
Cold‐regions river flow observed from space

A. Kääb1 and T. Prowse2

Received 4 February 2011; revised 7 March 2011; accepted 9 March 2011; published 20 April 2011.

[1] Knowledge of water‐surface velocities in rivers is
useful for understanding a wide range of lotic processes
and systems, such as water and ice fluxes and forces,
mixing, solute and sediment transport, bed and bank
stability, aquatic and riparian ecology, and extreme
hydrologic events. In cold regions, river‐ice break up and
the associated downstream transport of ice debris is often
the most important hydrological event of the year,
producing flood levels that commonly exceed those for
the open‐water period and dramatic consequences for river
infrastructure and ecology. Quantification of river surface
velocity and currents has relied mostly on very scarce
in situ measurements or particle tracking in laboratory
models, with few attempts to cover entire river reaches.
Accurate and complete surface‐velocity fields on rivers
have rarely been produced. Here, we use river‐ice debris as
an index of surface water velocity, and track it over a time
period of about one minute, which is the typical time lapse
between the two or more images that form a stereo data set
in spaceborne, alongtrack optical‐stereo mapping. In this
way, we measure and visualize for the first time, the almost
complete surface velocity field of a river. Examples are
used from approximately 80 km and 40 km long reaches of
the St. Lawrence and Mackenzie rivers, respectively. The
methodology and results will be valuable to a number of
disciplines requiring detailed information about river flow,
such as hydraulics, hydrology, river ecology and natural‐
hazard management. Citation: Kääb, A., and T. Prowse
(2011), Cold‐regions river flow observed from space, Geophys.
Res. Lett., 38, L08403, doi:10.1029/2011GL047022.

1. Introduction

[2] Scientific and applied studies have attempted for
decades to quantify complete surface‐velocity fields on
rivers but with limited success. The high level of interest in
obtaining such information is because velocity‐controlled
water fluxes and forces lead to the erosion, transport and
deposition of material in river channels and along their
banks, with important implications for river ecology, fluvial
geomorphology and human infrastructure. Engineering of
in‐channel and bank‐side installations, for example, requires
estimation of water discharge, forces and sediment erosion/
transport. In cold regions, such needs are magnified by the
complicating effects of river ice, the break‐up of which
often creates the most important hydrological event of the
year [Prowse, 2005]. Even estimating discharge during this

period and, for instance, the associated freshwater fluxes
into the Arctic and circum‐Arctic Oceans [Peterson et al.,
2002], however, is notoriously difficult and often inaccu-
rate due to the ice disruption of hydrometric equipment and
effects on stage‐discharge rating curves [Shiklomanov et al.,
2006; White and Beltaos, 2008]. Break‐up can also severely
affect river ecosystems and human infrastructure, such as
settlements, bridges and hydro‐electric facilities [Gerard
and Davar, 1995; Prowse and Culp, 2003]. Of particular
importance are ice‐jam‐generated waves (or javes) that can
travel rapidly downstream and be especially destructive
[Jasek and Beltaos, 2008]. The economic costs from break‐
up ice jams are estimated to average almost 250 million USD
per year in North America and to have been over 100 million
USD for a single 2001‐event in Eastern Russia [Prowse
et al., 2007]. Although typically less dynamic than break‐
up, freeze‐up can create a similar array of bio‐geophysical
problems on many cold‐regions rivers. Overall, the moni-
toring, field study and modelling of river conditions during
these two periods has been hampered by a lack of compre-
hensive water and ice velocity fields.
[3] Remote sensing offers a possibility to obtain such

information. Previous relevant studies investigated, for
example: subtle river‐ice deformation using radar interfer-
ometry [Smith, 2002; Vincent et al., 2004]; ocean currents
from repeat spaceborne optical, thermal or microwave
imagery, such as by tracking sea‐ice or sea‐surface temper-
ature features [Lavergne et al., 2010; Matthews and Emery,
2009]; river‐ice properties and density from radar imagery
[Mermoz et al., 2009; Unterschultz et al., 2009]; flow
velocities from suspended‐sediment concentrations in opti-
cal satellite images [Pavelsky and Smith, 2009]; river‐ice
temperatures [Emond et al., 2011]; surface water flow from
tracking foam or ice debris in ground‐based or laboratory
video‐image sequences using particle image velocimetry
techniques [Creutin et al., 2003; Ettema et al., 1997; Jasek
et al., 2001]. River and ocean currents have in particular
been derived using spaceborne and airborne alongtrack radar
interferometry [Goldstein and Zebker, 1987; Graber et al.,
1996; Siegmund et al., 2004; Romeiser et al., 2007, 2010].
The time interval or the related angular difference between
alongtrack stereo imagery, originally designed to map terrain
topography, have so far been little exploited for water
applications, but have been used to derive vehicle and wave
speeds and ocean currents [Garay and Diner, 2007;
Matthews, 2005; Matthews and Awaji, 2010].

2. Data and Method

[4] Our methodology consists of two key elements.
Firstly, we use ice debris associated with river‐ice break
up as an index for surface‐water velocities. This is based
on the assumption that the ice‐debris velocity is similar to
that of the water velocity, although this could vary slightly
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depending on frictional drag as partly influenced by the
submerged depth of the ice or wind effects on its exposed
surface. Such ice debris is visible in high and medium res-
olution satellite images acquired during a certain time period
after ice break‐up. Secondly, we exploit the fact that the two
or more images forming along‐track stereo data from a
moving airborne or spaceborne platform are acquired with a
temporal separation, which is basically defined by the sensor
travel speed above ground, and the base‐to‐height ratio of
the system. For our two study sites in Canada, we apply: a
satellite stereo image pair from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) on
board the NASA Terra spacecraft with 15 m ground reso-
lution and 55.3 s time lapse; a triplet stereo scene from
the Panchromatic Remote‐sensing Instrument for Stereo
Mapping (PRISM) on board the Japanese ALOS satellite
with 2.5 m ground resolution and 45 s or 90 s, respectively,
time lapse; and an IKONOS satellite stereo pair of 1 m
ground resolution and ∼53 s time lapse. The stereo images
are co‐registered using a first‐order polynomial transfor-
mation based on automatically matched (see below) stable
objects at surface water level along the river margins. Ice
debris is then tracked between two images with sub‐pixel
precision by maximizing the double normalized cross‐
correlation coefficient on a regular grid of small image
templates [Kääb and Vollmer, 2000]. Erroneous measure-
ments are filtered out by a threshold on the correlation
coefficient and a 3 × 3 moving window median filter. The
resulting displacements are converted to velocity using the
time interval between the stereo images.

3. Results

[5] We demonstrate river‐velocity fields for two different
types of river morphologies and the above three different
spaceborne stereo sensors. Surface velocities on the St.
Lawrence River at its mouth near Québec City (46.8°N,
71.2°W) are measured along a ∼80 km long river reach
obtained from an ASTER stereo pair of 30 January 2003
(Figure 1). This reach is influenced by tides with a mean
water level of 2.3 [2.7] m asl. and a mean tidal range of
2.1 [4.9] m (2.8 [6.4] m for large tides) at the up‐stream
[downstream] end. Depending on the tide propagation, the
total elevation difference over the 80 km is only a maximum
of a few meters and, therefore, topographic distortions in the
stereo data can be neglected for the river surface. Velocities
are derived using image templates of 9 × 9 pixels in size
(135 m × 135 m) over a 100 m grid spacing resulting in

Figure 1. Colour‐coded surface flow velocities and vectors
on the St. Lawrence River at Québec City, Canada, from an
ASTER satellite stereo pair of 30 January 2003 (background)
acquired at around 15:50 UTC. The blue outline indicates
the boundary of open water. Black data voids in the river
and on the entire river branch to the middle right (Chenal
de l’ Ile d’ Orleans; CO) indicate open water without track-
able ice debris. For better visibility, the velocity vectors,
originally measured with 100 m spacing, have been
resampled to 400 m spacing. The white rectangle at Québec
City shows the position of Figure 2. PQ, Pont de Québec
bridge. Coordinate grid UTM zone 19.
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∼20,000 measurements after outlier filtering. In general, the
ice floes are unconnected and are thus assumed to reflect
uninterrupted surface flow. This is not the case, however, for
a ∼6 km section upstream of the narrows at the Québec City
bridge (PQ in Figure 1) where an ice accumulation exists.
Here, ice floes are juxtaposed in the flow with velocities of
only ∼0.9 m s−1 at mid‐channel. About 1.5 km downstream
from this site, maximum mid‐channel floe velocities
increase to 2.2 m s−1. Based on image correlation results for
stranded, i.e., non‐moving ice debris and fast ice along the
banks, we estimate an overall accuracy of ∼0.25 pixels
(3.8 m, 0.07 m s−1) for the velocities from the ASTER data.
In general, the effect of varying channel width and direction
are reflected in the derived flow speeds and vectors,
respectively.
[6] For a ∼13 km sub‐reach in the aboveASTER scene, 1m

resolution IKONOS stereo data were acquired on 19 February
2000 (Figure 2). About 10,000 valid matches are obtained
using 25 × 25 pixel sized templates (25 m × 25m) over a 25m
regular grid. Again, the displacements of the unconnected
ice floes and debris over the observation period are assumed
to represent surface water velocities. In this case, compar-
ison to stationary ice along the banks indicates an overall
accuracy of ∼0.7 pixels (0.7 m, 0.01 m s−1). The IKONOS‐
derived mid‐channel surface velocities of February 2000 are
up to 18 % higher than those derived from ASTER for
January 2003, a difference not unreasonable over such an
interval. Towards the river banks, percentage differences are
partly larger due to different water levels and fast ice
remnants between the two observation dates. Of particular
note in the image is the backwater eddy characterized by a
reversal of flow in the embayment along the left bank (right
side of image). The low velocities along this bank contrast
strongly with the uninterrupted higher‐velocity flow along
the mid‐channel.
[7] To investigate a river morphology very different from

the St. Lawrence River at its mouth, surface velocities on a
40 km long, high‐latitude, main‐stem reach of the Mack-
enzie River (67.3°N, 130.8°W) are measured (Figure 3). In

contrast to the relatively straight reach of the St. Lawrence,
the one selected for the Mackenzie River is braided and
meandering with sand bars. An ALOS PRISM stereo triplet
of 21 May 2008 is used with 45 s time separation between
the forward and nadir as well as the nadir and backward
looking data, and 90 s between the forward and backward
data, respectively. The water level at this section is ∼15 m
asl. with a relatively low slope making topographic distor-
tions on the water surface negligible. Surface velocities are
measured with 40 × 40 pixel sized templates (100 m × 100m)
over a 75 m grid resulting in ∼13,000 measurements. Again,
widely distributed and unconnected ice floes and debris
ensure that their displacements over the observation period
are representative of surface water velocities. Accuracy in
this case, based on reference measurements to stationary
shore ice, is ∼0.5 pixels (1.3 m, 0.03 m s−1). To investigate
the potential influence of shallow bed sections in this reach
on ice motion and velocities, small island and sand‐bar
locations are identified from additional satellite images
(ALOS AVNIR, 1 October 2006; Landsat5 path 60/row 13,
21 June 2008; Landsat7 path 60/row 13, 1 October 2007). In
general, high flow and water‐level conditions on 21 May
2008 (as indicated by the Arctic Red River hydrometric
station, 10LC014, located 140 km downstream) suggest
maximum inundation of any sand bars. The location of bars
and islands is obtained during periods of relatively low flow
(near annual minima) from satellite imagery of 1 October
2006 (ALOS AVNIR) and cross‐checked with other images
for 1 October 2007 and 21 June 2008 (Landsat5 and 7) to
ensure that river morphology remained stable between
October 2006 and May 2008. Zones inundated in the May
2008 images but not in those of October 2006 are used as
indicators of more shallow water. (The water level differ-
ence at the 10LC014 station between end May 2008 and
October 2008, for instance, is approximately 8 m.) Despite
being in central channel locations, flow velocities over these
locations are relatively slow, sometimes reaching as low as
0.5 to 1 m s−1. By contrast, maximum surface velocities are
slightly over 3 m s−1 at the narrowest river section where

Figure 2. Surface flow velocities and vectors on the St. Lawrence River at Québec City, derived from an IKONOS satellite
stereo pair (background) of 19 February 2000 at around 15:19 UTC. The blue outline indicates the boundary of open water.
Black data voids in the river indicate open water without ice debris tracked. All successfully measured velocity vectors are
show (25 m spacing). The underlying IKONOS image is copyright GeoEye. Image centre lat/lon is ∼46.787°N/71.217°W.
For image location see also Figure 1.
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the flow is concentrated and velocities should be greatest.
Both of these examples reflect the ability of the technique
to map spatial differences in velocity fields resulting from
variations in channel depth and width.

4. Conclusions

[8] Based on the success of this study, it is now possible
to derive measurement of two‐dimensional river‐surface
velocity fields over entire river reaches, which creates a
wide range of new opportunities for geophysical, ecological
and engineering applications. This testing of the technique
was possible only because of the fortuitous availability of
archived satellite records, which currently contain very
limited and short intervals of relevant data for river freeze‐
up and break‐up periods. For future applications, however,
acquisition plans of existing and upcoming airborne and
spaceborne missions could be modified to target selected
rivers around freeze‐up and break‐up periods, thereby
greatly enhancing the applicability of the method. As for all
optical space‐based methods, however, this new method is
restricted for use with cloud‐free day‐time data, a particular
limitation for high latitudes. Although ice‐velocity infor-
mation alone would be highly valuable for many applica-
tions, the additional application of hydraulic formula to
account for variations in velocity with flow depth would
also permit the estimation of discharge during these key
times on remote high‐latitude rivers. Deriving more accurate
estimates of such northern flows would be invaluable, for
example, to improving our understanding of the freshwater
budget of the Arctic Ocean, which is known to have
important implications for global climate. Although the
demonstrated approach relies on ice debris as surface mar-
kers means it is restricted to cold region rivers and over
specific periods (freeze‐up and break‐up), other potential
tracers, such as drifting matter, sediment plumes or thermal
variations, could expand its application to other regions.
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Figure 3. Surface flow velocities and vectors on the Mack-
enzie River, Canadian Arctic, derived from an ALOS PRISM
satellite stereo triplet of 21 May 2008 acquired at around
20:30 UTC. The red outlines indicate sand bars visible at
low water level, the white lines vegetated islands and river
margins assumed to be not or only slightly flooded during
high water. Grey data voids in the river indicate open water
without ice debris tracked. For better visibility, the velocity
vectors with 75 m original spacing have been resampled to
225 m spacing. Image centre lat/lon is ∼67.33°N/130.70°W.
Coordinate grid UTM zone 9.
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