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S U M M A R Y
The problem of decomposing irregular data on the sphere into a set of spherical harmonics
is common in many fields of geosciences where it is necessary to build a quantitative under-
standing of a globally varying field. For example, in global seismology, a compressional or
shear wave speed that emerges from tomographic images is used to interpret current state and
composition of the mantle, and in geomagnetism, secular variation of magnetic field inten-
sity measured at the surface is studied to better understand the changes in the Earth’s core.
Optimization methods are widely used for spherical harmonic analysis of irregular data, but
they typically do not treat the dependence of the uncertainty estimates on the imposed regu-
larization. This can cause significant difficulties in interpretation, especially when the best-fit
model requires more variables as a result of underestimating data noise. Here, with the above
limitations in mind, the problem of spherical harmonic expansion of irregular data is treated
within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies
the problem by removing the need for regularization terms and user-supplied noise estimates.
The use of the corrected Akaike Information Criterion for picking the optimal maximum
degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first
illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global
data sets sensitive to the Earth’s inner core and lowermost mantle, consisting of PKPab-df and
PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The
posterior probability distributions for each spherical harmonic coefficient are calculated via
Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects
the noise present in the real data and the imperfections in the spherical harmonic expansion.
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1 I N T RO D U C T I O N

A common problem in geophysics is the representation of data on
the sphere in terms of spherical harmonics. The essence of this prob-
lem is that of the estimation of a continuous field, from which the
data are sampled with error, using a finite basis function expansion
to represent the field. Where data are regularly gridded, a spherical
harmonic transform (analogous to the Fourier transform) exists. If
data are sufficiently dense, irregular data may be interpolated to
a form suitable for such techniques (Healy et al. 2003). However,
for sparse data with a measurement density that is non-uniform,
this can introduce significant errors, or restrict the analysis to low
orders. Additionally, as geophysical data are invariably noisy, it is
useful to determine bounds on the credible intervals of the spher-
ical harmonic coefficients. The spherical harmonic transform is
a linear operator, hence the classical method by which to invert
for spherical harmonics is by one of the methods of regularized

least squares (Aster et al. 2011), the most common of which uses
a single regularization parameter λ. The regularization parameter
creates a trade-off between goodness of fit and model complexity.
In the context of spherical harmonic analysis, large λ will penalize
large spherical harmonic coefficients, generating a smoother, less
complex, final spatial model of the data. The methods by which the
regularization parameter(s) can be efficiently chosen to best balance
model complexity and goodness of fit have been intensely studied,
and there have been significant developments of the least-squares
method to improve regularization and avoid spectral leakage due
to model basis set truncation (Snieder & Trampert 1999). Alter-
natively, the spherical harmonic analysis problem is handled nat-
urally and simply within the Bayesian framework, eliminating the
need for regularization terms that complicate norm-minimization-
based approaches. Here, we discuss a Markov Chain Monte Carlo
(MCMC) implementation of hierarchical Bayesian inversion for the
spherical harmonic coefficients (model parameters) and data noise
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(a hyperparameter). This type of sampling is said to be ‘hierarchi-
cal’ as the standard deviation of an assumed Gaussian noise for
each data point is represented by a free parameter. Treating the data
noise as a hyperparameter in this fashion supplements the resulting
model with its uncertainty.

Importantly, the fit to the data improves with increasing the num-
ber of spherical harmonic coefficients (i.e. in our case, too high
degree expansion will cause overfitting of data and overestimated
uncertainties), but the fit alone is not a sufficient criterion for the
selection of the maximum degree of spherical harmonic expansion.
Therefore, a criterion for an optimal model dimension selection,
which here depends on the maximum degree of spherical harmonic
expansion, has to be established. A transdimensional type of sam-
pling has recently been applied in many inverse problems to deter-
mine optimal model selection, despite the high computational bur-
den (Malinverno 2002; Sambridge et al. 2006; Dettmer et al. 2010;
Tkalčić et al. 2013). Alternatively, an information criterion (IC) can
be used at lower computational cost (Schwarz 1978; Pachhai et al.
2014). Here, we utilize the corrected Akaike information criterion
(AICc) to choose an appropriate maximum degree of expansion.

2 T H E O RY

2.1 Spherical harmonic expansion

The spherical harmonics form an often used basis set for the descrip-
tion of physical data in geophysics. Spherical harmonics Y m

l are the
solutions to Laplace’s equation ∇2�(θ , φ) = 0 on the sphere:

Y m
l =

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ )eimφ, (1)

where Pm
l is an associated Legendre polynomial of appropriate de-

gree (Press 2007, pp. 292–297) (there are many possible definitions
for the spherical harmonics; we choose the one used by Press due to
the ready availability of algorithms to handle this definition). The
harmonic degree l and order m express the nodal structure of the
spherical harmonic Y m

l ; in particular a spherical harmonic Y m
l has

l nodal great circles for which the Y m
l is zero. Any twice differen-

tiable scalar function f on the sphere may be written in terms of
spherical harmonics (Courant & Hilbert 1966, pp. 510–521). For
some coefficients cm

l

f (θ, φ) =
∞∑

l=0

l∑
m=−l

cm
l Y m

l (θ, φ). (2)

When f is real, it is more convenient to work with real spherical
harmonics, so that the spherical harmonic coefficients cm

l are also
real. We define these as follows:

Ylm =

⎧⎪⎪⎨
⎪⎪⎩

i√
2
(Y m

l − (−1)mY −m
l ) if m < 0

Y m
l if m = 0

1√
2
(Y m

l + (−1)mY −m
l ) if m > 0

. (3)

In this case, f is expanded similarly for real clm:

f (θ, φ) =
∞∑

l=0

l∑
m=−l

clmYlm(θ, φ). (4)

For a finite maximum degree l′, the spherical harmonic analysis of
degree l′ is defined as the set of coefficients clm that minimizes∥∥∥∥∥ f (θ, φ) −

l ′∑
l=0

l∑
m=−l

clmYlm(θ, φ)

∥∥∥∥∥ (5)

in the L2 norm (Schultz & Zhang 1994). The L2 norm is appropriate
in this sense if the data errors in f can be adequately described by
a covariance matrix (Tarantola 2005). When f is defined or may
be easily interpolated to a discrete, regular grid, then spherical
harmonic analysis may be solved via a 2-D fast Fourier transform
(FFT) approach (Healy et al. 2003). Where f is a function measured
only at irregularly distributed discrete points (θ i, φi), then instead
spherical harmonic analysis becomes a linear inverse problem—
this is often the case in geophysics. We define the data vector d, the
resolution kernel G and the parameter vector q by

d =

⎛
⎜⎜⎜⎝

f (θ1, φ1)
f (θ2, φ2)

...
f (θn, φn)

⎞
⎟⎟⎟⎠,

G =

⎛
⎜⎜⎜⎝

Y00(θ1, φ1) Y−11(θ1, φ1) . . . Yl ′l ′ (θ1, φ1)
Y00(θ2, φ2) Y−11(θ2, φ2) . . . Yl ′l ′ (θ2, φ2)

...
...

. . .
...

Y00(θn, φn) Y−11(θn, φn) . . . Yl ′l ′ (θn, φn)

⎞
⎟⎟⎟⎠,

q =

⎛
⎜⎜⎜⎝

c00

c−11

...
cl ′l ′

⎞
⎟⎟⎟⎠. (6)

Then the spherical harmonic analysis is the q that minimizes
||Gq − d||. Even if data are defined on a regular grid, the inverse
problem formulation has the advantage over FFT-based approaches
that it does not assume that f can be exactly represented by the
spherical harmonics up to degree l′; it permits the introduction of
variance terms to prevent overfitting noisy data. Previous authors
have solved this problem via various regularized or weighted least-
squares techniques (Schultz & Zhang 1994; Sneeuw 1994), but
these methods become increasingly intractable when data noise re-
lationships become significant. A hierarchical Bayesian approach
allows us to integrate out data noise as a hyperparameter, in order
to find the correct posteriors for the spherical harmonics (which are
not necessarily Gaussian even if the posteriors for fixed data noise
are).

2.2 Hierarchical Bayesian formulation

Here, we use a nonlinear approach within the Bayesian framework
to resolve the issues present in the classical approaches. We sample
from the posterior probability distribution P(q|d) using the nor-
mal likelihood function (corresponding to a least-squares fit with a
constant diagonal covariance matrix)

P(d|q) = 1

(
√

2πσ 2)n
e

−(Gq−d)2

2σ2 , (7)

where n is the number of data points in d. If the noise statistics in
the data are known not to be normal, the likelihood function may
be changed appropriately. Although we can often assume a nor-
mal distribution for the noise statistics of our data from maximum
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uncertainty arguments (Malinverno & Parker 2006), it is in general
impossible to confidently assign a specific value to the variance σ 2

of the data. However, the data variance is obviously a parameter of
interest, as the size of the variance dictates the strength of the con-
clusions we are able to draw from the data. Therefore, we use a hier-
archical Bayesian model in which σ is treated as a hyperparameter
and is also sampled. Treating σ in this way allows the data noise to be
properly accounted for, without requiring the user to make arbitrary
assumptions as to the scale of the noise. This technique has been em-
ployed with success to perform regional tomography (Bodin et al.
2012a), calculate receiver functions from P-wave arrivals (Bodin
et al. 2012b), deconvolution of receiver functions (Kolb & Lekić
2014), sampling of autoregression parameters (Dettmer et al. 2012)
and identification of ultralow velocity zones (Pachhai et al. 2014).
The ability to extract the posterior probability distribution of the
unknown data error gives the Bayesian MCMC approach presented
in this paper a significant advantage over existing classical methods
of spherical harmonic analysis; it also makes the problem nonlinear
in the σ parameter, motivating our use of MCMC sampling.

Assuming that the prior probability distributions for q and σ are
independent, the full joint posterior distribution is

P(q, σ |d) ∝ P(d|q, σ )P(q)P(σ ), (8)

where P(q) and P(σ ) are the prior probability distributions for
q and σ , respectively. We assume for the priors that the clm are
independently uniformly distributed on some ranges (alm, blm) so
that

P(q) = �l ′
l=0�

l
m=−l

(
1

blm − alm

)
. (9)

For the data variance parameter σ , we assume a non-informative
Jeffrey’s prior (Sivia & Skilling 1996, p. 107)

P(σ ) ∝ 1

σ
. (10)

In practice, this is implemented by assuming that P(log10(σ )) is
uniformly distributed on some large range (aσ , bσ ). The posterior
is sampled by via ‘MCMC’. To improve the convergence properties
of the chain, an adaptive Metropolis–Hastings step method was
used to tune the chain parameters to their optimal values—strictly
speaking, this renders the chain non-Markovian but the chain has
the correct mixing properties and converges to the posterior (Haario
et al. 2001).

Once the MCMC chain has converged to the posterior, the
marginal probability distributions for the clm coefficients are di-
rectly obtained as the histograms of the values that each coefficient
takes on in the post-convergence chain. The marginal probability
distributions of other auxiliary variables of interest (that are func-
tions of q), such as the power spectrum (Davies et al. 1992), defined
as

Ql = 1

2l + 1

l∑
m=−l

|cml |2 (11)

can be found simply by computing their value at each point in the
chain and then constructing the resulting histograms.

2.3 Model space selection via the AICc

The final difficulty in representing data in terms of spherical har-
monics is determining the appropriate maximum degree l′ of the
expansion. Truncation of the vector of model parameters to a par-
ticular degree imposes smoothness on the final spatial model, and so

determines what kind of physical inferences we can draw from the
inverted model. In order to facilitate the choice of maximum degree,
without arbitrary user input, we make use of the AICc. The AICc
is a functional of the posterior probability distribution P(q, σ |d),
which is defined by

AICc[P(d|q, σ )] = − ln (max[P(d|q, σ )]) + 2k + 2k(k + 1)

n − k − 1
,

(12)

where k is the number of free parameters in the model (i.e. the length
of q plus 1) and the maximum is taken over all values of q and σ .
The maximum expansion degree l′ which best balances explanatory
power with simplicity is the l′ with the smallest AICc; the AICc can
also be used to weight the contributions of inverted spatial models
of different maximum degrees to produce a final ‘multi-maximum-
degree’ map, although this is not explored in this paper. Burnham
& Anderson (2004) recommend using the AICc over other informa-
tion criteria such as the Bayesian Information Criterion (Schwarz
1978) for model selection with finite data sets where the true data
generating process is not among the candidate models. This is in
particular true for regression problems based on series expansion,
which is the exact problem we are solving in spherical harmonic
analysis (Yang 2005). As the AICc definition includes a maximum
log likelihood term, it is not directly computable from the MCMC
output. For this study, we take the mean values of the parameters
from the MCMC as an estimate of the maximum likelihood param-
eters, and then use conjugate-gradient optimization to improve this
estimate to obtain our final maximum log likelihood. Other criteria,
such as the Deviance Information Criterion (DIC) and Bayesian Pre-
dictive Information Criterion (BPIC) are directly computable from
the MCMC chain, however the DIC has problems with overfitting
the data and the BPIC is an unnecessarily complicated calculation
for this simple problem (Ando 2007).

At first impression, transdimensional MCMC would appear to be
a good candidate for determining the maximum degree l of spher-
ical harmonic analysis, and it has the advantage of determining
model complexity in a single inversion, rather than requiring mul-
tiple inversions for different spaces of models as is the case for
IC approaches. However, transdimensional MCMC fails to perform
adequately when changes in complexity cannot be easily handled
by adding or deleting a single extra variable, as the likelihood of
step acceptance when multiple variables are added or removed is
extremely low. As adding an extra degree l to the expansion in-
creases the number of variables by 2l + 1, spherical harmonic
expansion is not a good candidate for transdimensional MCMC.
In general, model parameterizations that are spatially localized,
and can have members added and subtracted in a logical fashion
(Voronoi cells, wavelets, etc.), can be treated using transdimensional
MCMC, but global basis sets such as spherical harmonics behave
poorly.

3 R E S U LT S

3.1 Synthetic test

We implemented a Bayesian spherical harmonic analysis program
using the publicly available PyMC v2.3 (Python Monte Carlo) mod-
ule (Patil et al. 2010). This module contains several built in conver-
gence checking functions that make assessing the progress of the
MCMC chain easy.
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Figure 1. The AICcs of the inversions of the test model in Fig. 2 for different
maximum degrees of expansion and number of data points are shown. A
degree 5 expansion is clearly the minimum AICc when the number of data
points is greater than 80.

We first tested the algorithm on a Gaussian random field, with a
power spectral density defined by

Ql = 1

(l + 1)
√

2π
e

(ln(l+1)−1)2

2 . (13)

As a test of the AICc as a technique for determining the optimal
complexity of the inversion (i.e. the dimension of the model), we
generated data up to spherical harmonic degree 5. We sampled the
input field at the locations of randomly chosen long-period global
seismic network seismometers, predominantly distributed in the
northern hemisphere, and added 5 per cent Gaussian noise. For the
inversion, we assumed that all clm fell in the range (−10, 10) and
that log10(σ ) fell in the range (−6, 0). The MCMC chain was run
for 2.001 × 106 samples. The first 106 were discarded as a burn-in
and the resulting chain sampled every 103 iterations. This resulted
in 103 samples of the posterior distributions of the clm, which were
confirmed to be statistically independent via autocorrelation plots.
The runs were performed for maximum expansion degrees 0–8,
and numbers of data points ranging from 50–100; the resulting
plot of the AICc is shown in Fig. 1. The degree of the input field
(degree 5) is clearly recovered as the minimum of the AICc when
the number of data points is greater than 80, whereas a less complex
model is chosen when the data are fewer. Therefore, the degree 5 is
best supported by the data whereas for fewer data points, the AICc
supports a less complex model, as the data does not produce as
stringent requirements.

Fig. 2 shows the comparison between two different recovery tests
for the input test function f from eq. (13) and 100 data points that
correspond to the locations of long period seismometers (Fig. 2a).
The recovery from a regularized least-squares inversion is shown in
Fig. 2(b), whereas that of the Bayesian spherical harmonic analysis
program is shown using the inverted mean map (Fig. 2c) and stan-
dard deviation map (Fig. 2d) constructed via MCMC chain at each
geographic location. The inversion from a regularized least-squares
inversion is performed using regularization parameter found via l-
curve curvature maximization (Hansen 2000). In this approach the
l-curve, showing the trade-off between model fit ||Gq − d|| and
model size ||q|| is formed on a log–log plot, parameterized by the

Figure 2. (a) The distribution of the sampling points of the input test
model is shown by yellow triangles; these correspond to the locations of
100 long-period seismometers. The input test model (a random Gaussian
field of maximum degree 5) is underlaid. (b) The reconstruction of the
model via regularized least-squares inversion. (c) The reconstruction of the
model via the Bayesian inversion technique. (d) Standard deviation of
the posterior distribution of the model parameters as a function of coor-
dinates; this reflects the uncertainty in the inversion, taking into account
correlations between different model parameters.

regularization parameter λ. The λ chosen for the final inversion is
taken from the corner of this l-curve—the corner may be found by
maximizing the l-curve curvature. Comparison between Figs 2(a)
and (b) shows that the pattern of the input model is generally well
recovered in the northern hemisphere but somewhat misrepresents
the input model in the southern hemisphere where data is scarce.

The model recovered through the hierarchical Bayesian inversion
(Fig. 2c) is a mean over all post-burn solutions and thus the input
velocity heterogeneity pattern is somewhat smoothed out, however
the solution is accompanied by the standard deviation map (Fig. 2d).
In addition, the correspondence between the true Figs 2(a) and (c)
is significantly better (in at least a qualitative sense) in the southern
hemisphere. The true value of the Bayesian approach of our method
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Figure 3. The means (black bars) and 95 per cent credible intervals (light grey boxes) are shown at left for the 36 clm parameters corresponding to a degree
5 spherical harmonic expansion for the synthetic experiment shown in Fig. 2. The true values of the clm corresponding to the test model are shown by black
circles. At right, the histogram (trending towards the unnormalized posterior probability distribution) of the data error σ , as found by the hierarchical Bayesian
inversion algorithm, is shown. The actual value of the input data error σ (5 per cent Gaussian noise) is shown by the vertical black line.

compared to approaches such as the regularized least-squares inver-
sion is that, in addition to simply inverting for the clm parameters,
the full posterior probability distributions for these parameters, and
the data noise, are computed. A summary of this information show-
ing the means and 95 per cent credible intervals is shown in Fig. 3. It
is evident from this plot that the lower degree parameters are more
poorly constrained by the available data, but despite this in all cases
the mean lies close to the true value of the parameter.

3.2 Application to global data sets sensitive to the
lowermost mantle and inner core

All data analysis begins by visual inspection. In the spatial domain,
decomposition of the data into a basis set representation such as
spherical harmonics is useful to build intuition about the behaviour
of the data, before expensive procedures such as seismic tomogra-
phy are taken out. As an example, we perform a spherical harmonic
Bayesian hierarchical inversion of PKPab-df and PcP-P differen-
tial traveltime residuals using the AICc model dimension selection
criterion (Fig. 4). We calculate differential traveltime residuals as
	t = observed − theoretical differential traveltimes, where the the-
oretical differential traveltime is calculated using spherically sym-
metric ak135 reference model of the Earth (Kennett et al. 1995).

The residuals are projected on to the bottoming point of the
PKPdf and PcP rays respectively (Fig. 5, top row). Projecting to
the bottoming point implicitly assumes that the traveltime anomaly
is concentrated in the inner core for PKPab-df (as the PKPdf leg
bottoms in the inner core) and the lowermost mantle for PcP-P
(as PcP reflects off the core–mantle boundary); we have chosen
to make this assumption for the raw traveltime data to remove
the ambiguity in assigning anomalies along the ray paths for the
sake of demonstrating how the technique performs. These data sets
are a part of larger data sets that were used to constrain P-wave
velocity in the lowermost mantle, in conjunction with other deep
earth differential phases such as PKPbc-df (Young et al. 2013).

In practice, this assumption would be inadequate for PKPab-df
differential traveltime data due to significant differences between
the ray paths of PKPdf and PKPab in the mantle. Nonetheless,
it is interesting to see what this assumption yields for inner core
structure.

In our example case, the optimal maximum expansion degree l′

is not known a priori. Therefore, we conduct an initial assessment
using the AICc. For 0 ≤ l′ ≤ 12, the AICc is calculated by running
the MCMC chain for 106 samples with a burn in of 2 × 105 sam-
ples, saving the chain every 200 samples. The maximum likelihood
parameters from the resulting chains are taken as an estimate of the
global maximum likelihood parameters, and the AICcs are calcu-
lated. Fig. 4 shows the results of this analysis; l′ = 10 and l′ = 7 are
revealed as the maximum expansion degrees best supported by the
data for the PKPab-df and PcP-P data sets—that is, l′ = 10 and 7
offer the best trade-off between the complexity of the expansion and
the data fit. We subsequently perform a final run with the optimal l′,
with 2.001 × 106 total samples, a 106 sample burn in period, saving
the results every 103 samples. The means of the parameters are used
to reconstruct the final expansion in Fig. 5. The final expansion for
each data set is shown for the strongest harmonic degrees (1, 2 and
3), as the bottom of Fig. 5 indicates.

For the PKPab-df data set, the recovered degree 1 is not strong
(Fig. 5, left column), and the resulting velocity distribution is char-
acterized by the north-south pattern. The recovered degrees 2 and
3 are strong (Fig. 5, left column). All this is different from the
observed east–west dichotomy from the PKPbc-df data set, accord-
ing to which the quasi-eastern hemisphere is faster than the quasi-
western hemisphere (Tanaka & Hamaguchi 1997; Wen & Niu 2002).
This likely confirms that the effects from the lowermost mantle are
too strong for our assumption to be valid, i.e. that the PKPab-df data
set without mantle correction cannot be used to recover inner core
structure (Tkalčić et al. 2002).

For the PcP-P data set, degree 1–3 structure is strong (Fig. 5,
right column). It is interesting to compare the resulting expansions
with the lowermost mantle P-wave velocity model in which the
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Figure 4. The corrected Akaike Information Criterion (AICc eq. 12) for expansions of maximum degree l′ from 0 to 12 is shown for a data set consisting of
PKPab-df (left) and PcP-P (right) differential traveltime residuals relative to the ak135 1-D seismic velocity model. l′ = 10 is shown to be the model with the
best support given the available data for the PKPab-df data set, and l′ = 7 is the model with best support for the PcP-P data set.

same data set was used (fig. 9 of Young et al. 2013). It can be seen
that the degree 2 of this data set significantly contributes to the ob-
tained P-wave velocity map of the lowermost mantle, particularly
in the northern hemisphere where the ray path coverage is abun-
dant. Asia is dominated by fast velocity and the North Atlantic and
North America are slow. That we recover predominantly degree 1–
3 structure, despite allowing for much higher spherical harmonics,
and without using damping, may be interpreted as an evidence of
the strongly persistent low degree structure in the lowermost man-
tle (e.g. Dziewonski et al. 2010) keeping in mind that the PcP-P
data set analysed here is a subset of a larger data set. We should be
mindful however, with reference to the penultimate row of Fig. 5,
that the uncertainty for these data sets is concentrated in the south-
ern hemisphere as a result of low data coverage, which tempers the
robustness of our inference of low degree structure in the southern
hemisphere.

As the spatial distribution of data in our examples is not a result of
a physical process that can be approximated by spherical harmonics,
the values of individual coefficients have little meaning and are thus
not computed. However, the length scale behaviour of the data set
is useful to know. Hence the power spectra of the data are shown
in the final row of Fig. 5. They are produced by calculating the
Pl values for each iteration of the MCMC chain and finding the
means and 95 per cent credible interval bounds. The power spectrum
shows the strong degree 1-3 structure in agreement with Becker &
Boschi (2002), here reflected in the raw traveltime data. The large
amplitudes below Brazil (for PKPab-df) and the south Pacific (for
PcP-P), where data coverage is sparse, show that for realistic data
sets care must be taken in regions of poor coverage when making
inferences based on spherical harmonic expansions; for example
our inferences could be weighted by the variance of the computed
model at each spatial location. This effect is a consequence of the
global nature of the spherical harmonic basis set, as illustrated in
the degree 1–3 components shown in Fig. 5. As shown in Fig. 5,
it is easy, using the MCMC chains, to compute a spatial map of
uncertainty that accompanies in the inversion results and allows us

to assess the accuracy of the inversion in regions of poor coverage.
This is a significant advantage of this MCMC method for problems
where the data coverage is uneven.

4 C O N C LU S I O N

We have applied the techniques of hierarchical Bayesian inference
to the problem of spherical harmonic analysis of irregular data. This
improves both the utility and ease of use of spherical harmonic anal-
ysis by removing the need to set regularization parameters via trial
and error and allowing immediate calculation of parameter error
estimates and ancillary variables such as degree power. We have
illustrated the use of the AICc on realistic seismological data sets as
an appropriate method for choosing between expansions of different
maximum degree l′, as illustrated in our synthetic test. This method
is a useful utility for a compact representation of global data sets
where it has the advantage of clearly highlighting the length scales
relevant to the data. It also significantly reduces the likelihood of
user error when performing these analyses. For very large data sets,
the performance of this method may be improved by the use of
more advanced Monte Carlo techniques than adaptive Metropolis
Hastings, such as Hamiltonian Monte Carlo (Neal 2011); likewise
for small data sets, it may be more efficient to use a combination of
the Cholesky decomposition to diagonalize the model covariance
matrix and Gibbs sampling to sample from the posterior distribution
(Bennett 1975; Neal 2011). However, for data sets on the order of
a few thousand points, this method is simple and fast. This paper
has dealt exclusively with the spherical harmonic analysis problem,
and not other methods for global estimation of a spherical field such
as kriging, however, elements of the discussion such as the hierar-
chical Bayesian formulation and use of the AICc are directly trans-
ferable to other basis-set-expansion estimation problems, includ-
ing regional spatial analyses using wavelets and other specialized
functions.
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Figure 5. Measured residuals 	t (relative to the ak135 reference Earth model) are shown at top for PKPab-df and PcP-P differential traveltimes (Young et al.
2013). The circles representing the residuals are centred on the PKPdf and PcP phase bottoming points. The data are expanded to the optimal degrees predicted
by the AICcs in Fig. 4, and the total uncertainty for the spherical harmonic analysis is shown. The expectation value of degree power Pl (black lines) and
95 per cent credible interval for the degree power (light grey boxes) have been calculated via the MCMC chain of the parameters obtained for each data set.
The power in each degree is shown, up to l′ = 10 for the PKPab-df data, and up to l′ = 7 for the PcP-P data.
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