovering the class of

 welfare criteria whose outcomes are implementable.

 The well-known difficulty in the design problem is that information

 relevant for determining a satisfactory outcome may be dispersed

 among the individuals involved. Consequently, in order to achieve an

 allocation rule that depends on this information (about preferences,

 endowments, priors over payoff-relevant states of the world, etc.), the

 rules of the institution must provide appropriate incentives for indi-

 viduals to share their information. This implies the basic principle of

 mechanism design with incomplete information, that any outcome

 that is a Bayesian Nash equilibrium outcome to a mechanism (institu-

 tion) must satisfy an incentive compatibility condition (Myerson 1979;

 Harris and Townsend 1981).

 This principle further implies an important second idea, known as

 the revelation principle, that any incentive-compatible allocation rule

 can be made an equilibrium outcome of a very simple type of game: a

 direct game in which each individual is requested to report his private

 information. The outcome is then determined by the allocation rule,

 based exactly on the reported private information of all the individ-
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 670 JOURNAL OF POLITICAL ECONOMY

 uals. Incentive compatibility is simply the property that, for each indi-

 vidual, the best thing to do in this particular direct game is to report

 private information truthfully as long as all other individuals are also

 truthfully reporting their private information.

 This fundamental insight into mechanism design with incomplete

 information has allowed many allocation problems to be analyzed and

 forms the basis for the modern theory of second-best welfare analysis

 (Holmstrom and Myerson 1983; Prescott and Townsend 1984; Laf-

 font 1985). This insight provided a major technical breakthrough

 because the analysis of Pareto-optimal allocations in economies with

 private information could be tractably formulated as a standard pro-

 gramming problem: maximizing a planner's objective function sub-

 ject to the usual constraints, augmented by an additional set of incen-

 tive constraints. Furthermore, the revelation principle suggested

 properties of actual institutions that would be capable of' producing

 these optimal allocations. In this way, the formal analysis of' welfare

 economics and institutions was brought under a single unified ap-

 proach.

 Unfortunately, there is a serious caveat to the "revelation principle"

 link between institutions and welfare analysis. Incentive compatibility

 does not imply any restrictions on individual incentives in the direct

 revelation game if other individuals are not telling the truth (Postlewaite

 and Schmeidler 1987). Consequently, there can (and often will) exist

 other equilibrium outcomes to the direct game that are undesirable

 (e.g., by the criterion of' Pareto optimality). There exist several promi-

 nent examples of' this problem (Demski and Sappington [1984] and

 Bhattacharya [1987] in reference to incentive contracts, Milgrom

 [1981] in auctions, and Palfrey and Srivastava [1987] in the imple-

 mentation of' rational expectations equilibria) that threaten the value

 of this whole approach to mechanism design.

 These recent examples illustrate that the implementation problem

 has two equally important aspects. In order to implement an alloca-

 tion rule, a mechanism must be constrained not only by the property

 that it has an equilibrium that produces desirable outcomes but also

 by the property that other undesirable outcomes do not arise as equilibria.

 Thus the work associated with the revelation principle has elegantly

 proved that incentive compatibility is a necessary condition for imn-

 plementation, but the examples cited above indicate that incentive

 compatibility may not be a sufficient condition.

 In this paper, we show that this multiplicity problem can be solved

 in the large and important class of environments in which private

 information is of the "private-values" variety; that is, each individual's

 utility depends only on the outcome and his or her own private infor-

 mation. To achieve this result, a mild refinement of Bayesian Nash
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 INCOMPLETE INFORMATION 671

 equilibrium is adopted and more complex institutions than "direct

 games" are required. Thus we simultaneously provide a sufficiency

 proof' of incentive compatibility for unique implementation in a broad

 class of environments and also, via a constructive proof, indicate how

 our solution may have implications for the details of' institutional

 design.

 II. Relation to the Literature

 In attempts to resolve problems of' multiple equilibria in games, two

 approaches have been followed in the literature. One approach at-

 tempts to eliminate multiple equilibria by refining the notion of' equi-

 librium (e.g., Selten 1975; Grossman and Perry 1986; Kohlberg and

 Mertens 1986; Banks and Sobel 1987; Cho and Kreps 1987). The

 second approach asks whether, given an equilibrium concept, the

 mechanism being played by the agents can be designed so as to elimi-

 nate undesirable equilibria while retaining desirable ones (see Das-

 gupta, Hammond, and Maskin 1979; Maskin 1985; Postlewaite 1985;

 Postlewaite and Schmeidler 1986; Palfrey and Srivastava 1987, in

 press).

 This paper continues a line of' inquiry followed by Palfrey and

 Srivastava (1986) and Moore and Repullo (1988) that merged these

 two approaches and asked whether flexibility in mechanism design

 together with a refined equilibrium concept could resolve the multi-

 plicity problem when problems of asymmetric information are absent

 (i.e., in complete information environments). Earlier applications of'

 this approach to specific complete information settings can be found

 in Crawford (1979), Moulin (1979), and Reichelstein (1985). Our re-

 sult is that in a large class of' settings with asymmetric information, all

 multiplicity problems can be resolved with a simple strengthening of'

 Bayesian Nash equilibrium: equilibrium in which no individual uses a

 weakly dominated strategy. This is a mild condition since a weakly

 dominated strategy is always (weakly) inferior to some other strategy

 regardless of the strategies employed by the other players and is

 strictly inferior for some strategies others might use. An important

 reason for using this refinement is that Bayesian Nash equilibrium

 places insufficient restrictions on behavior, leading to the implausible

 use of weakly dominated strategies. This is illustrated clearly by ex-

 ample 2 of' Section IV and is precisely the type of' behavior excluded

 by our refinement.

 The domain restrictions we impose are that no agent is ever com-

 pletely indifferent over all alternatives, values are private, and there

 are at least three agents. We do not require a "no veto power" condi-

 tion (as in, e.g., Maskin [1977] and Abreu and Sen [1986]). 'I'he proof
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 672 JOURNAL OF POLITICAL ECONOMY

 consists in augmenting a direct mechanism and specifying outcomes

 so that the desired incentive-compatible allocation rule is the unique

 equilibrium outcome to the game.

 Our possibility result stands in sharp contrast to previous results on

 implementation with incomplete information. Palfrey and Srivastava

 (in press), extending the earlier analysis of Postlewaite and Schmeid-

 ler (1986), show that a condition called Bayesian monotonicity is nec-

 essary for implementation in (unrefined) Bayesian Nash equilibrium.

 As shown in Palfrey and Srivastava (1987), many "nice" allocation

 rules do not satisfy this condition even if the domain of application is

 restricted to the set of pure exchange economies. In Section IV of this

 paper, we provide the even more striking example of an allocation

 rule that is implementable in dominant strategies but not in Bayesian

 Nash equilibrium.

 With complete information, several positive results have been ob-

 tained. Maskin (1977) showed that a condition termed monotonicity is

 necessary for Nash implementation and, together with a no veto

 power condition and at least three agents, is also sufficient (Saijo

 1988). Monotonicity is satisfied by many economically interesting sets

 of allocation rules. For example, the correspondence that associates

 each pure exchange neoclassical economy with the set of Pareto-

 optimal redistributions is monotonic, as is the (constrained) Walrasian

 correspondence. However, most allocation rules (i.e., single-valued

 correspondences) are not monotonic and thus not Nash implement-

 able. Moore and Repullo (1988) (see also Abreu and Sen 1986) show

 that the class of implementable allocation rules expands significantly

 if the mechanism is played sequentially and subgame perfection is

 imposed on the equilibrium. Palfrey and Srivastava (1986) have since

 shown that if there are at least three players and complete indiffer-

 ence is ruled out, then all allocation rules are implementable in Nash

 equilibrium if weakly dominated strategies are not used. This paper is

 then an extension of our previous results to incomplete information

 environments with private values. What is surprising is that our previ-

 ous results extend in a straightforward manner, in contrast to the

 failure of positive Nash implementation results to extend to Bayesian

 Nash implementation (Palfrey and Srivastava 1987).

 Our general possibility result with private values does not extend

 easily to common-value environments, in which an agent's prefer-

 ences may depend on other agents' types, or to models in which an

 agent's type only indexes the agent's information about other agents.

 We derive a necessary condition for unique implementation in gen-

 eral environments and provide an example with common values,

 which illustrates the strength of the necessary condition, highlights
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 INCOMPLETE INFORMATION 673

 the difficulties arising in these situations, and indicates why positive

 results in this domain will be more limited.

 The private-values model is described in Section III. In Section IV,

 we provide examples to show why direct mechanisms are generally

 not sufficient for implementation and also why we need to use

 refinements of Bayesian Nash equilibrium. Our central possibility re-

 sult is given in Section V, while extensions to common values are

 considered in Section VI.

 III. The Model

 We employ the widely used private-values model in which agents are

 incompletely informed about the preferences of other agents. There

 are I agents, and T' denotes the set of possible types for agent i. A type

 for agent i, t,, specifies the preferences of i and also i's information

 about other agents. The term A is an arbitrary set of alternatives, and

 U1Q, t) the utility function of agent i if he is of type t, E TV. Let T = T'

 x T2 x ... X T'. An allocation rule is a function x: T-* A. Let X = {x:

 T -- A} be the set of all allocation rules.

 Each agent is assumed to know his own type but not necessarily that

 of any other agent. The prior distribution over types is given by a

 distribution q on T. To simplify notation, we assume that the support

 of ql(t It -) equals T" for all i and t. This implies that the type of any

 agent is purely private information in the sense that even by pooling

 the information of all agents except i, i's type cannot be narrowed

 down.

 Given an allocation rule x E X, the (interim) expected utility to i

 conditional on ti is denoted by

 VI(x, tj) = UJ1[x(t-i, t1), ti]dq(t t1).

 DEFINITION 1. A mechanism is a pair (M, g), M M' X M2 x ... X

 MI and g: M A.

 The term M' is the message space of i, while g is the outcome function. If

 MI = T' for all i, then (M, g) is a direct mechanism.

 DEFINITION 2. A strategy for agent i is a function (&: T' -> MI.

 Given a joint strategy o = (a- 1. ,I), we denote by g(u) the

 outcome generated by u, where the outcome at t is g(u(t)). The ques-

 tion being posed in this paper can now be formulated precisely: Given

 an equilibrium concept and an allocation rule, say x, does there exist a

 mechanism that has x as its unique equilibrium outcome? Following

 the implementation literature, if there exists such a mechanism, we

 say that the allocation rule is implementable.
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 674 JOURNAL OF POLITICAL ECONOMY

 We will study implementation using two concepts of equilibrium.

 These are as follows. Let ((Al ('. -1 rU +l. l) so

 (('a & a).

 DEFINITION 3. (i) (o' is a best response for i to f' if, for all ti,

 V,'), tJ ? V'[g(o ', CT'), tJ] for all i': T' Ml';

 (ii) (- is a Bayesian equilibrium if (&' is a best response to (-' for all i.

 DEFINITION 4. u is weakly dominated if there exist i, t., and C: T M

 such that V [g(dr', CT(t,)), t,] V'[g(d-', o-'(t,)), t,] for all CT' with strict

 inequality for some d('.

 This says that no matter what strategies are used by the others,

 agent i does at least as well at t- by using &rl(t,) instead of u' (t1), while for

 some strategy combination of the others, he does strictly better at ti by

 using Cr'(ti).

 DEFINITION 5. u is an undominated Bayesian equilibrium ift is a Bayes-

 ian equilibrium and a is not weakly dominated.

 It is clear that any allocation rule that can be made the unique

 equilibrium outcome to a mechanism must satisfy an incentive com-

 patibility condition. This is immediate from the literature on Bayesian

 incentive compatibility (e.g., Myerson 1979; Harris and Townsend

 1981).

 DEFINITION 6. x: T -* A is incentive compatible if for all i, for all ti,

 U(x(ti, t1), t,)dq(t t,) '; U'(x(ti, t,'), t1)dq(t t,) for all t' E T'.

 The following result is well known.

 THEOREM 1. If x is implementable, then x is incentive compatible.

 IV. Eliminating Equilibria by Indirect

 Mechanisms

 To begin our analysis, we consider implementation using Bayesian

 equilibrium as the solution concept. We start with an example show-

 ing how indirect mechanisms help alleviate the multiple equilibrium

 problem.

 Example 1.-Consider a pure exchange economy with two goods, an

 aggregate endowment w E R 2, and two agents. Agent 1 can be of two

 types, T1 = {t,, t'}, while agent 2 has only one type, so T 2 {t2}.

 Preferences are as in figure 1, and each type of agent 1 is equally

 likely. Consider the allocation rule given in figure 1. It is easy to check

 that x is incentive compatible, and it is also (ex post) Pareto optimal.

 The direct mechanism is Ml = T', M2 = T2, so the game can be

 written as follows:
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 INCOMPLETE INFORMATION 675

 Agent 2

 x ( t)

 x \t

 Agent 1

 t=(t1,t2) = (tt, t2)

 Fi(c. I

 Agent 2

 Agent 1 t2

 t1 x(t)

 t', x(t')

 Truth telling is clearly an equilibrium to this game, yielding x as the

 truthful equilibrium outcome. However, this game has another equi-

 librium, one in which agent 1 says t1 independently of his type. This is

 an equilibrium because at t' agent 1 is indifferent between x(t) and

 x(t'). Unfortunately, agent 2 is not indifferent between this strategy

 and the truthful one: he strictly prefers the outcome when agent 1

 reports truthfully. Further, if agent 1 always reports t1, the outcome

 at t' is inefficient.

 In order to overcome this problem, we can attempt to expand the

 strategy sets of the agents (use an indirect mechanism) or refine the

 concept of equilibrium (or both). In this particular example,

 refinements such as undominated equilibrium, (trembling-hland) per-

 fect equilibrium, or proper equilibrium do not rule out the bad equi-

 librium in the direct mechanism since they would all rely on possible

 mistakes made by agent 2. Since agent 2 has only one strategy, the

 refinements do not help. We now show that a simple indirect mecha-

 nism can eliminate the problem in this example.
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 676 JOURNAL OF POLITICAL ECONOMY

 Consider adding a strategy for agent 2, say N, with the following

 outcomes:

 Agent 2

 Agent 1 t2 N

 tj x(t) x(t')

 t 'I x(t') x(t)

 Now note that if 1 always plays ti, 2 should play N, in which case 1

 should play t' when he is of type ti. Thus the bad equilibrium has

 been eliminated. It can be verified that there are two equilibria to this

 game:

 al(tj) =to, al(t,) = ttl, Id= 2

 and

 o-'(t1) ti, I'(tj) t1, u2 = N.

 In either equilibrium, the outcome at t is x(t), and that at t' is x(t').

 In this example, then, a simple extension of the mechanism imple-

 mented the desired allocation rule. This naturally raises the question

 of when indirect mechanisms by themselves are sufficient to imple-

 ment desirable allocation rules.

 To answer this question, consider an incentive-compatible alloca-

 tion rule x. The associated direct mechanism is M' T' for all i, and

 g(t) = x(t) for all t. Incentive compatibility ensures that truth telling is

 an equilibrium to this direct game, yielding x as the truthful equilib-

 rium outcome. As in the example, however, there may be other

 equilibria to the direct mechanism, and the question is whether these

 can be eliminated by expanding the mechanism. To examine what

 these equilibria might be, we first need to examine all possible strate-

 gies agents might use. In a direct mechanism, any strategy for agent i

 is a function from T' into T', say (x': T'-- T'. Truth telling is simply the

 identity function. We call &i a deception by i, the interpretation being

 that when i is of' type ti, he acts as if he is of type &(t,).

 In the example, the "bad" equilibrium strategy by agent 1 was the

 deception ao(t1) = t, a(tf) = t1. With this notation, incentive com-

 patibility can be rewritten as, for all i, for all t., and for all a: T' T-

 JUI(x(t~i ti) t )dq(t it) 'JU'(x(t i, tx(t), t .)dq(t_ ati

 This is the standard incentive compatibility condition and says that if

 in a direct mechanism all other agents are using truthful strategies,

 then the truthful strategy does at least as well for agent i as any
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 INCOMPLETE INFORMATION 677

 deception. Notice that incentive compatibility does not say what is a

 best response when other agents are playing deceitfully.

 Let ot = (ot I 'tI)and o'= (tI . ot2. ot I oti+1 . )

 that a = (&-, ot). Then every candidate for equilibrium in the direct

 game is a (joint) deception a. If a is being used, the outcome to the

 direct game is x, where x,(t) = x(ot(t)) for all t. If a is an equilibrium

 and x, = x, then we have an undesired outcome to the direct game.

 The question being posed can now be rephrased to ask when it is

 possible to add strategies to the direct game so that any a with x,c # x is

 not an equilibrium. To answer this, fix a such that x, # x. For any

 agent i, consider giving him an additional message, say mi. For each t,

 let y(t-I, at(ti)) = g(t1, Imn), the outcome when i plays m' and the other

 agents play t_ To ensure that a is not an equilibrium, we want agent i

 to play m' when the other agents are playing a-'. If i plays m' and the

 others use oa-, the outcome at t isy('(ti), &(ti)). If i uses & and the

 others use ai the outcome at t is x(t-'(ti), o(t1)). Thus x, is an

 equilibrium outcome unless, at some ti,

 U"(x(oti(t) ot'(t1)), t )dq(tti) K< LU(y(t '(ti), ot'(t1)), t1)dq(t, t).

 If there exist i, ti, and y such that the inequality above is satisfied, then

 (x cannot be an equilibrium since agent i will deviate to m'. However,

 we must also be careful that introducing m' does not lead to x not

 being an equilibrium outcome; that is, we still want truth telling to be

 an equilibrium. Thus we must also have that, for all t,' E T

 Ul(x(t-,i, t,'), t' )dq(t_ i t )- U '(y(t-,i, ot'(t,)), t1 )dq(t t _ ').

 Defining y,(t) = y(o-'(ti), o&(ti)), we arrive at the condition called

 Bayesian monotonicity, which is necessary for implementation.

 DEFINITION 7. x: T -- A satisfies Bayesian monotonicity if, for any

 deception a such that x,(t) # x(t) for some t, there exist i, t., and an

 allocation rule y: T -- A such that

 U'(x(t_ i, tl'), tl')dq(t t' ) U'(y(t,, (t)), t' )dq(t I | tI I) for all tI

 and

 (x, (ti ti), ti.)dq (t_ i I ti) < JU'(y, (ti ti.), ti) dq (t -i|ti.)

 The next example shows that appealing to indirect mechanisms

 alone will generally not be enough to solve the implementation prob-

 lem.

 Example 2.-I = 3, A = {a, b}, and T' {ta, tb} for all i. Types are
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 678 JOURNAL OF POLITICAL ECONOMY

 independently drawn with q(tb) = q for all i and q2 > .5. Preferences

 are as follows: type ta strictly prefers a to b, while type th strictly prefers

 b to a. Normalize utility so that U'(a, ta) = 1 > 0 = U'(b, ta) and U'(b, tb)

 - 1 > 0 = U'(a, tb). Consider the following allocation rule, x:

 2 is 2 is

 1 is t4 1 is t', t,

 a a a b

 th a b t1, b b

 3 is t, 3 is tb

 This allocation rule has many nice properties and, indeed, is the only

 reasonable allocation rule in that (i) it is incentive compatible; (ii) it is

 ex ante efficient, interim efficient, durable, and ex post efficient in the

 sense of Holmstrom and Myerson (1983); (iii) x(t) is the (unique)

 majority winner at t; (iv) it maximizes an Arrow social welfare func-

 tion; and (v) it can be implemented in dominant strategies by a direct

 mechanism.

 Remarkably, x is not implementable in Bayesian equilibrium: let

 xl (t.) =tb for all i, so x(a(t)) = b for all t. We show below that there do

 not exist i, y, and t, that satisfy the inequalities required by Bayesian

 monotonicity. Consequently, in any game in which a is a Bayesian

 an elibrium with g(o) = x, ac is also a Bayesian equilibrium with g(u)

 = x.. This has severe welfare implications since xc, - b violates proper-

 ties ii, iii, and iv.

 To show that Bayesian monotonicity is not satisfied requires us to

 prove that there does not exist y: T -* A that satisfies the first set of

 inequalities in definition 7, with y, simultaneously satisfying the sec-

 ond inequality. To see this, note first that since a is a "projection" to tb,

 ye is a constant allocation rule. Furthermore, if y,(t) = b for all t, then

 x, = y, in which case the second inequality could not be satisfied, so

 we can limit attention to y's such that y,(t) = a for all t. Since a is the

 worst element for type tb, the inequality

 JU1(xX,(t_1i, ti), t1)dq(t_- iIt1-) < JU'(yx(t_1-i, ti), t1i)dq(t 1- iIt1i)

 implies t/ = ta. Further, since (x(t) = (tb, tb, tb), we must have y(tb, tb, tb)

 - a. By our choice of y(tb, t, th), the second inequality of definition 7 is

 satisfied for all i when i is type t4. We need to show that the other

 elements of y cannot be picked to satisfy the first inequality of

 definition 7. Since the problem is symmetric, we need consider only

 agent 1. The expected utility from x at to is 1 - q2 while that from
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 INCOMPLETE INFORMATION 679

 y(t ox'1(t,)) at t, is

 (1 - q)2U'(y(th, t0, t(7), to) + 2q(1 - q)U'(y(th,, th, tj), to)

 + q2 U I(y(tb,4 t6,), t ) ).

 Since y(tb, tb, tb) = a, this reduces to

 q2 + (1 - q)2L/'(y(tb, t0, to), t01) + 2q(l - q)Ul(y(tb, tb, t(7), t01).

 The minimum value of this last expression over y is q , which is

 greater than 1 - q2, so the first inequality of Bayesian monotonicity

 must be violated when agent 1 is of type t,. Hence x is not implement-

 able.

 Palfrey and Srivastava (1987) present several more examples of'

 reasonable allocation rules that are not Bayesian implementable even

 in pure exchange economies. These include allocation rules defined

 by various notions of optimality and by various notions of equity and

 fairness. In the next section, we show that these problems may be

 solved when indirect mechanisms are used together with our mild

 refinement of Bayesian equilibrium.

 V. Undominated Bayesian Equilibrium

 In this section, using Bayesian equilibria that do not involve the use of'

 weakly dominated strategies, we prove the central result of the paper:

 Any allocation rule that satisfies incentive compatibility can be made the

 unique equilibrium outcome to a mechanism in a large class of models.

 The next definition summarizes a restriction on the environment.

 It says that there are no redundant preference types for any agent in

 the sense that if two types are different, then their preferences over

 some pair of alternatives must be different.

 DEFINITION 8. Value-distinguished types.-For all i, t, t', and t4 #& t',

 either there exist y z' E A with U'(y', t) ? U'(z', t) and U'(y', t4') < U'(z',

 t;') or there exist y', z' E A with U'(y', ti) > U'(z', ti) and U'(y', tC') ' U (z ,

 t; ).

 In some applications, value distinction may require us to consider

 random allocation rules. This will be the case if, for example, the

 difference between types is the difference in risk aversion. In this

 case, types are value distinguished on the set of' lotteries over A.

 Therefore, one may think of A more generally as a set of lotteries and

 the U'( ) as preferences over lotteries.

 Our sufficiency result requires us also to impose the following two

 mild restrictions on the domain of possible types. The first states that

 there is no type for whom all alternatives give equal utility. The sec-
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 ond is that each type has a most preferred and a least preferred

 alternative. The latter is implied, for example, if each UP is continuous

 and A is compact.

 DEFINITION 9. (i) No complete indifference. -For all i and t,, there exist

 a, b E A with U'(a, t1) > UP(b, t.). (ii) Existence of best and worst elements.-

 For all i and t-, there exist b(t-), w(t-) E A with U'(b(t,), t) U'(a, t) for

 all a E A and U' (a, t )-U (w(t-), t-) for all a E A.

 THEOREM 2. Assume that I 3, that there is no complete indiffer-

 ence, that best and worst elements exist, and that types are value

 distinguished. If x is incentive compatible, then x can be made the

 unique undominated Bayesian equilibrium outcome to a mechanism.

 The Appendix contains a formal proof of theorem 2 and a detailed

 construction of a general implementing mechanism. Here we give the

 intuition behind the construction of the mechanismn and explain how

 it works.

 Following the intuition behind the examples of the previous sec-

 tion, we see that the mechanism is, effectively, a direct mechanism

 with some additional strategies appended in a way that eliminate un-

 desirable equilibria. Each agent submits a message that has four com-

 ponents. The first component is from the "direct" part of the message

 space: Ml = T'. The second component is either a second report of

 one's own type or a report of someone else's type. The third compo-

 nent of the message space is a half-open real interval that is used in

 the mechanism to break ties. The fourth component is a requested

 outcome. Formally, let

 I = MI, x MI x Ml x MI,

 where M' = TI, M' - U, T', Ml = [O, I + 2), and Ma = A. The key

 aspect of the mechanism is that, except for specific isolated portions

 of M, the outcome function, g, is essentially direct in that it depends

 only on the first component of each agent's report. Calling this region

 Do, we have g(m) =x(m1) for all m E D(. The remainder of M is

 divided into I subregions indexed by i. In such a region, Di, m2 = ti E

 T' for allj # i. The outcome function in such a region is given in ta-

 ble 1.

 The entries in the table are to be interpreted as follows. The four-

 tuples defining columns and rows are strategy choices by agent i (col-

 umns) and by all other agents (rows). We have denoted by ai* the

 outcome requested by the agent (i*) who wins the tie-breaking proce-

 dure as determined by M3. The outcomes yI(ti, t,') and y2(ti, t,') are a

 pair of' allocations for which i's preferences differ depending on

 whether i is type t, or t4'. The existence of the pair is guaranteed by the

 assumption of value-distinguished types. In fact, the proof given in

 the Appendix is only for strictly value-distinguished types. Therefore,

This content downloaded from 131.215.23.115 on Mon, 07 Mar 2016 23:24:11 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


 INCOMPLETE INFORMATION 681

 TABLE 1

 OUTCOME FUNCTION RESTRICTED TrO REGION D

 MESSAGE OF AGENTI

 (ti, ti, ki, a,), ki > ?,

 MESSAGE OF ALLj $ i (1, t1, 0, a,) (1,, k,, a,) or (t1, 1,, k,, a,),j $ i

 1.- (tj, ti, kj, aj),

 k, E [I + 1, I + 2) a, a, a,*

 2. (tj, t,', kj,aj),

 kE [I + 1,I + 2) y1(ti, ,1) y2(t1ltt') a,*

 3. (tj, C,'kj, aj),

 k -[I + 1,I + 2),

 t,' Iti, t,} Iy (t, t,',) a r,

 4 . (tj, ti, kj, aj),

 kjE [i, i + 1) a, a, (t,)

 5. (tj, t,' kj, aj),

 k e [i,+ 1),

 $t" 3 tI w(t,-') w(t') 7 )

 6. All other messages

 with m= I E T ai a,* a,*

 yl(t., t') and y2(t', t') have the property that U'(y(t4, t'), t4) > U'(y2(t4, t),

 ti) but U'(y2(ti, t'), tz ) > U'(yI(ti, tz'), t; ). Straightforward methods for

 extending the mechanism to account for weak value distinction are

 contained in Palfrey and Srivastava (1986).

 The proof then proceeds in three steps: (1) all equilibria must lie in

 Do, (2) all equilibria must involve "truthful" reports (i.e., m' = for all

 i, 4), and (3) the joint strategy where -'(t4) = (t, t, 0, b(t)) for all i is an

 equilibrium.

 To prove step 1, we show that no equilibrium can lie in D' for any i.

 Suppose that agent i is of type ti. Note first that reporting m4 = a with

 Uz(a, ti) < Uz(b(t4), ti) is weakly dominated; changing a to b(ti) is strictly

 better for i at several m - , and if the rest of m' is unaltered, i is never

 worse off. Without loss of generality, then, suppose that m' = b(t4).

 Next, we note that there is no equilibrium with k1 > 0 for some i. To

 see this, suppose thatJ c ki <J + 1 for some nonnegative integerJ '

 I + 1 and k. # 0. Then (k, + J + 1)/2 weakly dominates since i is

 strictly better off somewhere in the bottom row of the table and no

 worse off anywhere.

 A similar argument applies for i if m2 # m'. We conclude that all

 equilibria must lie in Do, with m 0 = and ml = ml for allj.

 The next step is to observe that at t, playing (ti, ti, 0, b(t4)) with t' t 4

 is weakly dominated by (ti, tz , ki, b(t')). This change alters the outcome

 only in rows 2, 3, and 6. In row 2, the outcome changes from yl(t, 4')
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 to y2(tz, t'). By construction, U'(y2(t,, t), tI) > U I(y (4, t), 4-), so i is

 better off. In rows 3 and 6, i is never worse off.

 Hence the only possible equilibrium is o'(tL) = (ti, tL, 0, b(t-)) for all

 and ti. To see that this is indeed an undominated Bayesian equilib-

 rium, we first note that incentive compatibility implies that when all]j

 ' i play a-, a' is a best response for i since a unilateral deviation by

 can change the outcome only from x(t) to x(ti, t') at t. To see that it is

 not weakly dominated, we have to consider each possible deviation by

 i and all possible strategies by others. These cases are covered in detail

 in the Appendix and are easily checked by inspection of the table.

 To conclude, the only equilibria are o'(t1) = (ti, ti, 0, bi) for all i and

 ti, where bi is a best element at ti, and all these equilibria yield x as the

 outcome. Hence, this mechanism implements x. If' some individual

 has more than one best element, then there are multiple equilibria,

 but all equilibria produce x as the outcome. Furthermore, the equilib-

 rium strategies are "interchangeable" since they differ only in the last

 component of the message space.

 VI. Common Values

 The most significant assumption in theorem 2 is private values. Even

 though a large majority of applications to date of Bayesian games to

 economic problems and applications of the revelation principle to

 mechanism design have used this assumption, it is clearly quite re-

 strictive. Our general possibility result does not apply with nearly the

 same force in settings with common values, which we now discuss.

 The model itself is easily modified to incorporate common values.

 To do this, we write the utility function of agent i at t as U'(, t) instead

 of U'(, 4), but we still assume that, at t, i observes only t4 and that there

 is no moving support. Economic examples of common-value alloca-

 tion problems include oil lease auctions studied by Wilson (1977) and

 others and oligopoly with private information about demand studied

 by Palfrey (1985) and others. In the auction, n bidders submit com-

 petitive bids for the right to drill for oil at a specified location. The oil

 they drill for has a common value to all bidders, but they differ in

 their (correlated) private estimates of how much oil will be found and

 recovered. In the oligopoly setting, firms face a common demand

 curve for a homogeneous product but have different (correlated)

 estimates of the parameters of the demand curve. These estimates are

 privately known. In both of these examples, ti corresponds to an indi-

 vidual estimate, and U' corresponds to a conditional expected value of

 the oil or output, net of an accepted bid or production costs. This

 conditional expectation will generally be different when conditioned

 on the entire vector of estimates rather than being conditioned only
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 INCOMPLETE INFORMATION 683

 on one's own private estimate. For this reason U' is a function of t

 instead of just t1. The definition of incentive compatibility is now

 modified accordingly.

 DEFINITION 6'. x is incentive compatible if' for all i, for all ti,

 {Ui(x(t t, 4), t)dq(t t)-I U'(x(t i, C), t)dq(t 4t) for all tj E T.

 Let V'(y, t) = f U'(y(ti, t), t)dq(tl tt). The following theorem yields

 a necessary condition for implementing an allocation rule.

 THEOREM 3. If x is implementable in undominated Bayesian equi-

 librium, then x is incentive compatible, and for any (x: T-- T, x,,(t) #

 x(t) for some t implies that at least one of the following conditions

 holds: (a) There exist i, ti, and y E X with

 U'(x (t it,'), t ,,t,' dq (t i , -t U'(y (t iot'(t), t it,' dq (t i|t,'

 for all tJ E T, and

 UI(Xa(t isti tri t )dq(t iti) < Ul(y'e(t i ti), t i t.)dq(t I~t.).

 (b) There exist i, ti, andYl, Y2e Z1, z2 E X with

 V`(Y1, Ot'(0i) > V'(Yo2, Ot'(0i),

 Vi (Y I A, tl') --V i(Y2P), ti)

 for all deceptions 1 with Al = (x',

 V' (ZI, ti) > V' (z2o ti),

 and

 V'(zPl, tI) VI(Z'p, tI

 for all deceptions 3 with i = (xi. (c) There exist i, ti, and y I, y2 E X with

 Vi(y I, O(ti)) = V'(y2, Oi(ti)),

 Vi(yI, 0) < V'(y2, ti),

 and

 Vi(YIP, tl') 'V'(Y2P, tI

 for all deceptions 1 with 1' = ('.

 Proof. See the Appendix.

 With private values, parts b and c of this result reduce to the state-

 ment that types are value distinguished. For example, consider part b.

 In this case, we inust have U'(y I (ti, t'), t/') > U'(y2(t_, t/'), tC) for some

 t where t,' = o&'(ti). Now, consider 1-'(ti) = tl for all ti, yielding
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 Ul(yI(t1, tl ), ti) ' U'(y2(t-1, tl'), ti), which says that t, and tj are value

 distinguished. The assumption of no complete indifference yields the

 existence of z1 and Z2 satisfying the requirements of the condition.

 Except in private-values models, conditions b and c appear to be

 very strong, in fact sufficiently strong that they seem unlikely to be

 satisfied in general applications. This suggests that undominated

 Bayesian implementation is not that different from (unrefined)

 Bayesian implementation once one moves beyond private-value do-

 mains with value-distinguished types.

 The following example, which is a variant of our earlier example,

 illustrates the difficulties arising with common values.

 Example 3.-A = {a, b}, I = 3, T2 = {tJ, tb} for all i, and types are

 independently drawn with q'(tb) = q for all i and q2 > .5. The agents

 have "majoritarian" preferences, given by

 1i~t) =f 1 if at least two agents are type ta

 'a, =10 otherwise,

 U'(b, t) = J 1 if at least two agents are type tb

 Ul', t 0 otherwise.

 With this structure of preferences, all agents are ex post identical.

 The following incentive-compatible allocation rule, x, is (uniquely)

 efficient in all senses and, for each t, picks out the unanimous socially

 preferred outcome:

 2 is 2 is

 1is ta tb 1is tel tb

 to] a a ta a b

 th a b tb b b

 3 is toa3 is tb

 Surprisingly, this allocation rule is not implementable in undominated

 Bayesian equilibrium. To see this, consider o&'(t.) = tb for all i, so x,(t)

 - b for all t, as in example 1. We claim that for any mechanism, if x is

 an undominated Bayesian equilibrium outcome, then xy is also an

 undominated Bayesian equilibrium outcome. A proof is given in the

 Appendix.

 Appendix

 Proof of Theorem 2

 We divide the message space as follows:

 DI = fmlmE T' for allj},

 D2 = {ml there does not exist i and t, E T1 with mi) = t V j i}.
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 Let

 DI = {ml there exists tI, T' with m = t Vj i}.

 Note that M \ (D1 U D2) UV= I DI. Let

 D'3A = {m E DjIj V i, ml2 $ ml, ml E [I + 1, I + 2); ml = m', ml =0,

 D3B = {m E DIIj i,m2 = ml, ml E [I + 1, I + 2); ml ml, ml =0,

 DI = {m E DIVji, mj = m', ml [I + 1, I + 2); mil $m},

 D = {m E DIVj $ i, mj2 l ml, ml $ m', ml E [I + 1, + 2); ml $ m },

 D5 = {m E DI~j I i, mJ2 = ml, m3 E? [i, i + 1)},

 D5A = {m E D'I Im' $ ml or ml = ml and ml 7$ O},

 D6 = {all other m}.

 For m E D6, let i* be the smallest i such that ms- ml3 for allj, and let a.* = i4.

 The outcome function is given by

 x(t) if m E D1 and ml t

 x(t) if m E D2 andm = t

 yl(t, t4') if m E D3A and ml = t, ml = t Vj i

 a. ifm D3B and m4 = a.

 g(m) = y2(tl, tI') if m E D4 and ml = t 2, m = tVj i

 ai if m I D4B and ml = a

 a, if m Ez D IA and m4 = a,

 w(t-) if m E D \D5A and mrn t, VIj $& i

 a,-* if m E D6.

 We start by showing that o-(t,) = (ti, ti, 0, b(ti)) for all i and t, which lies in D1

 for all t, is a Bayesian equilibrium. This can be seen by noting that a unilateral

 deviation by i from this strategy affects the outcome only if i changes mi.

 (Note that this would not be true if I = 2 since in that case D2 n (D' U D4) $X

 0.) If, at ti, i instead reports mli = t, the outcome at t is x(t,, t') instead of

 x(t-, t). Incentive compatibility now directly implies that r is a Bayesian

 equilibrium.

 Next, we argue that (r is not weakly dominated. To see this, note first that

 not reporting a best element in the fourth component of the message is always

 weakly dominated since the report in this component is always used in an

 agent's favor. Without loss of generality, therefore, we assume that m. = b(t,)

 for all i, 4.

 Next, we consider four possible types of deviations by i at 1, and show that

 none of these deviations weakly dominates (t,, ti, 0, b(ti)). (i) ml =X t$ : In this

 case, i is strictly worse off when ml = (/j, 1,, i, a,) for all j $ i since the outcome

 moves from b(tl) to w(t4). (ii) ml = (t4, ti, ki, b(ti)), k- > 0: Again, i is strictly worse

 off when ml = (t1, 4, i, aj) for allj $7 i. (iii) m' = (4, tj, k-, b(t4)),j $ i: In this case, i

 is again strictly worse off when mi = (t1, t, i, a.) for allj $ i since the outcome

 changes from b(t4) to w(t4). (iv) ml = (t4, t/', k-, b(t)), t4' $& t4: Here i is strictly worse

 off when ml = (tj, t4, I + 1, a1) since the outcome changes from yI(t4, t4') toy2(t4,

 tI). We conclude that r is an undominated Bayesian equilibrium, yielding x as

 the outcome.
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 We now argue that there are no other equilibria, thereby concluding that x

 is the unique equilibrium outcome. This is argued in two steps: first, that all

 undominated equilibria are of the form r(t,) (ti, t;', 0, b(t-)) and, second,

 that t' $& tI is weakly dominated.

 First, note that there is no equilibrium at t with mi > 0 for some i. To see

 this, let J be an integer such that J < ml < J + 1. Then, reporting m' =h

 except ?ih = (ml + J + 1)/2 weakly dominates reporting ml since there is a con-

 figuration of messages in D6 such that g(m -', ml) = w(t,) but g(m, ml) Ml4

 b(t), and no configuration of messages such that UY(g(m), ti) > Ul(g(m -i

 mli), 1). Second, &r(t,) (t, ti, 0, b(t)) is weakly dominated by '(t1) (t1' t1,

 1/2, b(tI)) and o(14) = (1, t$', 0, b(tI)) with I' & t17 is weakly dominated by `(t1)

 (t; tC I/2, b(tl)). This leaves only (T'(1,) = (t', 1 0, b.), where b, is a best element at

 tI. We claim that ml (t, ,k, &9) weakly dominates this strategy. The outcome

 changes only in D3 and Dei. In D3, the outcome changes from yI(t', tI) to y2(t',

 t1), so i is strictly better off since U'(y2(1 t), 1,) > U(yi(t.1, 1t), t1); i is no worse off

 in D6. This concludes the proof of theorem 2.

 Proof of Theorem 3

 The revelation principle implies that x is incentive compatible. Let (M, g)

 implement x, let r be an equilibrium with g(r) = x, and let xx $& x for some t.

 Then r,, yielding xQ as the outcome, is not an undominated Bayesian equilib-

 rium. Two cases arise: either o-. is not a Bayesian equilibrium or it is one. In

 the first case the argument showing Bayesian monotonicity is necessary, for

 Bayesian implementation yields condition a.

 Suppose, then, that (ra, is a Bayesian equilibrium. Then it must be weakly

 dominated, so there exist i, L, and Tm such that

 { U(g(dr - i, ), t)dq(t _ ) | { U(g( -, a (t)), i)dq(i i tI) (A 1)

 for all 0r with strict inequality holding for some 0-. Note that (1(t,) t , since

 otherwise r' (t) = r(t), which would imply that r is weakly dominated, a

 contradiction.

 Let -9'(t') =hi for all t.'. Since a is not weakly dominated at (t1), we get

 either

 (i) [u,(g(, a') , oi(t,)) - UJ(g((r -l(ri), o(tj))]dq(t ~t1) > 0 for somel i

 or

 (ii) { [U(g(- (J) &(1)) - Uo(g(r -, ('), &())]dq(t, I 1) 0 for all a-

 Let y1 g(-i, a) and Y2 =(a a

 Case i

 Substituting for yj and ye in inequality i yields V (y1, (t)) > V'(y2, o&(t,)). By

 hypothesis, a(ti) = &(&(ti)) is weakly dominated by -ml at ti. Let y',y. = g(a

 ro ), y~c, = g(-, r). Here, y'ju is the outcome when i plays a' and all

 other agents play (r- , and y2, is the outcome when i plays i-r, and all other

 agents play 9. Note that a, = since a is a constant strategy.

 Replacing d(-/ with -(r in (Al) then yields V (y I u, 1) < V'(y,, ti). For any
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 i, lets = g(( ', o'), yeah = g((T i'), so that y1(, is the outcome when 1

 plays dA and all other agents use deceptions 13, and similarly for y'(

 Replacing d(- with -(rein (Al) yields V (y cxp, 4I) < V'(y (xp, t) for all ,

 Next, note that for any ,B with ,3' = &', y1 = y/l~ and Y2[i y'Sp. We have thus

 shown the existence of yi and y) with

 V'(y , 0t'(1)) > V'(Y2,

 and

 V (yI, ti) - V'(y2, 4i) for all IB with 3' =('

 To complete case i, it must also be the case that V'(g(, vi), - ) > V (g(Cy

 r-'), t,) for some -T. Let zI = g(d-', ') and Z2 = g(d ', or())' Then V'(z, t) >

 Vi(z2, t). Repeating the argument above, we get V'(z1, 4)- V'(z2, 4) for all P

 with ' = .

 We have thus shown that there exist i, ti4l, y, z1, and z9 such that

 V'(Y (It) > Vi(Y2,~t)

 V' (Y I P3, ) V' (Y2, t, )

 for any deception f with f3 = oII

 V 4(zI,) > V (z.(,),

 and

 V' (Z I , ti) >_ V' (Y 2 P,

 for any deception ,3 with 3' =t'. This is precisely the requirement in condi-

 tion b.

 Case ii

 In this case,

 VI(g(d -', &r), &-(ti)) = V'(g(&,, a), a(4))

 for all CT-'. Since Dr weakly dominates a., we must have

 V(g(f, J), 4) > V'(g(bfi, o(T ), 4i) for some Dr

 and

 Vi(g(~4(, Ti), t) ? V'(g((', (j, t) for all P with 3 a

 Letting y2 g(,(-, Dr) and yI = g(- ', c), we get

 V (y I, ()) = V(Y2, Ct(l))

 V (yi, ti) < V'(y2, ti),

 and

 V' (Y I At)'V' (Y 2 0,

 for any deception f3 with P3 = .' This is the requirement in condition c and

 concludes the proof.

 Proof of Claim in Example 3

 We prove the claim in two parts: (A) If 'f is a Bayesian equilibrium to (VI, g)

 with g(a) = x, then or, is a Bayesian equilibrium. (B) If a is an undominated

 Bayesian equilibrium to (M, g), with g(a) = x, then a, is undominated.
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 Proof of Part A

 Suppose that everyone except i uses the strategy (- = (tb) regardless of

 type. Then the outcome depends (at most) only on i's type. Regardless of i's

 type, i prefers b to a since the others are both likely to be t'ds. Hence a cr'(to)

 regardless of i's type is a best response to Q. QE.D.

 Proof of Part B

 This is more involved and requires meticulous checking that none of the

 conditions a, b, and c of theorem 3 are satisfied. Since part A of the proof

 already implies that condition a is not satisfied, we need only show that condi-

 tions b and c are not satisfied. In this simple example, the proof reduces to

 showing that there does not exist a pair of allocations yI, ye) such that

 V'(yI, tb) > Vi(Y2, tb) but VI(y1p, 4) c V'(y2, t4) V f with 1' = a&. (A2)

 This can be proved in a series of steps. First, without loss of generality, fix

 = 3.

 Step 1.- It suffices to show that there do not exist allocation rules y: T- 3 A

 (i.e., allocation rules that are constant in player 3's type) such that V3(yl, t1)

 > V(y2, t1)) but V3(y1-3, 4) ' V3(y2P-:,, to) for all -

 Proof.-This follows immediately from the fact that both inequalities of

 (A2) hold the argument of yl and T2 corresponding to player 3's type fixed at

 tI,. Q.E.D.

 Thus we are reduced to a search of all pairs yI and y2 that can be repre-

 sented by 2 x 2 outcome matrices, as follows:

 Player I's Player 2's type Player I's Player 2's type

 type t4 to, type t4 th

 toI NI(t,,, te,, I (t,,, ,ti, te, y2(t,,, t,,) Y2)(t,,, tW

 tb Y I(4x, Io ,(t4,, , ti, Y2(tb, ta, Y2(tb, th,)

 Y1iT

 The remainder of the proof involves a demonstration that there is no way

 to fill in the matrices above with a's and b's in such a way that (A2) is satisfied.

 Step 2.-If some entry in y2 is a, the corresponding entry in Ti is a; that is,

 Y2(t - X) = a 4 y I (tQ ) = a for all t _ i.

 Proof. -Suppose that y2(t^_) = a but that y1(h ) = b for some _ _. Then the

 second inequality of (A2) is violated for the P` that projects to L__; that is,

 3-P~~i)= Q for all tI Q.E.D.

 Step 3. -y2( - i) = b and y I (Q ) = a for some ti.

 Proof -If not, then y1 = Y2, so the first inequality of (A2) is violated. Q.E.D.

 Step 4. y2(t -) = b for all t_-

 Proof. -Suppose thaty2(t,,, 0) = a. Then by step 2,y (I,,, t,,) = a, and by step

 3 there exists K, i $X (ta, 4) such that y2(-) b and y (L) a. There are three

 possibilities:

 t4, tj, t, tb

 (I) to sl . t, a

 t/o 0 * tj b
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 ta tb t, tb

 (II) ta a a ta a b

 tb tb

 t4 tb t, tb

 (III) Ia a t, a

 tb a tb b

 Case I violates the second inequality of (A2) for Pi given by

 PI': f3'(ta) = tb, PIN(tb) = 4. (player 1 [row] flips),

 p2: p2(ta) = la, 2(tb) = ta (player 2 [column] projects to ta).

 Similarly, case II violates the second inequality of (A2) for P- given by

 f3(ta) = ta, P3I(tb) = ta (player 1 [row] projects to ta),

 132(ta) = tb, ,32(tb) = ta (player 2 [column] flips).

 To see that case III cannot occur, we know from I and II that case III must be

 t, tb t, tb

 t, a a to a a

 tb a a tb a b

 Al Y2

 This violates the second inequality of (A2) for 13 given by

 ,B'(ta) = 32 (ta) = tb, PIN(tb) = 2(tb) = ta (both players flip).

 Hence, Y2(ta, Ia) 7# a. Similar arguments may be used to show that y2(t -) # a

 for t-i = (ta, tb), (tb, ta), and (tb, tb). QE.D.

 Step 5.-y1(t_ i) = a for some t -.i

 Proof.-If not, then yl = Y2. Q.E.D.

 Step 6. -y(t- ) = a for all t_-.

 Proof. -Suppose that YI(ta, ta) = a. Then it is easy to show that yI(Ioi, tb) a

 and (Ib, ta) = a, by arguments as in cases I and II of step 4. In fact, if yI(t)

 a for any ti, then we must have yI(ti) = a for "adjacent" t- (i.e., t, and t1,

 differ in only one component). Hence step 6 follows almost immediately from

 step 5. Q.E.D.

 Steps 1-6 imply that yI(ti) = a and y2(t-i) = b for all hI. However, this

 violates the first inequality of (A2). Therefore, there do not exist any (yI, y2)

 pairs satisfying (A2), so x is not implementable. Q.E.D.
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