
ar
X

iv
:1

20
9.

07
26

v1
 [

cs
.IT

]
4

S
ep

 2
01

2
1

A Universal Scheme for Transforming Binary
Algorithms to Generate Random Bits from Loaded

Dice
Hongchao Zhou, and Jehoshua Bruck,Fellow, IEEE

Abstract—In this paper, we present a universal scheme for
transforming an arbitrary algorithm for biased 2-face coins to
generate random bits from the general source of anm-sided die,
hence enabling the application of existing algorithms to general
sources. In addition, we study approaches of efficiently generating
a prescribed number of random bits from an arbitrary biased
coin. This contrasts with most existing works, which typically
assume that the number of coin tosses is fixed, and they generate
a variable number of random bits.

Index Terms—Random Number Generation, Biased Coins,
Loaded Dice.

I. I NTRODUCTION

I N this paper, we study the problem of random number
generation from i.i.d. sources, which is the most funda-

mental and important source model. Many real sources can
be well approximated by this model, and the algorithms
developed based on this model can be further generalized
in generating random bits from more sophisticated models,
like Markov chains [13], or more generally, approximately
stationary ergodic processes [14].

The problem of random number generation dates back to
von Neumann [12] in 1951 who considered the problem of
simulating an unbiased coin by using a biased coin with
unknown probability. He observed that when one focuses on
a pair of coin tosses, the events HT and TH have the same
probability (H is for ‘head’ and T is for ‘tail’); hence, HT
produces the output symbol1 and TH produces the output
symbol0. The other two possible events, namely, HH and TT,
are ignored, namely, they do not produce any output symbols.
More efficient algorithms for generating random bits from a
biased coin were proposed by Hoeffding and Simons [4], Elias
[2], Stout and Warren [10] and Peres [8]. Elias [2] was the first
to devise an optimal procedure in terms of the information
efficiency, namely, the expected number of unbiased random
bits generated per coin toss is asymptotically equal to the
entropy of the biased coin. In addition, Knuth and Yao [6]
presented a simple procedure for generating sequences with
arbitrary probability distributions from an unbiased coin(the
probability of H and T is1

2). Han and Hoshi [3] generalized
this approach and considered the case where the given coin
has an arbitrary known bias.

Hongchao Zhou and Jehoshua Bruck are with the Department of Electrical
Engineering, California Institute of Technology, Pasadena, CA 91125, USA,
e-mail: hzhou@caltech.edu; bruck@caltech.edu.

This work was supported in part by the NSF Expeditions in Computing
Program under grant CCF-0832824.

In this paper, we consider the problem of generating random
bits from a loaded die as a natural generalization of generating
random bits from a biased coin. There is some related work:
In [1], Dijkstra considered the opposite question and showed
how to use a biased coin to simulate a fair die. In [5], Juels
et al. studied the problem of simulating random bits from
loaded dice, and their algorithm can be treated as the national
generalization of Elias’s algorithm. However, for a number
of known beautiful algorithms, like Peres’s algorithm [8],we
still do not know how to generalize them for larger alphabets
(loaded dice).

In addition, we notice that most existing works for biased
coins take a fixed number of coin tosses as the input and they
generate a variable number of random bits. In some occasions,
the opposite question seems more reasonable and useful: given
a biased coin, how to generate a prescribed number of random
bits with as a few as possible coin tosses? Hence, we want to
create a functionf that maps the sequences in a dictionaryD,
whose lengthes may be different, to binary sequences of the
same length. This dictionaryD is complete and prefix-free.
That means for any infinite sequence, it has exactly one prefix
in the dictionary. To generate random bits, we read symbols
from the source until the current input sequence matches one
in the dictionary.

For completeness, in this paper, we first present some of
the existing algorithms that generate random bits from an
arbitrary biased coin in Section II, including the von Neumann
Scheme, Elias algorithm and Peres algorithm. Then in Section
III, we present a universal scheme for transforming an arbitrary
algorithm for2-faced coins to generate random bits from the
general source of anm-sided die, hence enabling the appli-
cation of existing algorithms to general sources. In Section
IV, we study approaches of efficiently generating a required
number of random bits from an arbitrary biased coin and
achieving the information-theoretic upper bound on efficiency.
Finally, we provide the concluding remarks in Section V.

II. EXISTING ALGORITHMS FORBIASED COINS

A. Von Neumann Scheme

In 1951, von Neumann [12] considered the problem of
random number generation from biased coins and described
a simple procedure for generating an independent unbiased
binary sequencez1z2... from an input sequenceX = x1x2....
His original procedure is described as follows: For an input
sequence, we divide all the bits into pairsx1x2, x3x4, ... and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216229124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1209.0726v1

2

apply the following mapping to each pair

HT → 1, TH → 0, HH → φ, TT → φ,

whereφ denotes the empty sequence. By concatenating the
outputs of all the pairs, we can get a binary sequence, which
is independent and unbiased. The von Neumann scheme is
computationally (very) fast, however, its information efficiency
is far from being optimal. Here, the information efficiency is
defined by the expected number of random bits generated per
input symbol. Letp1, p2 with p1+ p2 = 1 be the probabilities
of getting H and T, then the probability for a pair of input
bits to generate one output bit (not aφ) is 2p1p2, hence the
information efficiency is2p1p2

2 = p1p2, which is 1
4 at p1 =

p2 = 1
2 and less elsewhere.

B. Elias Algorithm

In 1972, Elias [2] proposed an optimal (in terms of infor-
mation efficiency) algorithm as a generalization of the von
Neumann scheme.

Elias’s method is based on the following idea: The possible
2n binary input sequences of lengthn can be partitioned into
classes such that all the sequences in the same class have
the same number of H’s and T’s. Note that for every class,
the members of the class have the same probability to be
generated. For example, letn = 4, we can divide the possible
2n = 16 input sequences into5 classes:

S0 = {HHHH},

S1 = {HHHT,HHTH,HTHH,THHH},

S2 = {HHTT,HTHT,HTTH,THHT,THTH,TTHH},

S3 = {HTTT,THTT,TTHT,TTTH},

S4 = {TTTT}.

Now, our goal is to assign a string of bits (the output) to each
possible input sequence, such that any two possible output
sequencesY andY ′ with the same length (sayk), have the
same probability to be generated, which isck

2k
for some0 ≤

ck ≤ 1. The idea is that for any given class we partition the
members of the class to sets of sizes that are a power of 2, for
a set with2i members (for somei) we assign binary strings
of length i. Note that when the class size is odd we have to
exclude one member of this class. We now demonstrate the
idea by continuing the example above.

In the example above, we cannot assign any bits to the
sequence inS0, so if the input sequence is HHHH, the output
sequence should beφ (denoting the empty sequence). There
are 4 sequences inS1 and we assign the binary strings as
follows:

HHHT → 00, HHTH → 01,

HTHH → 10, THHH → 11.

Similarly, for S2, there are6 sequences that can be divided
into a set of4 and a set of2:

HHTT → 00, HTHT → 01,

HTTH → 10, THHT → 11,

THTH → 0, TTHH → 1.

In general, for a class withW members that were not
assigned yet, assign2j possible output binary sequences of
lengthj to 2j distinct unassigned members, where2j ≤ W <
2j+1. Repeat the procedure above for the rest of the members
that were not assigned. When a class has an odd number of
members, there will be one and only one member assigned to
φ.

Given a binary input sequenceX of length n, using the
method above, the output sequence can be written as a function
of X , denoted byΨE(X), called the Elias function. In [9],
Ryabko and Matchikina showed that the Elias function of an
input sequence of lengthn (that is generated by a biased coin
with two faces) is computable inO(n log3 n log log(n)) time.

C. Peres Algorithm

In 1992, Peres [8] demonstrated that iterating the origi-
nal von Neumann scheme on the discarded information can
asymptotically achieve optimal information efficiency. Let us
define the function related to the von Neumann scheme as
Ψ1 : {H,T}∗ → {0, 1}∗. Then the iterated proceduresΨv

with v ≥ 2 are defined inductively. Given an input sequence
x1x2...x2m, let i1 < i2 < ... < ik denote all the integers
i ≤ m for which x2i = x2i−1, thenΨv is defined as

Ψv(x1, x2, ..., x2m)

= Ψ1(x1, x2, ..., x2m) ∗Ψv−1(x1 ⊕ x2, ..., x2m−1 ⊕ x2m)

∗Ψv−1(x2i1 , ..., x2ik).

Note that on the righthand side of the equation above, the
first term corresponds to the random bits generated with the
von Neumann scheme, the second and third terms relate to
the symmetric information discarded by the von Neumann
scheme. For example, when the input sequence isX =
HHTHTT, the output sequence based on the von Neumann
scheme is

Ψ1(HHTHTT) = 0.

But based on the Peres scheme, we have the output sequence

Ψv(HHTHTT) = Ψ1(HHTHTT) ∗Ψv−1(THT) ∗Ψv−1(HT),

which is001, longer than that generated by the von Neumann
scheme.

Finally, we can defineΨv for sequences of odd length by

Ψv(x1, x2, ..., x2m+1) = Ψv(x1, x2, ..., x2m).

Surprisingly, this simple iterative procedure achieves the
optimal information efficiency asymptotically. The computa-
tional complexity and memory requirements of this scheme are
substantially smaller than those of the Elias scheme. However,
the generalization of this scheme to the case of anm-sided
die with m > 2 is still unknown.

3

D. Properties

Let us denoteΨ : {H,T}n → {0, 1}∗ as a scheme that
generates independent unbiased sequences from any biased
coins (with unknown probabilities). SuchΨ can be the von
Neumann scheme, the Elias scheme, the Peres scheme, or any
other scheme. LetX be a sequence of biased coin tosses of
lengthn, then a property ofΨ is that for anyY ∈ {0, 1}∗ and
Y ′ ∈ {0, 1}∗ with |Y | = |Y ′|, we have

P [Ψ(X) = Y] = P [Ψ(X) = Y ′],

i.e., two output sequences of equal length have equal proba-
bility.

This observation leads to the following property forΨ. It
says that given the numbers of H’s and T’s, the number of
sequences yielding a binary sequenceY equals the number of
sequences yieldingY ′ whenY andY ′ have the same length. It
further implies that given the condition of knowing the number
of H’s and T’s in the input sequence, the output sequence ofΨ
is still independent and unbiased. This property is due to the
linear independence of probability functions of the sequences
with different numbers of H’s and T’s.

Lemma 1. [13] LetSk1,k2 be the subset of{H,T}n consisting
of all sequences withk1 appearances of H andk2 appearances
of T such thatk1+k2 = n. LetBY denote the set{X |Ψ(X) =
Y }. Then for anyY ∈ {0, 1}∗ and Y ′ ∈ {0, 1}∗ with |Y | =
|Y ′|, we have

|Sk1,k2

⋂

BY | = |Sk1,k2

⋂

BY ′ |.

III. G ENERALIZATION FOR LOADED DICE

In this section, we propose a universal scheme for general-
izing all the existing algorithms for biased coins such that
they can deal with loaded dice with more than two sides.
There is some related work: In [1], Dijkstra considered the
opposite question and showed how to use a biased coin to
simulate a fair die. In [5], Juels et al. studied the problem of
simulating random bits from loaded dice, and their algorithm
can be treated as the generalization of Elias’s algorithm.
However, for a number of known beautiful algorithms, like
Peres’s algorithm, we still do not know how to generalize
them for larger alphabets (loaded dice). We propose a universal
scheme that is able to generalize all the existing algorithms,
including Elias’s algorithm and Peres’s algorithm. Compared
to the other generalizations, this scheme is universal and easier
to implement, and it preserves the optimality of the original
algorithm on information efficiency. The brief idea of this
scheme is that given a loaded die, we can convert it into
multiple binary sources and apply existing algorithms to these
binary sources separately. This idea seems natural, but not
obvious.

A. An Example

Let us start from a simple example: Assume we want to
generate random bits from a sequenceX = 012112210, which
is produced by a3-sided die. Now, we write each symbol (die

roll) into a binary representation of length two (H for 1 and
T for 0), so

0 → TT, 1 → TH, 2 → HT.

Hence,X can be represented as

TT,TH,HT,TH,TH,HT,HT,TH,TT.

Only collecting the first bits of all the symbols yields an
independent binary sequence

Xφ = TTHTTHHTT.

Collecting the second bits following T, we get another inde-
pendent binary sequence

XT = THHHHT.

Note that although bothXφ andXT are independent sequences
individually, Xφ andXT are correlated with each other, since
the length ofXT is determined by the content ofXφ.

Let Ψ be any function that generates random bits from a
fixed number of coin tosses, such as Elias’s algorithm and
Peres’s algorithm. We see that bothΨ(Xφ) and Ψ(XT) are
sequences of random bits. But we do not know whetherΨ(Xφ)
andΨ(XT) are independent of each other sinceXφ andXT

are correlated. One of our main contributions is to show that
concatenating them together, i.e.,

Ψ(Xφ) + Ψ(XT)

still yields a sequence of random bits.

B. A Universal Scheme

Generally, given a sequence of symbols generated from an
m-sided die, written as

X = x1x2...xn ∈ {0, 1, ...,m− 1}n

with the number of states (sides)m > 2, we want to convert
it into a group of binary sequences. To do this, we create a
binary tree, called a binarization tree, in which each node is
labeled with a binary sequence of H and T. See Fig. 1 as an
instance of binarization tree for the above example. Given the
binary representations ofxi for all 1 ≤ i ≤ n, the path of each
node in the tree indicates a prefix, and the binary sequence
labeled at this node consists of all the bits (H or T) following
the prefix in the binary representations ofx1, x2, ..., xn (if it
exists).

Given the number of sidesm of a loaded die, the depth of
the binarization tree isb = ⌈log2 m⌉−1. At the beginning, the
binarization tree is a complete binary tree of depthb in which
each node is labeled with an empty string, then we process
all the input symbolsx1, x2, ..., xn one by one. For theith
symbol, namelyxi, its binary representation is of lengthb+1.
We add its first bit to the root node. If this bit is T, we add its
second bit to the left child, otherwise we add its second bit
to the right child ... repeating this process until all theb + 1
bits of xi are added along a path in the tree. Finally, we can
get the binarization tree ofX by processing all the symbols
in X , i.e., x1, x2, ..., xn.

4

T
H

TTHTTHHTT

THHHHT

Fig. 1. An instance of binarization tree.

Lemma 2. Given the binarization tree of a sequenceX ∈
{0, 1, ...,m− 1}n, we can reconstructX uniquely.

Proof: The construction ofX from its binarization tree
can be described as follows: At first, we read the first bit (H
or T) from the root (once we read a bit, we remove it from the
current sequence). If it is T, we read the first bit of its left child;
if it is H, we read the first bit of its right child ... finally we
reach a leaf, whose path indicates the binary representation
of x1. Repeating this procedure, we can continue to obtain
x2, x3, ..., xn.

Let Υb denote the set consisting of all the binary sequences
of length at mostb, i.e.,

Υb = {φ, T, H, TT, TH, HT, HH, ..., HHH...HH}.

Given X ∈ {0, 1, ...,m − 1}n, let Xγ denote the binary
sequence labeled on a node corresponding to a prefixγ in
the binarization tree, then we get a group of binary sequences

Xφ, XT, XH, XTT, XTH, XHT, XHH, ...

For any functionΨ that generates random bits from a fixed
number of coin tosses, we can generate random bits fromX
by calculating

Ψ(Xφ) + Ψ(XT) + Ψ(XH) + Ψ(XTT) + Ψ(XTH) + ...,

whereA + B is the concatenation ofA andB. We call this
method as the generalized scheme ofΨ.

We show that the generalized scheme works for any binary
algorithm Ψ such that it can generate random bits from an
arbitrarym-sided die.

Theorem 3. Let Ψ be any function that generates random
bits from a fixed number of coin tosses. Given a sequence
X ∈ {0, 1, ...,m−1}n with m ≥ 2 generated from anm-sided
die, the generalized scheme ofΨ generates an independent and
unbiased sequence.

The proof of this theorem will be given in the next subsec-
tion.

C. Proof of Theorem 3

Lemma 4. Let {Xγ} with γ ∈ Υb be the binary sequences
labeled on the binarization tree ofX ∈ {0, 1, ...,m− 1}n as
defined above. AssumeX ′

γ is a permutation ofXγ for all γ ∈

Υb, then there exists exactly one sequenceX ′ ∈ {0, 1, ...,m−
1}n such that it yields a binarization tree that labels{X ′

γ}
with γ ∈ Υb.

Proof: Based on{X ′
γ} with γ ∈ Υb, we can construct the

corresponding binarization tree and then create the sequence
X ′ in the following way (if it exists). At first, we read the first
bit (H or T) from the root (once we read a bit, we remove it
from the current sequence). If it is T, we read the first bit of
its left child; if it is H, we read the first bit of its right child
... finally we reach a leaf, whose path indicates the binary
representation ofx′

1. Repeating this procedure, we continue to
obtainx′

2, x
′
3, ..., x

′
n. Hence, we are able to create the sequence

X ′ = x′
1x

′
2...x

′
n−1x

′
n if it exists.

It can be proved that the sequenceX ′ can be successfully
constructed if and only the following condition is satisfied:
For anyγ ∈ Υb−1,

wT(Xγ) = |XγT|, wH(Xγ) = |XγH|,

wherewT(X) counts the number of T’s inX and wH(X)
counts the number of H’s inX .

Obviously, the binary sequences{Xγ} with γ ∈ Υb satisfy
the above condition. Permuting them into{X ′

γ} with γ ∈ Υb

does not violate this condition. Hence, we can always construct
a sequenceX ′ ∈ {0, 1, ...,m− 1}n, which yields{X ′

γ} with
γ ∈ Υb.

This completes the proof.

Now, we divide all the possible input sequences in
{0, 1, ...,m − 1}n into classes. Two sequencesX,X ′ ∈
{0, 1, ...,m − 1}n are in the same class if and only if the
binary sequences obtained fromX andX ′ are permutations
with each other, i.e.,X ′

γ is a permutation ofXγ for all γ ∈ Υb.
Here, we useG to denote the set consisting of all such classes.

Lemma 5. All the sequences in a classG ∈ G have the same
probability of being generated.

Proof: Based on the probability distribution of each die
roll {p0, p1, ..., pm−1}, we can get a group of conditional
probabilities, denoted as

qT|φ, qH|φ, qT|T, qH|T, qT|H, qH|H, qT|TT, qH|TT, ...,

whereqa|γ is the conditional probability of generating a die
roll xi such that in its binary representation the bit following
a prefixγ is a.

Note thatq0|γ + q1|γ = 1 for all γ ∈ Υb. For example, if
{p0, p1, p2} = {0.2, 0.3, 0.5}, then

q0|φ = 0.5, q0|0 = 0.4, q0|1 = 1.

It can be proved that the probability of generating a se-
quenceX ∈ {0, 1, ...,m− 1}n equals

∏

γ∈Υb

q
wT(Xγ)

T|γ q
wH(Xγ)

H|γ ,

wherewT(X) counts the number of T’s inX and wH(X)
counts the number of H’s inX . This probability keeps
unchanged when we permuteXγ to X ′

γ for all γ ∈ Υb.
This implies that all the elements inG have the same

probability of being generated.

5

Lemma 6. Let Ψ be any function that generates random bits
from a fixed number of coin tosses. GivenZγ , Z

′
γ ∈ {0, 1}∗

for all γ ∈ Υb, we define

S = {X |∀γ ∈ Υb,Ψ(Xγ) = Zγ},

S′ = {X |∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}.

If |Zγ | = |Z ′
γ | for all γ ∈ Υb, i.e.,Zγ andZ ′

γ have the same
length, then for allG ∈ G,

|G
⋂

S| = |G
⋂

S′|,

i.e., G
⋂

S andG
⋂

S′ have the same size.

Proof: We prove that for anyθ ∈ Υb, if Zγ = Z ′
γ for all

γ 6= θ and |Zθ| = |Z ′
θ|, then

|G
⋂

S| = |G
⋂

S′|.

If this statement is true, we can obtain the conclusion in the
lemma by replacingZγ with Z ′

γ one by one for allγ ∈ Υb.
In the classG, assume|Xθ| = nθ. Let us defineGθ as the

subset of{0, 1}nθ consisting of all the permutations ofXθ.
We also define

Sθ = {Xθ|Ψ(Xθ) = Zθ},

S′
θ = {Xθ|Ψ(Xθ) = Z ′

θ}.

According to Lemma 1, ifΨ can generate random bits from
an arbitrary biased coin, then

|Gθ

⋂

Sθ| = |Gθ

⋂

S′
θ|.

This implies that all the elements inGθ

⋂

Sθ and those in
Gθ

⋂

S′
θ are one-to-one mapping.

Based on this result, we are ready to show that the elements
in G

⋂

S and those inG
⋂

S′ are one-to-one mapping: For any
sequenceX in G

⋂

S, we get a series of binary sequences
{Xγ} with γ ∈ Υb. Given Z ′

θ with |Z ′
θ| = |Zθ|, we can

find a (one-to-one) mapping ofXθ in Gθ

⋂

S′
θ, denoted by

X ′
θ. Here,X ′

θ is a permutation ofXθ. According to Lemma
4, there exists exactly one sequenceX ′ ∈ {0, 1, ...,m− 1}n

such that it yields{Xφ, XT, XH, ..., X
′
θ, ...}. Right now, we

see that for any sequenceX in G
⋂

S, we can always find its
one-to-one mappingX ′ in G

⋂

S′, which implies that

|G
⋂

S| = |G
⋂

S′|.

This completes the proof.

Based on the lemma above, we get Theorem 3.

Theorem 3. Let Ψ be any function that generates random
bits from a fixed number of coin tosses. Given a sequence
X ∈ {0, 1, ...,m−1}n with m ≥ 2 generated from anm-sided
die, the generalized scheme ofΨ generates an independent and
unbiased sequence.

Proof: In order to prove that the binary sequence gener-
ated is independent and unbiased, we show that for any two
sequencesY1, Y2 ∈ {0, 1}k, they have the same probability to
be generated. Hence, each binary sequence of lengthk can be
generated with probabilityck

2k
for some0 ≤ ck ≤ 1.

First, we letf : {0, 1, ...,m−1}n → {0, 1}∗ be the function
of the generalized scheme ofΨ, then we write

P [f(X) = Y1] =
∑

G∈G

P [f(X) = Y1, X ∈ G].

According to Lemma 5, all the elements inG have the
same probability of being generated. Hence, we denote this
probability aspG, and the formula above can written as

P [f(X) = Y1] =
∑

G∈G

pG|{X ∈ G, f(X) = Y1}|.

Let Zγ ∈ {0, 1}∗ be the sequence of bits generated from the
node corresponding toγ for all γ ∈ Υb, thenY1 =

∑

γ∈Υb
Zγ .

We get thatP [f(X) = Y1] equals
∑

G∈G

∑

{Zγ :γ∈Υb}

pG|{X ∈ G, ∀γ ∈ Υb,Ψ(Xγ) = Zγ}|

×I∑
γ∈Υb

Zγ=Y1
,

where I∑
γ∈Υb

Zγ=Y1
= 1 if and only if

∑

γ∈Υb
Zγ = Y1,

otherwise it is zero.
Similarly, P [f(X) = Y2] equals
∑

G∈G

∑

{Z′
γ :γ∈Υb}

pG|{X ∈ G, ∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}|

×I∑
γ∈Υb

Z′
γ=Y2

,

If |Z ′
γ | = |Zγ | for all γ ∈ Υb, then based on Lemma 6, we

can get
|{X ∈ G, ∀γ ∈ Υb,Ψ(Xγ) = Zγ}|

= |{X ∈ G, ∀γ ∈ Υb,Ψ(Xγ) = Z ′
γ}|.

Substituting it into the expressions ofP [f(X) = Y1] and
P [f(X) = Y2] shows

P [f(X) = Y1] = P [f(X) = Y2].

So we can conclude that for any binary sequences of the
same length, they have the same probability of being gener-
ated. Furthermore, we can conclude that the bits generated are
independent and unbiased.

This completes the proof.

D. Optimality

In this subsection, we show that the universal scheme
keeps the optimality of original algorithms, i.e., if the binary
algorithm is asymptotically optimal, like Elias’s algorithm or
Peres’s algorithm, its generalized version is also asymptoti-
cally optimal. Here, we say an algorithm is asymptotically
optimal if and only if the number of random bits generated
per input symbol is asymptotically equal to the entropy of an
input symbol.

Theorem 7. Given an m-sided die with probability dis-
tribution ρ = (p0, p1, ..., pm−1), let n be the number of
symbols (dice rolls) used in the generalized scheme ofΨ
and let k be the number of random bits generated. IfΨ is

6

asymptotically optimal, then the generalized scheme ofΨ is
also asymptotically optimal, that means

lim
n→∞

E[k]

n
= H(ρ),

where

H(ρ) = H(p0, p1, ..., pm−1) =
m−1
∑

i=0

pi log2
1

pi

is the entropy of them-sided die.

Proof: We prove this by induction. Using the same
notations as above, we have the depth of the binarization tree
b = ⌈log2 m⌉ − 1. If b = 0, i.e., m ≤ 2, the algorithm is
exactlyΨ. Hence, it is asymptotically optimal on efficiency.
Now, assume that the conclusion holds for any integerb− 1,
we show that it also holds for the integerb.

Since the length-(b + 1) binary representations of
{0, 1, ..., 2b − 1} start with 0, the probability for a symbol
starting with0 is

q0 =

2b−1
∑

i=0

pi.

In this case, the conditional probability distribution of these
symbols is

{
p0
q0

,
p1
q0

, ...,
p2b−1

q0
}.

Similarly, let

q1 =
m
∑

i=2b

pi,

then the conditional probability distribution of the symbols
starting with1 is

{
p2b

q1
,
p2b+1

q1
, ...,

pm−1

q1
}.

When n is large enough, the number of symbols starting
with 0 approachesnq0 and the number of symbols starting
with 1 approachesnq1. According to our assumption forb−1,
the total number of random bits generated approaches

nH(q0, q1) + nq0H(
p0
q0

,
p1
q0

, ...,
p2b−1

q0
)

+nq1H(
p2b

q1
,
p2b+1

q1
, ...,

pm−1

q1
),

which equals

nq0 log2
1

q0
+ nq1 log2

1

q1
+ nq0

2b−1
∑

i=0

pi
q0

log2
q0
pi

+nq1

m−1
∑

i=2b

pi
q1

log2
q1
pi

= n

m−1
∑

i=0

pi log2
1

pi

= nH(p0, p1, ..., pm−1).

This completes the proof.

IV. EFFICIENT GENERATION OFk RANDOM BITS

A. Motivation

Most existing works on random bits generation from biased
coins aim at maximizing the expected number of random
bits generated from a fixed number of coin tosses. Falling
into this category, Peres’s scheme and Elias’s scheme are
asymptotically optimal for generating random bits. However,
in these methods, the number of random bits generated is a
random variable. In some occasions, we prefer to generate
a prescribed number of random bits, hence it motivates us
an opposite question: fixing the number of random bits to
generate, i.e.,k bits, how can we minimize the expected
number of coin tosses? This question is equally important
as the original one, since in many applications a prescribed
number of random bits are required while the source is usually
a stream of coin tosses instead of a sequence of fixed length.
But the existing study on this question is very limited.

To generatek random bits, we are always able to make use
of the existing schemes with fixed input length and variable
output length like Peres’s scheme or Elias’s scheme. For
example, we can keep readingn tosses (H or T) for several
times and concatenate their outputs until the total number of
random bits generated is slightly larger thank. However, if
n is small, this approach is less information efficient. Ifn is
large, this approach may generate too many extra random bits,
which can be treated as a waste. In this section, we propose
an algorithm to generate exactlyk random bits efficiently.
It is motivated by the Elias’s scheme. It can be proved that
this algorithm is asymptotically optimal, namely, the expected
number of coin tosses required per random bit generated is
asymptotically equal to one over the entropy of the biased
coin.

B. An Iterative Scheme

It is not easy to generatek random bits directly from
a biased coin with very high information efficiency. Our
approach of achieving this goal is to generate random bits
iteratively – we first producem ≤ k random bits, wherem
is a variable number that is equal to or close tok with very
high probability. In next step, instead of trying to generate k
random bits, we try to generatek−m random bits ... we repeat
this procedure until generating totalk random bits.

How can we generatem random bits from a biased coin
such thatm is variable number that is equal to or very close
to k? Our idea is to construct a group of disjoint prefix sets,
denoted byS1, S2, ..., Sw, such that (1) all the sequences in
a prefix setSi with 1 ≤ i ≤ w have the same probability
of being generated, and (2)S = S1

⋃

S2

⋃

...
⋃

Sw form a
stopping set, namely, we can always get a sequence inS (or
with probability almost1) when keeping reading tosses from
a biased coin. For example, we can let

S1 = {HH,HT},

S2 = {THH,TTT},

S3 = {THT,TTH}.

Then S = S1

⋃

S2

⋃

S3 forms a stopping set, which is
complete and prefix-free.

7

In the scheme, we let all the sequences inSi for all 1 ≤ i ≤
w have the same probability, i.e.,Si consists of sequences with
the same number of H’s and T’s. We select criteria carefully
such that|Si| is slightly larger than2k. Similarly as Elias’s
original scheme, we assign output binary sequences to all the
members inSi for all 1 ≤ i ≤ w. Let W be the number of
members that were not assigned yet in a prefix set, then2j

possible output binary sequences of lengthj are assigned to
2j distinct unassigned members, wherej = k if W ≥ 2k and
2j ≤ W < 2j+1 if W < 2k. We repeat the procedure above
for the rest of the members that were not assigned.

Theorem 8. The above method generatesm random bits for
somem with 0 ≤ m ≤ k.

Proof: It is easy to see that the above method never
generates a binary sequence longer thank. We only need to
prove that for any binary sequencesY, Y ′ ∈ {0, 1}m, they
have the same probability of being generated.

Let f denote the function corresponding to the above
method. Then

P [f(X) = Y] =
w
∑

i=1

P [X ∈ Si]P [f(X) = Y |X ∈ Si].

GivenX ∈ Si, we haveP [f(X) = Y |X ∈ Si] = P [f(X) =
Y ′|X ∈ Si], which supports our claim that any two binary
sequences of the same length have the same probability of
being generated.

The next question is how to construct such prefix sets
S1, S2, ..., Sw. Let us first consider the construction of their
union, i.e., the stopping setS. Given a biased coin, we design
an algorithm that reads coin tosses and stops the reading until it
meets the first input sequence that satisfies some criterion.For
instance, letk1 be the number of H’s andk2 be the number
of T’s in the current input sequence, one possible choice is
to read coin tosses until we get the first sequence such that
(

k1+k2

k1

)

≥ 2k. Such an input sequence is a member in the
stopping setS. However, this criterion is not the best one that
we can have, since it will introduce too many iterations to
generatek random bits. To reduce the number of iterations,
we hope that the size of each prefix set, sayingSi, is slightly
larger than2k. As a result, we use the following stopping set:

S = {the first sequence s.t.

(

k1 + k2
k1

)

≥
2k(k1 + k2)

min(k1, k2)
}.

Later, we will show that the selection of such a stopping set
can make the number of iterations very small.

Now we divide all the sequences in the stopping setS into
different classes, i.e., the prefix setsS1, S2, ..., Sw, such that
each prefix set consists of the sequences with the same number
of H’s and T’s. AssumeSk1,k2 is a nonempty prefix set that
consists of sequences withk1 H’s andk2 T’s, then

Sk1,k2 = Gk1,k2

⋂

S,

whereGk1,k2 is the set consisting of all the sequences with
k1 H’s andk2 T’s. According to the stopping set constructed

above, we have

Sk1,k2 = {x ∈ Gk1,k2 |

(

k1 + k2
k1

)

≥
2k(k1 + k2)

min(k1, k2)
,

(

k1 + k2 − 1

k′1

)

<
2k(k1 + k2 − 1)

min(k′1, k
′
2)

},

wherek′1 is the number of H’s inx without considering the last
symbol andk′2 is the number of H’s inx without considering
the last symbol. So if the last symbol ofx is H, thenk′1 =
k1 − 1, k′2 = k2; if the last symbol ofx is T, then k′1 =
k1, k

′
2 = k2−1. According to the expression ofSk1,k2 , we see

that the sequences in a prefix set are not prefixes of sequences
in another prefix set. Furthermore, we can prove that the size
of each prefix set is at least2k.

Lemma 9. If Sk1,k2 6= φ, then |Sk1,k2 | ≥ 2k.

Proof: Without loss of generality, we assume thatk1 ≤

k2, hence,
(

k1+k2

k1

)

≥ 2k(k1+k2)
k1

. It also impliesk1 ≥ 1. To
prove |Sk1,k2 | ≥ 2k, we show thatSk1,k2 includes all the
sequencesx ∈ Gk1,k2 ending with H. If x ∈ Gk1,k2 ending
with H does not belong toSk1,k2 , then

(

k1 + k2 − 1

k′1

)

≥
2k(k1 + k2 − 1)

k′1
.

From which, we can get
(

k1 + k2 − 1

k1

)

≥
2k(k1 + k2 − 1)

k1
.

It further implies that all the sequencesx ∈ Gk1,k2 ending
with T are also not members inSk1,k2 . SoSk1,k2 is empty. It
is a contradiction.

The number of sequencesx ∈ Gk1,k2 ending with H is
(

k1 + k2 − 1

k1 − 1

)

=

(

k1 + k2
k1

)

k1
k1 + k2

≥ 2k.

So the size ofSk1,k2 is at least2k if Sk1,k2 6= φ. This
completes the proof.

Based on the construction of prefix sets, we can get an
algorithmΦk for generatingm random bits with0 ≤ m ≤ k,
described as follows.

Algorithm Φk

Input: A stream of biased coin tosses.
Output: m bits with 0 ≤ m ≤ k.

(1) Reading coin tosses until there arek1 H’s andk2 T’s
for somek1 andk2 such that

(

k1 + k2
k1

)

≥
2k(k1 + k2)

min(k1, k2)
.

(2) Let X denote the current input sequence of coin tosses.
If the last coin toss is H, we letk′1 = k1 − 1, k′2 = k2;
otherwise, we letk′1 = k1, k

′
2 = k2 − 1. We remove this

coin toss fromX if
(

k1 + k2 − 1

k′1

)

≥
2k(k1 + k2 − 1)

min(k′1, k
′
2)

.

8

(3) Let ΨE denote the Elias’s function1 for generating
random bits from a fixed number of coin tosses. A fast
computation ofΨE was provided by Ryabko and Matchik-
ina in [9]. The output of the algorithmΨk is ΨE(X) or
the lastk bits of ΨE(X) if ΨE(X) is longer thank.

According to Lemma 9, we can easily get the following
conclusion.

Corollary 10. The algorithmΦk generatesm random bits for
somem with 0 ≤ m ≤ k, andm = k with probability at least
1/2.

Proof: The sequence generated byΦk is independent
and unbiased. This conclusion is immediate from Lemma 9.
Assume that the input sequencex ∈ Si for some i with
1 ≤ i ≤ w, then the probability ofm = k is

⌊ |Si|
2k

⌋2k

|Si|
,

which is at least1/2 based on the fact that|Si| ≥ 2k. Since
this conclusion is true for allSi with 1 ≤ i ≤ w, we can claim
thatm = k with probability at least1/2.

Since the algorithmΦk generatesm random bits for somem
with 0 ≤ m ≤ k from an arbitrary biased coin, we are able to
generatek bits iteratively: After generatingm random bits, we
apply the algorithmΦk−m for generatingk−m bits. Repeating
this procedure, the total number of random bits generated will
converge tok very quickly. We call this scheme as an iterative
scheme for generatingk random bits.

To generatek random bits, we do not want to iterateΦk too
many times. Fortunately, in the following theorem, we show
that in our scheme the expected number of iterations is upper
bounded by a constant2.

Theorem 11. The expected number of iterations in the itera-
tive scheme for generatingk random bits is at most2.

Proof: According to Corollary 10,Φk generatesm = k
random bits with probability at least1/2. Hence, the scheme
stops at each iteration with probability more than1/2. Fol-
lowing this fact, the result in the theorem is immediate.

C. Optimality

In this subsection, we study the information efficiency of the
iterative scheme and show that this scheme is asymptotically
optimal.

Lemma 12. Given a biased coin with probabilityp being H,
let n be the number of coin tosses used by the algorithmΦk,
then

lim
k→∞

E[n]

k
≤

1

H(p)
.

Proof: We consider the probability of having an input
sequence of length at leastn, denote asPn. In this case, we
can writen = k1 + k2, wherek1 is the number of H’s and

1Here, an arbitrary algorithm for generating random bits from a fixed
number of coin tosses works.

k2 is the number of T’s. According to the construction of the
stopping set,

(

n− 1

min(k1, k2)− 1

)

< 2k
n− 1

min(k1, k2)− 1
.

Or we can write it as
(

n− 2

min(k1, k2)− 2

)

< 2k.

Hence, we get an upper bound formin(k1, k2), which is

tn = max{i ∈ {0, 1, ..., n}|

(

n− 2

i− 2

)

< 2k}. (1)

Note that if
(

n−2
n
2 −2

)

≥ 2k, thentn is a nondecreasing function
of n.

According to the symmetry of our criteria, we can get

Pn ≤

tn
∑

i=0

(pi(1− p)n−i + (1− p)ipn−i)

(

n

i

)

.

For convenience, we write

Qn =

tn
∑

i=0

(pi(1 − p)n−i + (1− p)ipn−i)

(

n

i

)

,

thenPn ≤ Qn andQn is also a nondecreasing function ofn.
Now, we are ready to calculate the expected number of coin

tosses required, which equals

E[n] =

∞
∑

n=1

(Pn − Pn+1)n =

∞
∑

n=1

Pn (2)

≤

k
H(p)

(1+ǫ)
∑

n=1

Pn +
∞
∑

n= k
H(p)

(1+ǫ)

Qn +
∞
∑

n=2 k
H(p)

(1+ǫ)

Qn,

where ǫ > 0 is a small constant. In the rest, we study the
upper bounds for all the three terms whenn is large enough.

For the first term, we have
k

H(p)
(1+ǫ)

∑

n=1

Pn ≤
k

H(p)
(1 + ǫ). (3)

Now let us consider the second term

2 k
H(p) (1+ǫ)
∑

n= k
H(p)

(1+ǫ)

Qn ≤
k

H(p)
(1 + ǫ)Q k

H(p)
(1+ǫ).

Using the Stirling bounds on factorials yields

lim
n→∞

1

n
log2

(

n

ρn

)

= H(ρ),

whereH is the binary entropy function. Hence, following (1),
we can get

lim
n→∞

H(
tn
n
) = lim

n→∞

k

n
.

Whenn = k
H(p) (1 + ǫ), we can write

lim
n→∞

H(
tn
n
) =

H(p)

1 + ǫ
,

9

which implies that

lim
n→∞

tn
n

= p− ǫ1

for someǫ1 > 0. So there exists anN1 such that forn > N1,
nt

n
≤ p− ǫ1/2.

By the weak law for the binomial distribution, given any
ǫ2 > 0 and δ > 0, there is anN2 such that forn > N2,
with probability at least1 − δ there arei H’s among then
coin tosses such that| i

n
− p| ≤ ǫ2. Letting ǫ2 = ǫ1/2 and

n = k
H(p) (1 + ǫ) gives

Qn ≤ δ,

for any δ > 0 whenn > max(N1, N2).
So for anyδ > 0, whenk is large enough, we have

2 k
H(p)

(1+ǫ)
∑

n= k
H(p)

(1+ǫ)

Qn ≤
k

H(p)
(1 + ǫ)δ. (4)

To calculate the third term, we notice thatQn decays very
quickly asn increase whenn ≥ 2 k

H(p) (1 + ǫ). In this case,

Qn+1

Qn

=

∑tn+1

i=0 (pi(1 − p)n+1−i + (1− p)ipn+1−i)
(

n+1
i

)

∑tn
i=0(p

i(1− p)n−i + (1− p)ipn−i)
(

n
i

)

≤

∑tn
i=0(p

i(1− p)n+1−i + (1− p)ipn+1−i)
(

n+1
i

)

∑tn
i=0(p

i(1 − p)n−i + (1− p)ipn−i)
(

n
i

)

≤
tn

max
i=0

(pi(1− p)n+1−i + (1− p)ipn+1−i)
(

n+1
i

)

(pi(1 − p)n−i + (1− p)ipn−i)
(

n
i

)

≤ (1− p)
tn

max
i=1

n+ 1

n+ 1− tn

≤
(1− p)n

n− tn
.

Whenn ≥ 2 k
H(p) (1 + ǫ), we have

lim
n→∞

H(
tn
n
) = lim

n→∞

k

n
≤

H(p)

2(1 + ǫ)
.

This implies that whenn is large enough,H(tn
n
) ≤ H(p)

2 . Let
us define a constantα such thatα ≤ 1

2 andH(α) = H(p)
2 .

Then for alln ≥ 2 k
H(p) (1 + ǫ), whenk is large enough,

Qn+1

Qn

≤
1− p

1− α
< 1.

Therefore, given anyδ > 0, when k is large enough, the
value of the third term

∞
∑

n=2 k
H(p)

(1+ǫ)

Qn ≤ Q2 k
H(p) (1+ǫ)

∞
∑

i=0

(
1− p

1− α
)i

≤ Q k
H(p)

(1+ǫ)

1

1− 1−p
1−α

≤
1− α

p− α
δ. (5)

Substituting (3), (4), and (5) into (2) yields that for any
ǫ > 0 andδ > 0, if k is large enough, we have

E[n] ≤
k

H(p)
(1 + ǫ)(1 + δ) +

1− α

p− α
δ,

with α < p.
Then it is easy to get that

lim
k→∞

E[n]

k
≤

1

H(p)
.

This completes the proof.

Theorem 13. Given a biased coin with probabilityp being
H, let n be the number of coin tosses required to generatek
random bits in the iterative scheme, then

lim
k→∞

E[n]

k
=

1

H(p)
.

Proof: First, we prove thatlimk→∞
E[n]
k

≥ 1
H(p) . Let

X ∈ {0, 1}∗ be the input sequence, then

lim
k→∞

E[n]H(p)

H(X)
= 1.

Shannon’s theory tells us that it is impossible to extract
more thanH(X) random bits fromX , i.e.,H(X) ≥ k. So

lim
k→∞

E[n]

k
≥

1

H(p)
.

To get the conclusion in the theorem, we only need to show
that

lim
k→∞

E[n]

k
≤

1

H(p)
.

To distinguish then in this theorem and the one in the
previous theorem, we usen(k) denote the number of coin
tosses required to generatek random bits in the iterative
scheme and letnΦ

(k) denote the number of coin tosses required
by Φk. Let pm be the probability forΦk generatingm random
bits with 0 ≤ m ≤ k. Then we have that

E[n(k)] = E[nΦ
(k)] +

k
∑

m=0

pmE[n(k−m)]. (6)

According to the algorithm,pk ≥ 1
2 and E[n(k−m)] ≤

E[n(k)]. Substituting them into the equation above gives

E[n(k)] ≤ E[nΦ
(k)] +

1

2
E[n(k)],

i.e., E[n(k)] ≤ 2E[nΦ
(k)].

Now, we divide the second term in (6) into two parts such
that

E[n(k)] ≤ E[nΦ
(k)]+

k−ǫk
∑

m=0

pmE[n(k−m)]+

k
∑

m=k−ǫk

pmE[n(k−m)],

for a constantǫ > 0. In which,

k−ǫk
∑

m=0

pmE[n(k−m)] ≤ (

k−ǫk
∑

m=0

pm)2E[nΦ
(k)],

10

k
∑

m=k−ǫk

pmE[n(k−m)] ≤ 2E[nΦ
(ǫk)].

Hence

E[n(k)] ≤ E[nΦ
(k)] + (

k−ǫk
∑

m=0

pm)2E[nΦ
(k)] + 2E[nΦ

(ǫk)]. (7)

Givenk, all the possible input sequences are divided intow
prefix setsS1, S2, ..., Sw, wherew can be an infinite number.
Given an input sequenceX ∈ Si for 1 ≤ i ≤ w, we are
considering the probability forΦk generating a sequence of
lengthm.

In our algorithm,|Si| ≥ 2k. Assume

|Si| = αk2
k + αk−12

k−1 + ...+ α02
0,

where αk ≥ 1 and 0 ≤ α0, α1, ..., αk−1 ≤ 1. Given the
conditionX ∈ Si, we have

k−ǫk
∑

m=0

pm =

∑k−ǫk

i=0 αi2
i

∑k

i=0 αi2i
≤

2k−ǫk+1

2k + 2k−ǫk+1
≤

2k−ǫk+1

2k
.

So given anyδ > 0, whenk is large enough, we have

k−ǫk
∑

m=0

pm ≤ δ. (8)

Although we reach this conclusion forX ∈ Si, this conclusion
holds for anySi with 0 ≤ i ≤ w. Hence, we are able to remove
this constrain thatX ∈ Si.

According to the previous lemma, for anyδ > 0, whenk
is large enough, we have

E[nΦ
(ǫk)]

ǫk
≤

1

H(p)
+ δ, (9)

E[nΦ
(k)]

k
≤

1

H(p)
+ δ. (10)

Substituting (8), (9), and (10) into (7) gives us

E[n(k)] ≤ k(
1

H(p)
+ δ)(1 + 2δ) + 2kǫ(

1

H(p)
+ δ).

From which, we obtain

lim
k→∞

E[n]

k
= lim

k→∞

E[n(k)]

k
≤

1

H(p)
.

This completes the proof.

The theorem above shows that the iterative scheme is
asymptotically optimal, i.e., the expected number of coin
tosses for generatingk random bits approaches the information
theoretic bound by below whenk becomes large.

V. CONCLUSION

In this paper, we have presented a universal scheme that
transforms an arbitrary algorithm for2-faced coins to generate
random bits from generalm-sided dice, hence enabling the
application of existing algorithms to general sources. Although
a similar question has been studied before, as in [5], their
solution can only be applied to a specified algorithm, i.e.,
Elias’s algorithm.

The second contribution of this paper is an efficient al-
gorithm for generating a prescribed number of random bits
from an arbitrary biased coin. In many applications, this is
a natural way of considering the problem of random bits
generation from biased coins, but it is not well studied in
the literature. This problem is similar to the one studied in
universal variable-to-fixed length codes, which are used to
parse an infinite sequence into variable-length phases. Each
phase is then encoded into a fixed number of bits. In [7],
Lawrence devised a variable-to-fixed length code for the
class of binary memoryless sources (biased coins), which
is based on Pascal’s triangle (so is our algorithm). Tjalkens
and Willems [11] modified Lawrence’s algorithm as a more
natural and simple implementation, and they showed that the
rate of the resulting code converges asymptotically optimally
fast to the source entropy. These universal variable-to-fixed
length codes are probably capable to generate random bits
asymptotically in some (week) sense, namely, the random bits
generated in this way are not perfect, and they cannot satisfy
the typical requirement based on statistical distance (widely
used in computer science).

REFERENCES

[1] E. Dijkstra, “Making a fair roulette from a possibly biased coin,”Inform.
Processing Lett., vol. 36, no. 4, pp. 193, 1990.

[2] P. Elias, “The efficient construction of an unbiased random sequence,”
Ann. Math. Statist., vol. 43, pp. 865–870, 1972.

[3] T. S. Han and M. Hoshi, “Interval algorithm for random number
generation,”IEEE Trans. Inform. Theory, vol. 43, No. 2, pp. 599–611,
1997.

[4] W. Hoeffding and G. Simon, “Unbiased coin tossing with a biased coin,”
Ann. Math. Statist., vol. 41, pp. 341–352, 1970.

[5] A. Juels, M. Jakobsson, E. Shriver, B. K. Hillyer, “How toturn loaded
dice into fair coins,”IEEE Trans. Inform. Theory, vol. 46, pp. 911–921,
2000.

[6] D. E. Knuth and A. Yao, “The complexity of nonuniform random
number generation,”Algorithms and Complexity: New Directions and
Recent Results, pp. 357–428, 1976.

[7] J. C. Lawrence, “A new universal coding scheme for the binary memo-
ryless source,”IEEE Trans. Inform. Theory, vol. 23, pp. 466–472, 1977.

[8] Y. Peres, “Iterating von Neumann’s procedure for extracting random
bits,” Ann. Statist., vol. 20, pp. 590–597, 1992.

[9] B. Y. Ryabko and E. Matchikina, “Fast and efficient construction of an
unbiased random sequence,”IEEE Trans. Inform. Theory, vol. 46, pp.
1090–1093, 2000.

[10] Q. Stout and B. Warren, “Tree algorithms for unbiased coin tosssing
with a biased coin,”Ann. Probab., vol. 12, pp. 212–222, 1984.

[11] T. J. Tjalkens and F. M. J. Willems, “A universal variable-to-fixed-length
source codes based on Lawrence’s algorithm,”IEEE Trans. Inform.
Theory, vol. 38, pp. 247–253, Mar. 1992.

[12] J. von Neumann, “Various techniques used in connectionwith random
digits,” Appl. Math. Ser., Notes by G.E. Forstyle, Nat. Bur. Stand., vol.
12, pp. 36–38, 1951.

[13] H. Zhou and J. Bruck, “Efficient generation of random bits from finite
state Markov chains,”IEEE Trans. Inform. Theory, vol. 58, pp. 2490–
2506, Apr. 2012.

[14] H. Zhou and J. Bruck, “Variable-length extractors,” inProc. IEEE
International Symposium on Information Theory (ISIT), pp. 2012.

	I Introduction
	II Existing Algorithms for Biased Coins
	II-A Von Neumann Scheme
	II-B Elias Algorithm
	II-C Peres Algorithm
	II-D Properties

	III Generalization for Loaded Dice
	III-A An Example
	III-B A Universal Scheme
	III-C Proof of Theorem ??
	III-D Optimality

	IV Efficient Generation of k Random Bits
	IV-A Motivation
	IV-B An Iterative Scheme
	IV-C Optimality

	V Conclusion
	References

