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Abstract—In this paper, we present a universal scheme for  In this paper, we consider the problem of generating random
transforming an arbitrary algorithm for biased 2-face coins to pjts from a loaded die as a natural generalization of geimgrat
generate random bits from the general source of ann-sided die, 5nq0m pits from a biased coin. There is some related work:

hence enabling the application of existing algorithms to geeral . . . .
sources. In addition, we study approaches of efficiently gemating In [1], Dijkstra considered the opposite question and stibwe

a prescribed number of random bits from an arbitrary biased how to use a biased coin to simulate a fair die.[Ih [5], Juels
coin. This contrasts with most existing works, which typicdy et al. studied the problem of simulating random bits from

assume that the number of coin tosses is fixed, and they gene#a |paded dice, and their algorithm can be treated as the ration
a variable number of random bits. generalization of Elias’s algorithm. However, for a number
Index Terms—Random Number Generation, Biased Coins, of known beautiful algorithms, like Peres’s algorithim [8]e
Loaded Dice. still do not know how to generalize them for larger alphabets
(loaded dice).

|. INTRODUCTION In addition, we notice that most existing works for biased
ins take a fixed number of coin tosses as the input and they
nerate a variable number of random bits. In some occasions

I N this paper, we study the problem of random numbé&P
opposite question seems more reasonable and usegrt: giv

generation from i.i.d. sources, which is the most fund e

mental and important source model. Many real sources ¢C Fiased coin. h bed ber of rand
be well approximated by this model, and the algorithm%_ lased coin, how to generate a prescribed number of random

; . i i i 2
developed based on this model can be further generahﬂﬂf with as a few as possible coin tosses? Hence, we want to

in generating random bits from more sophisticated modef{€ate a functiorf that maps the sequences in a dictionBxy

like Markov chains [[13], or more generally, approximatel;‘f"hose lengthes may be different, to binary sequences of the

stationary ergodic processés [14]. same length. This dictionar® is complete and prefix-free.

The problem of random number generation dates back_-mat means for any infinite sequence, it has exactly one prefix

von Neumann[[L2] in 1951 who considered the problem the dictionary. To generate random bits, we read symbols
simulating an unbiased coin by using a biased coin wi fom the source until the current input sequence matches one

unknown probability. He observed that when one focuses Hhthe dictionary.

a pair of coin tosses, the events HT and TH have the samd Of completeness, in this paper, we first present some of
probability (H is for ‘head’ and T is for ‘tail’); hence, HT the existing algorithms that generate random bits from an

produces the output symbal and TH produces the Outputarbitrary biased coin in Sectidd Il, including the von Neuma
symbol0. The other two possible events, namely, HH and T cheme, Elias algorithm and Peres algorithm. Then in Sectio

are ignored, namely, they do not produce any output symb Jwe presenta unlversgl scheme for transformlng an eyt
More efficient algorithms for generating random bits from §/90rithm for2-faced coins to generate random bits from the
biased coin were proposed by Hoeffding and Simbhs [4], Elig§neral source of am-sided die, hence enabling the appli-
[2], Stout and Warreri [10] and Perés [8]. Elias [2] was the fir ation of existing algorithms to_ Qe”era' SOurces. In Sec_t|0
to devise an optimal procedure in terms of the informati we study approaches of efﬁmently generating a rngred
efficiency, namely, the expected number of unbiased randimPer of random bits from an arbitrary biased coin and
bits generated per coin toss is asymptotically equal to tRENIEVING the information-theoretic upper bound on efficie

entropy of the biased coin. In addition, Knuth and Yao [g]nally: we provide the concluding remarks in Section V.

presented a simple procedure for generating sequences with
arbitrary probability distributions from an unbiased cdthe Il. EXISTING ALGORITHMS FORBIASED COINS
probability of H and T is%). Han and Hoshil[3] generalized o  \/on Neumann Scheme

this approach and considered the case where the given coin 9 M2 idered th bl ¢
has an arbitrary known bias, In 1951, von Neumann_[12] considered the problem o

random number generation from biased coins and described
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apply the following mapping to each pair THTH — 0, TTHH — 1.

HT =1, TH=0, HH—=¢, TT—9¢, In general, for a class withY members that were not

where ¢ denotes the empty sequence. By concatenating thgsigned yet, assigey possible output binary sequences of

outputs of all the pairs, we can get a binary sequence, whigfigth; to 27 distinct unassigned members, whete< W <

is independent and unbiased. The von Neumann schemé’i§'. Repeat the procedure above for the rest of the members

computationally (very) fast, however, its information eiffincy  that were not assigned. When a class has an odd number of

is far from being optimal. Here, the information efficiensy i members, there will be one and only one member assigned to

defined by the expected number of random bits generated per

input symbol. Letp;, p» with p; 4+ p» = 1 be the probabilities ~ Given a binary input sequencE of length n, using the

of getting H and T, then the probability for a pair of inpumethod above, the output sequence can be written as a fanctio

bits to generate one output bit (notgd is 2p;p2, hence the of X, denoted by g (X), called the Elias function. In_[9],

information efficiency iSQY"lTP2 = pip2, Which is 1 atp; = Ryabko and Matchikina showed that the Elias function of an

P2 = % and less elsewhere. input sequence of length (that is generated by a biased coin
with two faces) is computable i@ (n log® n loglog(n)) time.

B. Elias Algorithm

In_ 1972,_ I_Elias [2] proposed an optimal (in t_erms of infore  peres Algorithm
mation efficiency) algorithm as a generalization of the von
Neumann scheme. In 1992, Peres|[8] demonstrated that iterating the origi-
Elias's method is based on the following idea: The possibiél von Neumann scheme on the discarded information can
2" binary input sequences of lengthcan be partitioned into asymptotically achieve optimal information efficiency.tles
classes such that all the sequences in the same class igftne the function related to the von Neumann scheme as
the same number of H's and T’s. Note that for every clas$ : {H,T}* — {0,1}*. Then the iterated procedurds,
the members of the class have the same probability to Wéh v > 2 are defined inductively. Given an input sequence
generated. For example, let= 4, we can divide the possible Z1%2...72m, let i1 < iz < ... < i; denote all the integers

2" = 16 input sequences intb classes: i < m for which z2; = x2;1, then¥, is defined as
So = {HHHH}7 \va(xl,xg, ...,xgm)
S1 = {HHHT,HHTH, HTHH, THHH}, = Uy(x1,22,....T2m) * Vy_1(21 @ T2, ..., Tom—1 ® Tam)

Sy = {HHTT,HTHT, HTTH, THHT, THTH, TTHH},

S3 = {HTTT, THTT, TTHT, TTTH},
Sy = {TTTT}. Note that on the righthand side of the equation above, the
first term corresponds to the random bits generated with the
Now, our goal is to assign a string of bits (the output) to eagfon Neumann scheme, the second and third terms relate to
possible input sequence, such that any two possible outghé symmetric information discarded by the von Neumann
sequenced” andY” with the same length (say), have the scheme. For example, when the input sequenceXis=
same probability to be generated, whichgjs for some0 < HHTHTT, the output sequence based on the von Neumann
cr < 1. The idea is that for any given class we partition thgcheme is
members of the class to sets of sizes that are a power of 2, for
a set with2? members (for some) we assign binary strings
of lengthi. Note that when the class size is odd we have
exclude one member of this class. We now demonstrate
idea by continuing the example above.
In the example above, we cannot assign any bits to gy (HHTHTT) = 03 (HHTHTT) W,y (THT) * T,y (HT),
223322: g%jg gg}i érr]]%l:itnzet?;ez(r;eplt? ':eH(;IJ ':hil?noﬁggﬁé/hich is001, longer than that generated by the von Neumann

are 4 sequences irb; and we assign the binary strings a chgme. .
follows: Finally, we can definel,, for sequences of odd length by

* Wy 1 (2245 005 T2iy, )-

Uy (HHTHTT) = 0.

Egt based on the Peres scheme, we have the output sequence

HHHT — 00, HHTH — 01,

\I/v(Il, Ly eeny I2m+1) = \va(xl,ZCQ, veey IQm).
HTHH — 10, THHH — 11.

o . Surprisingly, this simple iterative procedure achieves th
Similarly, for S;, there are6 sequences that can be divided,timal information efficiency asymptotically. The comaut
into a set of4 and a set ot tional complexity and memory requirements of this scherge ar

HHTT — 00, HTHT — 01, substantiall;_/ smaller tha_n those of the Elias scheme. Hewev
the generalization of this scheme to the case ofrasided
HTTH — 10, THHT — 11, die with m > 2 is still unknown.



D. Properties roll) into a binary representation of length two (H for 1 and

Let us denote¥ : {H,T}" — {0,1}* as a scheme that T for 0), s
generates independent unbiased sequences from any biased 0—=TT,1—TH2— HT.
coins (with unknown probabilities). Sucli can be the von Hence, X can be represented as
Neumann scheme, the Elias scheme, the Peres scheme, or any
other scheme. LeK be a sequence of biased coin tosses of TT,TH,HT, TH, THHT,HT, TH,TT
lengthn, then a property oft is that for anyY” € {0,1}* and

Y’ € {0.1}* with [Y] = |Y"|, we have Only collecting the first bits of all the symbols yields an

independent binary sequence

PI¥(X) =Y] = P[¥(X) =Y, X4 = TTHTTHHTT.

.e., two output sequences of equal length have equal pro??o’llecting the second bits following T, we get another inde-

bility. :
This observation leads to the following property fér It pendent binary sequence
says that given the numbers of H's and T’s, the number of X1 = THHHHT.

sequences yielding a binary sequeftequals the number of
sequences yielding’ whenY andY”’ have the same length. It
further implies that given the condition of knowing the nuenb i -
of H's and T’s in the input sequence, the output sequence ofthe length of X is det_ermlned by the content of,,. i

is still independent and unbiased. This property is due ¢o th Let ¥ be any function that generates random bits from a

linear independence of probability functions of the seqesn "X€d |,'1umber. of coin tosses, such as Elias’s algorithm and
with different numbers of H's and T’s. Peres’s algorithm. We see that bofh(X4) and ¥(Xt) are
sequences of random bits. But we do not know wheihex ;)

Lemma 1. [13] Let Sk, &, be the subset ofH, T}" consisting and ¥(X7) are independent of each other sinkg and X+

of all sequences with; appearances of H ankh, appearances are correlated. One of our main contributions is to show that
of T such thak, +k; = n. Let By denote the sefX |V(X) = concatenating them together, i.e.,

Y}. Then for anyY” € {0,1}* andY’ € {0,1}* with |Y| =

[Y”], we have V(Xg) + U(XT)

£ ﬂByl — 1Sk % mBy | still yields a sequence of random bits.
1,k2 = 1,k2 -

Note that although botlX, and Xt are independent sequences

individually, X, and Xt are correlated with each other, since

B. A Universal Scheme

I1l. GENERALIZATION FOR L OADED DICE Generally, given a sequence of symbols generated from an

In this section, we propose a universal scheme for generai-sided die, written as
izing all the existing algorithms for biased coins such that
they can deal with loaded dice with more than two sides.
There is some related work: Inl[1], Dijkstra considered thgith the number of states (sides) > 2, we want to convert
opposite question and showed how to use a biased coinijttéhto a group of binary sequences. To do this, we create a
simulate a fair die. In[[5], Juels et al. studied the probldm ®inary tree, called a binarization tree, in which each nade i
simulating random bits from loaded dice, and their alganith |abeled with a binary sequence of H and T. See Eig. 1 as an
can be treated as the generalization of Elias’'s algorithiastance of binarization tree for the above example. Giben t
However, for a number of known beautiful algorithms, |ikQ)inary representations of forall 1 <7 <n, the path of each
Peres’s algorithm, we still do not know how to generalizgode in the tree indicates a prefix, and the binary sequence
them for larger alphabets (loaded dice). We propose a ws@lenabeled at this node consists of all the bits (H or T) follogvin
scheme that is able to generalize all the existing algosthmhe prefix in the binary representations©f, zs, ..., z,, (if it
including Elias’s algorithm and Peres’s algorithm. Congghr exists).
to the other generalizations, this scheme is universal asi@e  Given the number of sides. of a loaded die, the depth of
to implement, and it preserves the optimality of the origjinane binarization tree is = [log, ] — 1. At the beginning, the
algorithm on information efficiency. The brief idea of thissinarization tree is a complete binary tree of depih which
scheme is that given a loaded die, we can convert it ingach node is labeled with an empty string, then we process
multiple binary sources and apply existing algorithms tsth al| the input symbolst,, 25, ..., 2, one by one. For theth
binary sources separately. This idea seems natural, but g@hbol, namelyz;, its binary representation is of lenglh- 1.
obvious. We add its first bit to the root node. If this bit is T, we add its
second bit to the left child, otherwise we add its second bit
to the right child ... repeating this process until all the 1

bits of z; are added along a path in the tree. Finally, we can

Let us start from a simple example: Assume we want .t the pinarization tree ok by processing all the symbols
generate random bits from a sequenCe- 012112210, which ;1 ¥ ¢ L1, Lo, I
, 1.8, 01, T2, oy Ty

is produced by &-sided die. Now, we write each symbol (die

X =x129..2, € {0,1,...,m —1}"

A. An Example



Ty, then there exists exactly one sequeices {0,1,...,m —

TTHTTHHTT 1}™ such that it yields a binarization tree that labefs<” }
with v e Ty.
T H Proof: Based on{ X! } with v € T, we can construct the

corresponding binarization tree and then create the sequen
X' in the following way (if it exists). At first, we read the first
bit (H or T) from the root (once we read a bit, we remove it
from the current sequence). If it is T, we read the first bit of
¢ its left child; if it is H, we read the first bit of its right chdl
... finally we reach a leaf, whose path indicates the binary
Fig. 1. An instance of binarization tree. representation af/. Repeating this procedure, we continue to
obtainz}, x4, ..., z,, . Hence, we are able to create the sequence
X' =22 .xl,_a) if it exists.
Lemma 2. Given the binarization tree of a sequende ¢ It can be proved that the sequen&é can be successfully
{0,1,...,m — 1}™, we can reconstrucK uniquely. constructed if and only the following condition is satisfied
For anyy € Ty_1,

THHHHT

Proof: The construction ofX from its binarization tree
can be described as follows: At first, we read the first bit (H wr(Xy) = X571, wn(Xy) =X,

or T) from the root (once we read a bit, we remove it from th\?/herew (X) counts the number of T's i and w(X)
current sequence). If itis T, we read the first bit of its |éfild; counts th1€ number of H's itk "

if it is H, we read the first bit of its right child ... finally we Obviously, the binary sequencéi’} with ~ € T, satisfy

reach a leaf, whose path indicates the binary representat{'He above condition. Permuting them ing&” } with v € T,
. : . . 9
of 1. Repeating this procedure, we can continue to Obtat'.f?)es not violate this condition. Hence, we can always caostr

T2: %35 -0 Tn- a sequenceX’ € {0,1,...,m — 1}", which yields{ X} with

Let T, denote the set consisting of all the binary sequences= To.
of length at mosb, i.e., This completes the proof. [ ]

Ty, = {¢, T, H, TT, TH, HT, HH, ..., HHH...HH. Now, we divide all the possible input sequences in
{0,1,...,m — 1}™ into classes. Two sequences, X’ ¢
Given X € {0,1,..,m — 1}", let X, denote the binary {0 1,.. m — 1}" are in the same class if and only if the
sequence labeled on a node corresponding to a pfefix pinary sequences obtained fraf and X’ are permutations
the binarization tree, then we get a group of binary sequenggith each other, i.e X is a permutation of.,, for all y € .
X, X1, Xpt, X7, X114, Xir, Xt - Here, we usé&: to denote the set consisting of all such classes.

(Ii_emma 5. All the sequences in a clags € G have the same

For any function¥ that generates random bits from a fixe L robability of being generated.

number of coin tosses, we can generate random bits fkom
by calculating Proof: Based on the probability distribution of each die
roll , D1, Pm—1}, We can get a group of conditional

UX0) 4 D) + UK + W) + U0 +oes propttiots dorored ag
where A + B is the concatenation afi and B. We call this
method as the generalized schemelof

We show that the generalized scheme works for any binaMp€re .|, is the conditional probability of generating a die
algorithm ¥ such that it can generate random bits from af®ll #: such that in its binary representation the bit following
arbitrary m-sided die. a prefixy is a.

_ Note thatgg|, + ¢1, = 1 for all v € T;,. For example, if
Theorem 3. Let ¥ be any function that generates randon{po’pl’m} ={0.2,0.3,0.5}, then
e

bits from a fixed number of coin tosses. Given a sequenc

qT|¢s QH|¢» AT |T> QH|T> AT|H> HH 4T|TT> GH|TT) --+»

X €{0,1,...,m—1}" with m > 2 generated from am-sided qoj¢ = 0.5,9010 = 0.4, qo;1 = 1.

die, the generalized schemeWbfyenerates an independentand |; can be proved that the probability of generating a se-
unbiased sequence. quenceX € {0,1,...,m — 1} equals

_ The proof of this theorem will be given in the next subsec- H qu_UT(XW)qu(XW)’

tion. o o} Hlv

where wr(X) counts the number of T's il and wy(X)
C. Proof of Theorerhl3 counts the number of H's inX. This probability keeps
Lemma 4. Let {X,} with v € T}, be the binary sequencesunchanged when we permule, to X’ for all v € T,
labeled on the binarization tree of € {0,1,...,m — 1}™ as This implies that all the elements it¥ have the same
defined above. Assuni¢, is a permutation ofX’, for all v € probability of being generated. ]



Lemma 6. Let ¥ be any function that generates random bits First, we letf : {0,1,...,m—1}" — {0, 1}* be the function
from a fixed number of coin tosses. Givep, Z/, € {0,1}* of the generalized scheme &, then we write

for all v € T}, we define PLI(X) = Yi] = Z PLA(X) = V1, X €G],
S = {X|Vy € Tu, U(X,) = Z,}, Get

S' = {X|¥y € Tp, U(X,) = Z_}. According to Lemmd5, all the elements @& have the

_ same probability of being generated. Hence, we denote this
If [Z,] = |Z.| for all vy € Yy, i.e., Z, and Z have the same probability asp¢;, and the formula above can written as

length, then for allG € G, ) | Z q x) X
Plf(X)=Y1]=> pcl{X €G, f(X)=Y1}|
GNsI=1eNS). b 1

i.e., G S and G S’ have the same size. Let Z, € {0,1}* be the sequence of bits generated from the

node correspondin forall v € Ty, thenY; = Z,.
Proof: We prove that for any € 1, if Z, = Z for all get thattg[f(X)g:mYl] quaIs b ! ZVETb K

v # 6 and|Zy| = |Zp), then
GOsI=16Ns D

GEG {Z:nvET,}
If this statement is true, we can obtain the conclusion in the

. . XIss . z,=vi
lemma by replacingZ,, with Z one by one for ally € Ty 7€Ts
In the class, assude9| =ny. Let us defineGg as the where IEWETJ, z,—y, = 1 if and only if Zven Z, =",
subset of{0,1}" consisting of all the permutations dfy. otherwise it is zero.
We also define Similarly, P[f(X) = Ys] equals
So = {Xo|¥(X9) = Zp}, YY) pal{X €G ¥y e, U(X,) = Z.}
Sy = {Xo|U(Xo) = Z3}. e
According to Lemmad]l1, if can generate random bits from XIS v, 24=Ye>
an arbitrary biased coin, then If |2!| = |Z,] for all v € T,, then based on Lemnia 6, we
Go ()01 =1Go (53] X € G,Vy € Th, U(X,) = Z,}]
This implies that all the elements i () Sy and those in ,
Gy (NS} are one-to-one mapping. ={X eG Vye T, V(X,) =2}

Based on this result, we are ready to show that the E|emem%ubstituting it into the expressions &f(f(X) = ¥i] and
in G( S and those irG () S’ are one-to-one mapping: For anyp[f(X) — Y] shows
sequenceX in G()S, we get a series of binary sequences
{X,} with v € T,. Given Z} with |Z}| = |Zy|, we can P[f(X)=Y1] = P[f(X) =Y3].
find a (one-to-one) mapping oXy in Gy () Sy, denoted by )
X). Here, X)) is a permutation ofYy. According to Lemma So we can conclude that for any binary sequences of the

@, there exists exactly one sequencéc {0,1,...,m — 1}» Same length, they have the same probability of being gener-
such that it yields{ Xy, X1, X, .., X}, ...} Right now, we ated. Furthermore, we can conclude that the bits generated a

see that for any sequendgin G (S, we can always find its Independent and unbiased.
one-to-one mappin’ in G S’, which implies that This completes the proof. u

¢S =19l

D. Optimalit
This completes the proof. P y

In this subsection, we show that the universal scheme
Based on the lemma above, we get Theorém 3. keeps the optimality of original algorithms, i.e., if thenhry

Theorem [3. Let ¥ be any function that generates randon@lgorithm is asymptotically optimal, like Elias’s algdrih or
bits from a fixed number of coin tosses. Given a sequerfc@res's algorithm, its generalized version is also asythpto
X €{0,1,...,m—1}"withm > 2 generated from am-sided cally optimal. Here, we say an algorithm is asymptotically

die, the generalized schemebienerates an independent andptimal if and only if the number of random bits generated
unbiased sequence. per input symbol is asymptotically equal to the entropy of an

Proof: In order to prove that the binary sequence genelp-pUt symbol,

ated is independent and unbiased, we show that for any tieeorem 7. Given an m-sided die with probability dis-
sequenced, Y, € {0, 1}F, they have the same probability totribution p = (po,p1,...,pm_1), let n be the number of
be generated. Hence, each binary sequence of léngdm be symbols (dice rolls) used in the generalized schemel of
generated with probabilitg: for some0 < ¢, < 1. and let k be the number of random bits generatedWifis



asymptotically optimal, then the generalized schem& d§
also asymptotically optimal, that means

tin Z8 =169,
where
m—1 1
H(p) = H(po,p1, s pm—1) = Y _ pilog, o
i=0 v

is the entropy of then-sided die.

IV. EFFICIENT GENERATION OFk RANDOM BITS
A. Motivation

Most existing works on random bits generation from biased
coins aim at maximizing the expected number of random
bits generated from a fixed number of coin tosses. Falling
into this category, Peres’s scheme and Elias's scheme are
asymptotically optimal for generating random bits. Howeve
in these methods, the number of random bits generated is a
random variable. In some occasions, we prefer to generate
a prescribed number of random bits, hence it motivates us

Proof: We prove this by induction. Using the sameén opposite question: fixing the number of random bits to
notations as above, we have the depth of the binarizatien t@enerate, i.e., bits, how can we minimize the expected

b = [logom] —1. If b =0, i.e., m < 2, the algorithm is

number of coin tosses? This question is equally important

exactly U. Hence, it is asymptotically optimal on efficiency@s the original one, since in many applications a prescribed

Now, assume that the conclusion holds for any intdgerl,
we show that it also holds for the integer

number of random bits are required while the source is uguall
a stream of coin tosses instead of a sequence of fixed length.

Since the lengthp + 1) binary representations of But the existing study on this question is very limited.

{0,1,...,2° — 1} start with 0, the probability for a symbol
starting withO is
2v 1

qo = Z Pi-
i=0

In this case, the conditional probability distribution diese

symbols is
Po P1

Q@ q@

m
@ = Zpi,

i=2b

Pav 1
do )
Similarly, let

then the conditional probability distribution of the syntbo

starting with1 is

Dav Paby1
= =T ..

Pm—1
q1 ’ q1 }

q1

To generaté random bits, we are always able to make use
of the existing schemes with fixed input length and variable
output length like Peres’'s scheme or Elias's scheme. For
example, we can keep readimgtosses (H or T) for several
times and concatenate their outputs until the total number o
random bits generated is slightly larger thanHowever, if
n is small, this approach is less information efficientnlis
large, this approach may generate too many extra random bits
which can be treated as a waste. In this section, we propose
an algorithm to generate exactly random bits efficiently.

It is motivated by the Elias’s scheme. It can be proved that
this algorithm is asymptotically optimal, namely, the exieel
number of coin tosses required per random bit generated is
asymptotically equal to one over the entropy of the biased
coain.

B. An lterative Scheme
It is not easy to generaté random bits directly from

‘When is large enough, the number of symbols starting biased coin with very high information efficiency. Our
with 0 approachesigy and the number of symbols startingapproach of achieving this goal is to generate random bits

with 1 approachesgq;. According to our assumption fér—1,
the total number of random bits generated approaches

Po P1 Pab
H(q07 Q1) + nqu(_ BUREREET] L)
do 4o do
Tnq H(sz P2b+1 pmfl)7
Q1 Q1 q1
which equals
1 1 2 Pi q
0
ngo 10g2 —i— ngq 10g2 —i— ngo Z *logy —
—q P
+nq Z 10%2
i= 2b
— 1
=n Z pi logy —
— Di
=0
= nH(pOapla "'apm—l)-

This completes the proof.

iteratively — we first producen < k random bits, wheren
is a variable number that is equal to or closektavith very
high probability. In next step, instead of trying to generat
random bits, we try to generate-m random bits ... we repeat
this procedure until generating totalrandom bits.

How can we generate: random bits from a biased coin
such thatm is variable number that is equal to or very close
to £? Our idea is to construct a group of disjoint prefix sets,
denoted bysS,, So, ..., Sw, such that (1) all the sequences in
a prefix setS; with 1 < ¢ < w have the same probability
of being generated, and (& = S;JS2J...lU Sw form a
stopping set, namely, we can always get a sequence (or
with probability almostl) when keeping reading tosses from
a biased coin. For example, we can let

S; = {HH,HT},
Sy = {THH,TTT},
Ss3 {THT, TTH}.

Then S S1US2US;s forms a stopping set, which is
complete and prefix-free.



In the scheme, we let all the sequencesijror all 1 < i < above, we have
w have the same probability, i.&; consists of sequences with by 4k 2k (ky + ko)
the same number of H's and T’s. We select criteria carefully Sk, 1, = {x € Gm,@l( ! 2) > #,
such that|S;| is slightly larger thare*. Similarly as Elias’s Fa min(ky, kz)
original scheme, we assign output binary sequences toeall th ki+ky—1 2F(ky + ko — 1)
members inS; for all 1 < 7 < w. Let W be the number of ( K ) WL

members that were not assigned yet in a prefix set, fien herek! is th ber of H's | ithout idering the last
possible output binary sequences of lengthre assigned to wherex, 1S /e.num eror s i W,' lout considering the 'as
symbol andk is the number of H’s inc without considering

27 distinct unassigned members, where: k if W > 2* and . . )
21 < W < 201 if W < 2*. We repeat the procedure abov he last §ymbol. So if the last symbol mf.|s H, thenk/ =
1 — 1,k5 = ko, if the last symbol ofz is T, thenk] =

for the rest of the members that were not assigned. ; .
9 k1, k} = ko —1. According to the expression 6, 1,, we see

Theorem 8. The above method generatesrandom bits for that the sequences in a prefix set are not prefixes of sequences
somem with 0 <m < k. in another prefix set. Furthermore, we can prove that the size

. of each prefix set is at leagt.
Proof: It is easy to see that the above method never P

generates a binary sequence longer thatVe only need to Lemma 9. If Sy, x, # &, then|Sk, x,| > 2*.

H ! m
E;c\)/\(/aet;za;;r%reanr)cl)btggﬁirty zl?%:(ianmy?r:eritég 1}, they Proof: Without Iosks of generality, we assume thigt <
P y 99 ' ko, hence, (*F*2) > M It also impliesk; > 1. To

Let denote the function corresponding to the abov ky 1 .
methog Then p g prove |Sk, x,| > 2%, we show thatSy, x, includes all the

sequences € Gy, i, ending with H. Ifz € Gy, &, ending
with H does not belong t®, 1,, then

PIf(X) =Y] = 3 PIX € S]Pf(X) = Y|X € 5] )
i=1 </€1+/€2—1>>2(/€1+/€2—1)

/ — /
Given X € S;, we haveP[f(X) =Y |X € S;] = P[f(X) = _ g g
Y’|X € S;], which supports our claim that any two binaryFrom which, we can get
sequences of the same length have the same probability of (/ﬁ 4 hy — 1) N 2k (k1 + kg — 1)

being generated. ] ey 2 o

The next question is how to construct such prefix sefsfurther implies that all the sequencese Gy, , ending
51,82, ..., 8. Let us first consider the construction of theiwith T are also not members i, x,. SO Sk, , iS empty. It
union, i.e., the stopping sét. Given a biased coin, we designis a contradiction.
an algorithm that reads coin tosses and stops the readitg unt The number of sequencesc Gy, , ending with H is
meets the first input sequence that satisfies some critdan.
instance, lett; be the number of H's and, be the number (kl +hk = 1) — (kl + kQ) IR ok,
of T's in the current input sequence, one possible choice is k=1 k1 ki t+ ke
to read coin tosses until we get the first sequence such thgt the size ofSy, k, iS at least2® if Sy, ., # ¢. This
("Fk=) > 2%, Such an input sequence is a member in theympletes the proof. -
stopping setS. However, this criterion is not the best one that
we can have, since it will introduce too many iterations to Based on the construction of prefix sets, we can get an
generatek random bits. To reduce the number of iterationgllgorithm ;. for generatingn random bits withd < m <k,
we hope that the size of each prefix set, saysagis slightly described as follows.
larger thar2”. As a result, we use the following stopping set: Algorithm &y

Input: A stream of biased coin tosses.
. kQ) > M}. Output: m bits with 0 < m < k.
b min(ks, k2) (1) Reading coin tosses until there dre H's and ko T's
Later, we will show that the selection of such a stopping set for somek; andk, such that
can make th.e.number of iterations very small. _ _ ki + ko 2 (ky + ka)

Now we divide all the sequences in the stoppingseénto ( ky > = m
different classes, i.e., the prefix sefsg, S, ..., S, such that ’
each prefix set consists of the sequences with the same numbe(
of H's and T’s. AssumeSy, x, iS a nonempty prefix set that
consists of sequences with H's andk, T's, then

S = {the first sequence s.<

2) Let X denote the current input sequence of coin tosses.
If the last coin toss is H, we let] = k1 — 1,k} = ko;
otherwise, we let] = k1, k) = ko — 1. We remove this
coin toss fromX if

ki+ky—1 >2k(/€1+/€2—1)
K i F, R5)

Sk ks = Gy ks 057

where Gy, &, is the set consisting of all the sequences with
k1 H's andky T's. According to the stopping set constructed



(3) Let ¥ denote the Elias's functi@nfor generating ks is the number of T's. According to the construction of the
random bits from a fixed number of coin tosses. A fastopping set,
computation ofl p was provided by Ryabko and Matchik- n—1 n—1
ina in [9]. The output of the algorithn¥;, is ¥x(X) or ( ) ) bk~ —
the lastk bits of U5 (X) if W5 (X) is longer thank. min(ky, k) — 1 min(ky, kz) — 1
Or we can write it as

According to Lemmd]9, we can easily get the following

conclusion. n—2 < ok
) ) min(kl, kg) -2 ’
Corollary 10. The algorithm®,, generatesn random bits for

somem with 0 < m < k, andm = k with probability at least ~Hence, we get an upper bound fein(k1, k2), which is

1/2. _ n—2 X

o t, =max{i € {0,1,...,n}|| . < 2%} (@)
Proof: The sequence generated By, is independent 1—2

and unbiased. This conclusion is immediate from Lenima 9.

Assume that the input sequenee € S; for somei with

1 < < w, then the probability oin = k is
L1324 2
) i n—i i,n—iy [T
|Sil P<> (0'(1=p)" +(1-p)p )()
=0

1
which is at leastl /2 based on the fact thdf;| > 2*. Since ] )
this conclusion is true for al§; with 1 < i < w, we can claim  FOr convenience, we write

Note thatif(7_3) > 2*, thent,, is a nondecreasing function
2

of n

According to the symmetry of our criteria, we can get

thatm = k with probability at leastl /2. [ | tn _  /n
n — 7 1 _ n— _|_ 1 _ 1, -MN—1 ) ,
Since the algorithn®;, generates: random bits for somen @ ;(p (1=p) (1=p)p )<z>

with 0 < m < k from an arbitrary biased coin, we are able to . . .

generaté bits iteratively: After generating: random bits, we then P, < @ andQy, is also a nondecreasing function f )

apply the algorithmb,,_,, for generating:—m bits. Repeating Now, we are ready to calculate the expected number of coin

this procedure, the total number of random bits generatéd wpsses required, which equals

converge tak very quickly. We call this scheme as an iterative

scheme for generating random bits. Eln] =
To generaté: random bits, we do not want to iteradg, too n

|
NE

(Pn_Pn+1)n:ZPn (2
=1 n=1

many times. Fortunately, in the following theorem, we show ity (1+6)

that in our scheme the expected number of iterations is upper < Z P, +
bounded by a constant n=1

oo

Yoo @t D @Qn
](Cp)(1+€

) nZQ%p)(H»e)

n=

H

Theorem 11. The expected number of iterations in the iterawheree > 0 is a small constant. In the rest, we study the

tive scheme for generatinig random bits is at mos2. upper bounds for all the three terms wheris large enough.
Proof: According to CorollaniID®;, generatesn — k  or the first term, we have

random bits with probability at leadt/2. Hence, the scheme ooy (14€)

stops at each iteration with probability more thaf2. Fol- P, < k (1+e). (3)

lowing this fact, the result in the theorem is immediate m ~ H(p)

Now let us consider the second term

C. Optimality 2755 (14€) L
In this subsection, we study the information efficiency @& th Z Qn < H(p) (1+ E)Q%(He)'

iterative scheme and show that this scheme is asymptgticall n=gtzy (1+€)

optimal. Using the Stirling bounds on factorials yields

Lemma 12. Given a biased coin with probability being H, 1 n

let n» be the number of coin tosses used by the algorifhm nh_{]go n log, (p ) = H(p),

then
i Z 1 whereH is the binary entropy function. Hence, followirlg (1),
koo kT H(p) we can get

Proof: We consider the probability of having an input 11_>m H(;) = 11_>m e

sequence of length at least denote asP,. In this case, we _
can writen = k; + ko, wherek; is the number of H's and Whenn = %(1 +€), we can write

tn H
lim gy = H@)
n— 00 n 1+e

IHere, an arbitrary algorithm for generating random bitsnfra fixed
number of coin tosses works.

3



which implies that

.ty
lim —=p—¢
n—oo N

for somee; > 0. So there exists afV; such that forn > Ny,
o< p—e/2

Substituting [(B), [(#), and{5) intd](2) yields that for any
e>0andd > 0, if k is large enough, we have

k 1-

By the weak law for the binomial distribution, given any Then it is easy to get that

e > 0 andéd > 0, there is anN, such that forn > N,
with probability at leastl — § there arei; H's among then
coin tosses such that% — p| < €. Letting ez = €;/2 and
n = gy (1+e) gives

Qn <9,

for any d > 0 whenn > max(Ny, Na).
So for anyd > 0, whenk is large enough, we have

2%(1“) X
Z Qn < g7 (1 + 99 4)
H(p) (1+e)

To calculate the third term, we notice th@t, decays very
quickly asn increase whem > 2 Ve )(1 + ¢€). In this case,

@ni1

Qn
_ Ztn+1(pz(1 p)n+1—i+(1 z n+1 z)(nJrl)

Sio(p' (1= )"+ ( ")

_ Z ( ( )nJrl z+( 1n+lz( 1)
B S (P (1 = p)n i+ 90
B L R e T
= TG G ()
< (1—19)105_ %

(L —pn

n—t,

Whenn > 275 (1 +¢), we have

H(p)
2(1+¢)°

This implies that whem is large enouth(t”) H(p) . Let
us define a constant such thata < § and H(a) = Hép).

tn k
lim H(—) = lim — <
n—r oo

n n—o0o M

Then for alln > QH’(c )(1 +e), whenk is large enough,
Qni1 1-p
< 1.
Q. " 1-« <

Therefore, given any > 0, whenk is large enough, the
value of the third term

(o) (o) 1 —p.,
Z Qn < 25765y (14¢) Z(m)
n:2ﬁ(l+é) =0
1
S Qs (197" I
1 —
< —= 5)

p—«

Bl < s (1 +0(1+0) + —%,
with o < p.
i B 1
Kook ~ H(p)

This completes the proof. ]
Theorem 13. Given a biased coin with probability being
H, let n be the number of coin tosses required to genetkate
random bits in the iterative scheme, then

. E[n] 1
im — = ——.
Proof: First, we prove thafimj_, . @ > ﬁ. Let

X € {0,1}* be the input sequence, then
E[n]H (p)
H(X)

Shannon’s theory tells us that it is impossible to extract
more thanH (X) random bits fromX, i.e., H(X) > k. So

E[n] 1
_ >

H(p)

To get the conclusion in the theorem, we only need to show
that

lim

k—o00

=1

klggo k

To distinguish then in this theorem and the one in the
previous theorem, we use(;, denote the number of coin
tosses required to generake random bits in the iterative
scheme and let{, , denote the number of coin tosses required
by ®;. Letp,,, be the probability fod; generatingn random
bits with 0 < m < k. Then we have that

k
Elng) = Enfyl + Y pmEngp—m))- (6)
m=0

According to the algorithmp, >
E[n(k)

% and E[n(k,m)] <

]. Substituting them into the equation above gives
E < E[n} Lp
[w] < Elngyl + 5 Elnew],
ie., E[n(k)] < 2E[n‘a)].

Now, we divide the second term in](6) into two parts such
that

k—ek k
m=0 m=k—ek

for a constant > 0. In which,
k—ek k—ek

me km)g me2E ()]
m=0
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V. CONCLUSION
In this paper, we have presented a universal scheme that

ek transforms an arbitrary algorithm f@rfaced coins to generate
Hence random bits from generah-sided dice, hence enabling the
application of existing algorithms to general sourceshéiigh
k—ck a similar question has been studied before, as_in [5], their
Elng] < E["Ebk)] + (Z Pm)zE[”Ebk)] + 2E[”?ek)]- (") solution can only be applied to a specified algorithm, i.e.,
m=0 Elias’s algorithm.

The second contribution of this paper is an efficient al-
gorithm for generating a prescribed number of random bits
"from an arbitrary biased coin. In many applications, this is
fa natural way of considering the problem of random bits
generation from biased coins, but it is not well studied in
the literature. This problem is similar to the one studied in
universal variable-to-fixed length codes, which are used to
parse an infinite sequence into variable-length phasesh Eac
phase is then encoded into a fixed number of bits.[In [7],
_ Lawrence devised a variable-to-fixed length code for the
wherea, > 1 and0 < ag,ay,..,ar-1 < 1. Given the ¢|ass of binary memoryless sources (biased coins), which

Givenk, all the possible input sequences are divided tnto
prefix setsSy, Ss, ..., Sy, Wherew can be an infinite number
Given an input sequenc& € S; for 1 < i < w, we are
considering the probability fo; generating a sequence o
lengthm.

In our algorithm,|S;| > 2*. Assume

|S1| = Ozk2k + Oék,12k71 + ...+ 04020,

condition X € .S;, we have is based on Pascal’s triangle (so is our algorithm). Tjaken
e ek o R R and Willems .[l.'L] mpdified Lawrence’s algorithm as a more
Z - Dico Qi < 2 < 2 . natural and simple implementation, and they showed that the
— Zf:o ;20— 2k 4 2k—ektl = Ok rate of the resulting code converges asymptotically ogtima
fast to the source entropy. These universal variable-tdfix
So given anys > 0, whenk is large enough, we have length codes are probably capable to generate random bits
asymptotically in some (week) sense, namely, the randosn bit
k—ek generated in this way are not perfect, and they cannot gatisf
Z Pm < 0. (8) the typical requirement based on statistical distance elyid
m=0 used in computer science).
Although we reach this conclusion féf € S;, this conclusion REFERENCES
holds for anysS; with 0 < ¢ < w. Hence, we are able to remove
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