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Abstract This paper considers the problem of sensorimo-
tor delays in the optimal control of (smooth) eye movements
under uncertainty. Specifically, we consider delays in the
visuo-oculomotor loop and their implications for active infer-
ence. Active inference uses a generalisation of Kalman fil-
tering to provide Bayes optimal estimates of hidden states
and action in generalised coordinates of motion. Repre-
senting hidden states in generalised coordinates provides
a simple way of compensating for both sensory and ocu-
lomotor delays. The efficacy of this scheme is illustrated
using neuronal simulations of pursuit initiation responses,
with and without compensation. We then consider an exten-
sion of the generative model to simulate smooth pursuit eye
movements—in which the visuo-oculomotor system believes
both the target and its centre of gaze are attracted to a (hid-
den) point moving in the visual field. Finally, the generative
model is equipped with a hierarchical structure, so that it
can recognise and remember unseen (occluded) trajectories
and emit anticipatory responses. These simulations speak to
a straightforward and neurobiologically plausible solution to
the generic problem of integrating information from differ-
ent sources with different temporal delays and the particular
difficulties encountered when a system—like the oculomo-
tor system—tries to control its environment with delayed
signals.
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1 Introduction

1.1 Problem statement

This paper considers optimal motor control and the particular
problems caused by the inevitable delay between the emis-
sion of motor commands and their sensory consequences.
This is a generic problem that we illustrate within the con-
text of oculomotor control where it is particularly prescient
(see for instance (Nijhawan 2008) for a review). Although
we focus on oculomotor control, the more general contribu-
tion of this work is to treat motor control as a pure infer-
ence problem. This allows us to use standard (Bayesian
filtering) schemes to resolve the problem of sensorimotor
delays—by absorbing them into a generative or forward
model. Furthermore, this principled and generic solution has
some degree of biological plausibility because the resulting
active (Bayesian) filtering is formally identical to predictive
coding, which has become an established metaphor for neu-
ronal message passing in the brain. We will use oculomotor
control as a vehicle to illustrate the basic idea using a series of
generative models of eye movements—that address increas-
ingly complicated aspects of oculomotor control. In short,
we offer a general solution to the problem of sensorimotor
delays in motor control—using established models of mes-
sage passing in the brain—and demonstrate the implications
of this solution in the particular setting of oculomotor control.

The oculomotor system produces eye movements to
deploy sensory (retinal) epithelia at very fast timescales. In
particular, changes in the position of a visual object are com-
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Fig. 1 Problem statement: optimal motor control under axonal delays.
The central nervous system has to contend with axonal delays, both
at the sensory and the motor levels. For instance, in the human visuo-
oculomotor system, it takes approximately τs = 50 ms for the retinal
image to reach the visual areas implicated in motion detection and a fur-
ther τm = 40 ms to reach the oculomotor muscles. As a consequence,
for a tennis player trying to intercept a ball at a speed of 20 m s−1, the
sensed physical position is 1 m behind the true position (as represented
here by τs · V), while the position at the moment of emitting the motor
command will be .8 m ahead of its execution (τm · V). Note that while
the actual position of the ball when its image produced by the photore-
ceptors on the retina hits visual areas is approximately at 45 degrees of
eccentricity (red dotted line), the player’s gaze is directed to the ball at
its present position (red line), in anticipatory fashion. Optimal control
directs action (future motion of the eye) to the expected position (red
dashed line) of the ball in the future—and the racket (black dashed line)
to the expected position of the ball when motor commands reach the
periphery (muscles)

pensated for with robust and rapid eye movements, such that
the object is perceived as invariant, despite its motion (Ilg
1997; Lisberger et al. 1987). This near-optimal control is
remarkable, given the absence of any external clock to coor-
dinate dynamics in different parts of the visual–oculomotor
system. An important constraint, in this setting, is axonal
conduction, which produces delays in sensory and motor sig-
nalling within the oculomotor system. Figure 1 shows that
in humans, for example, retinal signals arriving at motion
processing areas report the state of affairs at least about 50 ms
ago, while the action that follows is executed at least 40 ms in
the future (Inui and Kakigi 2006); for a review, see Masson
and Ilg [2010]. Different sources of delays exist—such as
the biomechanical delay between neuromuscular excitation
and eye movement. Due to these delays, the human smooth
pursuit system responds to unpredictable stimuli with a min-
imum latency of around 100 ms (Wyatt and Pola 1987).
In addition, these delays may produce oscillations about a
constant velocity stimulus (Robinson et al. 1986; Robin-
son 1965), whose amplitude and frequency can be altered
by artificially manipulating the feedback (Goldreich et al.
1992).

Eye movements can anticipate predictable stimuli, such as
the sinusoidal movement of a pendulum (Barnes and Assel-
man 1991; Dodge et al. 1930; Westheimer 1954); for a review,
see Barnes (2008). Interestingly, ocular tracking can compen-
sate for sensorimotor delays after around one or two periods
of sinusoidal motion—producing a tracking movement with
little discernible delay (Barnes and Asselman 1991). This
suggests that the oculomotor system can use sensory informa-
tion from the past to predict its future sensory states (includ-
ing its actions), despite the fact that these sensory changes
can be due to both movement of the stimulus and move-
ment of the eyes. The time taken to compensate for delays
increases with the unpredictability of the stimulus (Michael
and Jones 1966), though the system can adapt quickly to
complex waveforms, with changes in velocity (Barnes and
Schmid 2002), single cycles (Barnes et al. 2000) or perturbed
periodic waves—where subjects appear to estimate their fre-
quency using an average over recent cycles (Collins and
Barnes 2009). Further studies suggest that different sources
of information, such as auditory or verbal cues (Kowler 1989)
or prior knowledge about the nature of sensory inputs (Mon-
tagnini et al. 2006), can evoke anticipatory eye movements.

The aim of this work was to establish a principled
model of optimal visual motion processing and oculomo-
tor control in the context of sensorimotor delays. Delays
are often ignored in treatments of the visual–oculomotor
system; however, they are crucial to understanding the sys-
tem’s dynamics. For instance, delays may be important for
understanding the pathophysiology of impaired oculomo-
tor control: schizophrenic smooth pursuit abnormalities are
due to impairments of the predictive (extra-retinal) motion
signals that are required to compensate for sensorimotor
delays (Nkam et al. 2010; Thaker et al. 1999). Surpris-
ingly, delays may also explain a whole body of visual illu-
sions (Changizi 2001; Changizi and Widders 2002; Changizi
et al. 2008; Vaughn and Eagleman 2013), even for visual illu-
sions that involve a static display. Delays are also an impor-
tant consideration in control theory and engineering. Finally,
neuronal solutions to the delay problem speak to the repre-
sentation of time in the brain, which is essential for the proper
fusion of information in the central nervous system.

1.2 Existing solutions and the proposed hypothesis

A principled approach to optimal oculomotor control is pro-
vided by Bayesian filtering schemes that use probabilistic
representations to estimate visual and oculomotor states.
These states are hidden; i.e. they cannot be measured directly.
A popular scheme for linear control problems is the Kalman
filter (Kalman 1960). The Kalman scheme can be extended to
accommodate biomechanical constraints, such as transmis-
sion delays (e.g. fixed-lag smoothers). However, their solu-
tions can become computationally complex when delays are
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large in relation to discretisation time and are not biologi-
cally plausible. We have previously considered generalised
Bayesian filtering in continuous time as a metaphor for action
and perception. This approach has been applied to eye move-
ments (Friston et al. 2010b) and saccades in particular (Fris-
ton et al. 2012a). However, these applications ignored senso-
rimotor delays and their potentially confounding effects on
optimal control.

Crucially, the active inference schemes we have con-
sidered previously are formulated using representations in
generalised coordinates of motion; that is, states (such as
position) are represented along with their higher-order tem-
poral derivatives (such as speed, acceleration and jerk). This
means that one has an implicit representation of hidden
states in the recent past and future that can be used to
finesse the problems of delays. For example, it has been
shown that acceleration is a necessary component of the
predictive drive to eye movements (Bennett et al. 2007).
In brief, generalised representations can be projected to
the past and to the future using simple (linear) mixtures
of generalised motion. Note that a representation of gen-
eralised motion can be explicit or implicit using a popula-
tion coding scheme—as has been demonstrated for accelera-
tion (Lisberger and Movshon 1999). Representations of gen-
eralised motion may be important for modelling delays when
integrating information in the brain from distal sources—
such as other cortical columns in the same cortical area or
other areas that are connected with fixed but different delays
(Roelfsema et al. 1997). The integration of information over
time becomes particularly acute in motor control, where the
products of sensory processing couple back to the sampling
of sensory information through action.

In the context of action, acted inference finesses the
problems with delayed control signals in classical formu-
lations of motor control by replacing command signals with
descending corticospinal predictions. For instance, the loca-
tion of receptive fields in the parietal cortex in monkeys is
shown to shift transiently before an eye movement (Duhamel
et al. 1992). These predictions are fulfilled at the peripheral
level, using fast closed loop mechanisms (peripheral reflex
arcs). In principle, “these predictions can anticipate delays if
they are part of the generative model,” (Friston 2011); how-
ever, this anticipation has never been demonstrated formally.
Here, we show how generalised Bayesian filtering—as used
in active inference—can compensate for both sensory and
motor delays in the visual–oculomotor loop.

It is important to mention what this work does not address.
First, we focus on tracking eye movements (pursuit of a
single-dot stimulus for a monocular observer with fixed head
position): we do not consider other types of eye movements
(vergence, saccades or the vestibulo-ocular reflex). Second,
we take an approach that complements existing models, such
as those of Robinson et al. [1986] and Krauzlis and Lisberger

[1989]. Existing models account for neurophysiological and
behavioural data by refining block diagram models of ocu-
lomotor control to describe how the system might work. We
take a more generic approach, in which we define the imper-
atives for any system sampling sensory data, derive an opti-
mal oculomotor control solution and show why this solu-
tion explains the data. Although the two approaches should
be consistent, ours offers a principled approach to identify-
ing the necessary solutions (such as predictive coding) to a
given problem (oculomotor delays). We hope to demonstrate
the approach by modelling pursuit initiation and smooth
pursuit—and then consider the outstanding issue of antic-
ipatory responses: in previous treatments (Robinson et al.
1986), “[anticipation] has not been adequately modelled and
no such attempt is offered (…) only unpredictable move-
ments are considered”.

1.3 Outline

The main contributions of our work are described in the
subsequent five sections. First, sect. 2 summarises the basic
theory behind active inference and attempts to link gener-
alised filtering to conventional Bayesian filters used in opti-
mal control theory. This section then considers neurobio-
logical implementations of generalised filtering, in terms of
predictive coding in generalised coordinates of motion. This
formulation allows us to consider the problem of delayed sen-
sory input and motor output in sect. 3—and how this prob-
lem can be finessed in a relatively straightforward way using
generalised representations. Having established the formal
framework (and putative neuronal implementation), the final
three sections deal with successively harder problems in ocu-
lomotor control. We start in Sect. 4 by considering pursuit
initiation using a simple generative model of oculomotor tra-
jectories. Using simulations, we consider the impact of motor
delays, sensory delays and their interaction on responses to a
single sweep of a visual target. The subsequent section turns
to smooth pursuit eye movements—using a more sophisti-
cated generative model of oculomotor trajectories, in which
prior beliefs about eye movements enable the centre of gaze
to predict target motion using a virtual or fictive target (see
Sect. 5). In the final section, we turn to hierarchical models
of target trajectories that have explicit memories of hidden
dynamics, which enable anticipatory responses (see Sect. 6).
These responses are illustrated using simulations of antici-
patory pursuit movements using (rectified) hemi-sinusoidal
motion. In short, these theoretical considerations lead to a
partition of stimulus-bound eye movements into pursuit ini-
tiation, smooth pursuit and anticipatory pursuit, where each
mode of oculomotor control calls on formal additions to the
underlying generative model; however, they all use exactly
the same scheme and basic principles. Where possible, we
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try to simulate classic empirical results in this field—at least
heuristically.

In short, these theoretical considerations lead to a parti-
tion of stimulus-bound eye movements into pursuit initiation,
smooth pursuit and anticipatory pursuit, where each mode of
oculomotor control calls on formal additions to the underly-
ing generative model. However, these models all use exactly
the same scheme and basic principles; in particular, they all
use the same solution to the oculomotor delay problem. These
simulations illustrate that the active inference scheme can
reproduce classical empirical results in three distinct exper-
imental contexts.

2 From predictive coding to active inference

This section sets out the basic theory, before applying it to
the special problem of oculomotor delays in the following
sections. We first introduce the general framework of active
inference in terms of generalised Bayesian filtering and vari-
ational free energy minimisation. In brief, active inference
can be regarded as equipping standard Bayesian filtering
schemes with classical reflex arcs that enable action, such as
an eye movement, to fulfil predictions about hidden states of
the world. Second, we will briefly describe the formalism of
active inference in terms of differential equations describing
the dynamics of the world and internal states of the visual–
oculomotor system. The neurobiological implementation of
these differential equations is considered in terms of predic-
tive coding, which uses prediction errors on the motion of
hidden states—such as the location of a visual target. In the
next section, we will turn to the special problem of oculo-
motor delays and how this problem can be finessed using
active inference in generalised coordinates of motion. This
solution will be illustrated in subsequent sections using sim-
ulations of pursuit initiation responses and smooth pursuit.
Finally, we shall exploit the richness of hierarchical genera-
tive models—which underlie active inference—to illustrate
anticipatory eye movements that cannot be explained by sim-
ply compensating for oculomotor delays.

2.1 From free energy to generalised filtering

The scheme used here to model oculomotor behaviour has
been used to model several other processes and paradigms
in neuroscience. This active inference scheme is based upon
three assumptions:

– The brain minimises the free energy of sensory inputs
defined by a generative model.

– The generative model used by the brain is hierarchical,
nonlinear and dynamic.

– Neuronal firing rates encode the expected state of the
world, under this model.

The first assumption is the free energy principle, which
leads to active inference in the context of an embodied inter-
action of the system with its environment, where the system
can act to change its sensory inputs. The free energy here
is a variational free energy that provides a computationally
tractable upper bound on the negative logarithm of Bayesian
model evidence (see Appendix 1). In Bayesian terms, this
means that the brain maximises the evidence for its model
of sensory inputs (Ballard et al. 1983; Bialek et al. 2001;
Dayan et al. 1995; Gregory 1980; Grossberg et al. 1997;
Knill and Pouget 2004; Olshausen and Field 1996). This is
the Bayesian brain hypothesis (Yuille and Kersten 2006). If
we also allow action to maximise model evidence, we get
active inference (Friston et al. 2010b). Crucially, unlike con-
ventional optimal control schemes, there is no ad hoc value
or loss function guiding action: action minimises the free
energy of the system’s model. This permits the application
of standard Bayesian solutions and simplifies the implicit
neuronal architecture; for example, there is no need for an
efference copy signal (Friston 2011). In this setting, desired
movements are specified in terms of prior beliefs about
state transitions or the motion of hidden states in the gen-
erative model. Action then realises prior beliefs (policies)
by sampling sensory data that provide evidence for those
beliefs.

The second assumption above is motivated by noting that
the world is both dynamic and nonlinear—and that hierarchi-
cal structure emerges inevitably from a separation of tempo-
ral scales (Ginzburg 1955; Haken 1983). The third assump-
tion is the Laplace assumption that, in terms of neural codes,
leads to the Laplace code, which is arguably the simplest
and most flexible of all neural codes (Friston 2009). In brief,
the Laplace code means that probabilistic representations are
encoded explicitly by synaptic activity in terms of their mean
or expectation (while the second-order statistics such as dis-
persion or precision are encoded implicitly in terms of synap-
tic activity and efficacy). This limits the representation of
hidden states to continuous variables, as opposed to discrete
states; however, this is appropriate for most aspects of sen-
sorimotor processing. Furthermore, it finesses the combina-
toric explosion associated with discrete state space models.
Restricting probabilistic representations to a Gaussian form
clearly precludes multimodal representations. Having said
this, the hierarchical form of the generative models allows for
fairly graceful modelling of nonlinear effects (such as shad-
ows and occlusions). For example, a Gaussian variable at one
level of the model may enter the lower levels in highly non-
linear way—we will see examples of this later. See Appendix
2 for a motivation of the Laplace assumption from basic prin-
ciples.
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Under these assumptions, action and perception can be
regarded as the solutions to coupled differential equations
describing the dynamics of the real world (the first pair of
equations) and the behaviour of an agent (the second pair of
equations), expressed in terms of action and internal states
that encode conditional expectations about hidden states of
the world (Friston et al. 2010b):

s = g(x, ν, a) + ων

ẋ = f (x, ν, a) + ωx

ȧ = −∂a F(s̃, μ̃)

˙̃μ = Dμ̃ − ∂μ̃F(s̃, μ̃) (1)

For clarity, real-world states are written in boldface, while
internal states of the agent are in italics: Here, (s, x, ν, a)

denote sensory input, hidden states, hidden causes and action
in the real world, respectively. The variables in the second
pair of equations (s̃, μ̃, a) correspond to generalised sensory
input, conditional expectations and action. Generalised coor-
dinates of motion, denoted by the ~ notation, correspond to
a vector representing the different orders of motion of a vari-
able: position, velocity, acceleration and so on (Friston et al.
2010a). Using the Lagrangian notation for temporal deriva-
tives, we get, e.g., for s: s̃ = (s, s′, s′′, . . .). In the absence of
delays s̃(t) = s̃(t), the agent receives instantaneous sensa-
tions from the real world. The differential equations above are
coupled because sensory states depend upon action through
hidden states and causes (x, ν) while action a(t) = a(t)
depends upon sensory states through internal states μ̃.

By explicitly separating real-world states—hidden from
the agent—to its internal states, one can clearly separate the
generative model from the updating scheme that allows to
minimise the agent’s free energy: the first pair of coupled
stochastic differential equations describes the dynamics of
hidden states and causes in the world and how they gener-
ate sensory states. These equations are stochastic because
sensory states and the motion of hidden states are subject to
random fluctuations (ωx, ων).

The second pair of differential equations corresponds
to action and perception, respectively—they constitute a
(generalised) gradient descent on variational free energy.
The differential equation describing changes in conditional
expectations (perception) is known as generalised filter-
ing or predictive coding and has the same form as stan-
dard Bayesian (Kalman–Bucy) filters—see also Beal [2003]
and Rao and Ballard [1999]. The first term is a prediction
based upon a differential operator D that returns the gen-
eralised motion of the conditional expectations, namely the
vector of velocity, acceleration, jerk and so on—such that
Dμ̃ = (μ′, μ′′, μ′′′, . . .). However, the expected velocity is
not the velocity of the expectation and comprises both pre-
diction and update terms: the second term reflects this correc-
tion and ensures the changes in conditional expectations are

agent environment 

s = g( ,a) +

a = argmin
a

F(s,µ)

µ = argmin
µ

F(s,µ)= f ( ,a) +

Separated by a Markov blanket

Hidden 
states 

Internal 
states 

Sensation 

Action 

Exchange with the environment 

Sensory delays 

Motor delays 

Fig. 2 This schematic shows the dependencies among various quan-
tities modelling exchanges of an agent with the environment. It shows
the states of the environment and the system in terms of a probabilis-
tic dependency graph, where connections denote directed dependen-
cies. The quantities are described within the nodes of this graph—with
exemplar forms for their dependencies on other variables (see main
text). Hidden (external) and internal states of the agent are separated by
action and sensory states. Both action and internal states—encoding a
conditional probability density function over hidden states—minimise
free energy. Note that hidden states in the real world and the form of
their dynamics can be different from that assumed by the generative
model; this is why hidden states are in bold. See main text for further
details

Bayes optimal predictions of hidden states of the world—
in the sense that they maximise the free-energy bound on
Bayesian model evidence. See Fig. 2 for a schematic sum-
mary of the implicit conditional dependencies implied by
Eq. 1.

2.2 Hierarchical form of the generative model

To perform simulations using this scheme, one simply inte-
grates or solves Eq. 1 to simulate (neuronal) dynamics that
encode conditional expectations and ensuing action. Condi-
tional expectations depend upon a generative model, which
we assume has the following (hierarchical) form

s = g(1)(x (1), v(1)) + ω(1)
ν

ẋ (1) = f (1)(x (1), v(1)) + ω(1)
x

...

ν(i−1) = g(i)(x (i), v(i)) + ω(i)
ν

ẋ (i) = f (i)(x (i), v(i)) + ω(i)
x

... (2)

where (i) indexes the level in the hierarchical model. Note
that we denote the sensory layer as i = 0, but this index-
ing is somewhat arbitrary. This equation is just a way of
writing down a generative model that specifies a probability
density function over sensory inputs and hidden states and
causes. This probability density is needed to define the free
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energy of sensory input: it is specified in terms of functions
( f (i), g(i)) and Gaussian assumptions about random fluctu-
ations (ω

(i)
x , ω

(i)
ν ) on the motion of hidden states and causes.

It is these that make the model probabilistic—they play the
role of sensory noise at the first level and induce uncertainty
about states at higher levels. The precisions of these fluctua-
tions are quantified by (�

(i)
x ,�

(i)
ν ) which are defined as the

inverse of the respective covariance matrices.
The deterministic part of the model is specified by non-

linear functions of hidden states and causes ( f (i), g(i)) that
generate dynamics and sensory consequences. Hidden causes
link hierarchical levels, whereas hidden states link dynamics
over time. Hidden states and causes are abstract quantities
that the brain uses to explain or predict sensations—like the
motion of an object in the field of view. In hierarchical mod-
els of this sort, the output of one level acts as an input to the
next. This input can produce complicated convolutions with
deep (hierarchical) structure. We will see examples of this
later in particular in the context of anticipatory movements.

2.3 Perception and predictive coding

Given the form of the generative model (Eq. 2), one can write
down the differential equations (Eq. 1) describing neuronal
dynamics in terms of prediction errors on the hidden causes
and states. These errors represent the difference between con-
ditional expectations and predicted values, under the gener-
ative model (using A · B := AT B for the scalar product and
omitting higher-order terms):

˙̃μ(i)
x = Dμ̃(i)

x + ∂ g̃(i)

∂μ̃
(i)
x

· �(i)
ν ε̃(i)

ν

+∂ f̃ (i)

∂μ̃
(i)
x

· �(i)
x ε̃(i)

x − D�(i)
x ε̃(i)

x

˙̃μ(i)
ν = Dμ̃(i)

ν + ∂ g̃(i)

∂μ̃
(i)
ν

· �(i)
ν ε̃(i)

ν

+∂ f̃ (i)

∂μ̃
(i)
ν

· �(i)
x ε̃(i)

x − �(i+1)
ν ε̃(i+1)

ν

ε̃(i)
x = Dμ̃(i)

x − f̃ (i)
(
μ̃(i)

x , μ̃(i)
ν

)

ε̃(i)
ν = μ̃(i−1)

ν − g̃(i)
(
μ̃(i)

x , μ̃(i)
ν

)
(3)

The quantities ε̃(i) correspond to prediction errors (on hid-
den states x or hidden causes ν). These are weighted by
their respective precision vectors �(i) in the update scheme.
Equation 3 can be derived fairly easily by computing the
free energy for the hierarchical model in Eq. 2 and insert-
ing its gradients into Eq. 1. This gives a relatively simple
update scheme, in which conditional expectations are driven
by a mixture of prediction errors, where prediction errors are
defined by the equations of the generative model.

It is difficult to overstate the generality and importance of
Eq. 3—its solutions grandfather nearly every known statisti-
cal estimation scheme, under parametric assumptions about
additive noise (Friston 2008). These range from ordinary
least squares to advanced variational deconvolution schemes.
In this form, one can see clearly the relationship between pre-
dictive coding and Kalman–Bucy filtering—changes in con-
ditional expectations comprise a prediction (first term) plus a
weighted mixture of prediction errors (remaining terms). The
weights play the role of a Kalman gain matrix and are based
on the gradients of the model functions and the precision of
random fluctuations.

In neural network terms, Eq. 3 says that error units receive
predictions from the same hierarchical level and the level
above. Conversely, conditional expectations (encoded by the
activity of state units) are driven by prediction errors from
the same level and the level below. These constitute bottom-
up and lateral messages that drive conditional expectations
towards a better prediction to reduce the prediction error in
the level below. This is the essence of recurrent message
passing between hierarchical levels to suppress free energy
or prediction error: see Friston and Kiebel [2009] for a more
detailed discussion. In neurobiological implementations of
this scheme, the sources of bottom-up prediction errors, in the
cortex, are thought to be superficial pyramidal cells that send
forward connections to higher cortical areas. Conversely, pre-
dictions are conveyed from deep pyramidal cells by backward
connections, to target (polysynaptically) the superficial pyra-
midal cells encoding prediction error (Friston and Kiebel
2009; Mumford 1992). This defines an elementary circuit
that may be the basis of the layered organisation of the cor-
tex (Bastos et al. 2012). Figure 3 provides a schematic of the
proposed message passing among hierarchically deployed
cortical areas.

2.4 Action

In active inference, conditional expectations elicit behaviour
by sending predictions down the hierarchy to be unpacked
into proprioceptive predictions at the level of (pontine) cra-
nial nerve nuclei and spinal cord. These engage classical
reflex arcs to suppress proprioceptive prediction errors and
produce the predicted motor trajectory

ȧ = −∂a F = −(∂a ε̃(1)
ν ) · �(1)

ν ε̃(1)
ν (4)

The reduction of action to classical reflexes follows
because the only way that action can minimise free energy
is to change sensory (proprioceptive) prediction errors by
changing sensory signals. This highlights the tight relation-
ship between action and perception; cf., the equilibrium point
formulation of motor control (Feldman and Levin 1995). In
short, active inference can be regarded as equipping a gen-
eralised predictive coding scheme with classical reflex arcs:
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frontal eye fields geniculate

visual cortex

retinal input

oculomotor 
signals

Prediction error (superficial pyramidal cells)

Conditional predictions (deep pyramidal cells)

Top-down or backward 
predictions

Bottom-up or forward 
prediction error

proprioceptive input

reflex 
arc

(1)
ox

(1)
tx (1) (1)

t ox x Angular position of target in intrinsic coordinates

Angular direction of gaze in extrinsic coordinates

Angular direction of target in extrinsic coordinates

(1) (1)
t t os x x

(1)
o os x

pons
Sensory inputs

Fig. 3 Schematic detailing a neuronal message passing scheme (gen-
eralised Bayesian filtering or predictive coding) that optimises con-
ditional expectations about hidden states of the world, given sensory
(visual) data and the active (oculomotor) sampling of those data. This
diagram shows the speculative cells of origin of forward driving con-
nections (in red) that convey prediction error from a lower area to a
higher area and the backward connections (in black) that construct pre-
dictions (Mumford 1992). These predictions try to explain away pre-
diction error in lower levels. In this scheme, the sources of forward and
backward connections are superficial (red) and deep (black) pyramidal
cells, respectively. The equations on the right represent a generalised
descent on free energy under the hierarchical model described in the
main text—this can be regarded as a generalisation of predictive coding

or Kalman filtering: see Friston [2008]. State units are in black and error
units are in red. Here, we have placed different levels of some hierarchi-
cal model within the visual–oculomotor system. Visual input arrives in
an intrinsic (retinal) frame of reference that depends upon the angular
position of a stimulus and the direction of gaze. Exteroceptive input is
then passed to the lateral geniculate nuclei (LGN) and to higher visual
and prefrontal (e.g. motion sensitive, such as the frontal eye field) areas
in the form of prediction errors. Crucially, proprioceptive sensations
are also predicted, creating prediction errors at the level of the cranial
nerve nuclei (pons). The special aspect of these proprioceptive predic-
tion errors is that they can be resolved through classical reflex arcs—in
other words, they can elicit action to change the direction of gaze and
close the visual–oculomotor loop

see Friston et al. [2010b] and Friston et al. [2009] for details.
The actual movements produced clearly depend upon (chang-
ing) top-down predictions that can have a rich and complex
structure. This scheme is consistent with the physiology and
anatomy of the oculomotor system (for a review see Ilg 1997;
Krauzlis 2004), although our goal here is not to identify
the role of each anatomical structure but rather to give a
schematic proof-of-concept.

2.5 Summary

In summary, we have derived equations for the dynamics
of perception and action using a free energy formulation of
adaptive (Bayes optimal) exchanges with the world and a
generative model that is both generic and biologically plau-
sible. A technical treatment of the material above will be
found in Friston et al. [2010a], which provides the details

of the generalised filtering used to produce the simulations
in the next section. Before looking at these simulations, we
consider how delays can be incorporated into this scheme.

3 Active inference with sensorimotor delays

If action and sensations were not subject to delays, one could
integrate (solve) eq. 1 directly; however, in the presence of
sensory and motor delays (τs and τa , respectively), eq. 1
becomes a (stochastic and nonlinear) delay differential equa-
tion because s̃(t) = s̃(t − τs) and a(t) = a(t + τa). In
other words, the agent receives sensations from (sees) the
past, while emitting motor signals that will be enacted in
the future (we will only consider delays from the sensory
and motor sub-systems and neglect delays between neuronal
systems in this paper).
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To finesse the integration of these delay differential equa-
tions, one can exploit their formulation in generalised coor-
dinates: By taking linear mixtures of generalised motion, one
can easily map from the present to the future, using the matrix
operators:

T (τ ) = exp(τD) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
1!τ

1
2!τ

2 . . .

0 1 1
1!τ 0

0 0 1
. . .

0 0 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

with D =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0

0 0 0
. . .

0 0 0 0

⎤
⎥⎥⎥⎦ (5)

The first differential operator simply returns the gener-
alised motion D x̃(t) = x̃ ′(t) while the second delay operator
produces generalised states in the future T (τ )x̃(t) = x̃(t+τ)

(we define delays as positive by convention). Note that shift-
ing forwards and backwards by the same amount of time
produces the identity operator T (τ )T (−τ) = I and that,
more generally, T (τ1)T (τ2) = T (τ1 + τ2).

These delay operators are simple to implement computa-
tionally (and neurobiologically) and allow an agent to finesse
the delayed coupling above by replacing (delayed) sensory
signals with future input s̃(t) = T (τs)s̃(t − τs) = s̃(t)
for subsequent action and perception. Alternatively, one can
regard this compensation for sensory delays as attempting to
predict the past (see below). Generalised coordinates allow
the representation of the trajectory of a given variable at any
time (that is its evolution in the near past and present) and
thus allow its projection into the future or past. Generalised
representations are more extensive than ‘snapshots’ at a par-
ticular time and enable the agent to anticipate the future (of
delayed sensory trajectories) and represent hidden states in
real time—that is, representations that are synchronised with
the external events. In terms of motor delays, the agent can
replace its internal motor signals with action in the future
a(t) = T (τa)a(t −τa) = a(t), such that when action signals
reach the periphery, they correspond to the action encoded
centrally. These substitutions allow us to express action and
perception in Eq. 1 as1:

ȧ(t)=−∂a F(T (τa)T (τs)s̃(t− τ s −τ a), T (τa)μ̃(t−τ a))

=−∂a F(T (τs − τ s +τa − τ a)s̃(t), T (τa − τ a)μ̃(t))

1 We have a made a slight approximation here because T (τa)μ̃(t −
τ a) = T (τa − τ a)μ̃(t) when, and only when, the free energy gradients
are zero and ˙̃μ(t) = Dμ̃(t). Under the assumption that the perceptual
destruction of these gradients is fast, in relation to action, this can be
regarded as an adiabatic approximation.

˙̃μ(t) = Dμ̃(t) − ∂μ̃F(T (τs)s̃(t − τ s), μ̃(t))

= Dμ̃(t) − ∂μ̃F(T (τs − τ s)s̃(t), μ̃(t)) (6)

This equation distinguishes between true delays (τ ) and
those assumed by the agent (τ ). When the two are the same,
the delay operators T (τ − τ ) = I : τ = τ become identity
matrices and Eq. 6 reduces to Eq. 1. When the two differ,
Eq. 6 permits the simulation of a system with uncompen-
sated delays. Notice how the dynamics of action in the first
differential equation are driven by a gradient descent on the
free energy of sensations with composite sensory and motor
delays. In other words, action in the real world depends upon
sensory states generated τ s + τ a in the past.

One can now solve eq. 6 to simulate active inference,
with or without compensation for sensorimotor delays. We
use a standard local linearisation scheme for this integra-
tion (Ozaki 1992), where delays enter at the point at which
sensory prediction error is computed and when it drives
action: from Eqs. 3 and 4:

ε̃(1)
ν = T (τs)s̃(t − τ s) − g̃(1)(μ̃(1)

x , μ̃(1)
ν )

= T (τs − τ s)s̃(t) − g̃(1)(μ̃(1)
x , μ̃(1)

ν )

ȧ(t) = −(∂a ε̃(1)
ν ) · �(1)

ν T (τa)ε̃(1)
ν (t − τ a)

= −(∂a ε̃(1)
ν ) · �(1)

ν T (τa − τ a)ε̃(1)
ν (t) (7)

Equation 7 means that perfect (errorless) prediction
requires T (τs)s̃(t − τ s) = g̃(1)(μ̃

(1)
x , μ̃

(1)
ν ). In other words,

errorless prediction means that the agent is effectively pre-
dicting the future projection of the past. Note again the
dependency of action, via prediction errors, on sensory states
τ s + τ a in the past. See Appendix 3 for further details of the
integration scheme used in the simulations below.

3.1 Summary

This section has considered how the differential equations
describing changes in action and internal (representational)
states can be finessed to accommodate sensorimotor delays.
This is relatively straightforward—in the context of gener-
alised schemes—using delay operators that take mixtures of
generalised motion to project states into the future or past.
Sensory delays can be (internally) simulated and corrected
by applying delays to sensory input producing sensory pre-
diction error, while motor delays can be simulated and cor-
rected by applying delays to sensory prediction error pro-
ducing action. Neurobiologically, the application of delay
operators just means changing synaptic connection strengths
to take different mixtures of generalised sensations and their
prediction errors. We will now use these operators to look at
the effects of sensorimotor delays with and without compen-
sation.
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4 Results: pursuit initiation

This section focuses on the consequences of sensory delays,
motor delays and their combination—in the context of pursuit
initiation—using perhaps the simplest generative model for
active inference. Our purpose is to illustrate the difficulties in
oculomotor control that are incurred by delays and how these
difficulties dissolve when delays are accommodated during
active inference. We start with a description of the generative
model and demonstrate its behaviour when delays are com-
pensated. We then use this normal behaviour as a reference
to look at failures of pursuit initiation induced by delays. In
this section, responses to a single sweep of rightward motion
are used to illustrate basic responses. In the next section, we
consider pursuit of sinusoidal motion (with abrupt onsets)
and the implications for generative models that may be used
by the brain.

4.1 Generative model of pursuit initiation

The generative model for pursuit initiation used here is very
simple and is based upon the prior belief that the centre of
gaze is attracted to the target location. The processes gener-
ating sensory inputs and the associated generative model can
be expressed as follows:

s =
[

so

st

]
=

[
xo

xt − xo

]
+ ω(1)

ν

ẋ =
[

ẋo

ẋt

]
=

[
1
ta

a − 1
to

xo
1
tm

(ν(1) − xt )

]
+ ω(1)

x

s =
[

so

st

]
=

[
xo

xt − xo

]
+ ω(1)

ν

ẋ =
[

ẋo

ẋt

]
=

[
1
ts
(xt − xo)

1
tm

(ν(1) − xt )

]
+ ω(1)

x

ν(1) = ω(2)
x (8)

The first pair of equations corresponds to a noisy sensory
mapping from hidden states and the equations of motion for
states in the real world. These pertain to real-world vari-
ables representing the position of the target and of the eye
(in boldface). The remaining equations constitute the gener-
ative model of how sensations are generated using the form
of Eq. 2. These define the free energy in Eq. 1—and specify
behaviour under active inference. The variables constitute
the first layer of the hierarchical model (see Eq. 2, but for
simplicity, we have written x instead of x(1) and x instead of
x (1)).

The real-world provides sensory input in two modalities:
proprioceptive input from cranial nerve nuclei reports the
angular displacement of the eye so ∈ R

2 and corresponds
to the centre of gaze. Note that, using the approximation

of relatively small displacements, we use Cartesian coordi-
nates to follow previous treatments, e.g. Friston et al. [2010a].
However, visual space is better described by bounded polar
coordinates, and treatments of large eye movements should
account for this. Exteroceptive (retinal) input reports the
angular position of a target in a retinal (intrinsic) frame of
reference st ∈ R

2. The indices o and t thus refer to states of
the oculomotor system or of the target, respectively. Note that
st is just the difference between the centre of gaze and target
location in an extrinsic frame of reference xt − xo. In this
paper, we are modelling the online inference of target posi-
tion, and we are ignoring the problem of how the causal struc-
ture of the environment is learned. We simply assume that
this structure has already been learned accurately, and there-
fore, the dynamics of the real world and the generative model
are the same. Clearly, this model of visual processing is an
enormous simplification: we are assuming that place coded
spatial information can be summarised in terms of displace-
ment vectors. However, more realistic simulations—using a
set of retinotopic inputs with classical receptive fields cover-
ing visual space—produce virtually the same results. We will
use more realistic models in future publications that deal with
smooth pursuit and visual occlusion. Here, we use the sim-
pler formulation to focus on delays and the different sorts of
generative models that can provide top-down or extra-retinal
constraints on visual motion processing.

The hidden states of this model comprise the true, real-
world oculomotor displacement (xo ∈ R

2) and target loca-
tion (xt ∈ R

2). The units of angular displacement are arbi-
trary, but parameters are tuned to correspond to a small dis-
placement of 4 degrees of visual angle for one arbitrary unit
(that is approximately 4 times the width of a thumb’s nail at
arm’s length). The oculomotor state is driven by action with
a time constant of ta = 64 ms and decays (slowly) to zero
through damping, with a time constant of to = 512 ms. The
target location is perturbed by hidden causes xt ∈ R

2 that
describe the location to which the target is drawn, with a time
constant of tm = 16 ms. In this paper, the random fluctuations
on sensory input and on the motion of hidden states are very
small, with a log precision of 16. In other words, the random
fluctuations have a variance of exp(−16). This completes our
description of the process generating sensory information, in
which hidden causes force the motion of a target location and
action forces oculomotor states. Target location and oculo-
motor states are combined to produce sensory information
about the target in an intrinsic frame of reference.

The generative model has exactly the same form as the
generative process but with one important exception: there is
no action and the motion of the hidden oculomotor states is
driven by the displacement between the target location and
the central gaze (with a time constant of ts = 32 ms). In
other words, the agent believes that its gaze will be attracted
to the location of the target, which, itself, is being driven
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by some unknown exogenous force or hidden cause. The
log precisions on the random fluctuations in the generative
model were four, unless stated otherwise. This means that
uncertainty about sensory input, (motion of) hidden states
and causes was roughly equivalent.

Having specified the generative process and model, we can
now solve the active inference scheme in Eq. 1 and examine
its behaviour. Sensorimotor delays are implemented in the
message passing from the generative process to the gener-
ative model. This generative model produces pursuit initia-
tion because it embodies prior beliefs that the centre of gaze
will follow the target location. This pursuit initiation rests on
conditional expectations about the target location in extrin-
sic coordinates and the state of the oculomotor plant, where
the location is driven by hidden causes that also have to be
inferred.

The generative model described in this section provides
the equations required to simulate active inference using the
formalism of the previous section. In short, we now consider
the generative model that defines the variational free energy
and (Bayes) optimal active inference.

4.2 Simulations

All simulations were performed with a time bin of 16ms,
and we report results in milliseconds. All results were repli-
cated with different time bins (16ms, 8ms, 4ms, 2ms and
1ms) with minimal changes to the results. Figure 4 reports
the conditional estimates of hidden states and causes during
the simulation of pursuit initiation, using a simple rightward
sweep of a visual target and compensating for sensorimotor
delays: τs = τ s and τa = τ a . This compensation is effec-
tively the same as simulating responses in the absence of
delays—because the delay operators reduce to the identity
matrix. Target motion was induced using a hidden cause that
was a ramp function of post-stimulus time. Note that ramp
stimuli are often used in psychophysics, and this generative
model—using velocity in place of position—produces the
same results in velocity space. Indeed, most models, such
as Robinson et al. [1986] or Krauzlis and Lisberger [1989],
focus on modelling velocity responses. We choose to model
the tracking of position for two reasons: First, it is easy to
generalise position results to velocity using generalised coor-
dinates of motion. Second, positional errors can induce slow
eye movements (Kowler and Steinman 1979; Wyatt and Pola
1981) and we hoped to accommodate this in the model. If we
assume that the units of angular displacement are 4 degrees
of visual angle, then the resulting peak motion corresponds
to about 20 degrees per second.

The upper left panel shows the predicted sensory input
(coloured lines) and sensory prediction errors (dotted red
lines) along with the true values (broken black lines). Here,
we see horizontal excursions of oculomotor angle (upper

lines) and the angular position of the target in an intrinsic
frame of reference (lower lines). This is effectively the dis-
tance of the target from the centre of gaze and reports the
spatial lag of the target that is being followed (solid red line).
One can see clearly an initial retinal displacement of the tar-
get that is suppressed after approximately 20 ms. This effect
confirms that the visual representation of target position is
predictive and that the presentation of a smooth predictable
versus an unpredictable target would induce a lag between
their relative positional estimates, as is evidenced in the flash-
lag effect (Nijhawan 1994).

The sensory predictions are based upon the conditional
expectations of hidden oculomotor (blue line) and target (red
line) angular displacements shown on the upper right. The
grey regions correspond to 90 % Bayesian confidence inter-
vals, and the broken lines show the true values. One can see
clearly the motion that elicits pursuit initiation responses,
where the oculomotor excursion follows with a short delay
of about 64 ms. The hidden cause of these displacements is
shown with its conditional expectation on the lower left. The
true cause and action are shown on the lower right. The action
(blue line) is responsible for oculomotor displacements and
is driven by proprioceptive prediction errors. Action does not
return to zero because the sweep is maintained at an eccen-
tric position during this simulation. This eye position slightly
undershoots the target position: it is held at around 95 %
of the target eccentricity in the upper right panel. Note that
this corresponds roughly to the steady-state gain observed in
behavioural data, which was modelled explicitly by Robin-
son et al. [1986]. For our purposes, these simulations can be
regarded as Bayes optimal solutions to the pursuit initiation
problem, in which sensorimotor delays have been accommo-
dated (discounted) via absorption into the generative model.
We can now examine the performance in the absence of com-
pensation and see how sensory and motor delays interact to
confound pursuit initiation:

The above simulations were repeated with uncompensated
sensory delays (τs = 0 ms and τ s = 32 ms), uncompen-
sated motor delays (τa = 0 ms and τ a = 32 ms) and com-
bined sensorimotor delays of 64 ms (τa = τs = 0 ms and
τ a = τ s = 32 ms). To quantify behaviour, we focus on
the sensory input and underlying action. The position of the
target in intrinsic coordinates corresponds to spatial lag and
usefully quantifies pursuit initiation performance. Figure 5
shows the results of these three simulations (red lines) in
relation to the compensated (optimal) active inference shown
in the previous figure (blue lines). True sensory input corre-
sponds to solid lines and its conditional predictions to dotted
lines. The left panels show the true and predicted sensory
input, while action is shown in the right panels. Under pure
sensory delays (top row), one can see the delay in sensory
predictions, in relation to the true inputs. The thicker (solid
and dotted) red lines correspond, respectively, to (true and
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Fig. 4 This figure reports the conditional estimates of hidden states
and causes during the simulation of pursuit initiation, using a single
rightward (positive) sweep of a visual target, while compensating for
sensory motor delays. We will use the format of this figure in subse-
quent figures: the upper left panel shows the predicted sensory input
(coloured lines) and sensory prediction errors (dotted red lines) along
with the true values (broken black lines). Here, we see horizontal excur-
sions of oculomotor angle (upper lines) and the angular position of the
target in an intrinsic frame of reference (lower lines). This is effectively
the distance of the target from the centre of gaze and reports the spatial
lag of the target that is being followed (solid red line). One can see
clearly the initial displacement of the target that is suppressed after a

few hundred milliseconds. The sensory predictions are based upon the
conditional expectations of hidden oculomotor (blue line) and target
(red line) angular displacements shown on the upper right. The grey
regions correspond to 90 % Bayesian confidence intervals and the bro-
ken lines show the true values of these hidden states. One can see the
motion that elicits following responses and the oculomotor excursion
that follows with a short delay of about 64 ms. The hidden cause of these
displacements is shown with its conditional expectation on the lower
left. The true cause and action are shown on the lower right. The action
(blue line) is responsible for oculomotor displacements and is driven
by the proprioceptive prediction errors

predicted) proprioceptive input, reflecting oculomotor dis-
placement. Crucially, in contrast to optimal control, there
are oscillatory fluctuations in oculomotor displacement and
the retinotopic location of the target that persists even after
the target is stationary. These fluctuations are similar to the
oscillations elicited by adding an artificial feed-back delay
(Goldreich et al. 1992). Here, the fluctuations are caused
by damped oscillations in action due to, and only to, sen-
sory proprioceptive and exteroceptive delays. These become
unstable (increasing in their amplitude) when the predicted
value oscillates in counter phase with the real value. Simi-

lar oscillations are observed with pure motor delays (middle
row). However, here there is no temporal lag between the
true and predicted sensations (solid vs. dashed lines). Fur-
thermore, there is no apparent delay in action–action appears
to be emitted for longer, reaching higher amplitudes. In fact,
action is delayed but the delay is obscured by the increase in
the amplitude of action—that is induced by greater propri-
oceptive prediction errors. If we now combine both sensory
and motor delays, we see a catastrophic failure of oculo-
motor tracking (lower row). With combined sensorimotor
delays the pursuit initiation becomes unstable, with expo-
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Fig. 5 This figure illustrates
the effects of sensorimotor
delays on pursuit initiation (red
lines) in relation to compensated
(optimal) active inference—as
shown in the previous figure
(blue lines). The left panels
show the true (solid lines) and
estimated sensory input (dotted
lines), while action is shown in
the right panels. Under pure
sensory delays (top row), one
can see clearly the delay in
sensory predictions, in relation
to the true inputs. The thicker
(solid and dotted) red lines
correspond, respectively, to (true
and predicted) proprioceptive
input, reflecting oculomotor
displacement. The middle row
shows the equivalent results
with pure motor delays, and the
lower row presents the results
with combined sensorimotor
delays. Of note here is the
failure of optimal control with
oscillatory fluctuations in
oculomotor trajectories, which
become unstable under
combined sensorimotor delays
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nentially increasing oscillations as action over-compensates
for delay-dependent errors.

In effect, the active inference scheme has undergone a
phase transition from a stable to an unstable fixed point. We
have illustrated this bifurcation by increasing sensorimotor
delays under a fixed motor precision or gain in Eq. 7. The
results in Fig. 5 used a motor gain with a log precision of 2.5.
We chose this value because it produced stable responses
with sensory or motor delays alone and unstable dynamics
with combined delays. These results illustrate the profound
and deleterious effects of sensorimotor delays on simple pur-
suit initiation, using biologically plausible values—namely
sensorimotor delays of 64 ms and a target velocity of about 16
degrees per second. This also illustrates the necessity of com-
pensation for these delays so that the system can achieve a

more robust and stable response. One would anticipate, in the
face of such failures, real subjects would engage interceptive
saccades to catch the target, of the sort seen in schizophrenic
patients (Levy et al. 1993). In the remainder of this paper, we
will concentrate on the nature of pursuit initiation and smooth
pursuit with compensated sensorimotor delays, using a rea-
sonably high motor gain with a log precision of four.

4.3 Pursuit initiation and visual contrast

Before turning to more realistic generative models of smooth
pursuit, we consider the empirical phenomena in which fol-
lowing responses to the onset of target movement are sup-
pressed by reducing the visual contrast of the target (Thomp-
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Fig. 6 This figure reports the spatial lag (the displacement of the target
from the centre of gaze) as a function of contrast (log precision of exte-
roceptive sensory input). The upper panel shows the true (solid lines)
and predicted (dotted lines) spatial lag as a function of peristimulus
time for different log precisions, ranging from two (black lines) to eight
(red lines). The peak lags are plotted in the lower panel as a function of
visual contrast or log precision. These results show how the perceived
lag increases with contrast, while the true lag decreases in accord with
empirical observations

son 1982). In simulations of this sort, visual contrast is mod-
elled in terms of the precision of sensory information in
accord with Weber’s law—see Feldman and Friston [2010]
for details. Contrast-dependent effects are easy to demon-
strate in the context of active inference. Figure 6 shows
the spatial lag—the displacement in intrinsic coordinates
of the target from the centre of gaze depicted by the solid
red line in Fig. 4—as a function of contrast or log preci-
sion of exteroceptive sensory input. The upper panel shows
the true (solid lines) and predicted (dotted lines) spatial lag
as a function of peristimulus time for different log preci-

sions, ranging from two (low) to eight (high). The peak
lags are plotted in the lower panel as a function of visual
contrast or log precision. Since estimation error decreases
as visual contrast increases, both curves converge, leading
to a decrease to zero of the prediction error. These results
show, in accord with empirical observations, how the spa-
tial lag (position error) increases with contrast (Arnold et al.
2009), while the true lag decreases (Spering et al. 2005).
A similar difference between perception and action was
recently reported (Simoncini et al. 2012). The explanation
for this contrast–dependent behaviour is straightforward—
because pursuit initiation is based upon proprioceptive pre-
diction errors, it depends upon precise sensory informa-
tion. Reducing the precision of visual input—through reduc-
ing contrast—increases uncertainty about visual information
(sensory estimation error) and places more weight on prior
beliefs and proprioceptive sensations. This reduces the per-
ceived motion of the target and reduces the amplitude of
prediction errors driving action.

4.4 Summary

In this section, we have seen that sensorimotor delays can
have profound and deleterious effects on optimal oculomo-
tor control. Here, optimal control means Bayes optimal active
inference, in which pursuit initiation emerges spontaneously
from prior beliefs about how a target attracts the centre
of gaze. These simulations demonstrate that it is relatively
easy to compensate for sensorimotor delays by exploiting
representations in generalised coordinates of motion. Fur-
thermore, the resulting scheme has some construct validity
in relation to experimental manipulations of the precision
or contrast of visual information. However, there are cer-
tain aspects of oculomotor tracking that suggest the pursuit
initiation model above is incomplete: when presented with
periodic target motion, the latency of motor gain (defined
operationally in terms of the target and oculomotor veloci-
ties) characteristically reduces after the first cycle of target
motion (Barnes et al. 2000). This phenomenon cannot be
reproduced by the pursuit initiation model above.

Figure 7 shows the responses of the pursuit initiation
model to sinusoidal motion using the same format as Fig. 4.
Here, the hidden cause driving the target was a sine wave with
a period of 512 ms that started after 256 ms. If we focus on
the spatial lag (solid red line in the upper left panel), one can
see that the lag is actually greater after one period of motion
than at the onset of motion. This contrasts with empirical
observations, which suggest that the spatial lag should be
smaller after the first cycle (Barnes et al. 2000). In the next
section, we consider a more realistic generative model that
resolves this discrepancy and takes us from simple pursuit
initiation to smooth pursuit.
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Fig. 7 This figure uses the
same format as Fig. 4—the only
difference here is that the target
motion is sinusoidal. The key
thing to take from this
simulation is that the peak
spatial lag at the onset of the
second cycle of target motion is
greater than the peak lag at the
onset of the first. This is contrary
to empirical predictions
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5 Results: smooth pursuit

In this section, we consider a slightly more realistic gen-
erative model that replaces the prior beliefs about the tar-
get attracting the centre of gaze with the belief that both
the target and centre of gaze are attracted by the same (fic-
tive) location in visual space. This allows pursuit initiation
to anticipate the trajectory of the target and pursue the target
more accurately—providing the trajectories are sufficiently
smooth. The idea behind this generative model is to account
for the improvements in tracking performance that are not
possible at the onset of motion and that are due to inference
on smooth target trajectories.

5.1 Smooth pursuit model

The smooth pursuit model considered in this paper rests on a
second-order generalisation of the pursuit initiation model of
previous section. Previously, we have considered the motion
of the oculomotor plant to be driven directly by action. This

form of action can be considered as an (adiabatic) solution
to a proper second-order formulation, in which action exerts
a force and thereby changes the angular acceleration of ocu-
lomotor displacement. This second-order formulation can be
expressed in terms of the following generative process and
model
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Fig. 8 This figure uses the
same format as the previous
figure—the only difference here
is that we have replaced the
pursuit initiation model with a
smooth pursuit model. In the
smooth pursuit model, the
centre of gaze is attracted by a
hidden cause of target motion,
as opposed to the target per se.
Note that, in comparison with
the previous figure, the peak lag
at the onset of the second cycle
of target motion is now smaller
than at the onset to the first
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Here, the only thing that has changed is that we have intro-
duced new hidden states corresponding to oculomotor veloc-
ity x′

o ∈ R
2. Action now changes the motion of the velocity

(i.e. acceleration), as opposed to the velocity directly. This
difference is reflected in the generative model but with one
crucial addition—the hidden oculomotor state is not driven
by the displacement between the target and the centre of gaze
but by the displacement between the hidden cause and the
centre of gaze. In other words, the hidden oculomotor states
are attracted by the hidden cause of target motion—not the
target motion per se. The idea here is that inference about the
trajectory of the hidden cause should enable an anticipatory
optimisation of pursuit initiation, provided these trajectories
are smooth—hence a smooth pursuit model. Note that the
equation of motion in the oculomotor model ẋo = 1

ts
(xt −xo)

(see Eq. 8) is the (adiabatic) solution to the equation used
to model smooth pursuit: 1

tv
(ν(1) − xo) − ts

tv
x ′

o = 0 when

ν(1) = xt (see Eq. 9). As a result (and as confirmed by simu-
lations), this model behaved similarly for the sweep stimulus
used in Figs. 4, 5 and 6.

5.2 Simulations

We repeated the simulation reported in Fig. 7 using the
smooth pursuit generative model. The results of this sim-
ulation are shown in Fig. 8 using the same format as Fig. 7.
The key difference—in terms of performance—is that the
peak spatial lag after one cycle of motion is now less than
the peak lag at the onset of motion. The response to the sinu-
soid trajectory contrasts with simple pursuit initiation and is
more consistent with empirical observations. The true and
expected hidden states show that the oculomotor trajectory
now follows the target trajectory more accurately, particu-
larly at the peaks of rightward and leftward displacement.
Interestingly, the amplitude of action has not changed very
much (compare Figs. 7 and 8, upper right panels). However,
action is initiated with a slightly shorter latency, which is suf-
ficient to account for the improved pursuit when informed
by the prior beliefs about the smooth trajectory of the
target.
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Fig. 9 This figure uses the
same format as the previous
figure—the only difference is
that the target motion has been
rectified so that it is
(approximately)
hemi-sinusoidal. The thing to
note here is that the improved
accuracy of the pursuit
previously apparent at the onset
of the second cycle of motion
has now disappeared—because
active inference does not have
access to the immediately
preceding trajectory. This failure
of an anticipatory improvement
in tracking is contrary to
empirical predictions

-200 0 200 400 600 800 1000 1200

-1

-0.5

0

0.5

1

Smooth pursuit:
prediction and error

-200 0 200 400 600 800 1000 12

-1

-0.5

0

0.5

1

Half-cycle motion:
hidden states

-200 0 200 400 600 800 1000 1200

-1

-0.5

0

0.5

1

hidden causes

time (ms)
-200 0 200 400 600 800 1000 12

-1

-0.5

0

0.5

1

time (ms)

perturbation and action

P
os

iti
on

P
os

iti
on

5.3 Summary

In summary, by simply replacing the target with the hid-
den cause of target motion—as the attractor of oculomo-
tor trajectories—we can account for empirical observations
of improved pursuit during periodic target motion. In the
context of active inference, this smooth trajectory can only
be recognised—and used to inform action—after the onset
of periodic motion. However, this smooth pursuit model
still fails to account for anticipatory effects that are not
directly available in sensory trajectories. Empirical obser-
vations suggest that any systematic or regular structure in
target motion can facilitate the accuracy of smooth pur-
suit, even if this information is not represented explicitly
in target motion. A nice example of this rests on the use
of rectified periodic motion, in which only rightward target
excursions are presented. Experimentally, subjects can antic-
ipate the periodic but abrupt onset of motion, provided they
recognise the underlying periodic behaviour of the target.
We can emulate this hemi-periodic motion by thresholding

the hidden cause to suppress leftward deflections. Figure 9
shows the results of simulating smooth pursuit using the
same format as Fig. 8. The only difference here is that we
replaced the sinusoidal hidden cause ν(t) = sin(2π f · t)
with ν(t) = exp(4(sin(2π f · t) − 1)). This essentially sup-
presses motion before rightward motion. This suppression
completely removes the benefit of smooth pursuit after a
cycle of motion—compare Figs. 8 and 9. Here, the peak spa-
tial lag at the onset of the second cycle of motion is exactly
the same as the lag at the onset of motion; in other words,
there is no apparent benefit of modelling the hidden causes
of motion in terms of pursuit accuracy. This failure to model
the anticipatory eye movements seen experimentally leads us
to consider a full hierarchical model for anticipatory pursuit.

6 Results: anticipatory pursuit

This section presents a full hierarchical model of anticipatory
smooth pursuit eye movements that tries to account for antic-
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ipatory oculomotor responses that are driven by extra-retinal
beliefs about the periodic behaviour of targets. This entails
adding a hierarchical level to the model that enables the
agent to recognise and remember the latent structure in target
trajectories and suitably optimise its pursuit movements—
which are illustrated here in terms of an improvement in the
accuracy of target following after the onset of rectified target
motion.

6.1 Anticipatory pursuit

The generative process used in these simulations is exactly
the same as in the above (smooth pursuit) scheme (see Eq. 9);
however, the generative model of this process is equipped
with an extra level in place of the model for the hidden cause
of target motion in the generative model:
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The first level of the generative model is exactly the same
as above. However, the hidden causes are now informed by
the dynamics of hidden states at the second level. These hid-
den states model underlying periodic dynamics using a sim-
ple periodic attractor that produces sinusoidal fluctuations of
any amplitude or phase and a frequency that is determined
by a second-level hidden cause with a prior expectation of a
frequency of η (in Hz). It is somewhat similar to a control
system model that attempted to achieve zero-latency target
tracking by fitting the trajectory to a (known) periodic sig-
nal (Bahill and McDonald 1983). Our formulation ensures a
Bayes optimal estimate of periodic motion in terms posterior
beliefs about its frequency. In these simulations, we used a
fixed Gaussian prior centred on the correct frequency with a
period of 512 ms. This prior reproduces a typical experimen-
tal setting in which the oscillatory nature of the trajectory
is known, but its amplitude and phase (onset) are unknown.
Indeed, it has been shown that anticipatory responses are
cofounded when randomising the inter-cycle interval (Becker
and Fuchs 1985). In principle, we could have considered
many other forms of generative model, such as models with
prior beliefs about continuous acceleration (Bennett et al.
2010).

As above, all the random fluctuations were assumed to
have a log precision of four. Crucially, the mapping between
the second-level (latent) hidden states and the motion of first-
level hidden states encoding trajectories in visual (extrinsic)
space is nonlinear. This means that latent periodic motion can
be distorted in any arbitrary way. Here, we use a soft thresh-
olding function σ(x) = exp(4(x − 1)) to suppress negative
(rightward) excursions of the target to model hemi-sinusoidal
motion. This is the same function we used to generate the
motion in Fig. 9. Note that if the precision of the noise at the
second level falls to zero and there is no (precise) informa-
tion at this level, the generative model assumes that the ran-
dom fluctuations have an infinite variance. As a consequence,
the prediction at the level below in the hierarchical model
simplifies to ν(1) = ω

(2)
ν , and we recover eq. 9 describing

the smooth pursuit model. As a consequence, this parameter
tunes the relative strength of anticipatory modulation.

Figure 10 shows the results of simulating active infer-
ence under this anticipatory model, using the same format
as Fig. 9. However, there is now an extra level of hidden
states encoding latent periodic motion. It can be seen that
expectations about hidden states attain nonzero amplitudes
shortly after motion onset and are periodic thereafter. These
provide predictions about the onset of rightward motion after
the first (latent) cycle, enabling a more accurate oculomotor
response. This is evidenced by the reduction in the spatial
lag at the onset of the second cycle of motion, relative to
the first (solid red lines on the upper left). This improve-
ment in accuracy should be compared to the previous fig-
ure and reflects Bayes optimal anticipatory responses of the
sort observed empirically (Barnes et al. 2000). Further evi-
dence of anticipatory inference can be seen by examining the
conditional expectations about hidden causes at the second
level. Note the substantial reduction in prediction error on the
hidden cause (dotted red lines), when comparing the onset
of the second cycle to the onset of the first. This reflects
the fact that the conditional expectations about the hidden
cause show a much reduced latency at the onset of the second
cycle due to top-down conditional predictions provided by
the second-level hidden states. This recurrent and hierarchi-
cally informed inference provides the basis for anticipatory
oculomotor control and may be a useful metaphor for the
hierarchical anatomy of the visual–oculomotor system.

6.2 Summary

In conclusion, to account for anticipatory pursuit movements
that are not immediately available in target motion, one needs
to equip generative models with a hierarchal structure that
can accommodate latent dynamics—that may or may not be
expressed at the sensory level. It is important to note that
this model is a gross simplification of the complicated hier-
archies that may exist in the brain. For instance, while some
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Fig. 10 This figure uses the
same format as the previous
figure—the only difference is
that the generative model has
been equipped with a second
hierarchical level that contains
hidden states, modelling latent
periodic behaviour of the
(hidden) causes of target
motion. With this addition, the
improvement in pursuit
accuracy apparent at the onset of
the second cycle of motion is
reinstated. This is because the
model has an internal
representation of latent causes
of target motion that can be
called upon even when these
causes are not expressed
explicitly in the target trajectory
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Aperiodic motion:

anticipation may be induced in smooth pursuit eye move-
ments, some aspects, such as the aperture problem, may not
be anticipated (Montagnini et al. 2006). In this model, the
second-level hidden causes are simply driven by prediction

errors and assume a constant frequency. As a consequence,
prior beliefs about frequency are modelled as stationary. In
the real brain, one might imagine that models of increasing
hierarchical depth might allow for nonstationary frequencies
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and other dynamics—that would better fit behavioural data.
We have chosen to illustrate the basic ideas using a min-
imalistic example of anticipation in eye movements. Hier-
archical extensions of this sort emphasise the distinction
between visual motion processing and attending oculomotor
control based purely upon retinal and proprioceptive input—
they emphasise extra-retinal processing that is informed by
prior experience and beliefs about the latent causes of visual
input. We will exploit this anticipatory smooth pursuit model
in future work, where visual occluders are used to disclose
beliefs about latent motion.

7 Discussion

In this paper, we have considered optimal motor control in the
context of pursuit initiation and anticipatory smooth pursuit.
In particular, we have taken a Bayesian perspective on opti-
mality and have simulated various aspects of eye movement
control using predictive coding and active inference. This
provides a solution to the problem of sensorimotor delays
that reproduces the results of earlier solutions—but using
a neuronally plausible (predictive coding) scheme that has
been applied to a whole range of perceptual, psychophysi-
cal, decision theoretic and motor control problems beyond
oculomotor control. Active inference depends upon a gener-
ative model of stimulus trajectories and their active sampling
through movement. This requires a careful consideration of
the generative models that might be embodied by the visual–
oculomotor system—and the sorts of behaviours one would
expect to see under these models. The treatment in this paper
distinguishes between three levels of predictive coding with
respect to oculomotor control: the first is at the lowest level
of sensorimotor message passing between the sensorium and
internal states representing the causes of sensory signals.
Here, we examined the potentially catastrophic effects of
sensorimotor delays and how they can easily render ocu-
lomotor tracking inherently unstable. This problem can be
finessed—in a relatively straightforward way—by exploiting
representations in generalised coordinates of motion. These
can be used to offset both sensory and motor delays, using
simple and neurobiologically plausible mixtures of gener-
alised motion. We then motivated a model of smooth pursuit
eye movements by noting that a simple model of target fol-
lowing cannot account for the improvement in visual track-
ing after the onset of smooth and continuous target trajec-
tories. In this paper, smooth pursuit was modelled in terms
of hidden causes that attracted both the target and centre of
gaze simultaneously—enabling the trajectory of the target
to inform estimates of the hidden cause that, in turn, pro-
vide predictions about oculomotor consequences. While this
extension accounted for experimentally observed tracking
improvements—under continuous trajectories—it does not

account for anticipatory movements that have to accumu-
late information over time. This anticipatory behaviour could
only be explained with a deeper hierarchical model that has an
explicit representation of latent (periodic) structure causing
target motion. When the generative model was equipped with
a deeper structure, it was then able to produce anticipatory
movements of the sort seen experimentally. Clearly, the sim-
ulations in this paper are just heuristic and do not represent a
proper simulation of neurobiological processing. However,
they can be taken as proof of principle that the basic computa-
tional architecture—in terms of generalised representations
and hierarchical models—can explain some important and
empirical facts about eye movements. In what follows, we
consider the models in this paper in relation to other models
and how modelling of this sort may have important implica-
tions for understanding the visual–oculomotor system.

7.1 Comparison with other models

The model that we have presented here speaks to and com-
plements several existing models of the oculomotor sys-
tem. First, it shares some properties with computer vision
algorithms used for image stabilisation. Such models often
use motion detection coupled with salient feature detec-
tion for the registration of successive frames (Lucas and
Kanade 1981). A major difference is that these models are
often applied to very specific problems or configurations for
which they give an efficient, yet ad hoc solution. A more
generic approach is to use—as our model does—a prob-
abilistic method, for instance particle filtering (Isard and
Blake 1998). Our model provides a constructive extension—
as we integrate the dynamics of both sensation and action.
In principle, this could improve the online response of feature
tracking algorithms.

Second, using our modelling approach, we reproduce sim-
ilar behaviours shown by other neuromimetic models of the
oculomotor system. For example, the pursuit of a dot with
known uncertainty can be modelled as the response of a
Kalman filter (Kalman 1960). Both generalised Bayesian
(active inference) and Kalman filtering predict the current
state of the system using prior knowledge (about previous
target locations) and refine these predictions using sensory
data (prediction errors). This analogy with block diagrams
from control theory was first highlighted by Robinson et al.
[1986] and Krauzlis and Lisberger [1989]—and has since
been used widely (Grossberg et al. 1997). For a recent treat-
ment involving the neuromorphic modelling of cortical areas,
see Shibata et al. [2005]. However, it should be noted that the
link with Kalman filtering is rarely explicit (but see de Xivry
et al. 2013); most models have been derived heuristically,
rather than as optimal solutions under a generative model.
One class of such neuromimetic models uses neural net-
works that mimic the behaviour of the Kalman filter (Haykin
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2001). This model was used to fit and predict the response of
smooth pursuit eye movements under different experimental
parameters (Montagnini et al. 2007) or while interrupting
information flow (Bogadhi et al. 2011a). Developing this
methodology—and by analogy with modular control the-
ory architectures—these building blocks can be assembled
to accommodate increasingly complex behavioural tasks.
This can take the form of a multi-layered model for trans-
parency processing (Raudies et al. 2011) or of an inter-
connected graph connecting the form and motion pathways
(Beck et al. 2008). Such models have been used to under-
stand adaptation to blanking periods and to tune the balance
between sensory and proprioceptive inputs (Madelain and
Krauzlis 2003). Our model is different in a key aspect: The
Kalman filter is indeed the (Bayes) optimal solution under a
linear generative model, but a cascade of such solutions is not
the optimal solution to (nonlinear) hierarchical models (Bal-
aji and Friston 2011). The active inference approach consid-
ers the (embodied) system as a whole and furnishes an opti-
mal solution in the form of generalised Bayesian filtering. In
particular, given the delays at the sensory and motor levels, it
provides an optimal solution that accommodates (or compen-
sates for) these delays. As shown in the results, the ensuing
behaviour reproduces experimental results from pursuit ini-
tiation (Masson et al. 2010) to anticipatory responses (Avila
et al. 2006; Barnes et al. 2000). The approach thus provides
in inclusive framework, compared with heuristics used in
neuromimetic models that focus on specific aspects of ocu-
lomotor control (see below).

The model presented here shares many features with other
probabilistic models. First, representations are encoded as
probability density is. This allows processing and control to
be defined in terms of probabilistic inference; for instance,
by specifying a prior belief that favours slow speeds (Weiss
et al. 2002). This approach has been successful in explaining
a wide variety of physiological and psychophysical results.
For example, it allows one to model spatial (Perrinet and
Masson 2007) or temporal (Montagnini et al. 2007) integra-
tion of information, using conditional independence assump-
tions. Furthermore, recent developments have addressed the
estimation of the shape and parameters of priors for slow
speeds (Stocker and Simoncelli 2006) and for the integration
of ambiguous versus non-ambiguous information (Bogadhi
et al. 2011b). The active inference scheme used here relies on
generative models that entail exactly the same sorts of pri-
ors. It has also been shown that free energy minimisation
extends the type of probabilistic models described above
to encompass retinal stabilisation and oculomotor reflexes
(Friston et al. 2010b). A crucial difference here is that we have
explicitly considered the problem of dynamics and delays.
Our goal was to understand how the system could provide
an optimal solution, when it knows (or can infer) the delay
between sensing input (in the past) and processing infor-

mation that informs action (in the future). This endeavour
allowed us to build a model—using simple priors over the
dynamics of the hidden causes—that reproduces the sorts of
anticipatory behaviour seen empirically.

7.2 Limitations

Clearly, there are many aspects of oculomotor control we
have ignored in this theoretical work. Foremost, we have
used a limited set of stimuli to validate the model. Pursuit
initiation was only simulated using a simple sweep of a dot,
while smooth pursuit was studied using a sinusoidal trajec-
tory. However, these types of stimuli are commonly used in
the literature, as they best characterise the type of behav-
iour (following, pursuit) that we have tried to characterise:
see Barnes [2008] for a review. We have not attempted to
reproduce the oscillations at steady state as in Robinson et
al. [1986] or Goldreich et al. [1992], although this may help to
optimise the parameters of our model in relation to empirical
data. The hemi-sinusoidal stimulus is also a typical stimulus
for studying anticipatory responses (Avila et al. 2006; Barnes
et al. 2000). Further validations of this model would call on a
wider range of stimuli and consider and accumulated wealth
of neurophysiological and behavioural data (Tlapale et al.
2010).

In this paper, we have focused on inference under a series
of generative models of oculomotor control. We have not con-
sidered how these models are acquired or learned. In brief, the
acquisition of generative models and their subsequent optimi-
sation in terms of their parameters (i.e. synaptic connection
strengths) is an important, if distinct, issue. In the context of
active inference, model acquisition and perceptual learning
can be cast in terms of model selection and parameter optimi-
sation through the minimisation of free energy. Under certain
simplifying assumptions, this learning reduces to associative
plasticity. A discussion of these and related issues can be
found in Friston [2008].

The generative model used in this paper has no explicit
representation of space but only the uncertain, vectorial posi-
tion of a target. We have previously studied the role of predic-
tion in solving problems that are associated with the detection
of motion using a dynamical and probabilistic model of spa-
tial integration (Perrinet and Masson 2012). Both that model
and the current model entertain a similar problem: that of the
integration of local information into a global percept, in both
the temporal (this manuscript) and spatial (Perrinet and Mas-
son 2012) domains. We have considered integrating sensory
information in the spatial domain: terms of the prediction
of sensory causes and their sampling by saccades (Friston
et al. 2012b), and of the effects on smooth pursuit of reduc-
ing the precision. This manipulation can account for several
abnormalities of smooth pursuit eye movements typical of
schizophrenia (Adams et al. 2012). In this paper, we have lim-
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ited ourselves to integrating information over time. It would
be nice, in the future, to consider temporal and spatial inte-
gration simultaneously.

A final limitation of our model is the simplified modelling
of the physical properties of the oculomotor system—due
to the biophysics of the eyes and photoreceptors, sensory
input contains motion streaks that can influence the detec-
tion of motion (Barlow and Olshausen 2004). Furthermore,
we have ignored delays in neuronal message passing among
and within different levels of the hierarchy: for a review
of quantitative data from monkeys, see Salin and Bullier
[1995]. Finally, we have not considered in any depth the
finer details of how predictive coding or Bayesian filter-
ing might be implemented neuronally. It should be noted
that predictive coding in the cortex was attended by some
early controversies; for example, paradoxical increases in
visual evoked responses were observed when prediction error
should be minimal. For example, a match between sensory
signals and descending predictions can lead to the enhance-
ment of neuronal firing (Roelfsema et al. 1998). The neu-
ronal implementation assumed in our work (see 2) finesses
many of these issues. In this (hypothetical) scheme, pre-
dictions and prediction errors are encoded by the neuronal
activity of deep and superficial pyramidal cells, respectively
(Mumford 1992; Bastos et al. 2012). In this scheme, the
enhancement of evoked responses is generally thought to
reflect attentional gain, which corresponds to the optimisa-
tion of the expected precision (inverse variance) of predic-
tion errors, via synaptic gain control (Feldman and Fris-
ton 2010). Put simply, attention increases the gain of salient
or precise prediction errors that the predictions are trying
to suppress. Indeed, the orthogonal effects of expectations
and attention in predictive coding have been established
empirically using fMRI (Kok et al. 2011). See Bastos et al.
[2012] for a review of the anatomical and electrophysio-
logical evidence that is consistent with the scheme used
here.

7.3 Perspectives

Notwithstanding the limitations above, this approach may
provide some interesting perspectives on neural computa-
tions in the oculomotor system. First, the model presented
here can be compared to existing models of the oculomotor
system. In particular, any commonalities of function suggest
that extant neuromimetic models may be plausibly imple-
mented using a generic predictive coding architecture. Sec-
ond, the Bayes optimal control solution rests on a compu-
tational (anatomical) architecture that can be informed by
electrophysiological or psychophysical studies. For exam-
ple, we have considered only delays at the motor and sensory
level. However, delays in axonal conduction between hierar-
chical levels—within the visual–oculomotor system—may

have implications for intrinsic and extrinsic connectivity:
in visual search, predictions generated in higher areas (say
supplementary and frontal eye fields) may exploit a shorter
path, by stimulating the actuator to sample more informa-
tion (by making an eye movement) rather than accumulating
evidence by explaining away prediction errors in lower (stri-
ate and extrastriate) cortical levels (Masson et al. 2010). By
studying the structure of connections implied by theoretical
considerations (see Fig. 3), our modelling approach could
provide a formal framework to test these sorts of hypothe-
ses. A complementary approach would be to apply dynamic
causal modelling (Friston et al. 2003) to electrophysiolog-
ical data, using predictive coding architectures, such that
transmission delays (and their compensation or modelling)
among levels of the visual–oculomotor system could be eval-
uated empirically. A recent example of using dynamic causal
modelling to test hypotheses based upon predictive coding
architectures can be found in Brown and Friston (2012).
This example focuses on attentional gain control in visual
hierarchies.

Second, this work may provide a new perspective for
experiments, in particular for the generation of stimuli. We
have previously considered such a line of research by design-
ing naturalistic, texture-like pseudo-random visual stimuli to
characterise spatial integration during visual motion detec-
tion (Leon et al. 2012). We were able to show that the ocu-
lomotor system exhibits an increased following gain, when
stimuli have a broad spatial frequency bandwidth. Interest-
ingly, the velocities of these stimuli were harder to discrim-
inate relative to narrow bandwidth stimuli—in a two alter-
native forced-choice psychophysical task (Simoncini et al.
2012). In this work, the authors used competitive dynamics
based on divisive normalisation. Moreover, textured stim-
uli were based on a simple forward model of motion detec-
tion (Leon et al. 2012). This may call for the use of more
complex generative models to generate such textures. In
addition, the use of gaze contingent eye-tracking systems
allows real-time manipulation of the configuration (position,
velocity, delays) of the stimulus, with respect to eye position
and motion. By targeting different sources of uncertainty,
at the different levels of the hierarchical model, one might
be able to get a better characterisation of the oculomotor
system.

The confounding influence of delays inherent in neuronal
processing is a strong biophysical constraint on neuronal
dynamics. Representations in generalised coordinates of
motion provide a potential resolution that may have enjoyed
positive evolutionary pressure. However, it remains unclear
how neural information, represented in a distributed man-
ner across the nervous system, is integrated with exterocep-
tive, operational time. The “binding” of different informa-
tion, without a central clock, seems essential, but the corre-
late of such a temporal representation of sensory information
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(independent of delays) has never been observed explicitly
in the nervous system. Elucidating the neural representation
of temporal information would greatly enhance our under-
standing of both neural computations themselves and our
interpretation of measured electromagnetic (EEG and MEG)
signals that are tightly coupled to those computations.
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8 Appendix

8.1 Appendix 1: Variational free energy

Here, we derive various formations of free energy and show
they relate to each other. We start with the quantity we want
to bound and implicitly minimise—namely, surprise or the
negative log-evidence associated with sensory states s̃(t) that
have been caused by some unknown quantities �(t). These
hidden causes correspond to the (generalised) motion (that
is position, velocity, acceleration, etc.) of a target that the
oculomotor system is tracking.

− ln p(s̃) = − ln
∫

p(s̃, �)d� (11)

We now simply add a non-negative cross-entropy or diver-
gence between some arbitrary (conditional) density q(�) =
q(�|μ̃) and the posterior density p(�|s̃) to create a free
energy bound on surprise

F = − ln p(s̃) +
∫

q(�) ln
q(�)

p(�|s̃)d�

= − ln p(s̃) + D(q(�)||p(�|s̃)) (12)

The cross-entropy term is non-negative by Gibb’s inequal-
ity. Because surprise depends only on sensory states, we can
bring it inside the integral and use p(s̃, �) = p(�|s̃)p(s̃)
to show free energy is a Gibb’s energy G = − ln p(s̃, �)

expected under the conditional density minus the entropy of
the conditional density

F =
∫

q(�) ln
q(�)

p(�|s̃)p(s̃)
d�

=
∫

q(�) ln
q(�)

p(�, s̃)
d�

= −
∫

q(�) ln p(�, s̃)d� +
∫

q(�) ln q(�)d� (13)

This is a useful formulation because it can be evalu-
ated in a relatively straightforward way given a probabilis-
tic generative model p(s̃, �). A final rearrangement, using
p(s̃, �) = p(s̃|�)p(�), shows free energy is also com-
plexity minus accuracy, where complexity is the divergence
between the recognition density q(�) and the prior density
p(�)

F =
∫

q(�) ln
q(�)

p(�|s̃)p(s̃)
d�

= −
∫

q(�) ln p(s̃|�)d� + D(q(�)||p(�)) (14)

8.2 Appendix 2: The maximum entropy principle and the
Laplace assumption

If we admit an encoding of the conditional density up to
second order moments, then the maximum entropy princi-
ple (Jaynes 1957), implicit in the definition of free energy
above, requires q(�|μ̃) = N (μ̃,�) to be Gaussian. This
is because a Gaussian density has the maximum entropy of
all forms that can be specified with two moments. Assum-
ing a Gaussian form is known as the Laplace assumption and
enables us to express the entropy of the conditional density in
terms of its first moment or expectation. This follows because
we can minimise free energy with respect to the conditional
covariance as follows:

F = G(s̃, μ̃) + 1

2
tr(�∂μ̃μ̃G) − 1

2
ln |�|

G = − ln p(s̃, �)

∂� F = 1

2
∂μ̃μ̃G − 1

2
� (15)

so that ∂� F = 0 implies

� = ∂μ̃μ̃G

F = G(s̃, μ̃) + 1

2
ln |∂μ̃μ̃G| (16)

Here, the conditional precision �(s̃, μ̃) is the inverse of
the conditional covariance �(s̃, μ̃). In short, free energy is a
function of generalised conditional expectations and sensory
states.

8.3 Appendix 3: Integrating or solving active inference
schemes using generalised descents.

Given a generative model or its associated Gibbs energy func-
tion, one can now simulate active inference by solving the
following set of ordinary differential equations for a system
that includes generalised real-world states and internal states
of the agent mediating (delayed) action and perception:
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u̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃s
˙̃x
˙̃ν
˙̃ωνν˙̃ωxν˙̃μ
˙̃η
ȧ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D g̃(x̃, ν̃, ã) + Dω̃ν

f̃ (x̃, ν̃, ã) + ω̃x
D ν̃

Dω̃ν

Dω̃x
Dμ̃ − ∂μ̃F(T (τs − τs)s̃, μ̃)

D η̃

−∂a F(T (τs − τs + τa − τa)s̃, T (τa − τa)μ̃)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Generalised action ã(t) is approximated using discrete val-
ues of a(t) from the past. Note that we have included a
prior expectation η̃(t) of hidden causes to complete the
agent’s generative model of its world. Integrating or solv-
ing equation 17 corresponds to simulating active inference.
The updates of the collective states over time steps of t use
a local linearisation scheme (Ozaki 1992):

u = (exp(t · ∂u u̇) − I )(∂u u̇)−1

∂u u̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D∂x̃ g̃ D∂ν̃ g̃ D . . . D∂a g̃

∂x̃ f̃ ∂ν̃ f̃ I ∂a f̃

.

.

. D
.
.
.

.

.

.

D

. . . D . . .

−∂μ̃s̃ F . . . −D∂μ̃μ̃ F −∂μ̃η̃ F −∂μ̃a F

−∂η̃μ̃ F D

−∂as̃ F −∂aμ̃ F −∂aη̃ F −∂aa F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Details about how to compute the gradients and curva-
tures pertaining to the conditional expectations can be found
in Friston et al. [2010a]. These are generally cast in terms
of prediction errors using straightforward linear algebra.
Because action can only affect free energy through the sen-
sory states, its dynamics are prescribed by the following gra-
dients and curvatures (ignoring higher-order terms):

∂a F = (∂a ε̃(1)
ν ) · �(1)

a T (τa − τ a)ε̃(1)
ν

∂aa F = (∂a ε̃(1)
ν ) · �(1)

a T (τa − τ a)(∂a ε̃(1)
ν )

∂a ε̃(1)
ν = T (τs − τ s)∂a s̃(t)

∂a s̃ = ∂a g̃ + ∂x̃ g̃

(∑
i

D−i (∂x̃ f̃ )i−1

)
∂a f̃ (19)

The partial derivative of the sensory states with respect
to action and is specified by the generative process. In bio-
logically plausible instances of this scheme, this deriva-
tive would have to be computed on the basis of a map-
ping from action to sensory consequences. It is generally
assumed that agents are equipped with ∂a s̃ epigenetically,
because it has a simple form. For example, contracting a
muscle fibre elicits a proprioceptive stretch signal in a one-
to-one fashion. The precision matrix �

(1)
a in Eq. 19 is spec-

ified such that only proprioceptive prediction errors with
these simple forms have nonzero precision. This can be

regarded as the motor gain in response to proprioceptive pre-
diction errors. Equation 18 may look complicated but can
be evaluated automatically using numerical derivatives for
any given generative model. All the simulations in this paper
used just one routine—toolbox/DEM/spm_ADEM.m. All
figures are reproducible and summarised in the script
toolbox/DEM/ADEM_oculomotor_delays.m. Both are
available as part of the SPM software (http://www.fil.ion.
ion.ucl.ac.uk/spm).
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