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PREFACE

The primary goal of these studies is the understanding of the 

response and failure behavior of filled rubberlike materials.

Failure data are being accumulated in uniaxial, biaxial, and 

triaxial stress fields as functions of temperature and load level. Times- 

to-break in each stress field are being measured and interpreted in 

terms of a stochastic model. This approach is leading to a general 

failure criterion which is expected to be of use in determining mechanical

failure of rocket motors.

Response behavior is being interpreted in terms of sedimentation 

theory and strain energy formulations. The application of each of these 

approaches depends upon extension of current theories.
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ABSTRACT

During the past year, further progress was made in understanding 

both the molecular nature of the strain energy function of a homogeneous, 

nearly incompressible rubberlike material. The importance of non-affinity 

of deformation, chain stiffness, and volume exclusion in modifying the 

basic statistical model of Kuhn, Grün, James and Guth are discussed.

A phenomenological theory for predicting the distribution of times- 

to-break arising in creep failure in terms of the growth of defects in 

rubber was proposed and showed good agreement with experimental data.

Batches of thermoelastic rubber filled with glass beads are being 

prepared prior to evaluation in terms of sedimentation theory.
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I. MECHANICAL BEHAVIOR OF GUM RUBBER VULCANIZATES

A. MOLECULAR BASIS FOR RUBBERLIKE ELASTICITY

1. Nature of Rubberlike Elasticity
It is now well established that most of the force field engendered in 

a well-cured rubber network subjected to a deformation field arises from the 

change in the number of configurations available to the polymer chains. If 

the number of available configurations in the deformed state is less than 

that of the undeformed state the polymer chain is in tension, and vice versa. 

If one neglects completely all interactions between chains, and assumes that 

each chain is completely flexible and is composed of n freely rotating 

statistical segments, each of length ℓ, one calculates that the probability 

density that the tail of the undeformed chain has coordinates

relative to the head is given by:

(1)

where

(2)

(3)

(4)

(5)

Equation (1) is obtained by the method of steepest descents and is exact in 

the limit m → 0. On the other hand, in the limit m → n, the exact expression 

is given by:
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(6)

which is not very different from (1) for n >> 2.

When equation (1) was used to fit simple tensile data obtained on an

SBR vulcanizate, it was found that n may be as low as 7, in which case 

(1) should be replaced by (6). More important however is the fact that (1) 

and/or (6) represents the data, as plotted in the form , the

so-called Mooney-Rivlin plot, only for λ > ~ 2. In other words, the slope 

of the Mooney-Rivlin curve predicted by (1) and/or (6) is always negative.

The above statistical function does not predict the softening of the vulcanizate 

during initial stretch.

There are several possible reasons for this phenomenon which are 

not accounted for in the model. They are:

a. excluded volume

b. internal energy effects

c. chain stiffness

d. non-affine deformation

e. chain entanglements.

We shall comment at various lengths on each of these possibilities.

2. Excluded Volume
In a recent publication, Edwards(1) has shown that the effect of 

excluded volume is to bias the Gaussian approximation of (1) toward larger 

average end-to-end distances. Thus, if the Gaussian approximation to (1) is 

given by:
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(7)

then Edwards' expression is given by:

(8)

where

(9)

and

(10)

and where v is the excluded volume. Equation (8) is normalized to unity, 

from it, we immediately calculate:

(11)

(12)

There are two things immediately questionable about the Edwards' expression. 

One is the significance of the lower limit of r. It implies that the chain can 

not touch head-to-tail much like a person who can not touch his toes. If 

conversely, the lower limit is taken to be zero, formulae (11) and (12) are 

replaced by much more involved expressions containing incomplete gamma 

functions. In either event, and this is the second point, in the limit β → 0,

-3-



(11) and (12) do not reduce to their Gaussian equivalents. Thus the Edwards' 

expression needs reworking.

Before undertaking this task, it is worthwhile to ask whether the 

concept of excluded volume produces a probability density function (8) which 

predicts the correct shape of the Mooney-Rivlin plot. We have examined 

this question for the special case of simple tension applied to an incompres-

sible network and arrive at the result:

(13)

where

(14)

In the limit λ. →l, we find that:

(15)

Thus the slope of the excluded volume function is negative, can be shown to

be negative for all λ, and reduces to zero when there is no excluded volume.

Thus, it is not worthwhile to investigate further the effect of excluded volume.

This is not to say that the concept of excluded volume is not a meaningful one,

but rather that it does not at this stage provide the next most important

feature that the model needs, namely the initial softening of the nonlinear

modulus μnℓ with increasing strain. 
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3. Internal Energy Effects

Internal energy effects will be discussed in the next chapter of this 

section. On the basis of what was shown in the preceding annual report, it 

is readily observed that internal energy effects would not be expected to 

change the shape of the Mooney-Rivlin plot.

4. Chain Entanglements

No realistic model of chain topology including entanglements is 

currently available. This maybe an important acquisition to the statistical 

model. We plan to investigate the formalization of this concept later on.

5. Non-affine Deformation and Chain Stiffness

As pointed out in paragraph A.1., the number of statistical segments 

needed to fit tensile data out to the point of break is relatively small, ~ 7.

With this in mind, we first decided to investigate the form of the rigorous 

expression for a freely rotating chain composed of only two links and to 

compare this with the form predicted by (1) and/or (6) when n is set equal 

to 2. Some surprising things develop which lead us to investigate separately

the effects of non-affine deformation and chain stiffness.

We recall that the probability that the terminus of a link have spherical 

coordinates {θ, φ} relative to its origin is given by:

(16)

where {∆φ1, ∆θ1} are the angular measures of the edges of any incremental 

spherical quadrangle on the surface of a sphere bonded by: {0 ≤ θ1 ≤ π,

0 ≤ φ1 ≤ 2π}.

The combined probability that the terminus of the first link have 

spherical coordinates {θ1, φ1} and that of the second link relation to its 

origin have spherical coordinates {θ2, φ2} is given by:
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(17)

Let us now introduce new coordinates {β; m, θ, φ} to replace the old 

coordinates {θ1 φ1; θ2 φ2}, where {m, θ, φ} are the spherical coordinates 

of the terminus of the second link relative to the origin of the first link, and 

where β is the angle of rotation of the joint of the chain in the plane normal to 

the radius vector This arrangement is shown in the sketch below.

Using the new variable β, the probability that the terminus of the second 

link have spherical coordinates {m, θ, φ} relative to the origin of the first 

link and regardless of the configuration of the joint is then given by:

(18)

Before evaluating (18) let us compare it with the statistical expression 

which leads to (1) and/or (6). For general n, the analogue of (18) is given 

by:
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(19)

∑∑nij = n 

∑∑nij sin θj cos φj = m sin θ cos φ 

∑∑nij sin θj sin φj = m sin θ sin φ 

∑∑nij cos θj = m cos θ 

For the case n = 2, the nij's can only be two 1's with remaining 0's,

except for the case where the chain is completely stretched out, in which

case one of the nij's is 2 and all the other zero.

Thus the restrictor summations become, for the case of bent chain:

(20)

(21)

(22)

(23)

The combinatorial function is given by:

(24)

Now the restrictor summation (20) is an identity and thus really provides no 

restriction. Equations (21, 22, and 23) determine {φ1 φ2 and θ2} in terms 

of {θ1; m1 θ1 φ}. Thus the combined restriction is equivalent to summing 

over allowable values of θ1. Thus (19) becomes in the limit:

(25)

which is identical with (18), because for each value of θ1 there are two 

allowable values of φ1 and/or θ2. Thus integrating from the lower limit of 

θ1 to its upper limit (cf sketch)
-7-



is equivalent to integrating with respect to β from 0 to π or from -π to 0.

The statistical factor 2 weights the contour properly.

Thus (19) should give the same result as (18) with n = 2. The fact 

is however that it does not! The reason for this is as follows. Equation (19) 

is converted by use of the multinomial theorem to:

(26)

This transformation is exact and is independent of n. Next we evaluate 

the double integral to obtain:

(27)

where

(28)

This transformation is exact and is independent of n. The coefficient of (27) 

is obtained formally by the triple residue of:

(29)
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Now, in evaluating (29), we used the method of steepest descents, which is 

really only good for either n very large or for a very peaked saddle on the 

real axis of the contour. It can be shown that the saddle is actually broad 

and shallow so that it is not a sufficiently good approximation to replace the 

integral of (29) by its second order approximation in a Taylor's expansion. 

More important however, it is easily shown that the radius of convergence of 

the Taylor's expansion decreases as m decreases, which corresponds in a 

loose sense to λ→l. Thus, no expansion of (29) yields a result which is 

valid for the unstretched chain, and a fortiori, which is valid for the strain 

energy as the stretch field approaches unity. So all this "scientific" 

wonderment through the past twenty years at the failure of the finite chain 

model to predict the correct sign of the so-called C2 term in the Mooney- 

Rivlin plot has been without foundation. In other words, before ascribing 

the failure to other effects, it yet remains to determine the exact form of 

the probability function.

For general n this means a search for an alternative way of evaluating 

(25) which is exact, or for n - 2, this means the evaluation of (18) which is 

also exact. A fortiori, once (18) is evaluated, one can combine two two-link 

chains to make a four link chain and so on. Let us see where this path leads. 

First, we express {θ1 φ1; θ2 φ2} in terms of {β; m θ φ} to obtain by simple 

trigonometry:

(30)

(31)

where
(32)

-9-



In terms of the new variables, (18) becomes:

(33)

where

(34)

After evaluating the determinant, one obtains:

(35)

so that:

(36)

or

(37)

After separating the differential element of volume in spherical coordinates, 

one obtains the probability density

(38)

which is to be compared with the statistical function obtained by method of 

steepest descents:

(39)

which representation, we repeat, is only good for large m, i. e. as m → n = 2. 

In this limit the exact expression (38) takes on the value 1∕16π or ~ 2%, and 

the representation (39) takes on the value 1∕45/2π3/2 or ~ 1%. Thus, as 

m → n, the disparity between the two functions is not great. On the other hand, 

as m → 0, the exact function becomes infinite, the representation (which now 

lies outside the radius of convergence of the expansion of the function which
-10-



engendered it) is given by

which is finite. Thus one should expect radically different stress behavior

at small stretch ratios from the exact function.

The entropy of a chain whose radial probability function is given by 

(37) is given by:

(40)

If the end of this chain is moved, the new coordinates are given by:

(41)

(42)

(43)

Equivalently one has:

(44)

(45)

and

(46)

The entropy of the deformed chain is given by:

-11-



(47)

which upon introducing (44-46) becomes:

(48)

where

(49)

Assuming incompressibility and no internal energy change the entropy 

change or strain energy (w) associated with the deformation of a chain is 

given by:

(50)

Assuming that the network entropy is an additive function of the individual 

chain entropies, the total entropy change is given by:

(51)

Now in all the previous published work on the statistical theory of 

rubber elasticity, investigators have assumed an affine deformation, even 

though such a situation cannot possibly be accepted by even the most hypo- 

thetical of all networks. The reason for this is simple. Of all the chains in 

the network, there will be a certain fraction which are completely or nearly 

completely stretched out. For such chains the maximum increase in end-to- 

end distance which is measured by cannot be very
-12-



large, say ten percent, just for the sake of argument. Thus, if the invariant 

(I1 ≡ λ12 + λ22 + λ32) exceeds 1.1 x √3, these particular chains will either 

snap or else cause a force readjustment among other chains resulting in a 

non-affine deformation field. We are forced to consider the latter possibility. 

In the particular case n = 2, the maximum value of m ' - 2, so that m can 

never exceed

(52)

Thus (51) must be evaluated as:

(53)

Upon simplification (53) becomes:

(54)

(55)
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(56)

(57)

where

(58)

and

(59)

Alternatively (51) may be rewritten:

(60)

Equation (60) is the exact expression for the strain energy resulting from the 

non-affine deformation of a network of non-interacting chains each composed 

of two freely rotating links. It may be recast in terms of the stretch 

invariants by recalling that:

(61)

(62)

(63)
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After simplification, (61-63) can be reduced to:

(64)

which is the Cayley-Hamilton equation for an incompressible deformation. 

Thus we can write formally:

(65)

(66)

(67)

where C3 is any one of the real roots of the cubic equation.

We are now in a position to compute the stress components by

differentiating (60). It is easier to return to (60), differentiate it, and then 

evaluate the integral, for the special case λ1 = λ2 = 1/√λ. This results in:

(68)

For small strains, (68) takes on the form:

(69)

Thus:

(70)

On the other hand, as λ → ∞, σ → 0. Thus (68) predicts the correct sign of 

the initial slope of the Mooney-Rivlin plot (cf Figure 1) but does not predict
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the upswing with large strain, in fact does not predict a limiting strain.

In order to explain this, it will be necessary to provide a more detailed 

analysis of chain interaction. In other words, the completely stretched 

out chains pull along the other chains and change their probability distribu- 

tion. An analysis of this situation will be presented in a later technical 

report. The value of the limiting slope of the Mooney-Rivlin plot of (68) is

and is a function of the number of links in the chain. This will be

investigated for longer chains.

B. THERMOMECHANICS OF RUBBERLIKE ELASTICITY

In the preceding annual report, it was suggested that the correct state- 

ment of the combined expression for the first and second laws representing 

the thermomechanical deformation of a rubberlike material is given by:

(71)

and not

(72)

as is usually written. In (71) the differential is to be evaluated at constant

temperature.

A simple argument shows that (72) does not predict the thermoelastic 

inversion. It may be rewritten as:

(73)

-16-



Since the temperature change needed to define the slope of a force-tempera­

ture curve is only a few percent of the absolute temperature, it is an excellent 

assumption to replace the internal energy by:

(74)

where the specific heat at constant length, C. , depends only on length but 

not on temperature. Using this, (73) becomes:

(75)

where the subscript "i" refers to partial differentiation with respect to ℓi. 

By Maxwell's relation, it develops that:

(76)

which can be immediately integrated to yield:

(77)

If we define the length dependences of the internal energy and specific heat 

in terms of the length dependence of the force, using two new parametera

a and b, we can write:

(78)

(79)
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whereupon (71) becomes:

(80)

The force-temperature coefficient is then given by:

(81)

Equation (81) clearly shows that a predicted thermoelastic inversion can only 

take place where fio changes sign, that is, when the stress field goes from 

tensile to compressive, or vice versa, which is, in fact, not in agreement

with observation.

Using the corrected version of the statement of thermomechanical 

deformation of a rubberlike material, one can arrive at a correct definition 

of the thermoelastic inversion, and a method for determining the parameters 

a and b. We have (71) in alternate form:

(82)

The Taylor's expansion of the internal energy is given by:

(83)

(84)

Equation (82) becomes:

(85)

By Maxwell's relation, there develops:

(86)
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which is readily integrated to:

(87)

The stretch dependences of the internal energy and specific heat are 

conveniently defined by setting:

(88)

(89)

whereupon (87) becomes:

(90)

The stress is given by:

(91)

The force is given by:

(92)

The temperature coefficient of the force at constant length is given by:

(93)
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Thus the exact condition for thermoelastic inversion is given by:

(94)

For the case of Neo-Hookean material, as an example, one has:

(95)

so that (94) becomes; in the limit T → To:

(96)

or

(97)

Conversely, the highly significant parameter a may be measured by the 

inverse of (97), or:

(98)

where typical values for SBR have been inserted. Thus, it is expected that

internal energy effects should account for ca. 20% of the total stored strain

energy, the other 80% being stored as entropy. A fortiori, if all the energy

is stored as entropy, a is zero, and the thermoelastic inversion strain

exactly equals αTo, for αTo << 1.

Now what (90) and/or (91) shows is that the temperature dependence 

of the strain energy is completely factorable from the stretch dependence. 

Thus, regardless of the magnitude of internal energy effects, there should 

be no effect upon the sign of the C2 term, providing (88) and (89) are verified. 

This remains to be close experimentally.
-20-



For filled binders to which we are now in a position to turn our 

attention, it is expected that the value of a will be significantly higher than 

in the case of unfilled binders, for the simple reason that adhesion between 

binder and filler acts very much like interaction between chains. Furthermore, 

it has already been demonstrated that many filled binders dewet markedly, 

beyond which point the value of a should decrease markedly. These anticipated 

results will be documented in a later report.

In addition to evaluating a from the thermoelastic inversion, one can 

also procure it and b directly from the temperature dependence of σ - λ data. 

What one does is to make Mooney-Rivlin plots at a series of temperatures, 

starting from To. The expected form of the relation representing the data 

should be very closely given by:

(99)

where

(100)

If one now introduces

(101)

then (100) becomes:

(102)

Thus a plot of

should yield a straight line with a negative slope b/2 and an intercept (1 -a).
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Both a and b should be sensitive to filler content and plasticizer content 

and will be used to define adhesion properties in prospective propellant

binders.

C. CREEP FAILURE OF GUM RUBBER VULCANIZATES

1. Introduction

Starting with a series of papers(2-9) by Bueche and later by 

Halpin(10, 11) there gradually developed a theory of the fracture of amorphous 

polymeric solids above the glass temperature. Inherent in this now widely 

accepted theory is the concept that the fracture process is a non-equilibrium 

one which includes the rupture of molecular bonds, the subsequent viscous 

flow of the newly separated polymer chains to relaxed configurations, the 

attendant growth of defects distributed throughout the solid, and the final 

fracture of the solid when the defects have grown to a critical number and size. 

Analysis of this concept leads to a relation between break time and break 

stress as well as between break time and break strain, for the assumed

special case of simple tension, and which is shown on the basis of experimental 

data to be approximately insensitive to the test procedure used, that is, either 

to creep under constant load or to extension at constant rate of strain. In 

addition it is shown experimentally that data obtained at various temperatures

can be correlated with the aid of a WLF shift factor.

Following a more phenological approach, Landel and Fedors(12) show

that the break stress - break strain data can be correlated both in terms of

a temperature shift factor and a crosslink-density shift factor.

In a completely formal approach, Coleman(13) uses extreme value 

theory and investigates the distribution of break times that develop as a result 

of iterated tests on a series of samples subjected to a given break procedure,

-22-



that is, to creep under a given load, or to extension at a constant rate, etc. 

Inherent in his theory is the concept of break time depending on sample 

dimensions as well as on break stress. There are no data presented however 

to show the importance of the sample dimension on the type of break time 

distribution that one might find empirically for a given class of amorphous 

polymeric solids.

As a result of the body of work accumulated in the literature on the 

basis of both formal and empirical approaches, it appears that there is a 

need for an elaborate empirical study of the break properties of a given 

amorphous polymer formulation. Such a study should include not only the 

empirical determination of the relation between break time and break stress 

under two types of loading processes, namely creep and constant rate of 

extension, but also the empirical determination of the distribution of break 

times at a given load or at a given rate of strain. This latter study has not 

been carried out by any of the previously cited investigators, despite the 

fact that it forms a critical test of the validity of any theory of fracture.

In addition, such a study should include the empirical determination

of the break time-break stress relation and break time distribution function

for several other stress fields besides that engendered in simple tension.

This can be accomplished, for example, by means of observations on the 

creep to failure of thin solid disks (poker chips) bonded to two parallel loaded 

plates, and on the creep to failure of thin tubular cylinders (pipes) internally 

pressurized. Such tests have to date not been published in the open literature 

although the authors are aware of fragmentary pipe-burst data available in 

some industrial reports.

In addition, such a study should include the empirical determination 

of the effect of sample size upon the break time distribution function. This

-23-



effect will depend upon three time scales: the time required for molecular 

bond rupture, the time required for the newly separated chain ends to relax 

to an unstretched configuration, and the time required for a defect to grow 

into a crack large enough to provide for sample fracture. In the Bueche- 

Halpin theory, it is explicitly assumed that the second time scale is 

negligible with respect to the first. Because of this, no dependence upon 

sample dimension is predicted by their theory. This statement then provides 

a critical check of such data. And, it is proposed to present such data in a 

latter report of this series.

In addition, such a study should include the empirical determination

of the temperature dependence of all parameters generated in the data

correlation. Likewise, the way in which these parameters depend upon the

chemical and physical structure of the rubber network should be investigated.

Of particular importance would be the relation between mean break time and

filler content and crosslink density. The latter can be modified either by 

varying the curative level or, as has been recently shown(14), by treating

the network with a sulfur-removing agent, such as triphynyl phosphine. Such 

data will be presented in a later report of this series.

Finally, such a study should find a theoretical basis in a combined 

kinetic analysis of the initiation of defects, a stochastic analysis of the 

distribution of defects, and a dynamic mechanical analysis of the growth 

of defects and propagation of cracks. A kinetic analysis of the initiation of 

defects is the basis of the 1957 Bueche theory of fracture. In what follows 

we shall adopt a stochastic approach, assuming that defects are initially 

present and grow when stressed. In both the Bueche-Halpin theory, 

and the stochastic theory which we shall present, nothing is said about the
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mechanics of defect growth or crack propagation. (This statement does

not rule out the use of a stress concentration factor by Bueche and Halpin).

It will be desirable therefore to supplement both theories by such a dynamic 

analysis as has been carried out by Knauss(15). In the meantime, in the 

absence of such a dynamic theory of crack propagation, the present report 

will provide only a stochastic basis for the break time distribution. It 

will provide no basis for the break stress - break strain relation other than 

an empirical one, assuming that this is already fairly well treated by the 

Bueche-Halpin theory.

2. Stochastic Theory of Defects in Rubber Vulcanizates

A. Types of Defects Present in Rubber Vulcanizates.

There are two overlapping types of defects. One type includes 

pinholes which vary in size from 10μ (1μ - 10,000 Aº ≅ 4 blue light waves) 

down to 1,000 Aº. The upper range of such pinholes is visible under the 

microscope, the lower range just barely. The other type includes molecular- 

holes which vary in size from 1,000 Aº (a polymer chain of molecular weight 

106) down to 10 Aº ( a polymer chain of molecular weight 102, which would 

actually correspond to a short monomeric side chain). The upper range of 

such holes is visible under the electron microscope, the lower range just 

barely. Below this lower range, one gets into the realm of free volume 

perturbed by the thermodynamic vibration, rotation, and slow diffusion of 

polymer chain segments. Contrariwise, above the upper range of type one 

pinholes there exists the possibility of voids, or gas bubbles varying in 

size from l0μ upwards. Such voids are visible to the naked eye, are 

discerned in bulk by X-ray inspection, and can be ruled out of this 

discussion on the basis of good quality control. The pinholes of type one and
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molecular holes of type two arise from irregularities in the mixing process, 

from poor dispersion of granular fillers like ZnO, and antioxidants, and 

from inhomogeneous diffusion of the polymer chains during cure in the hot 

press. Thus there results a vulcanizate in which the network is in general 

imperfectly cured, and is characterized by the presence and absence of 

dangling chain ends. The former leads to local variations in crosslink density, 

the latter to local variations in physical density, the latter to local variations in 

physical density. In addition there are somewhat grosser variations in 

density due to the dispersion of filler particles as aforementioned.

If one considers a cubic centimeter of SBR with a density of one gram 

per cubic centimeter, for a typical chain length of 104 between crosslinks, 

there are 10-4 moles of chains or 6 x 1019 chains. Each of these chains is 

about 80 Aº long and carries pendant side chains about 3 Aº long which 

number about ten percent of the total number of units in the backbone of the 

chain. If the primary molecular weight is 105, there are 10-5 moles of 

primary chains per cubic centimeter, each hooked by about ten crosslinks

to other chains.

Now consider a sketch of a portion of a network for which the cross- 

linking functionality is f = 4.

By direct count, the number of primary chains is given by N = 8, the number 

of crosslinked units is given by ν = 16. Since each crosslinked unit
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generates f/2 chains (counted only once each), whereas each primary chain 

generates 2/2 chain ends (counted only once each), the total number of 

terminal end internal chains is given by:

(103)

Similarly, the internal chains alone are given by:

(104)

the terminal chains alone are given by:

(105)

Thus the fraction of total chains which are dangling is given by:

(106)

where NM = (2ν+ N) Mc = NoMo = ρ = 1g/cc 

and N is the number of primary chains/cc ~ 10-5 moles/cc

M is the primary molecular weight ~ 105

ν is the number of crosslinked units/cc ~ 4.5 x 10-5 moles/cc

Mc is the chain molecular weight ~ 104

No is the total number of monomer units/cc ~ 10-2 moles/cc 

Mo is the monomer molecular weight ~ 100

For these rough ballpark numbers, it develops from (106) that about twenty 

percent of the chains form dangling ends; thus for a well-cured network, an 

important crosslink density fluctuation is to be expected throughout the 

network. This fluctuation will be important as far as failure properties go, 

but not as important in connection with small strain response.

In addition to defects of the types discussed above, another network 

characteristic will undoubtedly influence failure properties; this is the
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presence of entanglements, loops, knots, and entwined network structures. 

As a result of these topological inhomogeneities, the local stress will be 

distributed as will the local strength. Thus the stress concentration around 

a strong defect point may be large enough to cause it to grow before another 

weak defect point around which there is a proportionately weaker stress 

concentration. Since very little can be said at the present time about the 

distribution of entanglements, and even less about the distribution of their 

strength properties, effects due to these irregularities shall be treated in a 

purely phenomenological manner.

B. Distribution of Defects in Undeformed Vulcanizate

1. Spatial Distribution of Defect Points.

Consider bulk polymer divided up into M cells labeled in some 

sequential order form 1, 2, . . . to M. Consider further that there are N1 

defect points in cell 1, N2 defect points in cell 2, etc. , the total number of 

defect points being given by:

(107)

What is the distribution function ‹ Ns ›, i. e. , what is the expected number of 

defect points in cell s? Let ps be the probability that a defect point occurs 

in cell s. Then the probability of a given distribution {Ns} of defect points 

is given by:

(108)

By the definition of probability, the sum of these overall probabilities (108) 

over all distributions must equal unity; i. e. , -
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(109)

By the multinomial theorem, (109) is equivalent to:

(110)

Thus the probability is normalized to unity.

Expressions for the moments of the distribution are now considered.

By definition:

(111)

(112)

where the prime over the product symbol indicates that the rth factor has 

been removed.

(113)

where Ns' = Ns, for s ≠ r, and Nr' = Nr -1 

(114)
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Since,

(115)

when all the {Pr} are equal, it follows that:

(116)

so that

(117)

which is simplest form of expectation based on a priori equal probability. 

This is the form one would expect for a completely homogeneous material.

The variance is given by:

(118)

(119)

(120)
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(121)

(122)

If M is large, we see that

(123)

Such a distribution, for which the mean equals the variance, is known as 

Poisson-type.

If an average cell is taken to be larger than several crosslinked units, 

then pr will be small and fairly constant from cell to cell, in which case the 

distribution (114) will be well represented by (117); it will not be a packed 

distribution. On the other hand, if the average cell size is taken to be smaller 

than a crosslinked unit, then pr will vary sharply from cell to cell depending 

upon the location of the dangling ends as well as on missing polymer fragments 

(voids, pinholes, free volume, etc. ); in this case the distribution will be 

sporadically packed. Neither of these distributions are useful for stochastic 

analysis. Of more importance is the algebraic distribution of defects, which

is now discussed.

2. Algebraic Distribution of Defect Points.

Also of interest is the expected number of cells that will contain s 

defect points. Let {Ms} be the set of numbers of cells containing weak points, 

assuming a given distribution of such in the material. Then
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(124)

(125)

The overall probability of a given distribution of cell numbers (each of which 

contains s weak points) is given by:

(126)

In order to normalize this probability, one sums over all distributions to

obtain:

(127)

(128)

(129)

The expected number of cells is then given by:

(130)
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(131)

(132)

(133)

(134)

or

(135)

For r << N, this simplifies to

(136)

which is another form of Poisson-type distribution. From (136) it follows 

that the average number of defects per cell is given by:

(137)

Likewise the variance is given by:
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(138)

Again it is noted that the variance equals the mean and that the 

distribution of numbers of cells with defect points depends only on the 

parameter m , which is the average number of defect points per cell. If 

one takes a cell to be 1 cc in size, and recall that there are about 1020 

chains/cc , then it becomes quite probable that m is a large number. For 

example, if a defect point is located at every point where there is a dangling 

end, then m will be of the order of 1019 defects/cc.

C. Distribution of Defects in Deformed Vulcanizate

It is now assumed that, when the vulcanizate is maintained in 

stressed (deformed) state, some of the defects will become active and grow 

into cracks. One cannot forecast exactly when and where these cracks will 

appear, but can estimate the probability of their occurrence by considering 

the growth phenomenon to be a stochastic process.

Consider now one of the unit cells (say 1 cc in size), and assume that

the cell contains a large number of defect points, as described above, each

of which has the possibility to grow into a crack while the cell is maintained

in a certain mechanical condition defined by a quantity φ, which depends only

on the state of stress. To each defect point, there is also ascribed a

critical value which is defined in such a way:

if φ > φg, the particular defect will grow to a crack and cause 

eventual rupture of the test specimen 

if φ < φg, the particular defect will not grow.
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Defects whose φg < φ are termed active; defects whose φg > φ are 

termed latent. If there are Nd defects in the unit cell, it is assumed that 

the distribution function of the φg is normalized by the relation:

(139)

The question now arises: What is the expected number of active 

defect points in the unit cell? If p is the probability that any one defect 

point is active, then the probability that the cell contains x active defect 

points is given exactly by the binomial distribution:

(140)

For x << Nd, this expression is well approximated by the Poisson distribution:

(141)

From (141), it follows that the expected number of active defect points is 

given by:

(142)

On the other hand, from the definition of φg it follows that the expected 

number of active defect points is given by:

(143)

which is consistent with the statement that the probability of occurrence of 

an active defect point is given by:
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(144)

Since md depends on the state of stress through φ (as yet undefined), 

it is quite possible that md can be a large fraction of Nd, leading to a 

relatively high value of p. Just how many of the defects are activated 

depends on the relation between the mechanical state of stress and the

failure criterion. It is now assumed that a state of constant true stress is 

applied which results in constant φ or md. The question then arises: 

What is the probability that one or more of these active defects becomes

a crack?

D. Distribution of Cracks in Deformed Vulcanizate

In order to answer the preceding question, one needs to know the

growth law. In lieu of speculating about the growth of defects, one can treat

again the formation of a crack as a stochastic process by assuming there is

another function g(φg) which is the probability density per unit time for 

crack formation. Thus:

(145)

where mc is the number of cracks which form per unit time. Nothing is

known about g(φg) except that it is Poisson-type and becomes more peaked 

(i. e. , - approaches Gaussian type) as time elapses. Furthermore, mctb 

must be a small number, since macroscopic observations of failure show 

that once one or two cracks have formed, sample fracture occurs shortly

thereafter.
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Thus in order to calculate mc, one can assume that 

(146)

Over this range of integration, one then assumes that g(φg) is continuous 

and monotonically increasing, and that

(147)

These assumptions are equivalent to stating that the integration is carried

out in the tail of a Gaussian distribution. Expanding g(φg) in a Taylor's 

series, one obtains, in view of (147)

(148)

Neglecting terms beyond the quadratic, one obtains for (145)

(149)

where c is the crack rate proportionality constant which is assumed to be 

constant in time. This assumption is the weakest point in this theory. φ is

a dimensionless function of the stress field.

Now, by an argument similar to that used in the preceding Section C,

it can be shown that mc is the expected number of cracks per unit time and 

that the actual crack probability distribution is given by:

(150)
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In writing (150) it is assumed that the stress field is uniform throughout the 

body from cell to cell (taken arbitrarily to be of 1 cc. size), so that φ is 

also uniform, and therefore also mc by (149). The probability that there are 

no cracks formed in a time interval ∆t is given by:

(151)

So, the probability that there develops one or more cracks per unit time 

between t and t + ∆t is given by:

(152)

Finally, the probability density per unit time that no cracks develop between 

time o and tb and that one or more develop in the next increment ∆t, is 

given by:

(153)

Since one can shoose ∆t to be arbitrarily small, (153) becomes in the limit

(154)

In the case of temporally non-constant but spatially uniform stress, 

(154) is readily generalized as follows:

First (149) becomes:

(155)

Then

(156)
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(157)

(158)

Equation (158) expresses the probability density per unit break time that a 

sample will rupture very shortly after the appearance of one or more cracks, 

whose rate of growth is expressed by (155) for a general time-dependent 

stress application.

One notes that (158) is normalized to unity, i. e. :

(159)

Let

(160)

so that (159) becomes

(161)

The expected break time is given by:

(162)

In the event that φ and therefore mc is independent of time, it follows that:

(163)

Since, for a constant mc, the observed break times evince considerable 

scatter, it is useful not only to know the mean or expected break-time, but
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also the higher moments of the break-time distribution, i. e. :

(164)

Thus the coefficient of variation is given by:

(165)

which states that the standard deviation equals the mean value. For

non-constant mc, the mean break-time and its standard deviation must be 

calculated from a knowledge of how φ and therefore mc depends on time. 

But φ depends on time implicitly through the stress field. Therefore it is 

necessary to introduce such a relation. We turn now to this point.

3. Relation Between Crack Rate and Stress Field

It has already been seen that, since mctb will be of the order of unity 

(Eqn. 163), a small number, it can be related to φ by integrating over the 

tail of a peaked Poisson distribution. This generated (149). The next 

question is: how does φ depend on the stress field? Based on data obtained 

on a polyurethane propellant(6), the suggestion is made that there is a 

critical stress level below which defects will not become active.

Just how φ depends on σ above this critical stress level is anybody's 

guess at the time of this writing. One simple proposal for uniaxial stress 

field may be:

(166)



For multiaxial stress field, one might have:

(167)

or then again

(168)

and so on. It is proposed to do a very careful study of break data on well 

characterized formulations in both uniaxial and biaxial stress fields and to 

search for a good phenomenological description of the relation between 

φ and σij and then to compare this with the Bueche-Halpin theory. On the 

other hand, it is not believed that the study of the initiation and growth of 

single cracks in a viscoelastic medium subjected to large deformations is 

sufficiently far advanced at this time to enable one to deduce the equivalent 

of (166), (167) or (168) from first principles.

Following (166), it is noted that (163) becomes:

(169)

for σ > σcr in simple tension 

or

(170)

Equation (170) has been applied to constant load creep data obtained by 

T. Smith(17) and J. Halpin(18). In both cases the loads were converted to
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true stress by multiplying by the measured stretch ratio at break. In 

Figure 2 is shown a plot of Smith's data, log breaking load vs log reduced 

breaking time, and also a plot of the converted log breaking stress vs. log 

breaking time. One notes that most of this plot is of the form of a straight 

line above the transition temperature, with a negative slope of (1/3). 

Furthermore when the true stress is corrected by subtracting off the critical 

true stress value of ca. 70 psi, all the data points in the rubbery region 

fall on a straight line. It is concluded that Eqn. (166) is an excellent 

representation for φ, with a value of n = 1.

The same procedure was applied to Halpin's data, Figure 3, except 

that the critical true stress was not determined. But again the usefulness of

(166) is verified.

4. Distribution of Break Times

A. Theoretical

Consider now the scatter of the break times at a given stress level. 

Rather than computing moments of the distribution such as the mean break- 

time, the mean square of the break-time, etc. , one can actually plot the 

cumulative fraction of samples that have break-time equal to or greater than 

some value Tb. This fraction, for constant mc, is given by:

(171)

This expression is to be contrasted with the one proposed by Coleman(19) 

based on extreme value theory, i. e.:

(172)
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The two expressions agree only in the event B = 1. Further, B is known to 

depend on sample size, whereas A or 1/mc depends on the defect distribu- 

tion, through ‹ tb ›. Thus, it is important to check the influence of sample 

size upon the scatter distribution as well as the effect of the load level 

(upon which ‹ tb › depends) upon the scatter distribution. In this report, the 

latter effect only is discussed.

B. Experimental

1. Preparation of Samples.

For the purpose of testing the theory of failure presented above, 

creep data under constant load were procured on a rubber formulation of the 

following composition:

Phillips SBR 1500 F 100 parts

Protox 166 ZnO 5.0 parts

Sulfur 1.5 parts

MBT 1.5 parts

Stearic acid 1.0 parts

After milling, batch sheets were molded on a hot press for one hour at 320°F. 

Ring specimens were cut from the sheets by a fly cutter. Such sheets display 

variable thickness from one region to another so that it was necessary to 

determine carefully the mean thickness of each ring as follows. A certain 

number of rings were weighed and also metered in all three dimensions on an 

optical comparator. It was found that the mean diameter was equal to 1.19" 

within .1%, and the mean width equal to .0626" within 3%. Thus the thick- 

ness could be sealed directly to the weight, and was found to be given by

(173)
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the overall mean thickness being .15". Thus it was possible to accelerate 

the pace of sample preparation by merely weighing the ring prior to subject­

ing it to constant load, which load was in turn proportioned to the load 

necessary to provide a fixed engineering stress for rings of thickness 

0.15 inch. In order to calculate the engineering stress, the following 

relation was used.

(174)

where L is the load

w+ is the width of the undeformed ring, and 

t+ is the thickness determined from the weight. If the thickness

were different from 0.15 inch, the load was scaled accordingly 

to give a fixed stress.

To calculate the stretch ratio, the following relations(20) were used.

(175)

(176)

(177)

where ∆ℓ is the increase in length of the ring, read by a linear

variable differential transformer.

Di+ is the inside diameter of the unstretched ring.
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‹ D ›+ is the mean diameter of the unstretched ring.

λi and λa are respectively the inside and average stretch ratios.

The average stretch ratio was used in reducing the data.

2. Data Reduction.

Rings were subjected to the following load levels: 0.90, 1.00,

1.10, 1.20, 1.30, 1.40, and 1.50 kg, always scaled to 0.15 inch thickness. 

At each of these load levels, 50 or more samples were allowed to creep to 

break at 75°F, and the break times and stretch-time curves were recorded. 

Figure 4 shows a plot of the observed break-times obtained at each of the 

applied loads. Table I summarizes some of the pertinent information 

obtained by averaging the break times and break stretch ratios at each load 

level. Column 1 gives the load in kg, Column 2 the engineering stress in 

kg∕cm2, Column 3 the mean break time in min. , Column 4 the coefficient of 

variation of the break time, Column 5 the crack rate calculated from the 

first moment of the break-time distribution (Eqn. (163), Column 6 the crack

rate calculated from the second moment of the break-time distribution 

(Eqn. 164), and Column 7 tabulates the mean stretch ratio at break. Accord- 

ing to the theory developed (Eqn. 165) the coefficient of variation should be 

unity regardless of load. Figure 5 shows the excellent correlation with the 

theoretical slope of unity. The actual value averaged over the seven load 

levels is 1.246, and that averaged over all but the first load level is .827, 

which is probably as close as one can get to such a simple first-order theory 

after allowing for the intrinsic errors of sample measurement and testing.

The unusually high value obtained for the data at 0.90 kg probably indicates 

a change in the mechanism of break associated with long break times of the
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order of days. This inference probably reflects the effects of slow chemical 

degradation (oxidation and/or ozonation).

Again, barring the lowest load level, all crack rates calculated 

from first and second moments show exceedingly good agreement. This 

indicates that the data indeed do represent a theory of the type we have 

presented. To test this further, the distributions of break times for all 

load levels as suggested by the theory (Eqn. 171), were plotted in the form

(178)

Figure 6 shows a plot of some of the data points obtained at all seven load 

levels. The theoretical line has, of course, a slope of unity, and the data 

thus evince excellent agreement with the theoretical equation (108). Note 

that the scatter increases as the load decreases, which bears out the

previously stated inference that the mechanism tends to change as the break 

time increases. One also notes that this correlation implies that the 

parameter B in the Coleman theory is unity. Since B is known to depend on 

sample size, we are in the process of repeating some of these experiments 

for larger rings.

In addition to testing ring specimens ab initio (i. e. - directly from 

the mold), other specimens were prestretched at 2"∕min for ten cycles on 

the Instron to a stretch ratio of 400 percent. The same data were procured 

and reduced in like fashion; no significantly different results were found.

According to the relation (Eqn. 170) found for Bueche's and Halpin's 

data, the slope of a log-log plot of true stress vs. mean break time should 

have a negative slope equal to 1∕3 n where n is an empirical exponent in 

the expression (Eqn. 166) which relates the state of stress φ to the local 

stress field σij. Such plots reduced from Smith's and Halpin's data
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indicated a value of 1 for n. Contrariwise, a value of 2 (Figure 7) is 

found for the previously described formulation which is assumed to be 

quite similar to the Smith and Halpin formulations. In view of the large 

number of samples tested and the excellent fit of the data to the exponential 

distribution, as opposed to the relatively few samples tested by Halpin and 

Smith, it is concluded that the value 2 is a more meaningful number.

C. Conclusion.

After observing the excellent correlation presented in Figure 8, one 

concludes that the simple exponential function (178) is a very useful measure 

of the distribution of break times regardless of load. It remains to determine 

whether this correlation is independent of sample size. Furthermore it can 

readily be anticipated that since the fracture process is rate controlled by a 

viscoelastic mechanism, as pointed out by Halpin(11), that creep data 

obtained at various temperatures will be simply correlated on Figure 5 after 

multiplying ‹ tb › by aT. Likewise data obtained in different stress fields 

and for vulcanizates of different cure types and cure densities should all

follow the same correlation.

One expects however that the correlation shown in Figure 6 will show 

significant variation with temperature, stress field, chemical composition , 

and filler content . Just how the parameters k, n and of Eqn. (169) as 

well as the forms of Eqns. (166 - 168) may depend upon stress cannot at 

this stage be anticipated although such questions do form legitimate basis for 

a dynamic mechanical investigation of defect growth and crack propagation.
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D. TENSILE BEHAVIOR OF SWOLLEN AND UNSWOLLEN GUM

RUBBER VULCANIZATES

1. Statistical Analysis of Ring Dimensions

The dimensions of a total of twenty rings, compounded according 

to the standard Kawabata formulation, were measured by means of the 

optical comparator. Figure 8 shows a plot of the mean area ‹ A › of each 

ring (averaged over eight widths and six thickness measurements per ring) 

versus the weight, W, of the ring. The correlation is excellent, the 

correlation coefficient being 0.9880, and the regression line being given by:

‹ A › (in2) = -0.0001752 + 0.01783 W(g)

with a standard error of . 00022 sq. in. The white circles in Figures 8, 9, 

and 10 represent measurements on rings cut from the sheet referred to in 

the previous report. The black circles represent measurements made on 

rings cut from another sheet.

Figure 9 shows a similar correlation of mean thickness, (t), versus 

weight, W, the correlation coefficient being 0.9236, and the regression line 

being given by:

‹ t ›(in) = 0.01918 + 0.1965 W(g) 

with a standard error of . 00644 inch.

Figure 10 shows the poor correlation which exists between mean 

width, (w), and weight, W, the correlation coefficient being . 3736, which is 

not significant at the 95% confidence level. The average ring has a mean 

width of 0.0787 in. with a coefficient of variation of 3.8%. Alternatively if 

one averages the outside and inside diameter over the twenty rings, one 

finds the following results:
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Averaged over twenty rings, in. Cutter dimension, in.

‹ Di › 1.1061 > 1.1055

‹ Do › 1.2638 > 1.2580

.07885 > . 0763

Thus the mean width can be taken from measured average diameters, each 

of which is slightly greater than the cutter dimensions. This, and the poor 

mean width-weight correlation, indicate that the rubber is somewhat deformed 

and some material is lost during the cutting operation. An alternative 

method of cutting, in which the rubber sheet is held fixed by a metal plate, 

perforated with a hole of the right size, will be introduced. It is expected, 

on the basis of experience obtained with this method at Stanford Research 

Institute, that this technique will reduce the coefficient of variation of the 

width below one percent.

Summarizing: the new standard procedure will be to measure the 

dimensions of twenty rings for each sheet pressed from a mill batch. On 

each ring six measurements of thickness, eight of width, and four of internal 

diameter, will be taken. The mean thickness will be plotted versus weight 

and the regression line determined. The mean width will be obtained by 

straightforward averaging over all rings. This will then be taken as a 

fixed quantity for all rings of the same batch used in creep testing, while 

the thickness will be computed individually from the weight of each ring. For 

Mooney-Rivlin plots, it is only necessary to supply the additional information 

of mean inside diameter, which will also be taken as a fixed quantity for all 

rings of the same batch.
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2. Effect of Solvents Upon the Mechanical Behavior of the Kawabata

Formulation

Having made precise a method for determining the dimension of 

rubber rings, it is now possible to determine also precisely the initial 

stress under which a sample is allowed to creep, or the variable stress- 

strain relation evinced by tensile pull at constant elongation rate. We 

are now in the process of using the tensile pull at constant rate as a preliminary 

characterization of a series of batches of rubber rings, each batch having 

been treated with various reagents which affect both the sol fraction and 

chemical structure of the rubber. The motivation for this study is to deter- 

mine the optimum chemical structure of possible binders. Subsequent to 

this preliminary characterization, additional creep tests will be run to assess 

the effect of the changes in sol fraction and chemical structure upon the 

creep failure characteristics which were described in MATSCIT PS 65-4,

"A Research Program on Solid Propellant Physical Behavior, " Quarterly 

Report No. 5 and 6, August 1965.

The sequence of tensile tests on samples treated with various 

reagents is projected as follows:

1. 6 raw samples pulled dry, 3 at +25°C, 3 at -24°C.

2. 6 samples swollen in toluene for two weeks, then vacuum dried 

for ten hours and pulled dry.

3. 6 samples swollen in toluene for two weeks, and pulled dripping 

wet (an immersion cup is being constructed).

4. 6 samples swollen in toluene, vacuum dried as above, and then 

refluxed with acetone for 16 hours, vacuum dried, and pulled 

dry.
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5. 6 samples swollen in toluene, vacuum dried as above, and

then refluxed with acetone for 16 hours, and pulled dripping wet.

6. 6 samples refluxed with acetone for 16 hours, vacuum dried as 

above, and pulled dry.

7. 6 samples refluxed with acetone for 16 hours, and pulled dripping

wet.

8. 6 samples refluxed with acetone for 16 hours, vacuum dried, then 

refluxed for 16 days at 80°C with benzene solution made up to a 

composition based on two formula weights of triphenyl phos- 

phine in solution per formula weight of sulfur in the rubber,

then vacuum dried, and pulled dry.

The purpose of the toluene extraction is twofold: to leach out sol 

fraction and to determine the effect of cross-link density on the equilibrium 

swelling and on the second Mooney-Rivlin constant as measured by the tensile 

pull. The purpose of the acetone extraction is to leach out uncured or free 

sulfur and the purpose of the triphenylphosphine reaction is to change the 

cross-linking structure by removing sulfur as follows:

It is planned to carry this reaction out for various periods of time up to 

16 days, after which time at least 95% of the cross-linked sulfur is removed
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from bridges, the tetrasulfide bridges going sequentially to trisulfide

to disulfide to monosulfide to zero sulfide. In addition, cyclic sulfur

bridges doubly attached to the same chain are similarly reduced.

The Mooney-Rivlin plots for all the dry pulls - Cases 1, 2, 4 and 6 

shown in Figures 11, 12, 13, and 14. In all four cases the data obtained at 

both temperatures evince a form characteristic of Mooney-Rivlinear materials, 

the data at the lower temperature showing an additional upturned segment 

characteristic of a network of finite length chains. The straight-line para- 

meters of the eight curves are summarized in Table II.

It appears that the only significant difference which stands out in 

Table II is the increase in f_ at ambient temperature from .10 to .20 as a 

result of treatment with solvents. Not quite as striking is the increase in

shear modulus. Both of these increases are consistent with a removal of

sol fraction which increases cross-link density. In the next report we shall 

show the effects of swelling upon the slope (l-f) of the Mooney-Rivlin plots. 

Beyond that, it is anticipated that greater effects will show up in the records 

of the creep data which will be obtained during the next six months.

3. Swelling of Rings in Toluene

Prior to pulling the rings dripping wet (cases 3, 5, 7, Table II), it 

is necessary to record the wet dimension, and to observe how rapidly the 

rings swell timewise in order to determine a practical upper limit to swell 

duration. For this purpose a traveling microscope has been constructed in 

the Polymer Science Laboratory. A correlation between weight and thick- 

ness will be obtained on this apparatus for another twenty rings. The first 

five results are shown in Figure 15. If it develops that the standard error 

incurred with this apparatus does not exceed ten percent, it will be used in
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place of the more time-consuming and less convenient measurements on 

the optical comparator.

4. Solvent Treatment of the Kawabata Formulation

A sequence of solvent treatments has been applied to the Kawabata 

formulation to study the effect of removal of sol fraction and the effect of 

swelling upon the Mooney-Rivlin plot, these treatments all being prior to the 

determination of creep failure data. The Mooney-Rivlin plots for the wet 

samples are shown in Figures 16, 17 and 18, where there are recorded 

tensile pulls at 1"∕min (three samples at +24°C, three at -24°C) for 

samples :

a) swollen in toluene for two weeks, and pulled dripping wet.

b) swollen in toluene, vacuum dried, refluxed with acetone for 

18 hours, and pulled dripping wet.

c) refluxed with acetone for 18 hours, and pulled dripping wet.

In contrast to the four plots shown above for the tensile pulls on dry 

samples, Figures 16, 17 and 18, evince nearly straight-line behavior with 

a slope close to zero in all cases. Thus, both toluene and acetone are 

effective in reducing entanglements between chains, and concatenately in

reducing C2 to zero, or increasing f to unity. These conclusions are 
summarized in Figures 19 and 20 from which it also becomes clear that 

the shear modulus is reduced markedly as a function of swelling. Finally, 

one notes that acetone is not quite as efficient a swelling agent as toluene, 

although pretreatment with toluene seems to render the acetone somewhat

more effective.

In order to expedite the swelling process, the change in dimension of 

a ring was metered with the traveling microscope over a period of two weeks.
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It is apparent from Figure 21 that most of the swelling is completed within 

12 hours. Thus, for future testing purposes, it will not be necessary to swell 

for more than one day.

Likewise, it will be prudent to expedite the acetone extraction by 

determing how long it takes to remove free sulfur. An analytical technique 

for doing this is now being checked out.

5. Optimization Studies on SBR-MBT and SBR-MBTS Formulations

As a result of previous studies, it was determined that a so-called 

optimum formulation in terms of maximum elongation was achieved by 

plasticizing the Kawabata formulation with 20 parts DOP. For such plasticized 

formulations a further study was made to determine optimum S-MBT or 

optimum S-MBTS concentration and optimum cure time and temperature.

The results are shown in Figures 22, 23, 24 and 25, for tensile pulls at 

+24°C and -30°C.

It is apparent particularly from the +24°C data that formulations below 

0.6 S-MBT or 0.6 S-MBTS tend to become tacky. Also, there is no significant 

difference between MBT and MBTS although there may be some effect as 

regards oxidative stability with time. This remains to be determined.

Furthermore, there is little or no significant difference among the various 

cure histories. From now on it is decided to cure for one-half hour at 325°F. 

This completes the optimization study. The particular formulation based on 

0.6 S-MBT or 0.6 S-MBTS will be used for creep failure studies along with 

the Kawabata formulation in uniaxial, biaxial, and triaxial stress fields.
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E. CHEMICAL ANALYSIS OF SULFUR IN MILLED MASTER BATCHES

AND GUM VULCANIZATE

1. Introduction

In order to provide quality control over crosslink density, it is 

necessary to develop analytical techniques for the determination of free 

sulfur and crosslinked sulfur prior to the correlation of crosslink density 

with physical properties. At present three problems are being worked on:

a) determination of the change with time of the concentrations of

free sulfur and crosslinked sulfur in cured and uncured

(master batches and mill batches) rubber.

b) determination of the change in concentrations of free sulfur

and crosslinked sulfur after extraction with acetone.

c) effect of selective attack of polysulfide linkages by 

triphenylphosphine.

Three methods are being used to determine sulfur in the rubber 

samples:

a) Determination of total sulfur as BaSO4.

The rubber is digested in f. HNO3 and Br2. After treatment 

the SO4= is precipitated as BaSO4 and determined gravimetrically.

b) Determination of free sulfur as thiosulfate.

The rubber is digested in Na2SO3 and the thiosulfate formed 

is titrated isdometrically.

c) Determination of all sulfur simultaneously.

i) Free sulfur is determined as H2S liberated from rubber 

samples refluxed in HCl - ether solution.

ii) Polysulfide sulfur is determined as S titrated potentiometrically.
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iii) Mono- and di-sulfide linkages are determined as the 

mercaptan titrated potentiometrically (in the same 

titration as above).

2. Analytical Results

Progress that has been made toward the goals mentioned above 

include:

a) Determination of the free sulfur content of the sulfur-containing 

Master Batch (MB 2).

Total sulfur in MB 2 = 23.08 ± .05%, prepared 1 March 1965.

Free sulfur in MB 2 = 17. 78 ± . 22%, determined 1 December 1965.

The free sulfur was determined by method b) above.

b) Samples of Mill Batches 1 and 2 with MBTS and Mill Batch 1 

with MBT have been prepared for titration. The free sulfur 

will be determined by method b).
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II. PHYSICOMECHANICAL BEHAVIOR OF

FILLED GUM RUBBER VULCANIZATES

A. INTRODUCTION

At this point in the program of study on the physicomechanical 

behavior of rubber vulcanizates, the groundwork has been laid for the 

determination of failure properties. A stochastic method has been developed 

for correlating break time and break stress in increased tension. The method 

will be applied to samples subjected to bi- and tri-axial tension at various 

temperatures. The failure surfaces will be plotted and correlated with 

crosslink density. Internal energy effects will also be evaluated.

This same procedure will now be applied to filled binders. As a 

start in this direction, we have elected to introduce a new concept in binder 

type. As is well known, a filled rubber gets its strength both from crosslinks 

and from adhesion. However, the crosslink density can not be too high or 

ultimate elongation becomes too low. In order to avoid this problem, one 

can omit chemical crosslinks entirely, while providing good adhesion as 

well as physical crosslinks. An excellent candidate for this type of binder 

is the thermoplastic rubber Kraton (Shell Development Company) based on 

styrene-butadiene-styrene triblock polymers. At ambient temperature the 

styrene is below its glass transition temperature, and thus acts as a 

crosslink whether or not filler is dissolved in the glass phase. The butadiene, 

on the other hand provides high elongation and high adhesion to filler. The 

major difficulty with such a system is susceptibility to air oxidation. An 

alternate candidate chosen from the Kraton series is based on styrene- 

isoprene-styrene which is much more stable toward oxidation. Both of these 

candidates are being used to prepare glass bead-filled resins with 50 vol. % 

beads of 30μ diameter. Tensile data are being procured.
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Figure 1. Mooney-Rivlin Plot for Non-Affine Deformation of

2-Link Chain.
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Figure 2. Break Stress-Break Time Data Determined by T. Smith.
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Figure 3. Break Stress-Break Time Data Determined by J. Halpin.
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Figure 4. Break-time — Break-load
Correlation for Creep Failure 
Data on SBR at 75°F.
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Figure 5. Crack Hates Calculated from 
First and Second Moments of 
Break-time Distribution.
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Figure 6. Break Time Distribution 
as a Function of Mean Break Time: 
Master Check of Break-Time Theory.
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Figure 7. Correlation Between Mean Break Time in Creep and 
True Stress Level in Simple Tension.
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Fig. 8. AREA-WEIGHT CORRELATION
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Fig. 9. THICKNESS-WEIGHT CORRELATION



-68-

Fig. 10. WIDTH-WEIGHT CORRELATION
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Fig. 11. SBR-MBT-S UNSWOLLEN
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Fig. 12. SBR-MBT-S SWOLLEN IN TOLUENE, VACUUM DRlED
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Fig. 13. SBR-MBT-S SWOLLEN IN TOLUENE, ACETONE EXTRACTED
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Fig. 14. SBR-MBT-S, ACETONE EXTRACTED
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Fig. 15. WEIGHT-THICKNESS CORRELATION FROM TRAVELING MICROSCOPE
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Fig. 16. MOONEY-RIVLIN PLOT FOR SBR-MBTS SWOLLEN IN TOLUENE AND PULLED 
AT 1"/MIN DRIPPING WET
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Fig. 17. MOONEY-RIVLIN PLOT FOR SBR-MBTS SWOLLEN IN TOLUENE, VACUUM DRIED,
ACETONE EXTRACTED, AND PULLED AT 1"/MIN DRIPPING WET
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Fig. 18. MOONEY-RIVLIN PLOT FOR SBR-MBTS ACETONE 
EXTRACTED, AND PULLED DRIPPING WET
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Fig. 19. MOONEY-RIVLIN PARAMETERS AS A FUNCTION OF SOLVENT TREATMENT 
AT +24ºC
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Fig. 20. MOONEY-RIVLlN PARAMETERS AS A FUNCTION OF SOLVENT 
TREATMENT AT -24ºC
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Fig. 21. TIME DEPENDENCE OF SWELLING OF SBR-MBTS RING IN 
TOLUENE AT ROOM TEMPERATURE



-80-

Fig. 22. ULTIMATE PROPERTIES OF PLASTICIZED KAWABATA FORMULATIONS PULLED AT +24ºC
FOR VARIOUS CURE SCHEDULES & VARIOUS CURATIVE CONCENTRATIONS BASED
ON MBT
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Fig. 23. ULTIMATE PROPERTIES OF PLASTICIZED KAWABATA FORMULATIONS PULLED AT +24ºC
FOR VARIOUS CURE SCHEDULES AND VARIOUS CURATIVE CONCENTRATIONS
BASED ON MBTS
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Fig. 24. ULTIMATE PROPERTIES OF PLASTICIZED KAWABATA FORMULATIONS PULLED AT-30ºC 
FOR VARIOUS CURE SCHEDULES AND VARIOUS CURATIVE CONCENTRATIONS

BASED ON MBT
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Fig. 25. ULTIMATE PROPERTIES OF PLASTICIZED KAWABATA FORMULATIONS PULLED 
 AT -30ºC FOR VARIOUS CURE SCHEDULES & VARIOUS CURATIVE

CONCENTRATIONS BASED ON MBTS



TABLE I. Mean Break Time and Crack Growth Rates 
as a Function of Load

Constant
Load,
Kg

σo,
Kg∕cm2

‹ tb ›

min
‹ λb ›

0.90 7.42 1.213 x 103 3.760 8.24 x 10-4 3.00 x 10-4 4.06

1.00 8.25 3.853 x 102 0.740 2.60 x 10-3 2.96 x 10-3 4.60

1.10 9.08 1.293 x 102 1.120 7.73 x 10-3 8.03 x 10-3 5.03

1.20 9.90 3.369 x 101 0.356 2.97 x 10-2 2.80 x 10-2 5.46

1.30 10.72 1.363 x 101 0.888 7.34 x 10-2 9.30 x 10-2 5.86

1.40 11.55 6.237 1.110 1.60 x 10-1 1.5. x 10-1 6.06

1.50 12.38 2.256 0.747 4.43 x 10-1 4.40 x 10-1 6.33
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TABLE II

Mooney-Rivlin Parameters for SBR-MBT-S Vulcanizates

A. Shear Moduli, psi

T = +24ºC T = -24ºC

Pulled dry 69 129

Swollen in toluene, 
vacuum dried, 
pulled dry 80 153

Swollen in toluene, 
vacuum dried, acetone 
extracted, pulled dry 83 145

Acetone extracted, 
pulled dry 74 137

Averages of last 
three cases ( ±1 σ) 79 ( ± 4. 6) 145 ( ± 8)

B. f ≡ C1∕μ

T = +24°C T = -24ºC

Pulled dry . 10 . 10

Swollen in toluene, 
vacuum dried, 
pulled dry . 20 . 10

Swollen in toluene, 
vacuum dried, acetone 
extracted, pulled dry . 21 . 15

Acetone extracted, 
pulled dry . 18 . 10

Averages of last 
three cases ( ± 1 σ) .197 (± .015) .117 (± .029)
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During the past year, further progress was made in understanding both 
the molecular nature of the strain energy function of a homogeneous, nearly 
incompressible rubberlike material. The importance of non-affinity of 
deformation, chain stiffness, and volume exclusion in modifying the basic 
statistical model of Kuhn, Grün, James and Guth are discussed.

A phenomenological theory for predicting the distribution of times-to- 
break arising in creep failure in terms of the growth of defects in rubber was 
proposed and showed good agreement with experimental data.

Batches of thermoelastic rubber filled with glass beads are being 
prepared prior to evaluation in terms of sedimentation theory.
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