
ar
X

iv
:1

40
8.

14
29

v1
 [

cs
.G

T
]

6
A

ug
 2

01
4

Achieving Target Equilibria in Network Routing Games
without Knowing the Latency Functions

Umang Bhaskar∗ Katrina Ligett† Leonard J. Schulman‡ Chaitanya Swamy§

Abstract

The analysis of network routing games typically assumes, right at the onset, precise and de-
tailed information about the latency functions. Such information may, however, be unavailable or
difficult to obtain. Moreover, one is often primarily interested in enforcing a desired target flow
as the equilibrium by suitably influencing player behavior in the routing game. We ask whether
one can achieve target flows as equilibriawithout knowing the underlying latency functions.

Our main result gives a crisp positive answer to this question. We show that, under fairly
general settings, one can efficiently computeedge tollsthat induce a given target multicommodity
flow in a nonatomic routing game using apolynomial number of queriesto anoracle that takes
candidate tolls as input and returns the resulting equilibrium flow. This result is obtained via a
novel application of the ellipsoid method. Our algorithm extends easily to many other settings,
such as (i) when certain edges cannot be tolled or there is an upper bound on the total toll paid
by a user, and (ii) general nonatomic congestion games. We obtain tighter bounds on the query
complexity for series-parallel networks, and single-commodity routing games with linear latency
functions, and complement these with a query-complexity lower bound. We also obtain strong
positive results for Stackelberg routing to achieve targetequilibria in series-parallel graphs.

Our results build upon various new techniques that we develop pertaining to the computation
of, and connections between, different notions of approximate equilibrium; properties of mul-
ticommodity flows and tolls in series-parallel graphs; and sensitivity of equilibrium flow with
respect to tolls. Our results demonstrate that one can indeed circumvent the potentially-onerous
task of modeling latency functions, and yet obtain meaningful results for the underlying routing
game.

∗Dept. of Computing and Mathematical Sciences, California Institute of Technology. Work supported in part
by a Linde/SISL postdoctoral fellowship and NSF grants CNS-0846025, CCF-1101470 and EPAS-1307794. Email:
umang@caltech.edu.

†Dept. of Computing and Mathematical Sciences, California Institute of Technology. Work supported in part by the
Charles Lee Powell Foundation and a Microsoft Faculty Fellowship. Email:katrina@caltech.edu.

‡Dept. of Computing and Mathematical Sciences, California Institute of Technology. Work supported in part by NSF
grants 1038578 and 1319745. Work performed in part at the Simons Institute for the Theory of Computing at UC Berkeley.
Email: schulman@caltech.edu.

§Dept. of Combinatorics and Optimization, University of Waterloo. Supported in part by NSERC grant
32760-06, an NSERC Discovery Accelerator Supplement Award, and an Ontario Early Researcher Award. Email:
cswamy@math.uwaterloo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216227408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1408.1429v1

1 Introduction

Network routing gamesare a popular means of modeling settings where a collection of self-interested,
uncoordinated users or agents route their traffic along an underlying network—prominent examples
include communication and transportation networks—and have been extensively studied from various
perspectives in the Transportation Science and Computer Science literature; see, e.g., [34, 2, 23, 24,
11, 17, 36, 37, 33], and the references therein. These games are typically described in terms of an
underlying directed graphG = (V,E) modeling the network, a set of commodities specified by
source-sink pairs and the volume of traffic routed between them modeling the different user-types,
and latency functions or delay functions(l∗e : R+ 7→ R+)e∈E on the edges, withl∗e(x) modeling
the delay experienced on edgee when volumex of traffic is routed along it. The outcome of users’
strategic behavior is described by the notion of anequilibrium traffic pattern, wherein no user may
unilaterally deviate and reduce her total delay.

The typical means of mathematically investigating networkrouting games takes the above speci-
fication as input, and thus, assumes, right at the onset, thatone has precise, detailed information about
the underlying latency functions. However, such precise information may be unavailable or hard to
obtain, especially in large systems, without engaging in a highly non-trivial and potentially-expensive
modeling task. In fact, the task of capturing observed delays via suitable delay functions is a topic of
much research in itself in fields such as queuing theory and transportation science. Recognizing that
the modeling task of obtaining suitable latency functions is often really a means to facilitating a math-
ematical analysis of the underlying routing game, we ask whether one can sidestep this potentially-
demanding task and analyze the routing gamewithout knowing the underlying latency functions. This
is the question that motivates our work.

In routing games, there is often a central authority who has some limited ability to influence
agents’ behavior by making suitable changes to the routing game, e.g., imposing tolls on the network
edges. This influence can be used to alleviate the detrimental effects of selfish agent behavior, which
might be expressed both in terms of the agents’ costs (i.e., price of anarchy) and externalities not
captured by these (e.g., pollution costs in a road network).Thus, a natural and well-studied goal in
network routing games is toinduce a desirable target traffic pattern as an equilibriumby suitably
influencing agents’ behavior. Such a target traffic pattern may be obtained by, e.g., limiting the traffic
on every edge to a fraction of its capacity, or reducing the traffic near hospitals and schools. It is
evident here that suitably modeling the latency functions is only a means to the end goal of achieving
the target traffic pattern. Our work aims to shed light on the following question:can one achieve this
end without the means?

1.1 Our contributions

We initiate a systematic study of network routing games fromthe perspective of achieving target
equilibria without knowing the latency functions. We introduce aquery modelfor network routing
games to study such questions, and obtain bounds on the querycomplexity of various tasks in this
model.

The query model. We are explicitly given the underlying networkG = (V,E), the set of com-
modities specified by the source-sink pairs and the demands to be routed between them, and thetarget
multicommodity flowf∗ that we seek to achieve. Wedo not, however, know the underlying latency
functions(l∗e)e∈E . Instead, the only information that we can glean about the latency functions is via
queries to ablack boxor oracle (e.g., simulation procedure) that outputs the equilibriumflow under

1

a specified stimulus to the routing game. We investigate two methods for influencing agent behavior
that have been considered extensively in the literature, which gives rise to two types of queries.

We primarily focus on the task of computingedge tollsto inducef∗ (Sections 3 and 5.1). This
yields the following query model: each query consists of a vector of tolls on the edges, and returns
the equilibrium flow that results upon imposing these tolls.The goal is to minimize the number of
queries required to compute tolls that yieldf∗ as the equilibrium.

We also explore, in Sections 4 and 5.2, the use ofStackelberg routingto inducef∗. Here, we
control anα fraction of the total traffic volume. Each query is a Stackelberg routing, which is a
flow of volume at mostα times the total volume, and returns the equilibrium flow under this Stack-
elberg routing. The goal is to minimize the number of queriesrequired to compute a Stackelberg
routing that inducesf∗ as the equilibrium.

Our results and techniques. Our main result is a crisp and rather sweeping positive result showing
thatone can always obtain tolls that induce a given target flowf∗ with a polynomial number of queries
(Section 3.1). With linear latency functions, our algorithm computes tolls that enforcef∗ exactly
(Theorem 3.2). With more general latency functions, such asconvex polynomial functions, equilibria
may be irrational, so it is not meaningful to assume that a query returns the exact equilibrium. Instead,
we assume that each query returns a (suitably-defined) approximate equilibrium and obtain tolls that
enforce a flow that is component-wise close tof∗ (Theorem 3.6).

The chief technical novelty underlying these results is an unconventional application of the ellip-
soid method. We view the problem as one where we are searchingfor the (parameters of the) true
latency functionsl∗ and tolls that inducef∗. It is information-theoreticallyimpossible, however, to
identify l∗ (or even get close to it) in the query model since,—as is the case even whenG is a single
edge—there may be no way of distinguishing two sets of latency functions. The key insight is that,
notwithstanding this difficulty, if the current candidate tolls τ do not enforcef∗, then one can use
the resulting equilibrium flow to identify a hyperplane thatseparates our current candidate(l, τ) from
the true tuple(l∗, τ∗). This enables one to use the machinery of the ellipsoid method to obtain tolls
enforcingf∗ in a polynomial number of queries.

Our ellipsoid-method based algorithm is quite versatile and can be easily adapted to handle var-
ious generalizations (Section 3.2). For instance, we can incorporateany linear constraints that tolls
inducingf∗ must satisfy, which one can separate over. This captures constraints where we disallow
tolls on certain edges, or place an upper bound on the total toll paid by an agent. All our machinery
extends seamlessly to the more-general setting ofnonatomic congestion games. Finally, another no-
table extension is to the setting ofatomic routing gamesunder the assumption that the equilibrium is
unique.

In Sections 3.3 and 3.4, we devise algorithms with substantially improved query complexity for (a)
multicommodity routing games on series-parallel (sepa) networks, and (b) single-commodity routing
games on general networks, both with linear latency functions. For (a), we exploit the combinatorial
structure of sepa graphs to design an algorithm with near-linear query complexity. We show that any
toll-vector in a sepa graph can be converted into a simpler canonical form, which can be equivalently
viewed in terms of certain labelings of the subgraphs of the sepa graph obtained via parallel joins;
leveraging this yields an algorithm with near-linear querycomplexity. Our algorithm works more
generally whenever we have an oracle that returns the (exact) equilibrium. For (b), we prove that
(roughly speaking) the equilibrium flow is a linear functionof tolls, and use linear algebra to infer the
constants defining this linear map iñO(|E|2) queries.

Complementing these upper bounds, we prove anΩ(|E|) lower bound(Theorem 5.1) on the query

2

complexity of computing tolls that induce a target flow, evenfor single-commodity routing games on
parallel-link graphs with linear delays. This almost matches the query complexity of our algorithm
for sepa graphs.

En route to obtaining the above results, we prove various results that provide new insights into
network routing games even in the standard non-black-box model where latency functions are known.
For instance, we obtain results on: (a) the computation of approximate equilibria and their properties
(Lemmas 3.4 and 3.5); (b) structural properties of tolls andmulticommodity flows in sepa graphs
(Section 3.3); and (c) sensitivity of equilibrium flow with respect to tolls (Theorem 3.18). We believe
that these results and the machinery we develop to obtain them are of independent interest and likely
to find various applications.

In Section 4, we investigate the use of Stackelberg routing to induce a given target flow. Stackel-
berg routing turns out to be significantly harder to leveragethan edge tolls in the query model. This
is perhaps not surprising given that designing effective Stackelberg routing strategies turns out to be
a much-more difficult proposition than computing suitable edge tolls, even in the standard non-black-
box setting where latency functions are given (see, e.g., [26, 5]). Nevertheless, we build upon the ma-
chinery that we develop for sepa graphs to give a rather efficient and general combinatorial algorithm
that finds the desired Stackelberg routing using at most|E| queries to an oracle returning equilibrium
flows. This applies to any strictly increasing latency functions, and in particular, to linear latency
functions. (Observe that this query complexity is even better than our query-complexity bound for
inducing flows via tolls on sepa graphs.) Moreover, our algorithm determines the Stackelberg routing
of smallest volume that can inducef∗.

We obtain various lower bounds in Section 5.2 that allude to the difficulty of computing a Stack-
elberg routing in general networks that induces a target flow. One possible strategy for finding such a
Stackelberg routing is to use the queries to infer an (approximately) “equivalent” set of delay functions
l, in the sense that any Stackelberg routing yields the same (or almost the same) resulting equilibrium
under the two sets of delay functions. Then, since given the latency functions, it is easy to compute a
Stackelberg routing that induces a target flow (see Lemma 2.2), one can find the desired Stackelberg
routing. Theorem 5.5 shows that such an approach cannot work: in the query model, any algorithm
that learns even an approximately equivalent set of delay functions must make anexponentialnumber
of queries. Theorem 5.8 proves an orthogonal computationallower bound showing that determining
the equivalence of two given sets of latency functions is anNP-hard problem. As in the case of tolls,
along the way, we uncover a new result about the hardness of Stackelberg routing. We show that
the problem of finding a Stackelberg routing that minimizes the average delay of the remaining equi-
librium flow is NP-hard to approximate within a factor better than4/3 (Theorem 5.11). The query
complexity of finding a Stackelberg routing in general networks that induces a target flow remains an
interesting open question for further research.

Our results on tolls and Stackelberg routing demonstrate that it is indeed possible to circumvent
the potentially-onerous task of modeling latency functions, and yet obtain meaningful results for the
underlying routing game. Our array of upper- and lower- bound results indicate the richness of the
query model, and suggest a promising direction for further research.

1.2 Related work

Network routing/congestion games with nonatomic players—where each player controls an infinitesi-
mal amount of traffic and there is a continuum of players—werefirst formally studied in the context of
road traffic by Wardrop [34], and the equilibrium notion in such games is known as Wardrop equilib-

3

rium after him. Network routing games have since been widelystudied in the fields of Transportation
Science, Operations Research, and Computer Science; see, e.g., the monographs [23, 24] and the
references therein. We limit ourselves to a survey of the results relevant to our work.

Equilibria are known to exist in network routing games, evenwith atomic players with split-
table flow [22]. Nonatomic equilibria are known to be essentially unique, but this is not the case
for atomic splittable routing games, where uniqueness criteria were recently obtained by Bhaskar et
al. [3]. Equilibria in routing games are known to be inefficient, and considerable research in algo-
rithmic game theory has focused on quantifying this inefficiency in terms of theprice of anarchy
(PoA) [18, 20] of the game, which measures, for a given objective, the worst-case ratio between the
objective values of an equilibrium and the optimal solution. A celebrated result of Roughgarden [25],
and Roughgarden and Tardos [30] gives tight bounds on the PoAfor nonatomic routing games for
the social welfare objective. Recently, similar results were obtained for the PoA in atomic splittable
routing games [13, 29].

Given the inefficiency of equilibria, researchers have investigated ways of influencing player be-
havior so as to alleviate this inefficiency. The most common techniques studied to influence player
behavior in network congestion games are the imposition of tolls on the network edges, and Stackel-
berg routing. Network tolls are a classical means of congestion control, dating back to Pigou [21], and
various results have demonstrated their effectiveness forboth nonatomic routing [2, 6, 11, 17, 36] and
atomic splittable routing [33, 37] showing that any minimalflow (in particular, an optimal flow) can be
enforced via suitable efficiently-computable tolls. Stackelberg routing has also been well studied, and
it is known that this is much-less effective in reducing the PoA. Whereas they can help in reducing the
PoA to a constant for certain network topologies such as parallel-link graphs [26] and series-parallel
graphs [33], it is known that this is not possible for generalgraphs [5]. Furthermore, it is known that
it is NP-hard to compute the Stackelberg routing that minimizes thetotal cost at equilibrium, even for
parallel-link graphs with linear delay functions [26]; a PTAS is known [19] for parallel-link graphs.
All of these results pertain to the setting where one is giventhe latency functions.

To our knowledge, our query model has not been studied in the literature. It is useful to contrast
our query model with work inempirical game theory, which also studies games when players’ costs
are not explicitly given. In empirical game theory, each query specifies a (pure or mixed) strategy-
profile, and returns the (expected) cost of each player underthis strategy profile. In contrast, in
our query model, we observe the equilibrium flow instead of individual player delays. This is more
natural in the setting of routing games: in the absence of knowledge of the latency functions, one
may only be able to calculate player delays under a strategy profile by routing players along the
stipulated paths (and then observing player delays); but this may be infeasible since one cannot in fact
impose routes on self-interested players. Moreover, whereas our goal is to obtain a desirable outcome
as the equilibrium, the focus in empirical game theory is to compute an (approximate) equilibrium.
Generic approaches to generate strategy-profiles for this purpose, and examples where these have
proved useful are discussed by Wellman [35]. An oblivious algorithm that does not depend on player
utilities, and instead uses best-responses to compute a pure Nash equilibrium in bimatrix games was
given by Sureka and Wurman [32]. Starting with [28], variouspapers have studied the complexity of
computing an exact or approximate correlated equilibrium in multi-player games using both pure- and
mixed-strategy queries [1, 14, 15]. More recently, Fearnley et al. [9] study algorithms in the empirical-
game-theory model for bimatrix games, congestion games, and graphical games, and obtain various
bounds on the number of queries required for equilibrium computation.

4

2 Preliminaries and notation

A nonatomic routing game(or simply a routing game) is denoted by a tupleΓ = (G, l,K), where
G = (V,E) is a directed graph withm edges andn nodes,l = (le)e∈E is a vector of latency or delay
functions on the edges of the graph, andK = {(si, ti, di)}i≤k is a set ofk triples denoting sources,
sinks, and demands fork commodities. The delay functionle : R+ 7→ R+ gives the delay on edgee
as a function of the total flow on the edge. (Here,R+ is the set of nonnegative reals.) We assume that
le is continuous, and strictly increasing. For each commodityi, the demanddi specifies the volume
of flow that is routed fromsi to ti by self-interested agents, each of whom controls an infinitesimal
amount of flow and selects ansi-ti path as her strategy. The strategies selected by the agents thus
induce a multicommodity flow(f i)i≤k, where eachf i = (f i

e)e∈E is ansi-ti flow of valuedi. That is,
the vectorf i = (f i

e)e satisfies:

f i ≥ 0,
∑

(v,w)∈E

f i
vw −

∑

(u,v)∈E

f i
uv = 0 ∀v ∈ V \ {si, ti},

∑

(s,w)∈E

f i
sw −

∑

(u,s)∈E

f i
us = di.

We call f = (f i)i≤k a feasible flow. We say thatf is acyclic if {e : f i
e > 0} is acyclic for every

commodityi. We overload notation and usef to also denote the total-flow vectorf =
∑

i≤k f
i. For

a pathP , we usefP > 0 to denotefe > 0 for all e ∈ P . We sometimes refer to
⋃

i{si, ti} as the
terminals of the routing game or multicommodity flow. Given an s-t flow f , we use|f | to denote the
value off .

Let Pi denote the collection of allsi-ti paths. Given a multicommodity flow(f i)i≤k induced by
the agents’ strategies, the delay of an agent that selects ansi-ti pathP is the total delay,lP (f) :=
∑

e∈P le(fe), incurred on the edges ofP . Each agent in a routing game seeks to minimize her own
delay. To analyze the resulting strategic behavior, we focus on the concept of aNash equilibrium,
which is a profile of agents’ strategies where no individual agent can reduce her delay by changing
her strategy, assuming other agents do not change their strategies. In routing games, this is formalized
by the notion ofWardrop equilibrium.

Definition 2.1. A multicommodity flowf̂ is aWardrop equilibrium(or simply an equilibrium) of a
routing gameΓ if it is feasible and for every commodityi, and all pathsP , Q ∈ Pi with f̂ i

P > 0,
we havelP (f̂) ≤ lQ(f̂). A Wardrop equilibrium can be computed by solving the following convex
program:

min Φ(f) :=
∑

e

∫ fe

0
le(x) dx s.t. f =

k
∑

i=1

f i, f i is ansi-ti flow of valuedi ∀i = 1, . . . , k.

(1)

Given a routing gameΓ and a feasible flowf , defineDi(l, f) := minP∈Pi lP (f) for each com-
modity i, and call an edgee a shortest-path edge for commodityi with respect tof if e lies on some
pathP ∈ Pi such thatlP (f) = Di(l, f). LetSi(l, f) be the set of shortest-path edges for commodity
i with respect tof .

Tolls, Stackelberg routing, and our query model. We investigate both the use of edge tolls and
Stackelberg routing to induce a given target flow. Tolls are additional costs on the edges that are paid
by every player that uses the edge. A vector of tollsτ = (τe)e ∈ R

E
+ on the network edges thus

changes the delay function on each edgee to lτe (x) := le(x) + τe, and so the delay of an agent who

5

choosesP is now lP (f) + τ(P), whereτ(P) :=
∑

e∈P τe. We usef(l, τ) to denote the equilib-
rium flow obtained with delay functionsl = (le)e and tollsτ = (τe)e. We say thatτ enforces a
multicommodity flowf with latency functionsl if the total flowf(l, τ)e = fe on every edgee.

For Stackelberg routing, in keeping with much of the literature, we focus on single-commodity
routing games. Given a single-commodity routing gameΓ = (G, l, (s, t, d)) and a parameterα ∈
[0, 1], a central authority controls at most anα-fraction of the totals-t flow-volumed and routes this
flow in any desired way, and then the remaining traffic routes itself selfishly. That is, a Stackelberg
routingg is ans-t flow of value at mostαd, which we call the Stackelberg demand. The Stackelberg
routingg modifies the delay function on each edgee to l̃e(g;x) := le(x+ge). The remaining(1−α)d
volume of traffic routes itself according to a Wardrop equilibrium, denoted byf(l, g), of the instance
(G, l̃, (1 − α)d). The total flow induced by a Stackelberg routingg is thusg + f(l, g).

We shortenf(l, τ) to f(τ), andf(l, g) to f(g) whenl is clear from the context.
In our query model, we are given the graphG, the commodity setK = {(si, ti, di)}i≤k, and a

feasibletarget multicommodity flowf∗. There is an underlying routing gameΓ = (G, l∗,K), to which
we are given query access. If our method of influencing equilibria is via tolls, then the oracle takes
a toll-vectorτ as input and returns the equilibrium flowf(l∗, τ) or a (suitably-defined) approximate
equilibrium. Our goal is to minimize the number of queries required to compute tollsτ∗ such that
f(l∗, τ∗) = f∗.

If our method of influencing equilibria is via Stackelberg routing, then we are also given the
parameterα ∈ [0, 1]. Each query takes a Stackelberg routingg with |g| ≤ αd as input and returns
the flowf(l∗, g). Our goal is to minimize the number of queries required to compute a Stackelberg
routingg∗ of value at mostαd such thatf(l∗, g∗) + g∗ = f∗, or determine that no such Stackelberg
routing exists.

Properties of equilibria. The following facts about Wardrop equilibria, network tolls, and Stackel-
berg routing will be useful. Recall that the delay functionsare nonnegative, continuous, and strictly
increasing.

• A feasible flowf is an equilibrium flow iff
∑

e(fe − ge)le(fe) ≤ 0 for every feasible flowg; see,
e.g., [23]. Thus, the total-flow vector(fe)e induced by an equilibrium flow is unique for strictly
increasing delay functions.

• Every routing game admits an acyclic Wardrop equilibrium̂f . If the delay functions are polytime
computable, then one can solve (1) and compute: (i)f̂ in polytime for linear delay functions; (ii)
an acyclic flowf such thatΦ(f) ≤ Φ(f̂) + ǫ in timepoly

(

input size, log(1
ǫ
)
)

. See, e.g., [23], for
details.

• Every minimal feasible flowf is enforceable via tolls [11, 17, 36], wheref is minimal if there is
no other feasible flowg 6= f such thatge ≤ fe for every edgee. Given the edge delays

(

le(fe)
)

e
,

these tolls can be computed by solving an LP, and are rationalprovided the commodity demands
(di)i and the delays

(

le(fe)
)

e
are rational.

The following lemma was essentially shown in [16]; we include a self-contained proof in Appendix A.

Lemma 2.2. Let(G, l, (d, s, t), α) be a Stackelberg routing instance, andf∗ be a feasible flow. Then,
f(g) + g = f∗ for a Stackelberg routingg iff ge ≤ f∗

e for every edgee, and ge = f∗
e for all

e 6∈ S(l, f∗).

6

Standard delay functions and encoding length. Our results hold for a broad class of underlying
delay functions, that we now formally describe. Throughout, we useI denote the input size of the
given routing game. We assume that we have an estimateU with logU = poly(I) such that the target
flow f∗, the parameters of the unknown true delay functions(l∗e)e, and the quantities that we seek to
compute—tollsτ∗ or the Stackelberg routingg∗ inducingf∗—all have encoding lengthO(logU). So
we may assume that everyf∗

e , τ∗e , g∗e value is a multiple of1
U

, and is at mostU .
When considering non-linear delay functions, we assume that the l∗es are convex polynomials of

degree at most some known constantr. Given theO(logU) encoding length, we may assume that
all coefficients lie in[0, U] and and are multiples of1

U
. We also assume that eachdl

∗
e(x)
dx
≥ 1

U
for all

x ≥ 0. We refer to such functions asstandard degree-r polynomials. Under these conditions, it is
easy to show (see Lemma 2.3) that there is some constantK := K(r) = poly(U,

∑

i di) such that
every delay functionl∗e satisfies

(x− y)
(

l∗e(x)− l∗e(y)
)

≤ ǫ2

K
=⇒ |x− y| ≤ ǫ for all x, y, ǫ ≥ 0 (2)

|l∗e(x)− l∗e(y)| ≤ K|x− y| for all x, y ∈ [0,
∑

i di] (3)

l∗e(2x) ≤ Kl∗e(x) for all x ≥ 0 (4)

These properties are referred to asinverse-K-continuity, K-Lipschitz, andK-growth-boundedness
respectively.

Lemma 2.3. Let l(x) = a0+a1x+ . . .+arx
r be a convex degree-r polynomial such thata1 > 0, and

all ais lie in[0, U] and are multiples of1
U

. Thenl satisfies(2)–(4)withK = max{U, 2r, rU(
∑

i di)
r−1}.

Proof. Let l′(x) := dl(x)
dx

denote the derivative ofl. Sincel is convex, we have|l(x) − l(y)| ≥
|x− y| · l′(min{x, y}) ≥ |x− y| · l′(0) ≥ |x− y|/U . Therefore,(x−y)2

U
≤ (x− y)

(

l(x)− l(y)
)

≤ ǫ2

K

and so|x− y| ≤ ǫ.
Again, by convexity,|l(x)− l(y)| ≤ |x− y| · l′(max{x, y}) andl′(z) ≤ rU(

∑

i di)
r−1 ≤ K for

all z ≤∑i di.
Finally, it is clear thatl(2x) ≤ 2rl(x) ≤ Kl(x) for all x ≥ 0. �

3 Inducing target flows via tolls

Recall that here we seek to compute tolls that enforce a giventarget flowf∗ given black-box access
to a routing gameΓ ∗ = (G, l∗, (si, ti, di)i≤k), i.e., without knowingl∗. Our main result is a crisp
positive result showing that we can always achieve this end with a polynomial number of queries by
leveraging the ellipsoid method in a novel fashion (Section3.1). Our algorithm computes tolls that
enforce: (a)f∗ exactly, for standard linear latency functions (where it isreasonable to assume that
the black box returns the exact equilibrium); and (b) a flow that is component-wise close tof∗, for
standard polynomial functions, where we now assume that each query only returns an approximate
equilibrium (see Definition 3.3). The main idea here is to view the parameters of the latency functions
and the tolls as variables, and use the ellipsoid method to search for the tuple(l∗, τ∗), whereτ∗ is
such thatf(l∗, τ∗) = f∗. The key observation is that although we cannot hope to nail down l∗, given
a candidate(l, τ) such thatf(l∗, τ) 6= f∗, one can derive a hyperplane separating(l, τ) from (l∗, τ∗)
usingf∗ and the equilibrium flowf(l∗, τ) returned by our oracle.

We showcase the versatility of our algorithm by showing thatit is easily adapted to handle various
extensions (Section 3.2). For instance, we can imposeany linear constraints on tolls given by a
separation oracle; examples include the constraint that certain edges cannot be tolled or that the total

7

toll paid by a user is at most a given budget. Other notable extensions include the extension to general
nonatomic congestion games, and to atomic splittable routing games under the assumption that the
equilibrium is unique.

Finally, we devise algorithms with significantly improved query complexity for multicommodity
routing games on series-parallel (sepa) networks (Section3.3), and single-commodity routing games
on general networks (Section 3.4), both with linear latencyfunctions. We exploit the combinato-
rial structure of sepa graphs to design an algorithm with near-linear query complexity, which almost
matches the linear lower bound shown in Theorem 5.1 for even parallel-link graphs with linear laten-
cies. For single-commodity routing games on general graphswith linear latencies, we show that flows
are linear functions of tolls and infer this linear map usingÕ(m2) queries.

3.1 An ellipsoid-method based algorithm for general routing games

The ellipsoid method for finding a feasible point starts by containing the feasible region within a
ball and generates a sequence of ellipsoids of successivelysmaller volumes. In each iteration, one
examines the center of the current ellipsoid. If this is infeasible, then one uses a violated inequality
to obtain a hyperplane, called a separating hyperplane, to separate the current ellipsoid center from
the feasible region. One then generates a new ellipsoid by finding the minimum-volume ellipsoid
containing the half of the current ellipsoid that includes the feasible region. We utilize the following
well-known theorem about the ellipsoid method.

Theorem 3.1([12]). LetX ⊆ R
n be a polytope described by constraints having encoding length at

mostM . Suppose that for eachy ∈ R
n, we can determine ify /∈ X and if so, return a hyperplane

of encoding length at mostM separatingy fromX. Then, we can use the ellipsoid method to find a
pointx ∈ X or determine thatX = ∅ in timepoly(n,M).

Linear latencies. We first consider the case where each latency functionl∗e(x) is a standard linear
function of the forma∗ex + b∗e, and our black box returns the exact equilibrium flow inducedby the
input (rational) tolls. Thus, for everye, a∗e ∈ (0, U), b∗e ∈ [0, U], anda∗e, b

∗
e are multiples of1

U
. In

a somewhat atypical use of the ellipsoid method, we use the ellipsoid method to search for the point
(a∗e, b

∗
e, τ

∗
e)e. Abusing notation slightly, for a linear latency functionl(x) = ax + b, we usel to also

denote the tuple(a, b).

Theorem 3.2.Given a target acyclic multicommodity flowf∗ and query access toΓ ∗, we can compute
tolls that enforcef∗ or determine that no such tolls exist, in polytime using a polynomial number of
queries.

Proof. We utilize the ellipsoid method and Theorem 3.1. Given the center (l̂ = (âe, b̂e)e, τ̂) of the
current ellipsoid, we first check if̂a, b̂, τ̂ ≥ 0, and if not, use the violated constraint as the separating
hyperplane. Next, we use the black box to obtaing = f(l∗, τ̂). If g = f∗, then we are done.
Otherwise, we obtain a separating hyperplane of encoding lengthpoly(I) as follows. (Note that the
encoding length of(l̂, τ̂) is poly(I).) We consider two cases.

Case 1:f(l̂, τ̂) 6= f∗. Note that we can determine this without having to compute theequilibrium
flow f(l̂, τ̂). Sincef∗ is acyclic, we can efficiently find a commodityi, andsi-ti pathsP,Q such that
f∗
P > 0 and l̂P (f∗) + τ̂(P) > l̂Q(f

∗) + τ̂(Q). But sincef∗ = f(l∗, τ∗), we also havel∗P (f
∗) +

τ∗(P) ≤ l∗Q(f
∗) + τ∗(Q). Thus, the inequality

lP (f
∗) + τ(P) ≤ lQ(f

∗) + τ(Q)

8

where the parameters ofl andτ are variables yields the desired separating hyperplane.

Case 2:f(l̂, τ̂) = f∗. Now sinceg 6= f∗ and is acyclic, we can again find efficiently a commodity
i and pathsP,Q ∈ Pi such thatgP > 0 and l̂P (g) + τ̂(P) > l̂Q(g) + τ̂ (Q). Sinceg = f(l∗, τ̂), we
also havel∗P (g) + τ̂(P) ≤ l∗Q(g) + τ̂(Q). Thus, the inequalitylP (g) + τ̂(P) ≤ lQ(g) + τ̂(Q), where
now only the les are variables, yields the desired separating hyperplane. �

Polynomial latency functions and approximate equilibria. We now consider the setting where the
latency functions(l∗e)e are standard degree-r polynomials, wherer is a known constant. As before,
we also usel to denote the tuple of coefficients of the polynomial given byl. Since the Wardrop
equilibrium may now require irrational numbers, it is unreasonable to assume that a query returns the
equilibrium flow. So we assume that our black box returns an acyclic approximate equilibrium and
show that we can nevertheless compute tolls that induce an equilibrium that is component-wise close
to f∗. We first define approximate equilibria. Recall thatDi(l, f) = minP∈Pi lP (f), and given tolls
τ , we definelτe (x) := le(x) + τe.

Definition 3.3. We say that a feasible flowf is an ǫ-approximate equilibrium, or simply anǫ-
equilibrium, of a routing game(G, l, (si, ti, di)i≤k) if

∑

e fele(fe) ≤
∑

i di
(

Di(l, f) + ǫ
)

.

Notice that our approximate-equilibrium notion is impliedby the more-stringent (and oft-cited)
condition requiring that iffP > 0 for P ∈ Pi then lP (f) ≤ Di(l, f) + ǫ. Importantly, our notion
turns out to be weak enough that one can argue that an acyclicǫ-equilibrium can be computed in time
poly

(

I, log(1
ǫ
)
)

for any ǫ > 0, which lends credence to our assumption that the black box returns
an acyclicǫ-equilibrium, and yet is strong enough that one can leverage it within the framework of
the ellipsoid method (see Theorem 3.6). Unless otherwise stated, when we refer to a routing game
below, we assume that the latency functions satisfy the mildconditions (2)–(4), withlogK being
polynomially bounded. The following Lemma is proved in Appendix B.

Lemma 3.4. Given a routing game with polytime-computable latency functions, one can compute an
acyclicǫ-equilibrium in timepoly

(

I, log(1
ǫ
)
)

.

Lemma 3.5. Letf̂ be a Wardrop equilibrium andg be anǫ-equilibrium of a routing game(G, l, (si, ti, di)i≤k).
Then,‖g − f̂‖∞ := maxe |ge − f̂e| ≤

√

Kǫ
∑

i di.

Proof. We have
∑

e gele(ge) ≤
∑

i di
(

Di(l, g) + ǫ
)

and
∑

e f̂ele(ge) ≥
∑

i diD
i(l, g). So

∑

e(ge −
f̂e)le(ge) ≤ ǫ

∑

i di. Also,
∑

e(f̂e−ge)le(f̂e) ≤ 0. So
∑

e(ge− f̂e)
(

le(ge)− le(f̂e)
)

≤ ǫ
∑

i di. Each

term of this summation is nonnegative and hence, at mostǫ
∑

i di; therefore,|ge − f̂e| ≤
√

Kǫ
∑

i di
by inverse-K-continuity. �

Define anǫ-oracle for tolls to be an oracle that receives tollsτ ∈ R
E
+ as input and returns an

ǫ-equilibrium of the routing game(G, l∗τ , (si, ti, di)i≤k) having encoding lengthpoly
(

I, log(1
ǫ
)
)

.

Theorem 3.6. Let f∗ be a target acyclic multicommodity flowf∗ and δ > 0. Let ǫ = δ2

Kmk
∑

i di
.

Then, in timepoly
(

I, log(1
δ
)
)

and usingpoly
(

I, log(1
δ
)
)

ǫ-oracle queries, we can compute tollsτ
such that‖f(l∗, τ)− f∗‖∞ ≤ 2δ or determine that no such tolls exist.

Proof. As before, we use the ellipsoid method. Let(l̂, τ̂) be the center of the current ellipsoid. Assume
that l̂, τ̂ ≥ 0 and each function̂le has slope at least1

U
; otherwise, we can use a violated constraint as

the separating hyperplane. We use the oracle with toll-vector τ̂ to obtain an acyclicǫ-equilibrium flow
g. Then, we have‖g − f(l∗, τ̂)‖∞ ≤

√

Kǫ
∑

i di = δ/
√
mk by Lemma 3.5.

9

We can efficiently determine iff(l̂, τ̂) 6= f∗, and if so, then as in Case 1 in the proof of Theo-
rem 3.2, we can obtain a separating hyperplane of encoding lengthpoly

(

I). So assume otherwise.

Now we check ifg is anmkǫ-equilibrium for the latency functions(l̂τ̂e)e. If so, then‖g−f∗‖∞ ≤ δ
and so‖f(l∗, τ̂) − f∗‖∞ ≤ 2δ and we are done. Otherwise, we find a valid path-decomposition
x = (xi,P)i,P∈Pi of g having support of size at mostmk. That is, we havex ≥ 0,

∑

P∈Pi xi,P = di
for every commodityi,

∑

i

∑

P∈Pi:e∈P xi,P = ge for all e, and
∑

i |{P : xi,P > 0}| ≤ mk. We may
assume that every non-zeroxi,P value has encoding length that is polynomial inI and the size ofg.
Then

∑

i

∑

P∈Pi

xi,P
(

l̂τ̂P (g) −Di(l̂τ̂ , g)
)

=
∑

e

ge l̂
τ̂
e (ge)−

∑

i

diD
i(l̂τ̂ , g) > mkǫ

∑

i

di

where the last inequality follows sinceg is not anmkǫ-equilibrium for (l̂τ̂e)e. Since the support ofx
has size at mostmk, this implies that there is some commodityj and some pathR ∈ Pj such that
xj,R

(

l̂τ̂R(g) −Dj(l̂τ̂ , g)
)

> ǫ
∑

i di. Moreover, we can find such aj and pathR ∈ Pj efficiently by

simply enumerating the paths in the support ofx. LetQ ∈ Pj be such that̂lτ̂Q(g) = Dj(l̂τ̂ , g).

Sinceg is anǫ-equilibrium for the latency functions(l∗τ̂e)e, again considering the path-decomposition
x, we have

∑

i

∑

P∈Pi xi,P
(

l∗τ̂P (g) − Di(l∗τ̂ , g)
)

≤ ǫ
∑

i di. Each term in this sum is nonnegative,
so each term is at mostǫ

∑

i di. In particular, we havexj,R
(

l∗τ̂R (g) − l∗τ̂Q (g)
)

≤ xj,R
(

l∗τ̂R (g) −
Dj(l∗τ̂ , g)

)

≤ ǫ
∑

i di. So the inequalityxj,R
(

lR(g) + τ̂ (R) − lQ(g) − τ̂(Q)
)

≤ ǫ
∑

i di, with les

as the variables, is valid for(l∗, τ∗) but is violated by(l̂, τ̂). This yields a separating hyperplane of
encoding lengthpoly

(

I, log(1
ǫ
)
)

. �

3.2 Extensions

Linear constraints on tolls given by a separation oracle. Here, we require that the tollsτ∗ impos-
ing the target flowf∗ should lie in some polyhedronX, whereX is given by means of a separation
oracle. This is rich enough to model the following interesting scenarios.
• A subsetF of edges cannot be tolled. This corresponds to the explicit constraintτe = 0 for all

e ∈ F .

• The total toll paid by any player under the flowf∗ is at most a given budgetB. This corresponds
to the constraintsτ(P) ≤ B for every commodityi and pathP ∈ Pi with f∗i

P > 0. One can
separate over these exponentially-many constraints efficiently via a longest-path computation since
f∗ is acyclic.

The only change to our algorithm is that we first check if our current toll-vectorτ̂ lies in X. If not
then the separation oracle provided yields the separating hyperplane; otherwise, we proceed as before.
The query complexity is now polynomial in the input size and the encoding length ofX.

General nonatomic congestion games.This is a generalization of network routing games, where
the graph is replaced by an arbitrary setE of resources, andPi ⊆ 2E is the strategy-set associated
with player-typei; a more complete definition appears in Appendix B. Our ellipsoid-based algorithm
uses essentially no information about the underlying graph. We only require that given a congestion-
vector f , we can find the maximum-delay setP ∈ Pi for a given player-typei, and can find a
valid decomposition off of small support. Both of these are trivial since thePi sets are explicitly
given in the input. Thus, our algorithms readily extend to general nonatomic congestion games and
Theorems 3.2 and 3.6 (withmk replaced by

∑

i |Pi|) continue to hold.

10

Atomic splittable routing games. Here, each commodityi represents asingleplayer who controls
di volume of flow and her strategy is to choose ansi-ti flow f i of valuedi. The cost incurred by a
playeri under a feasible multicommodity flow (i.e., strategy profile) f = (f i)i≤k is

∑

e f
i
ele(fe).

Our results extend to atomic splittable routing games if we assume that for all valid choices of
parameters of the latency functions and tolls (as encountered during the ellipsoid method), the under-
lying atomic splittable routing game has a unique Nash equilibrium. Here, by uniqueness we mean
that if f and g are two Nash equilibria, thenf i

e = gie for all commoditiesi and edgese. This is
not without loss of generality, but is known to hold, for example, if all latency functions are convex
polynomials of degree at most 3, or if the graph is a generalized nearly-parallel graph andxle(x) is
strictly convex for alle (see [3]). When we say that tollsτ induce a flowf∗ = (f∗i)i≤k here, we
mean that the flow of every commodityi on every edgee is f∗i

e in the resulting equilibrium. Our re-
sult shows that the task of computing tolls that induce specific commodity-flowscan be reduced to the
task of computing Nash equilibria (under the uniqueness assumption), even in the black-box setting.
Although, to our knowledge, no algorithm is known for eitherof these tasks, even when latency func-
tions are given, we believe that this reduction is of independent interest. The proof of Theorem 3.7 is
very similar to that of Theorem 3.2: the only change is that tofind the separating hyperplane, we now
consider the marginal delay functions instead of the delay functions; see Appendix B.

Theorem 3.7. In an atomic splittable routing game satisfying the aforementioned assumption, tolls
that induce a target flowf∗ = (f∗i)i≤k at equilibrium, if they exist, can be obtained with a polynomial
number of queries to an oracle that returns the equilibrium flow under tolls.

3.3 An algorithm for series-parallel networks with near-linear query complexity

We now give an algorithm for series-parallel networks withÕ(m) query complexity. This is a sig-
nificant improvement over the ellipsoid-based algorithm, and almost matches the linear lower bound
proved in Theorem 5.1 for single-commodity routing games onparallel-link graphs with linear latency
functions.

Theorem 3.8. On two-terminal series-parallel graphs, one can compute inpolytime tolls that induce
a given target multicommodity flowf∗ usingÕ(m) queries to an oracle that returns the equilibrium
flow. Thus, we obtaiñO(m) query complexity for multicommodity routing games with standard linear
delay functions.

We first recall some relevant details about series-parallelgraphs. Atwo-terminal directed series-
parallel graph, abbreviated series-parallel (sepa) graph, with terminals s andt is defined inductively
as follows. A basic sepa graph is a directed edge(s, t). Given two sepa graphsG1 = (V1, E1)
andG2 = (V2, E2), with terminalss1, t1 ands2, t2 respectively, one can create a new sepa graph
G = (V,E) as follows. Aseries joinof G1 andG2 yields the graph obtained by identifyingt1 and
s2, with terminalss = s1 and t = t2. A parallel join of G1 andG2 yields the graph obtained by
identifying s1 ands2, andt1 andt2; its terminals ares = s1 = s2 andt = t1 = t2.

For every series-parallel graphG = (V,E), the recursive construction naturally yields a binary
decomposition tree. The leafs of the tree are edges ofG, and each internal node specifies a series- or
a parallel- join. Each node of the tree also represents a subgraph of theG (obtained by performing the
joins specified by the subtree rooted at that node), which is also clearly a sepa graph. In the sequel,
we fix a decomposition tree corresponding toG. Whenever we say a subgraph ofG, we mean a
subgraph corresponding to a node of this decomposition tree. Given a subgraphH, we usesH , tH to
denote its two terminals, andP(H) to denote the set of allsH -tH paths. We sometimes callsH and

11

tH , the source and sink ofH respectively. LetH be the collection of subgraphs corresponding to the
parallel-join nodes of the decomposition tree. For eachH ∈ H obtained via the parallel join ofH1

andH2, we identify one of these as the “left” subgraphHL and the other as the “right” subgraphHR.
LetP denote the set of alls-t paths, wheres = sG, t = tG.

Proof outline. Before we delve into the proof of Theorem 3.8, we give some intuition and give a
roadmap of the proof. It is useful to first consider the simplest case of a graph with two parallel edges.
Observe that any target flow can be obtained by varying thedifferencein tolls on these two edges.
Further, the correct difference in tolls can be obtained by abinary search. Our key insight is that this
intuition can be extended to series-parallel graphs via a suitable transformation of tolls. We show that
tolls required to obtain a target flow can actually be described by the difference in tolls for each pair
of parallel subgraphs, and then use binary search to obtain the correct differences that yield the target
flow.

Formally, we show that any edge tolls in a sepa graph can in fact be transformed into certain
canonical tolls that are defined in terms of subgraphs (Claim3.10). Further, formalizing the intuition
that what is relevant is only the difference in tolls on parallel subgraphs, we make the novel connection
that canonical tolls are in fact equivalent to labels on subgraphsH ∈ H (Lemma 3.11), where the
label on subgraphH ∈ H stores the difference in the canonical tolls of subgraphsHL andHR whose
parallel-join yieldsH.

Thus, our problem reduces to finding the correct labels on subgraphsH ∈ H, which we aim to
find via binary search. To do so, we establish certain structural properties of multicommodity flows in
sepa graphs (Lemma 3.13). We leverage these to argue that if the canonical edge-tolls obtained from
our current labels do not enforce the target flow, then we can find a subgraphH ∈ H and deduce
whether its label should be increased or decreased. The query complexity is thus at most|H| times
a logarithmic term depending on the accuracy required and the parameters of the routing game. A
detailed description appears after Claim 3.14.

The presence of multiple commodities complicates things, since in the particular decomposition
tree that we fix forG, all edges in a subgraph may be shortest-path edges for one commodity but not
for another. Thus creates problems with the binary search since Claim 3.14 may not hold. We handle
this by first arguing that there always exist tolls enforcingf∗ such thateverys-t path, and hence every
si-ti path is a shortest-path under edge costs(l∗τ

∗

e (f∗
e))e (Claim 3.9).

We believe that our structural insights into tolls and multicommodity flows on sepa graphs are
of independent interest and likely to find other applications. In fact, our results on flows in sepa
graphs also play an important role in our algorithm for inducing target flows via Stackelberg routing
in Section 4.

Claim 3.9. For Γ ∗ = (G, l∗, (si, ti, di)i≤k) and target flowf∗ there exist tollsτ∗ ∈ R
E
+ such that:

(i) minP∈P τ∗(P) = 0;

(ii) l∗P (f
∗) + τ∗(P) = l∗Q(f

∗) + τ∗(Q) for everyi and pathsP,Q ∈ Pi; and therefore

(iii) f(l∗, τ∗) = f∗.

Proof. We will show that for any edge costs(ce)e, there exist tollsτ so that everys-t path is a shortest
path under edge costs(ce + τe)e, andminP∈P τ(P) = 0. The claim follows simply by taking edge
costs(ce = l∗e(f

∗
e))e and settingτ∗ = τ , since everysi-ti path clearly belongs to somes-t path.

12

The proof is by induction on the height of the decomposition tree forG. In the base case, if the
decomposition tree has height 1,G consists of a single edge and settingτe = 0 satisfies the claim. For
the inductive step, supposeG is formed by the composition ofH1 andH2, and letc1 andc2 be the
edge costs in subgraphsH1 andH2 respectively. Letτ1 andτ2 be the tolls that satisfy the claim for
costsc1 in subgraphH1, and costsc2 in subgraphH2 respectively.

If G consists ofH1 andH2 composed in series, letτe = τ1e if e ∈ E(H1) andτe = τ2e otherwise.
Then since anys-t pathP consists of ans1-t1 path and ans2-t2 path, each of which is a shortest path
in H1 andH2 respectively, everys-t path is a shortest path. Secondly, by the inductive hypothesis,
there is a pathP in H1 with τ1(P) = 0, and a pathQ in H2 with τ2(Q) = 0. The concatenation of
pathsP andQ yields ans-t pathR with τ(R) = 0.

SupposeG consists ofH1 andH2 composed in parallel. For any pathsP ∈ P(H1) andQ ∈
P(H2), let δ = c(Q) + τ2(Q) − c(P) − τ1(P). We may assume thatδ ≥ 0 (otherwise switchH1

andH2). Note that by the inductive hypothesis the value ofδ is independent of the choice ofP and
Q. Define tollsτ for graphG as follows:

τvw =







τ1vw + δ, if v = s and(v,w) ∈ E(H1).
τ1vw, if v 6= s and(v,w) ∈ E(H1).
τ2vw, if (v,w) ∈ E(H2).

Then for anys-t pathP , if P ∈ P(H1) thenc(P) + τ(P) = c(P) + τ1(P) + δ. If Q ∈ P(H2)
thenc(Q) + τ(Q) = c(Q) + τ2(Q). By definition ofδ and the induction hypothesis, everys-t path
is thus a shortests-t path. Since the tolls on paths inH2 remain the same, there is also ans-t pathR
with τ(R) = 0. �

Claim 3.10. For any tollsτ ∈ R
E
+ on the edges ofG, there existα ∈ R

E
+ such that:

(i) τ(P) = α(P) for all P ∈ P, and

(ii) for every subgraphH and every edgee = (sH , v) ∈ E(H), αe ≥ minP∈P(H) α(P).

Proof. The proof is again by induction on the height of the decomposition tree. IfG is a single edge,
thenα = τ . If G is composed of subgraphsH1 andH2, let τ1 andτ2 be the projection ofτ onto the
subgraphs. IfH1 andH2 are in parallel, and tollsα1 andα2 satisfy the claim for tollsτ1 andτ2 in
the subgraphs, it is easy to verify that tollsα defined byαe = α1

e for e ∈ E(H1) andαe = α2
e for

e ∈ E(H2) satisfy the claim.
If H1 andH2 are in series, letα1 andα2 satisfy the claim for tollsτ1 andτ2 in the subgraphs.

Defineδ = minP∈P(H2) α
2(P) and define the tolls

αvw =















α1
vw + δ, if v = s1 and(v,w) ∈ E(H1)

α1
vw, if v 6= s1 and(v,w) ∈ E(H1)

α2
vw − δ, if v = s2 and(v,w) ∈ E(H2)

α2
vw, if v 6= s2 and(v,w) ∈ E(H2).

Any s-t pathP consists of segmentP1 between verticess = s1 and t1, and segmentP2 between
t1 = s2 andt = t2. Then

α(P) = α(P1) + α(P2) = α1(P1) + δ + α2(P2)− δ = τ1(P1) + τ2(P2) = τ(P) .

Thus the first part of the claim is satisfied.

13

For the second part, consider any subgraphH. If H = G, then since every pathP ∈ P(H)
consists of segmentsP1 ∈ P(H1) andP2 ∈ P(H2), for every edgee = (s, v) ∈ E,

αsv = α1
sv + δ

≥ min
P∈P(H1)

α1(P) + min
P∈P(H2)

α2(P) (by the inductive hypothesis and definition ofδ)

= min
P∈P(H1)

α1(P) + δ + min
P∈P(H2)

α2(P)− δ

= min
P∈P(H)

α(P) .

If H 6= G, then since every path pathP ∈ P(H) contains exactly one edge incident tosH , the toll
along every path changes by exactly the same quantity (+δ,−δ, or zero). �

We call tollsα ∈ R
E
+ that satisfy property (ii) of Claim 3.10canonical tolls. Thus, any edge tolls

can be modified to obtain canonical edge tollsα. These in turn can be mapped to alabeling (L,∆),
where∆ = (∆H)H∈H ∈ R

H
+ , by settingL = minP∈P α(P), and∆H = minP∈P(HL) α(P) −

minP∈P(HR) α(P) for all H ∈ H. Lemma 3.11 shows that this mapping is in fact invertible. Given
the labeling(L,∆) we can obtain canonical edge tollsα by the following procedure. Note that
|H| ≤ m.

M1. Initializeαe = 0 for all e.

M2. We traverse subgraphs inH in a bottom-up manner, i.e., we consider all subgraphs inH that are descen-
dants ofH ∈ H before consideringH . When we consider a subgraphH , we setαe = αe+max{0,∆H}
for all e = (sH , v) ∈ E(HL), andαe = αe +max{0,−∆H} for all e = (sH , v) ∈ E(HR).

M3. Finally, we setαe = αe + L for all e = (s, v) ∈ E.

Lemma 3.11. Let (L,∆) be the labeling obtained from some canonical tollsα ∈ R
E
+, andβ be the

tolls obtained from(L,∆) by the above procedure. Thenα = β.

Proof. Let β′ be the tolls obtained after step 1 of the above procedure, i.e., before addingL to the
edges incident tos. We will show that for each edgee not incident tos, β′

e = αe, while for each edge
e incident tos, β′

e = αe −minP∈P α(P).
The proof is by induction on the size ofG. If G = {e}, then since there are no parallel composi-

tions,H = ∅, and henceβ′
e = 0 = αe − minP∈P α(P). If G is the series-join ofH1 andH2, then

for each edge not incident tosH1
or sH2

, β′
e = αe by the inductive hypothesis. Further, note that the

minimum toll α(P) over all sH2
-tH2

paths must be zero, since otherwise, on any edgee = (s, v),
αe would be strictly less than the minimum toll overs-t paths. Hence by the inductive hypothesis
β′
e = αe for edges that leavesH2

. For edges incident tos, since anys-t path consists of a path
betweens andt1 = s2 and betweens2 andt, and by the inductive hypothesis,

β′
e = αe − min

P∈P(H1)
α(P) = αe −min

P∈P
α(P)

where the second equality follows because, as earlier observed, the minimum tollα(P) over allsH2
-

tH2
paths must be zero. Thus the inductive hypothesis holds in this case.
If G is the parallel-join ofH1 andH2, then for each edge not incident tos, β′

e = αe by the induc-
tive hypothesis. Further, assume without loss of generality thatminP∈P(H1) α(P) = minP∈P α(P).
Then by the inductive hypothesis, for each edgee = (s, v) ∈ E(H1),

β′
e = αe − min

P∈P(H1)
α(P) = αe −min

P∈P
α(P)

14

as stated in the claim. Letδ = minP∈P(H2) α(P) − minP∈P(H1) α(P) ≥ 0. By the procedure for
computingβ′, if H1 = HL andH2 = HR, then∆H = −δ, otherwise∆H = δ. In both cases, when
consideringG, we only modify the tolls on edges ofE(H2) incident tosH2

by addingδ to these. So
for each edgee = (s, v) ∈ E(H2), we have

β′
e = αe − min

P∈P(H2)
α(P) + δ

= αe − min
P∈P(H2)

α(P) + min
P∈P(H2)

α(P)− min
P∈P(H1)

α(P)

= αe − min
P∈P

α(P)

which completes the induction step, and hence, the proof. �

Definition 3.12. Given multicommodity flowsf andf̃ , we call a pairH1, H2 of subgraphs,(f, f̃)-
discriminatingif:

(i) the parallel-join ofH1 andH2 is a subgraph inH; and

(ii) fe > f̃e for all e ∈ E(H1), andfe ≤ f̃e for all e ∈ E(H2).

Lemma 3.13. Let f and f̃ be two feasible multicommodity flows for(G, (si, ti, di)i≤k). If f 6= f̃ ,
then there exists an(f, f̃)-discriminating pair of subgraphs.

Proof Sketch.We use induction on the series-parallel structure to first show a slightly weaker state-
ment: there exist subgraphsH1 andH2 whose parallel join is inH such that: (a)fe ≥ f̃e for all
e ∈ E(H1), fe ≤ f̃e for all e ∈ E(H2), and (b)|fH1

|, which we define to be the total flow routed
underf in H1 for commodities not internal toH1, is greater than|f̃H1

|, and |fH2
| < |f̃H2

|. Now
if fe > f̃e for all e ∈ E(H1) then we are done. Otherwise, we show that if we consider the mini-
mal subgraphK of H1 (under the same decomposition tree used forG) that contains bothfe > f̃e
andfe = f̃e edges, thenK must be a parallel-join of subgraphs that form an(f, f̃)-discriminating
pair. �

We defer a full proof of Lemma 3.13 until Appendix C.

Claim 3.14. Let f̂ = f(l∗, τ). If there is a subgraphH such thatf̂e > f∗
e for all e ∈ E(H) then

there is some commodityi such that everysH -tH path is part of a shortestsi-ti path under edge costs
(l∗τe (f̂e))e.

Proof. The proof is by induction on the size ofH. If H is an edgee, there is some commodityi
such thatf̂ i

e > 0, so the statement holds. IfH is the parallel join ofH1,H2, then it follows from
the induction hypothesis that everysH -tH path must be of equal length (since there are commodities
corresponding to bothH1 andH2); hence, there is a commodity corresponding toH and the statement
follows. SupposeH is the series composition ofH1,H2. LetK be the set of commoditiesi such that
∑

e=(sH ,v)∈E(H) f̂
i
e > 0. For everyi ∈ K such thatti ∈ V (H) \ {tH}, the set of edges(sH , v) ∈

E(H) forms ansi-ti cut, and so the flow across the cut must be the same inf̂ i andf∗i. However,
∑

e=(sH ,v)∈E(H) f̂e >
∑

e=(sH ,v)∈E(H) f
∗
e , so there is some commodityj ∈ K such thatsj, tj /∈

V (H)\{sH , tH}. For commodityj, somesH -tH path is part of a shortestsj-tj path under edge costs
(l∗τe (f̂e))e. Applying the induction hypothesis toH1,H2 yields that allsH -tH paths are of the same
length. Thus, everysH -tH path is part of a shortestsj-tj paths under edge costs(l∗τe (f̂e))e. �

15

We now describe the algorithm for Theorem 3.8. Letτ∗ be tolls given by part (b) of Claim 3.9
and (0,∆∗) be the labeling obtained fromτ∗. We may assume thatτ∗e ∈ [0, U ′] and is a multiple
of 1

U ′ for all e, whereU ′ = m poly(U,
∑

i di). E.g., with standard linear latencies, since every
f∗
e , a

∗
e, b

∗
e ∈ [0, U] and is a multiple of1

U
, we can takeU ′ = max{U2,mK

∑

i di}.

T1. Initialize,LH = −mU ′, UH = mU ′, ∆H = 0 for all H ∈ H. LetL = 0. LetM = m log(8mU ′2).

T2. Forr = 1, . . . ,M , we do the following. Map(L,∆) to canonical tollsα as described in steps M1–M3.
Query the oracle to obtain̂f = f(l∗, α). If f̂ = f∗, then exit the loop. Otherwise, find an(f̂ , f∗)-
discriminating pair of subgraphsH1, H2 (which exists by Lemma 3.13).
Let H be the parallel join ofH1, H2. If H1 = HL, updateLH ← ∆H , else updateUH ← ∆H . If
|UH − LH | < 1

U ′
, set∆H to be the multiple of1

U ′
in [LH , UH]; else update∆H = (LH + UH)/2.

T3. Return tollsα.

Proof of Theorem 3.8.Letα∗ be the canonical tolls obtained fromτ∗ via Claim 3.10, and let(L∗,∆∗)
be the corresponding labeling. We haveL∗ = 0 due to Claims 3.9 and 3.10. The proof of Claim 3.10
shows that, under the assumptions onτ∗, we haveα∗

e is a multiple of 1
U ′ , and is in[0,mU ′] for all e.

Hence,∆∗
H ∈ [−mU ′,mU ′] and is a multiple of1

U ′ , for all H ∈ H.
We say that the intervals[LH , UH] assigned toH ∈ H are valid if∆∗

H ∈ [LH , UH] for all H ∈ H.
We argue below that our algorithm maintains valid intervals. Give this, in each iteration we halve the
length of some interval, and this may happen at mostlog(8mU ′2) times for the interval of some
H ∈ H until we find∆∗

H , since∆∗
H is a multiple of 1

U ′ . Since there are at mostm subgraphs inH,
afterM iterations (without reachingf∗), we obtain∆∗.

We now prove that the algorithm maintains valid intervals. Given tolls τ and a subgraphH,
defineτH := minP∈P(H) τ(P). So∆∗

H = α∗
HL
− α∗

HR
. The intervals are clearly valid at the start

of the algorithm. Suppose the intervals are valid at the start of an iteration in step T2. We may
assume that̂f 6= f∗. By Claim 3.14, there is some commodityi such that everysH1

-tH1
path is

part of a shortestsi-ti path under edge costs(l∗e(f̂e) + αe)e. Let P = argminP ′∈P(H1) α
∗(P ′) and

Q = argminQ′∈P(H2) α(Q). SinceP is a segment of a shortest-path for commodityi, We have

l∗P (f
∗) + αH1

< l∗P (f̂) + αH1
≤ l∗P (f̂) + α(P) ≤ l∗Q(f̂) + α(Q) = l∗Q(f̂) + αH2

≤ l∗Q(f
∗) + αH2

.

Here, the first and last inequalities follow sinceH1,H2 is (f̂ , f∗)-discriminating. The second inequal-
ity follows from the definition ofαH1

; the third, sinceP is part of a shortestsi-ti path; and the fourth
equality, from the definition ofQ. We know that everys-t path is a shortests-t path under edge costs
(l∗e(f

∗
e) + α∗

e)e. So we have

l∗P (f
∗) + α∗

H1
= l∗P (f

∗) + α∗(P) = l∗Q(f
∗) + α∗(Q) ≥ l∗Q(f

∗) + α∗
H2

.

Combining this with the earlier inequality givesαH1
− αH2

< α∗
H1
− α∗

H2
. So if H1 = HL, then

∆H < ∆∗
H ; otherwise,∆H > ∆∗

H . Thus, our update forH preserves the validity of the intervals.�

Remark3.15. Our analysis shows that the above algorithm works whenever we have a “sign oracle”
that given input tollsτ and a flowf∗, returns the sign off(l∗, τ)e − f∗

e for all edgese. This is clearly
weaker than having an exact-equilibrium oracle.

3.4 Nearly quadratic query complexity for single-commodity, linear-delay routing games

Theorem 3.16. For a single-commodity routing gameΓ with standard linear delay functions, tolls
that enforcef∗ can be obtained in at most̃O(m2) queries.

16

Throughout, we assume without loss of generality thatf∗ > 0; otherwise, we impose infinite
tolls on any edge wheref∗

e = 0, effectively removing these edges from the graph.1 We assume
the delay function on any edgee is le(x) = aex + be. Definelmax(x) := maxe∈E aex + be, and
κ(x) = x2/Kd. Define thesupportof a flow f to be the set of edges with strictly positive flow. We
will use negative tolls in our proof; however, by Claim 3.17 which we prove in Appendix D, this is
again just a notational convenience. Similar arguments were used in [10] to show boundedness of
tolls, but the results are not directly applicable. Note that f∗ is acyclic.

Claim 3.17. For a single-commodity routing game and tollsτ , there exist tollsτ ′ ≥ 0 so thatf(τ) =
f(τ ′) and τ ′e′ ≤ τe′ +

∑

e:τe<0 |τe| for all e′. If the graph is acyclic,τ ′ can be obtained without
knowledge of the delay functions.

Proof outline. We show that if the support of the equilibrium flow remains fixed, the equilibrium
flow is a linear function of the tolls. Thus if we can obtain tolls τ so that the support off(τ) is the
same asf∗, we can solve a linear system of equations to obtain tolls that enforcef∗. Accordingly, our
algorithm consists of the following two steps.

Step 1: Enforcing the correct support. We first obtain tollsτ so thatfe(τ) > 0 ⇔ f∗
e > 0. By

suitably large tolls on edgese for which f∗
e = 0, we already have tolls that satisfy one direction of

the implication. The other direction is roughly by binary search, described in Lemma 3.20: we pick
an edger that does not yet have flow, and impose increasingly negativetolls on this edge until it has
positive flow at the equilibrium. The difficulty here is in maintaining monotonicity of the support
of the equilibrium flow. Increasing the flow on edger decreases flow on the other edges. We use
a number of results regarding the sensitivity of equilibrium flow for this step. In fact, this step has
quadratic query complexity, while the second step that actually obtains tolls that enforcef∗ has linear
query complexity.

Step 2: Obtaining the target flow f∗. We now use Lemma 3.22 which establishes the linearity
of equilibrium flow as a function of tolls, if the support of the equilibrium flow does not change.
Obtaining the coefficients of this linear map requires us to query the oracle with a small toll on each
edge. The query complexity of this step is thus linear.

We start with some results about the continuity, monotonicity, and sensitivity of equilibrium flow
as a function of tolls. Theorem 3.18(ii) was earlier proved in [8]. Let 1e ∈ R

E be the vector with
value 1 in coordinatee, and 0 everywhere else.

Theorem 3.18. Let Γ be a single-commodity routing game with standard linear delay functions.
Then,

(i) ‖f(0)− f(1eκ(ǫ))‖∞ ≤ ǫ,

(ii) f(τ) is continuous,

(iii) for edger andδ > 0, fr(1rδ) ≤ fr(0), and

(iv) for edger andδ > 0, |fr(−1rδ)− fr(0)| ≥ ‖f(−1rδ) − f(0)‖∞.

The proof of (i) and (ii) are straightforward from the following immediate Corollary of Lemma 3.5.
We prove (iii) and (iv) in Appendix D.

1The use of infinite tolls is a notational convenience; the same effect can be obtained with tollsm22mlmax(d).

17

Corollary 3.19. For a multicommodity routing gameΓ , let f̂ be the equilibrium flow. Ifg is a
valid multicommodity flow that satisfies for alli, P ∈ Pi, gP > 0 ⇒ lP (g) ≤ Di(l, g) + ǫ, then
‖g − f̂‖∞ ≤

√

Kǫ
∑

i di.

We now show a lemma that is used to prove the first step of our proof. Lemma 3.20 shows that
if edger has no flow or very little flow at equilibrium, then with a smallnumber of queries we can
obtain tolls so that the flow on edger increases, and the flow on the other edges does not change
significantly.

Lemma 3.20. LetΓ be a single-commodity nonatomic routing game, and letδ > 0, δ ≤ d. For tolls
τ , letS := {e : fe(τ) ≥ δ}, and edger 6∈ S. Then withlog (−N/κ(δ/3)) queries, we can determine
tolls τ ′ so thatfe(τ ′) ≥ δ/3 for all e ∈ S ∩ {r}, whereN := minP∈P τP − minP∈P:r∈P τP −
mlmax(d) < 0 .

Proof. To obtain tollsτ ′, we will only vary the tolls on edger. We thus parametrize tollsτ ′ by α,
whereτ ′ = τ + 1rα.

If fr(τ) ≥ δ/3, we are done. Otherwise, we claim that ifα = N , thenfr(τ ′) = d. To see this, let
Q be the path that minimizes

∑

e∈P aed+ be + τe over all pathsP ∈ P with r ∈ P , and letf be the
flow that sends the entire demand along this path. Then the delay along this path with tollsτ ′ is

∑

e∈Q

(

aed+ be + τ ′e
)

=
∑

e∈Q

(aed+ be + τe) +N

= min
P :r∈P

∑

e∈P

(aed+ be + τe) + min
P∈P

τ(P)− min
P∈P:r∈P

τ(P)−mlmax(d)

≤ min
P∈P

τ(P) ,

while for any pathP with r 6∈ P , the delay along pathP is at least this quantity. Hencef is actually
an equilibrium flow, and ifα ≤ N , thenfr(τ ′) = d.

Definea, b ∈ [N, 0] as follows.

a := max{α ∈ [N, 0] : fr(τ
′) = δ/3}

b := min{α ∈ [N, 0] : fr(τ
′) = 2δ/3}

By the continuity of equilibrium flow with respect to tolls (Theorem 3.18, (ii)),a, b exist. By the
monotonicity of equilibrium flow, for anyα ∈ [b, a], fr(τ ′) ∈ [δ/3, 2δ/3]. Then by Theorem 3.18,
(iv), for any edgee ∈ S andα ∈ [b, a], fe(τ ′) ∈ [δ/3, δ]. Thus our problem reduces to finding an
α ∈ [b, a], which we can find by binary search. We will show thata − b ≥ κ(δ/3), which gives
us the bound on the number of queries required. To see this, let τa and τ b be the tolls obtained
by settingα = a andα = b respectively. Then ifa − b ≤ κ(δ/3), then by Theorem 3.18 (i),
‖f(τa)− f(τ b)‖ ≤ δ/3. �

F1. Initializeτe ← 0 for all e, i← 1, andS ← {e : fe(τ) ≤ d/3i}.
F2. WhileS 6= E

F3. Pick an edger 6∈ S

18

F4. By Lemma 3.20, findα ∈ [N, 0] so that ifτ ′ = τ + 1rα, thenfe(τ ′) ≥ d/3i+1 for all e ∈ S ∪ {r}.
F5. τ ← τ ′, i← i+ 1, S ← {e : fe(τ) ≤ d/3i}

Lemma 3.21. The stated algorithm terminates with tollsτ so thatfe(τ) ≥ d/3m on every edge, and
requiresO(m2 log(3mlmax(d)) queries.

Proof of Lemma 3.21.Let N(i) be the value ofN in the ith iteration of the while loop. Then by
Lemma 3.20, theith iteration requireslog(−N(i)/κ(d/3i+1)) queries to complete, and adds at least
one edge to the setS. Thus, there are at mostm iterations of the while loop. We will show that
|N(i)| ≤ m2i−1lmax(d), thus proving the bound on the number of queries. Note that since all tolls
are negative,|minP τP −minP :r∈P τP | ≤ |minP τP |.

The proof is by induction. In the first iteration sinceτ = 0 initially, N(1) ≤ mlmax(d). In the
ith iteration, there are at mosti − 1 other edges with tolls on them, and along any path the sum of
the absolute values of these tolls is at most

∑

j≤i−1 2
j−1mlmax(d) = (2i−1− 1)mlmax(d), and hence

|N(i)| ≤ 2i−1mlmax(d). �

This completes the first step of our proof. We now proceed withthe second step. Lemma 3.22
shows that the equilibrium flow is a linear function of the tolls, as long as the set of edges with strictly
positive flow remains constant. While a similar result on thelinearity of the equilibrium flow was
shown in [7], Lemma 3.22 shows how to obtain the coefficients of the linear map.

Lemma 3.22. For any routing gameΓ and tollsτ (1), let f(τ (1)) > 0. Then there exist coefficients
(βe,e′)e,e′∈E so that for any tollsτ ,

(i) f(τ + τ (1)) > 0⇒ f(τ + τ (1)) = f(τ (1)) + βτ , and

(ii) f(τ (1)) + βτ > 0⇒ f(τ + τ (1)) = f(τ (1)) + βτ .

Proof. We first show how to obtain the coefficients(βe,e′)e,e′ . Definefmin = mine f(0) > 0. For
each edgee′, let αe′ := 1e′κ(fmin/2). By Corollary 3.19,f(τ (1) + αe′) > fmin/2 for each edgee′.

Then for each edgee ∈ E, defineβe,e′ =
(

fe(τ
(1) + αe′)− fe(τ

(1))
)

/κ(fmin/2).

Given tolls τ , let g := f(τ (1)) +
∑

e′ βe,e′τe′ . In general,g may be negative on some edges.
However, we show thatg is ans-t pseudoflow of valued: it satisfies all the conditions for being a
flow except nonnegativity. Further, we show thatg is a minimizer of (1) if we allow eachf to be a
pseudoflow, rather than a flow.

To see the first claim, note that for a fixed edgee′ sinceβe,e′ is the difference of two (scaled) flows
of the same value, it is a circulation. Theng is the sum of a flow and a set of circulations, and is hence
a pseudoflow.

To show thatg equalizes the delay on everys-t path with tollsτ , for anys-t pathp,

∑

e∈p

le(g) − le(f(τ
1)) =

∑

e∈p

ae
(

ge − fe(τ
1)
)

=
∑

e∈p

ae
∑

e′

βe,e′τe′

=
∑

e′

τe′

κ(fmin/2)

∑

e∈p

ae

(

fe(τ
(1) + αe′)− fe(τ

(1))
)

(5)

Sincef(τ (1) + αe′) andf(τ (1)) are equilibrium flows with tollsτ (1) + αe′ andτ (1) respectively, and
both are strictly positive on every edge, it follows from (5)that

19

∑

e∈p

le(g) − le(f(τ
(1))) =

∑

e′

τe′

κ(fmin/2)

(

D(f(τ (1) + αe′))−D(f(τ (1)))−
∑

e∈p

αe′

e

)

and sinceαe′

e = 0 for e 6= e′,

∑

e∈p

le(g)− le(f(τ
(1))) =

∑

e′

τe′

κ(fmin/2)

(

D(f(τ (1) + αe′))−D(f(τ (1)))
)

−
∑

e∈p

τe .

Thus for any pathp,

∑

e∈p

le(g) + τe =
∑

e∈p

le(f(τ
(1))) +

∑

e′

τe′

κ(fmin/2)

(

D(f(τ (1) + αe′))−D(f(τ (1)))
)

.

Further, for any pathp,
∑

e∈p le(f(τ
(1))) = D(f(τ (1)−∑e∈p τ

(1)
e . Hence for any pathp,

∑

e∈p le(g)+

τe + τ
(1)
e is equal. It follows immediately that if the second condition in the lemma is true, i.e., if

g > 0, theng must be an equilibrium flow with tollsτ (1) + τ , and since the equilibrium is unique,
f(τ + τ (1)) = g. This completes the proof of the second statement.

For the first statement, for0 ≤ λ ≤ 1 defineh(λ) = f(τ (1) + τ) + λ(g − f(τ (1) + τ)). Since on

any pathp as shown earlier
∑

e∈p le(g) + τe + τ
(1)
e is equal, andf(τ (1) + τ) > 0 by assumption, this

is also true forh(λ). Further sincef(τ (1) + τ) > 0, there existsλ > 0 so thath(λ) > 0. Thenh(λ)
must also be an equilibrium flow with tollsτ . By the uniqueness of equilibria, this is only possible if
f(τ + τ (1)) = g. �

L1. Use the earlier algorithm to get tollsτ (1) so thatf(τ (1)) ≥ d/2m.

L2. Obtain the coefficients(βe,e′)e,e′ as in Lemma 3.22

L3. Solve the linear equationsβτ (2) = f∗ − f(τ (1)) for tolls τ (2). Thenf(τ (2) + τ (1)) = f∗.

Proof of Theorem 3.16.We will show that the algorithm is correct, and requiresO(m2 log(3mlmax(d))
queries. The correctness of the first step follows from Lemma3.21. To use Lemma 3.22, since
fmin ≥ d/2m, to obtain the coefficients(βe,e′)e,e′, we require an additionalm queries, each of which
applies an additional toll (relative toτ (1)) of κ(d/2m+1) on individual edges.

Let τ∗ be tolls such thatf(τ∗) = f∗. By the first part of Lemma 3.22, thenf∗ = f(τ (1)) +
β(τ∗ − τ (1)). Now τ (2) is a solution to the system of linear equalitiesβτ (2) = f∗ − f(τ (1)); since
τ∗ − τ (1) satisfies this, we know a solution exists. Further, by the second part of the Lemma since
f(τ (1)) + βτ (2) = f∗ > 0, in fact f(τ (1) + τ (2)) = f∗. Henceτ (1) + τ (2) are the tolls required to
obtain the target flow. �

20

4 Inducing target flows via Stackelberg routing on series-parallel graphs

Recall that here we have a single-commodity routing gameΓ ∗ = (G, l∗, (s, t, d)). We are given a
parameterα ∈ [0, 1] and a target flowf∗, and we seek ans-t flow g of value of at mostαd such
thatg + f(l∗, g) = f∗, if one exists. We abbreviatef(l∗, g) to f(g). We consider the setting where
G is a directed sepa graph with terminalss andt, and devise an efficient algorithm that computes a
Stackelberg routing inducingf∗ using at mostm queries to an oracle that returns the equilibrium flow.
The flowg we compute is in fact of minimum value among all Stackelberg flows that inducef∗. (So
eitherg is the desired Stackelberg flow, or none exists if|g| > αd.) Our algorithm works for arbitrary
increasing delay functions provided, as in Section 3.3, we have an oracle that returns the correct sign
of ((f(g)+g

)

e
−f∗)e given a Stackelberg routingg. In particular, the algorithm works for increasing

linear latencies.
As before, we fix a decomposition tree forG, and a subgraph refers to a subgraph corresponding

to a node of this tree. For a flowf and subgraphH, let fH denote(fe)e∈E(H). We again leverage the
concept of a good pair of subgraphs, which becomes much simpler to state in the single-commodity
setting.

Definition 4.1 (specialization of Definition C.1). Given s-t flows f , f̃ , we call a pair of subgraphs
H1, H2 (f, f̃)-goodif:

(i) the parallel-join ofH1, H2 is a subgraph;

(ii) fe ≥ f̃e for all e ∈ E(H1) andfe ≤ f̃e for all e ∈ E(H2); and

(iii) |fH1
| > |f̃H1

| and|fH2
| < |f̃H2

|.

Lemma 4.2. Letg be any Stackelberg routing. Iff(g) + g 6= f∗, there exists an(f(g) + g, f∗)-good
pair of subgraphs.

Lemma 4.2 follows from a more general result proved in Lemma C.2 for multicommodity flows.
The proof in the single-commodity setting becomes much simpler, and follows immediately from
Claim 4.3 since|f(g) + g| = |f∗|.

Claim 4.3. For any twos-t flows f , f̃ in a sepa graphG, either there is an(f, f̃)-good pair of
subgraphs, or one of the following holds:

(i) If |f | = |f̃ | thenf = f̃ .

(ii) If |f | > |f̃ | thenf ≥ f̃ .

(iii) If |f | < |f̃ | thenf ≤ f̃ .

Proof. The proof is by induction on the size of the graph. For a singleedge, there is no good pair of
subgraphs, but one of the three cases must hold. For the induction step, letG be the join of subgraphs
G1 andG2. Let f1 = fG1

, f̃1 = f̃G1
, andf2 = fG2

, f̃2 = f̃G2
. Clearly,f1, f̃1 aresG1

-tG1
flows, and

f2, f̃2 aresG2
-tG2

flows. If G1 contains an(f1, f̃1)-good pair, orG2 contains an(f2, f̃2)-good pair,
then the same pair is an(f, f̃)-good pair, and we are done. So assume otherwise.

SupposeG1 andG2 are in series. Then,|f1| = |f | = |f2|, and|f̃1| = |f̃ | = |f̃2|. So whichever
case applies tof andf̃ , the same applies tof1, f̃1, andf2, f̃2. By the induction hypothesis, we have

21

the desired relationship betweenf1, f̃1 andf2, f̃2, and hence betweenf andf̃ . So the statement holds
for G.

SupposeG1 andG2 are in parallel. If|f1| > |f̃1| and|f2| < |f̃2|, then by the induction hypothesis,
f1 ≥ f̃1, f2 ≤ f̃2, soG1, G2 is an(f, f̃)-good pair. Similarly, if|f1| < |f̃1| and|f2| > |f̃2|, thenG2,
G1 is an(f, f̃)-good pair. So assume neither case holds.

Now if |f | = |f̃ |, then (after eliminating the above cases)|f1| = |f̃1|, |f2| = |f̃2|. Hence, by the
induction hypothesis, we havef1 = f̃1, f2 = f̃2, and sof = f̃ .

If |f | > |f̃ |, then it must be that|f1| ≥ |f̃1| and|f2| ≥ |f̃2|. Therefore,f1 ≥ f̃1, f2 ≥ f̃2, and so
f ≥ f̃ .

Finally, if |f | < |f̃ |, then it must be that|f1| ≤ |f̃1|, |f2| ≤ |f̃2|. Hence,f1 ≤ f̃1, f2 ≤ f̃2, and so
f ≤ f̃ . This completes the induction step, and hence, the proof. �

Our algorithm is now quite simple to describe. We keep track of the setS̄, initialized to∅, of
edges not on any shortests-t path under the edge costs(l∗e(f

∗
e))e. By Lemma 2.2,̄S must be saturated

by any Stackelberg routing that inducesf∗. We repeatedly do the following.

S1. Find the flowg of minimum value that saturates every edge inS̄ and satisfiesge ≤ f∗

e for all e.

S2. Query the oracle withg as the Stackelberg flow. Iff∗ = f(g) + g, exit and returng. Otherwise, find an
(f(g) + g, f∗)-good pair of subgraphsH1, H2. Add every edge inH2 to S̄ (and repeat the process).

Theorem 4.4. The above algorithm computes a Stackelberg flowg of minimum value that inducesf∗

in at mostm queries.

Proof. In every iteration,|S̄| increases by at least 1: since|fH2
(g) + gH2

| < |f∗
H2
| andg saturates

every edge in̄S, we know that at least one edge inH2 is not in the current set̄S. WhenS̄ = E, we
haveg = f∗. So the algorithm terminates in at mostm iterations with some flowg that inducesf∗.
To complete the proof, we only need to show that any edge addedto S̄ is indeed a non-shortest-path
edge. Leth = f(g) + g. Let s′ = sH1

= sH2
, t′ = tH1

= tH2
. Since|hH1

| > |f∗
H1
|, there is some

s′-t′ pathP in H1 such that(h − f∗)P > 0. SoP belongs to a shortests-t path under edge costs
(l∗e(he))e. So for everys′-t′ pathQ in H2, we havel∗P (f

∗) < l∗P (h) ≤ l∗Q(h) ≤ l∗Q(f
∗). So every

edge ofH2 is a non-shortest-path edge under edge costs(l∗e(f
∗
e))e. �

5 Query- and computational- complexity lower bounds

5.1 A linear lower bound for query complexity with tolls

We show a lower bound ofΩ(m) on the number of queries required to obtain tolls that give the target
flow.

Theorem 5.1. Any deterministic algorithm that computes tolls required to enforce a target flow re-
quiresΩ(m) queries, even for a single commodity instance on parallel links with linear delay func-
tions.

Our example for the lower bound consists of a single commodity on m parallel links, with the
demandd = m and the target flowf∗

e = 1 on each edge. In fact, our lower bound is actually for the
problem of obtaining tollsτ with the right support:fe(τ) > 0 iff f∗

e > 0.
For our lower bound example, our delay functions are defined by a permutationπ∗ : [m] → [m].

The delay function on the parallel edgeei is be given by(x/m) + 2(π∗(i) − 1). Thus, we use the
notationf(π, τ) for the equilibrium flow, where the permutationπ identifies the delay functions.

22

We show that any algorithm that computes the correct tolls toenforcef∗ must obtain the correct
permutationπ∗, and we design an oracle that afterk queries has only revealed information about
π∗−1(1), · · · , π∗−1(k). Thus, in order to compute the correct tolls, any algorithm requiresm − 1
queries.

Our oracle works as follows. Initially, letA0 = ∅ be the set of assigned edges in the partial
permutationπ∗. For thejth queryτ j = (τ je)e∈E , our oracle returns the equilibrium flow described
below.

Oracle: Pick an arbitrary edgee that with minimum tollτ je , so thate is not inAj−1. Letπ∗(e) = j
andAj = Aj−1 ∪ {e}. Let π(j) be a complete permutation that extends the partial permutation π∗,
and returnf(π(j), τ

j) as the equilibrium flow in response to tollsτ j .

Claim 5.2. For j ∈ [m], let σ be any permutation that satisfiesσ(e) = π(j)(e) for all edgese ∈ Aj.
Then for any edgee 6∈ Aj , fe(σ, τ j) = 0

Proof. By description of the oracle and sincee 6∈ Aj, e is not the unique edge with minimum toll in
τj. That is, there exists an edgeh ∈ Aj with τ jh ≤ τ je . Sinceh ∈ Aj, σ(h) ≤ j < σ(e). Further since
τ jh ≤ τ je , by description of the delay functions,le(0) > lh(d), and hence edgee cannot have flow at
equilibrium. �

We now show that the equilibrium flows returned by our oracle are consistent.

Lemma 5.3. There exists a permutationσ so that for everyj ∈ [m], f(π(j), τ
j) = f(σ, τ j).

Proof. Fix j ≤ m, and letσ be a complete permutation that extendsπ∗. The image of every edge
e ∈ Aj is the same inπ∗ andπ(j). Thus the delay functions on both edges is the same. By Claim 5.2,
the equilibrium is zero for any edge not inAj . Since edges inAj have the same delay function, the
equilibrium flow must be the same for permutationsσ andπ(j). �

Proof of Theorem 5.1.From Lemma 5.3, for any sequence ofm − 1 toll queries, the oracle returns
a consistent sequence of equilibrium responses. Further, from Claim 5.2, since|Aj| ≤ m − 1 for
j ≤ m− 1, there is an edgee with no flow in the equilibrium returned by the oracle. Hence,sincef∗

has positive flow on every edge, any deterministic algorithmrequires at leastm queries to compute
tolls that obtainf∗. �

5.2 Lower bounds for determining equivalence with Stackelberg routing

Given the ability to query a routing game and obtain the equilibrium flow, a natural question is if
we can in fact obtain the delay functions on the edges. It is obvious that the exact delay functions
cannot be obtained, even for a single edge. However, is it possible to obtain delay functions that are
equivalent, in the sense that any Stackelberg routing wouldyield almost the same equilibrium flow as
in the routing game?

Definition 5.4. Given a graphG with demandd betweens andt and a Stackelberg demand fraction
α, two sets of delay functions on the edgesl1 andl2 areǫ-equivalent if for every Stackelberg routing
g with |g| ≤ αd, ‖f(l1, g)− f(l2, g)‖∞ ≤ ǫ.

We prove strong lower bounds for this problem, both for the query complexity and the computa-
tional complexity. In fact, for the query complexity, the lower bound instance is a graph of constant
size. The size of the input is determined by the demandd, and we show that although the size of the

23

input isO(log d) any deterministic algorithm that determinesǫ-equivalence for a fixedǫ must make
Ω(
√
d) queries. For computational hardness, we show that even if weare explicitly given affine delay

functionsl1 andl2, determining1/2-equivalence isNP-hard. Our proof for computational hardness
builds upon a reduction given by Roughgarden [27].

Query complexity. We are now given a graphG with demandd betweens and t, a Stackelberg
demand fractionα, and a set of delay functionsl1 on the edges ofG. In addition, we are given query
access to a second set of delay functionsl2. As before, each query consists of a Stackelberg routing
g, and the response is the equilibrium flowf(l2, g). We show the following result.

x2 + x

ax

b

ax

x2 + x

s t

u

v

d

Figure 1: Braess graph instance for proving hardness of equivalence determination.

Theorem 5.5. Any deterministic algorithm that determinesǫ-equivalence forǫ ≤ 1/16 requires an
exponential number of queries.

Our proof of the theorem is based on a particular property exhibited by the Braess graph shown in
Figure 1: there exist demandsd1 ≤ d2 that depend on the parametersa andb so that for any demand
d < d1 andd > d2 the set of shortest-path edges is the same, and differs from the set of shortest-path
edges for any demandd1 ≤ d ≤ d2. This is formalized by the following claim.

Claim 5.6. For the routing game depicted in Figure 1, and anyd1, d2 ∈ R+ with d2 > d1 ≥ 1,
there exist parametersa and b so that the equilibrium flowf on the Braess edge is strictly positive
iff d1 < d < d2, whered is the demand being routed. Further, ifd2 − d1 ≥

√

2(d1 + d2), then
fuv ≥ 1/12 for demandd = (d1 + d2)/2.

Proof. We choosea = 1 + (d1 + d2)/2 andb = (d1d2)/4. Then for anyd, consider the flow that
routesd/2 on thes-u-t path andd/2 on thes-v-t path. It is easy to verify that this is the equilibrium
flow if and only if d ≤ d1 or d ≥ d2. Given the symmetric delay functions, it is then apparent that for
d ∈ (d1, d2) the(u, v) edge must have strictly positive flow.

For the second part of the proof, letσ = d1+d2, δ = d2−d1. Thusa = 1+σ/2, b = (σ2−δ2)/16,
andd = σ/2 = a− 1. Let fsu = x. Then by the symmetry of the delay functionsfsv = fut = d− x
andfuv = 2x−d. Since we know for this demandfuv > 0, and edge(s, v) has zero delay iffsv = 0,
lsu(f) + luv(f)− lsv(f) = 0. Hence

0 = x2 + x+ b− a(d− x)

and solving forfuv = 2x− d, and substituting the values ofa, b andd yields

2x− d =
√

(a+ 1)2 + 4(ad− b)− (a+ 1 + d) = x2 + (a+ 1)x+ (b− ad)

=
√

(2 + σ)2 + δ2/4− (2 + σ) .

24

Using the fact that
√
1 + x ≥ 1 + x/3 for |x| ≤ 1 by the Taylor expansion, we get

2x− d ≥ δ2

12(2 + σ)

Sinceδ ≥
√
2σ ≥

√
2 + σ by assumption, this completes the proof. �

Proof of Theorem 5.5.We demonstrate that on the Braess graph in Figure 1 with an additional (s, t)
edge, demandd > 8, and wherea, b have valueO(d2), any algorithm requiresΩ(

√
d) queries to

determine if two sets of delay functionsl1, l2 are equivalent. Since the size of the input isO(log d),
this would prove the lemma.

For delay functionsl1 that are explicitly given,a = 1, b = ∞ and l1st = ∞. Delay functions
l2 also havel2st = ∞ but different values fora andb, which are determined after seeing the queries.
Let gi, i ≤ k be the set of queries. We will show that ifk ≤

√
d then there exista, b so that

f(l1, gi) = f(l2, gi) for all i ≤ k, but there existsg so thatfuv(l2, gi) ≥ 1/12. Sincel1uv = ∞, it
must be thatfuv(l1, gi) = 0, and hence the two delay functions are distinct. Thus any algorithm that
makes less than

√
d must fail to distinguish between these delay functions.

For any querygi, our oracle returns the equilibrium flowf(l1, gi). Now givengi for i ≤ k ≤
√
d,

let α1, α2 ∈ [1, d] be such thatα2 − α1 ≥
√
d, and for alli, d− gist 6∈ [α1, α2]. Since edge(s, t) has

infinite delay, any flow on this edge must be Stackelberg flow. Hence we requireα1 andα2 so that
the total flow on the Braess graph is always outside the interval [α1, α2], andα2 − α1 ≥

√
d. Since

k ≤
√
d, such an interval must exist. We then selecta andb as in Claim 5.6 to complete our definition

of delay functionl2.
It remains to show that for allgi, f(l2, gi) = f(l1, gi) for correctness of the oracle. Fixi, and

let d′ = d − gist. Note thatd′ 6∈ [α1, α2]. Let g1, g2 andg3 be the Stackelberg flow on pathss-u-t,
s-u-v-t, ands-v-t respectively. By our choice ofl2, if g1 = g2 = g3 = 0, then the equilibrium flow
would split demandd′ equally between thes-u-t ands-v-t paths, and hence

l2sv(d
′/2) ≤ b+ l2su(d

′/2) . (6)

We consider the following cases.
Case 1: Eitherg1 or g3 is strictly greater than (d′−g2)/2. Supposeg1 > (d′−g2/2). We claim that
at equilibrium, the non-Stackelberg demand is entirely routed on thes-v-t path, i.e.,f(g) = h where
hsv(g) = hvt(g) = d′ − (g1 + g2 + g3). To see this, note thathsv + gsv < d′/2, hence comparing
with (6), delay on thes-v-t path is less than the delay on thes-u-v-t. Further,hsv + gsv < gut, and
hvt+ gvt < gsu. By the symmetry of delay functions, thes-v-t path is therefore the shortest path, and
henceh = f(g).
Case 2: Bothg1 and g3 are at most (d′ − g2)/2. We claim that at equilibrium,fsu(g) = fut(g)
= d′/2− (g1 + g2) andfsv(g) = fvt(g) = d′/2− (g3 + g2). Thus at equilibrium the remaining flow
d′ − g2 is divided equally between thes-u-t ands-v-t paths, and again the edge(u, v) has no flow at
equilibrium. To verify the claim, note that

fsv(g) + gsv ≤ fsu(g) + gsu = d′/2 andfut(g) + gut ≤ fvt(g) + gvt = d′/2

and hence, comparing with (6),

l2sv(f(g) + g) ≤ l2sv(f(g) + g) + b andl2ut(f(g) + g) ≤ l2vt(f(g) + g) + b .

25

It is further easy to see that, since the total flow on edges(s, u), (v, t) is equal, and the total flow on
edges(s, v), (u, t) is equal,

l2sv(f(g) + g) + l2vt(f(g) + g) = l2su(f(g) + g) + l2ut(f(g) + g) .

Hence pathss-u-t ands-v-t are shortest paths with the described flow, and sincefP (g) > 0 only on
these paths, it is an equilibrium.

As noted earlier, if the Stackelberg flow is rational, then sois f(g). In fact as shown the equilib-
rium flow in all cases is very simple and can be computed directly from g. �

We note that in our example, the equilibrium flow returned by the oracle is particularly simple and
in fact does not depend on the delay functions. E.g., in the simpler case in the proof sketch, the oracle
always returnsfe(g) = (d− gst)/2 for all e 6= (s, t), (u, v).

Computational complexity. We now show that even if delay functionsl1 andl2 are given explicitly,
determining if they areǫ-equivalent is computationally hard forǫ ≤ 1/2. This is true even if all delay
functions are affine. Our proof uses properties of the Braessgraph together with ideas from a reduction
from 2-Directed Disjoint Paths shown by Roughgarden [27].

Definition 5.7 (2-Directed Disjoint Paths (2DDP)). Given a directed graphG = (V,E) and two pairs
of terminalss1,t1 ands2, t2, determine if there existsi-ti pathspi so thatp1 andp2 are vertex-disjoint.

x

1

0

1

x

s t

u

v

d

Figure 2: Braess graph instance for proving hardness of equivalence determination with respect to
Stackelberg routing.

s
s′

s1

s2

t1

t2
t

y

1/8

∞

∞∞

x

x

x

1

1

x/m2

Figure 3: 2DDP instance with additional edges for proving hardness of equivalence determination
with respect to Stackelberg routing.

Theorem 5.8. The problem of determining theǫ-equivalence of delay functions forǫ ≤ 1/2 is NP-
hard.

26

We use the following claim about Stackelberg routing in the Braess graph.

Claim 5.9. In any Stackelberg routing instance on the graph with delay functionsl as in Figure 2 and
Stackelberg routingg, if fuv(g) > 0, thend < 2 andD(l, g) ≤ 2. Further, ifge = 0 for every edge in
the Braess graph and the demandd ∈ [1/2, 3/2], thenfuv(g) ≥ 1/2.

Proof. For the first part of the claim, heth = f(l, g) + g. If (u, v) ∈ S(l, g), then the pathp =
(s, u, v, t) must be a shortest path for flowh. Thenlsu(h) + luv(h) ≤ lsv(h), and hencelsu(h) ≤ 1.
Thushsu ≤ 1. Similarly,hvt ≤ 1. The first part follows. For the second part, ifd ≤ 1 it is easy to see
that the equilibrium flow routes the entire demand on thes-u-v-t path. Ifd ∈ [1, 2] then consider the
flow hsu = hvt = 1, huv = 2− d andhsv = hut = d− 1. It can be verified thath is the equilibrium
flow. �

Proof of Theorem 5.8.We show a reduction from 2DDP. Given an instance of the 2DDP problem, af-
ter the addition of a sources and a sinkt and additional edges described next (and shown in Figure 3),
we add this graph in parallel with a standard Braess graph (Figure 2). The delay functionsl1, l2 will
differ only on edge(u, v) in the Braess graph. We useH1 to refer to the Braess graph andH2 to refer
to the graph in the 2DDP instance with verticess andt and the additional edges, andH to refer to
their parallel composition. For a flowf , |fHi

| is the value of the flow in subgraphHi.
The specifics of the construction are as follows. Letm = |E| be the number of edges in the given

instance of 2DDP. All of these edges have delay functionx/m2. We add a sources, vertexs′ and
a sink t. We add an edge(s, s′) with constant delay function1/8, and edges(s′, si) and(ti, t) for
i ∈ {1, 2}. Edges(s, s1) and(t2, t) have delay functionx, while edges(s, s2) and(t1, t) have delay
function 1. Further, there is an(s, t) edge with delay function∞, and for every edgee = (x, y) in the
original instance, the new instance additionally containsedges(s, x) and(y, t) with delay function
∞. This constitutes the graphH2. GraphH1 consists of the Braess graph instance in Figure 2, and
graphH is obtained by a parallel composition ofH1 andH2. The Stackelberg instance has demand
m4 + 3, andα = m4/(3 +m4). The delay functionsl1, l2 are as described, exceptl2uv = ∞ on the
Braess edge.

Sincel1, l2 differ only on the delay function on edge(u, v), it is easy to see that for any Stackelberg
routing g, if fuv(l

1, g) = 0 thenfuv(l1, g) = fuv(l
2, g). Further, sincel2uv = ∞, if fuv(l

1, g) =
fuv(l

2, g) then in factfuv(l1, g) = 0. Hence the delay functions are equivalent ifffuv(l
1, g) = 0 for

every Stackelberg routingg. For the proof of the theorem, we will show that if the instance of 2DDP
is a positive instance, then there exists a Stackelberg routing g so thatfuv(l1, g) ≥ 1/2, otherwise for
any Stackelberg routing,fuv(l1, g) = 0.

In the remainder of the proof we focus on delay functionsl1. Suppose that the instance is a
positive instance. Then the Stackelberg routingg sendsm3 units of flow on every edgee = (x, y)
in the original instance that is not on the vertex-disjoint pathspi, using the additional edges(s, v),
(v,w). Any remaining Stackelberg flow is routed on the(s, t) edge. Thus every edge that is not on
the vertex-disjoint paths now has delay at leastm, while ge = 0 for every edge on the vertex-disjoint
paths. Further,ge = 0 for every edgee ∈ H1.

We claim that for the equilibrium flow,1/2 ≤ |fH1
| ≤ 3/2. To see this, if|fH1

| < 1/2, then the
delay at equilibrium inH1 is at most1. However|fH2

| > 5/2, hence at least one of the twos-t parallel
paths has delay at equilibrium greater than 1. If|fH1

| > 3/2 then the delay at equilibrium inH1 is 2.
However,|fH2

| ≤ 3/2, hence at least one of the twos-t parallel paths has delay at equilibrium less
than1 + 1/8 + 3/4 × (1 + 1/m) < 2. Thus at equilibrium,1/2 ≤ |fH1

| ≤ 3/2, and by Claim 5.9,
fuv(g) ≥ 1/2.

27

Now suppose that for some Stackelberg routingg, fuv(g) > 0. Then by Claim 5.9,|fH1
| ≤ 2 and

the delay at equilibrium is at most 2. However, then|fH2
| ≥ 1 and the delay at equilibrium is at most

2. Since there is an(s, s′) edge with constant delay1/8, following the proof of Theorem 5.11, this is
only possible if the instance of DDP is a positive instance. �

In fact, using very similar ideas, we can show that the problem of minimizingD(f(g)) over all
Stackelberg strategies is(4/3− ǫ)-inapproximable, even with linear delays. Roughgarden hasshown
that finding the Stackelberg routing that minimizes the average delay of thetotal flow g + f(g) is
NP-hard, even in parallel links with affine delays [26]. Despite considerable interest in Stackelberg
routing, nothing stronger than NP-hardness is known for this problem. Our result thus shows that a
closely related problem is APX-hard.

Definition 5.10(Stackelberg Equilibrium Delay Minimization (SEDM)). Given a Stackelberg routing
instance(G, l, (d, s, t), α), find the Stackelberg routingg that minimizes the average delay for the
equilibrium flowf(g).

Theorem 5.11.The SEDP problem is(4/3 − ǫ)-inapproximable, for any fixedǫ > 0.

Proof. Given an instance of the 2DDP problem, we modify it to obtain aStackelberg routing instance
as follows. Letm = |E| be the number of edges in the original instance. All of these edges have delay
functionx/m2. We add a sources and a sinkt, and edges(s, si) and(ti, t). Edges(s, s1) and(t2, t)
have delay functionx, while edges(s, s2) and(t1, t) have delay function 1. Further, there is an(s, t)
edge with delay function∞, and for every edgee = (v,w) in the original instance, the new instance
additionally contains edges(s, v) and (w, t) with delay function∞. The Stackelberg instance has
demandm4 + 1, andα = m4/(1 +m4).

We claim that if the instance of 2DDP is a positive instance, then there exists a Stackelberg routing
g with D(l, f(g)) ≤ 3/2 + 1/m, otherwise for any Stackelberg routing,D(f(g)) ≥ 2. Suppose that
the instance is a positive instance. Then the Stackelberg routing g sendsm3 units of flow on every
edgee = (v,w) in the original instance that is not on the vertex-disjoint pathspi, using the additional
edges(s, v), (v,w). Thus every edge that is not on the vertex-disjoint paths nowhas delay at leastm,
while ge = 0 for every edge on the vertex-disjoint paths. Any remaining Stackelberg flow is routed
on the(s, t) edge. It is now easy to verify that the equilibrium flowf(g) splits one unit of demand
approximately equally between the two pathsp1 andp2, and has a delay at equilibrium of at most
3/2 + 1/m.

Now suppose the given instance does not contain two vertex-disjoint paths betweens1, t1 and
s2, t2. Following the argument in [4], for a contradiction letg be a Stackelberg routing for which
D(f(g)) < 2. Let F be the set of edges with positive flow at equilibrium. ThenF must contain all
four edges(s, s1), (s, s2), (t1, t), (t2, t); the absence of any of these edges would give a delay of at
least 2. Further,F cannot contain ans-s2-t1-t path since again this would given delay of at least 2.
HenceF must contain ans-s1-t1-t path and ans-s2-t2-t path. These paths cannot be vertex disjoint;
let v be the common vertex. Then the delay on anys-v path must be at least 1, and the delay on any
v-t path must be at least 1. Hence the total delay in any instance that does not contain two vertex-
disjoint paths is at least 2, which gives us a contradiction.The hardness of determining the existence
of these paths thus shows that minimizing the delay of the equilibrium flow with Stackelberg routing
is (4/3 − ǫ) inapproximable, for anyǫ > 0. �

Acknowledgment. We thankÉva Tardos for useful discussions.

28

References

[1] Yakov Babichenko, Siddharth Barman, and Ron Peretz. Simple approximate equilibria in large
games. InEC, pages 753–770, 2014.

[2] Martin Beckman, CB McGuire, and Christopher B Winsten. Studies in the economics of trans-
portation. Technical report, 1956.

[3] Umang Bhaskar, Lisa Fleischer, Darrell Hoy, and Chien-Chung Huang. Equilibria of atomic
flow games are not unique. InProceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 748–757. Society for Industrial and Applied Mathematics, 2009.

[4] Umang Bhaskar, Katrina Ligett, and Leonard J Schulman. The network improvement problem
for equilibrium routing.arXiv preprint arXiv:1307.3794, 2013.

[5] Vincenzo Bonifaci, Tobias Harks, and Guido Schäfer. Stackelberg routing in arbitrary networks.
Math. Oper. Res., 35(2):330–346, 2010.

[6] R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous selfish users.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 521–530,
2003.

[7] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. How much can taxes help selfish routing?
J. Comput. Syst. Sci., 72(3):444–467, 2006.

[8] Stella Dafermos and Anna Nagurney. Sensitivity analysis for the asymmetric network equilib-
rium problem.Mathematical programming, 28(2):174–184, 1984.

[9] John Fearnley, Martin Gairing, Paul W. Goldberg, and Rahul Savani. Learning equilibria of
games via payoff queries. InACM Conference on Electronic Commerce, pages 397–414, 2013.

[10] Lisa Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source net-
works. Theor. Comput. Sci., 348(2-3):217–225, 2005.

[11] Lisa Fleischer, Kamal Jain, and Mohammad Mahdian. Tolls for heterogeneous selfish users in
multicommodity networks and generalized congestion games. In FOCS, pages 277–285, 2004.

[12] Martin Grötschel, László Lovász, and Lex Schrijver. Geometric algorithms and combinatorial
optimization.Algorithms and Combinatorics, 2:1–362, 1993.

[13] Tobias Harks. Stackelberg strategies and collusion innetwork games with splittable flow.Theory
Comput. Syst., 48(4):781–802, 2011.

[14] S. Hart and N. Nisan. The query complexity of correlatedequilibria. CS arXiv, 2013.

[15] Albert Jiang and Kevin Leyton-Brown. Polynomial-timecomputation of exact correlated equi-
libria in compact games.Games and Economic Behavior, 2013. To appear.

[16] A. Kaporis and P. Spirakis. The price of optimum in Stackelberg games on arbitrary single
commodity networks and latency functions.Theoretical Computer Science, 410:745–755, 2009.

[17] George Karakostas and Stavros G. Kolliopoulos. Edge pricing of multicommodity networks for
heterogeneous users. InFOCS, pages 268–276, 2004.

29

[18] Elias Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of 16th STACS,
pages 404–413, 1999.

[19] VS Anil Kumar and Madhav V Marathe. Improved results forStackelberg scheduling strategies.
In Automata, Languages and Programming, pages 776–787. Springer, 2002.

[20] C. H. Papadimitriou. Algorithms, games, and the internet, 2001.

[21] A. C. Pigou.The Economics of Welfare. Macmillan, 1920.

[22] J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person games.
Econometrica: Journal of the Econometric Society, pages 520–534, 1965.

[23] T. Roughgarden.Selfish Routing and the Price of Anarchy. MIT Press, 2005.

[24] T. Roughgarden. Routing games. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani,
editors,Algorithmic Game Theory. Cambridge University Press, 2007.

[25] Tim Roughgarden. The price of anarchy is independent ofthe network topology.J. Comput.
Syst. Sci., 67(2):341–364, 2003.

[26] Tim Roughgarden. Stackelberg scheduling strategies.SIAM J. Comput., 33(2):332–350, 2004.

[27] Tim Roughgarden. On the severity of Braess’s paradox: Designing networks for selfish users is
hard.J. Comput. Syst. Sci., 72(5):922–953, 2006.

[28] Tim Roughgarden and Christos Papadimitriou. Computing correlated equilibria in multi-player
games.J. ACM, 55(3):14, 2008.

[29] Tim Roughgarden and Florian Schoppmann. Local smoothness and the price of anarchy in
atomic splittable congestion games. InSODA, pages 255–267, 2011.

[30] Tim Roughgarden and́Eva Tardos. How bad is selfish routing?J. ACM, 49(2):236–259, 2002.

[31] D. Shmoys and C. Swamy. An approximation scheme for stochastic linear programming and its
application to stochastic integer programs.Journal of the ACM, 58:25, 2011.

[32] Ashish Sureka and Peter R. Wurman. Using Tabu best-response search to find pure strategy Nash
equilibria in normal form games. InProceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 1023–1029, New York, NY,
USA, 2005. ACM.

[33] Chaitanya Swamy. The effectiveness of Stackelberg strategies and tolls for network congestion
games.ACM Transactions on Algorithms, 8(4):36, 2012.

[34] John Glen Wardrop. Some theoretical aspects of road traffic research. InICE Proceedings:
Engineering Divisions, volume 1, pages 325–362. Thomas Telford, 1952.

[35] Michael P. Wellman. Methods for empirical game-theoretic analysis. InAAAI, pages 1552–1556,
2006.

[36] Hai Yang and Hai-Jun Huang. The multi-class, multi-criteria traffic network equilibrium and
systems optimum problem.Transportation Research Part B: Methodological, 38(1):1–15, 2004.

30

[37] Hai Yang and Xiaoning Zhang. Existence of anonymous link tolls for system optimum on
networks with mixed equilibrium behaviors.Transportation Research Part B: Methodological,
42(2):99–112, 2008.

A Proofs from Section 2

Proof of Lemma 2.2.The necessity of the first condition, thatge ≤ f∗
e on every edge, is obvious. For

the necessity of the second condition, assumef∗ is an equilibrium flow and on some edgee 6∈ S,
ge < f∗

e . Thenfe(g) > 0 sincef(g)+g = f∗. By definition of Wardrop equilibrium, then there must
exist a pathP with e ∈ P andlP (f∗) ≤ lQ(f

∗) for any pathQ. This contradicts thate 6∈ S.
For the sufficiency of the conditions, consider the flowf∗ − g. This is strictly positive only on

shortest-path edges, and hence satisfies the conditions forWardrop equilibrium with Stackelberg flow
g. Since the equilibrium is unique,f(g) = f∗ − g. �

B Proofs from Sections 3.1 and 3.2

Proof of Lemma 3.4.Let (G, l, (si, ti, di)i≤k) be the given routing game. Recall that we assume that
the les satisfy (2)–(4) withlogK = poly(I). Recall the convex program (1) used to compute the
Wardrop equilibrium.

min Φ(f) :=
∑

e

∫ fe

0
le(x) dx s.t. f =

k
∑

i=1

f i, f i is ansi-ti flow of valuedi ∀i = 1, . . . , k.

(1)
Setδ = ǫ

4mK
andε = min

{ ǫ(
∑

i di)
2 , δ2

2K2

}

. Let f̂ be the Wardrop equilibrium, andg be a feasible

flow such thatΦ(g) ≤ Φ(f̂) + ε that we compute in timepoly
(

I, log(1
ε
)
)

= poly
(

I, log(1
ǫ
)
)

. (We
will later require thatg is computed via a specific algorithm for solving (1).)

First, we note that given any feasible flowg, one can always obtain an acyclic feasible flowg′ ≤ g
by simply canceling flow along flow-carrying cycles (of each commodity). So in the sequel, we ignore
the acyclicity condition and concentrate on obtaining an approximate equilibrium.

Observe that for any feasible flowsh, f , we haveΦ(h)−Φ(f) ≥ vf · (h− f), vf = (le(fe))e; vf
is called thesubgradientof Φ atf . So we have

∑

e

gele(f̂e)−
∑

i

diD
i(l, f̂) =

∑

e

(ge − f̂e)le(f̂e) ≤ Φ(g) − Φ(f̂) ≤ ε.

We show below that
∑

e(ge − f̂e)le(ge) ≤ δ2

K
. Sincef̂ is an equilibrium, we also have

∑

e(f̂e −
ge)le(f̂e) ≤ 0. Adding the two inequalities gives

∑

e(ge − f̂e)
(

le(ge) − le(f̂e)
)

≤ δ2

K
. Each term in

this sum is nonnegative and hence is at mostδ2

K
, and therefore we have|ge − f̂e| ≤ δ for every edgee

(due to inverse-K-continuity). Given this, we have thatlP (g) ≤ lP (f̂)+mKδ due to theK-Lipschitz
condition, and soDi(l, g) ≤ Di(l, f̂) +mKδ for every commodityi. Therefore,

∑

e

gele(ge) ≤
∑

e

gele(f̂e) +mKδ
(

∑

i

di

)

≤
∑

i

di
(

Di(l, f̂) +mKδ
)

+ ε

≤
∑

i

di
(

Di(l, g) + 2mKδ
)

+ ε ≤
∑

i

di
(

Di(l, g) + ǫ
)

.

31

We now show that
∑

e(ge− f̂e)le(ge) ≤ δ2

K
. Suppose we obtain the near-optimal solution to (1) by

running the ellipsoid method with error parameterω = ε
mK

∑
i di

. This takes timepoly
(

I, log(1
ω
)
)

=

poly
(

I, log(1
ε
)
)

.) The near-optimality ofg then follows from the fact that there exists another

feasible flowh satisfying: (i) ‖h − f̂‖∞ ≤ ω, and soΦ(h) − Φ(f̂) ≤ ∑

e(he − f̂e)le(he) ≤
ωm(maxe le(he)) ≤ ωmK

∑

i di = ε; (ii)
∑

e(he − ge)le(ge) = 0; see, e.g., Sections 3 and 4 and
in particular, Lemma 4.5, in [31]. Thus, we have

∑

e(f̂e − ge)le(ge) ≥ 0 − ωm(maxe le(ge)) ≥
−ωmK

∑

i di ≥ − δ2

K
. �

Definition of general nonatomic congestion games.This is the following generalization of nonatomic
routing games. The edge set is now replaced by a setE of resources, and there arek player-types. Each
resourcee has a nonnegative, continuous, and strictly increasing delay function,le : R+ 7→ R+. Each
player-typei is described by a player-volumedi and an explicitly-given non-empty strategy setPi ⊆
2E . The combined strategy-choices of the infinitely-many infinitesimal players of each typei can be
described by an assignmentf = (f1, . . . , fk), wheref i : Pi 7→ R+ satisfies

∑

P∈Pi f i
P = di; the

cost incurred by a strategyQ ∈ ⋃i Pi is thenlQ(f) :=
∑

e∈Q le(fe), wherefe =
∑

P∈
⋃

i P
i:e∈P f i

P .

We defineDi(l, f) and anǫ-equilibrium as before: soDi(l, f) = minP∈Pi lP (f), andf is an ǫ-
equilibrium if

∑

e fele(fe) ≤
∑

i di(D
i(l, f) + ǫ). A Nash equilibrium or Nash assignment is a

0-equilibrium, and is known to be unique.
The question with tolls is whether one can impose tollsτ ∈ R

E on resources—which, as before,
yield delay functions(lτe (x) := le(x) + τe)e—in order to achieve a target assignmentf∗ as the Nash
assignment, or ensure that(f∗

e)e is component-wise close to the Nash assignment.

Proof of Theorem 3.7.We first recall the definition of a Nash equilibrium. A Nash equilibrium of the
atomic splittable routing game is a feasible flowf such that

∑

e f
i
ele(fe) ≤

∑

e g
i
ele(fe − f i

e + gie)
for everysi-ti flow gi of valuedi. Equivalently, defining the marginal latency functionli,e(f ;x) :=
le(x) + f i

el
′
e(x), wherel′(x) is the derivative ofl, this means that iff i

P > 0 for P ∈ Pi, thenP is a
shortestsi-ti path under the edge costs

(

li,e(f ; fe)
)

e
.

We use the ellipsoid method and dovetail the proof of Theorem3.2. Given the current ellipsoid
center(l̂, τ̂), we obtain a separating hyperplane as in the proof of Theorem3.2, except that we use the

marginal delay functions
(

l̂τ̂i,e
)

i,e
. Let g = f(l∗, τ̂) = (gi)i≤k be the flow returned by the oracle. If

gi = f∗i for all i, then we are done, so suppose otherwise. Suppose thatf(l̂, τ̂) 6= f∗, that is, there
is somei such thatf(l̂, τ̂)i 6= f∗i. Note that this can be efficiently determined. We can find a player

j and pathsP,Q ∈ Pj such thatf∗j
P > 0, but

∑

e∈P l̂τ̂j,e(f
∗; f∗

e) >
∑

e∈Q l̂τ̂j,e(f
∗; f∗

e). Thus, the
inequality

∑

e∈P

lj,e(f
∗; f∗

e) + τ(P) ≤
∑

e∈Q

lj,e(f
∗; f∗

e) + τ(Q)

where bothl andτ are variables is violated by(l̂, τ̂) but satisfied by(l∗, τ∗) since(l∗, τ∗) inducef∗

(by definition). Notice that the above inequality is indeed linear inl andτ .
Now supposef(l̂, τ̂)i = f∗i for all i. Then,g 6= f∗, we can again find a playerj and paths

P,Q ∈ Pj such thatgjP > 0, but
∑

e∈P l̂τ̂j,e(g; ge) >
∑

e∈Q l̂τ̂j,e(g; ge). So consider the inequality
∑

e∈P

lj,e(g; ge) + τ̂(P) ≤
∑

e∈Q

lj,e(g; ge) + τ̂(Q)

where now only theles are variables. This is violated by(l̂, τ̂) but satisfied by(l∗, τ∗) sinceg =
f(l∗, τ̂). �

32

C Proofs from Section 3.3

C.1 Proof of Lemma 3.13

As mentioned in the proof sketch, we first show a property thatis weaker than having a discriminating
pair. To this end, we define agood pair of subgraphs(Definition C.1) and first show in Lemma C.2
that a pair of subgraphs satisfying this weaker property always exist.

Let (G, {(si, ti, di)}i∈K) be a multicommodity flow instance on a sepa graph. LetH be the col-
lection of parallel subgraphs ofG under a given sepa decomposition tree forG. For any subgraph
H ∈ H we define theinternal nodes ofH asV int(H) := V (H) \ {sH , tH}. Theinternal commodi-
ties ofH areKint(H) := {i ∈ K : {si, ti} ∩ V int(H) 6= ∅}. Theexternal commodities ofH are
Kext(H) := {i ∈ K : sH , tH lie on somesi-ti path}.

Let f = (f i)i∈K andf̃ = (f̃ i)i∈K be two feasible multicommodity flows. Define

|f i
H | :=

∑

e=(sH ,v)∈E(H)

f i
e , and |fH | :=

∑

i∈Kext(H)

|f i
H | .

Definition C.1. Given feasible flowsf , f̃ in G, subgraphsH1,H2 are(f, f̃ ,H)-goodif:

(i) the parallel-join ofH1 andH2 is a subgraph inH;

(ii) fe ≥ f̃e for all e ∈ E(H1) andfe ≤ f̃e for all e ∈ E(H2); and

(iii) |fH1
| > |f̃H1

| and|fH2
| < |f̃H2

|.

Lemma C.2. For any subgraphH ofG, letH′ be the set of subgraphs ofH obtained by parallel joins
in a given decomposition tree ofG, and letf , f̃ be feasible multicommodity flows inG. Either there
exists an(f, f̃ ,H′)-good pair of subgraphs or one of the following must hold.

1. If |fH | = |f̃H | thenfe = f̃e for all e ∈ E(H).

2. If |fH | > |f̃H | thenfe ≥ f̃e for all e ∈ E(H).

3. If |fH | < |f̃H | thenfe ≤ f̃e for all e ∈ E(H).

Proof. We proceed by induction on the size ofH. In the base case, whenH is a single edge, there is no
good pair of subgraphs, but one of the three cases clearly holds. For the induction step, supposeH is
the join of subgraphsH1 andH2. If H is the parallel join ofH1 andH2, then any external commodities
of H are external commodities ofH1 andH2 as well; similarly, any external commodities ofH1 and
H2 are external commodities ofH as well. Hence|fH | = |fH1

| + |fH2
|. Note that if|fHi

| > |f̃Hi
|

and|fHj
| < |f̃Hj

| for i 6= j andi, j ∈ {1, 2} thenH1 andH2 form a good pair.
To verify the three cases, suppose|fH | = |f̃H |. If |fHi

| = |f̃Hi
| for i ∈ {1, 2}, then by induction

fe = f̃e for e ∈ E(H). Otherwise, by the induction hypothesis fori 6= j andi, j ∈ {1, 2}, |fHi
| >

|f̃Hi
| and |fHj

| < |f̃Hj
| yielding a good pair. If|fH | > |f̃H | then again, either|fHi

| > |f̃Hi
| and

|fHj
| < |f̃Hj

| yielding a good pair, or|fHi
| > |f̃Hi

| and |fHj
| = |f̃Hj

|. In this case, by induction,

fe ≥ f̃e for all e ∈ E(H).
Now supposeH1 andH2 are in series. In this case, note thatKext(H) ⊆ Kext(Hi) for i ∈ {1, 2}.

Further, if commodityi ∈ Kext(H1) but i 6∈ Kext(H), thenti must be an internal node ofH2. Since
everysi-ti path containssH1

, andf , f̃ are feasible flows inG, |f i
H1
| = |f̃ i

H1
|. Similarly, if commodity

i ∈ Kext(H2) buti 6∈ Kext(H), thensi must be an internal node ofH1. Since everysi-ti path contains
sH2

, |f i
H2
| = |f̃ i

H2
|. Thus,

33

|fH1
| − |f̃H1

| =
∑

i∈Kext(H1)∩Kext(H)

(

|f i
H1
| − |f̃ i

H1
|
)

+
∑

i∈Kext(H1)\Kext(H)

(

|f i
H1
| − |f̃ i

H1
|
)

=
∑

i∈Kext(H1)∩Kext(H)

(

|f i
H1
| − |f̃ i

H1
|
)

=
∑

i∈Kext(H)

(

|f i
H1
| − |f̃ i

H1
|
)

= |fH | − |f̃H |

Similarly, |fH2
| − |f̃H2

| = |fH | − |f̃H |. By induction, either there is a good subgraph, or one of
the three cases in the lemma must hold. �

Proof of Lemma 3.13.Sincef and f̃ are feasible multicommodity flows andf 6= f̃ , Lemma C.2
implies that there is an(f, f̃ ,H)-good pair of subgraphsH1, H2. So (a)fe ≥ f̃e for all e ∈ E(H1)
and fe ≤ f̃e for all e ∈ E(H2), and (b)|fH1

| > |f̃H1
| and |fH2

| < |f̃H2
|. If fe > f̃e for all

e ∈ E(H1), then we are done. So suppose otherwise.
In the fixed decomposition tree ofG, consider the subgraphs in the subtree rooted at subgraph

H1. Let K be a minimal subgraph that contains bothfe > f̃e edges andfe = f̃e edges; that is,
every subgraph ofK only containsfe > f̃e edges orfe = f̃e edges but not both. LetK be the
join of K1 andK2, whereK1 containsfe > f̃e edges. IfK1, K2 are in parallel, thenK1,K2 is an
(f, f̃ ,H)-discriminating pair.

To complete the proof, we show that it cannot be thatK1 andK2 are in series. Letv be the node
joining K1 andK2, so all edges withv at their head lie inE(K1), and all edges withv at their tail lie
in E(K2). Given a feasible multicommodity flowh, definebv(h) =

∑

(v,u)∈E hv,u −
∑

(u,v)∈E hu,v.
Observe thatbv(h) is simply the node balance

∑

i:v=si
di −

∑

i:v=ti
di, and is thus independent of

the multicommodity flow. Therefore,bv(f) = bv(f̃). Rearranging, this gives
∑

e∈E(K1):e=(u,v)(fe −
f̃e) =

∑

e∈E(K2):e=(v,u)(fe − f̃e), which is a contradiction. �

D Proofs from Section 3.4

Proof of Claim 3.17.We assume that inτ , there is a single edgee′ = (u,w) with negative tolls. If
there are multiple such edges, simply repeating the procedure in this proof gives the required tollsτ ′.
If fe′(τ) = 0, increasing the toll on this edge does no change the equilibrium flow. Hence we assume
thatfe′(l, τ) > 0.

Let E+ be the edge set of the graph if it is acyclic; otherwise, letE+ be the set of edges with
strictly positive flow ing = f(l, τ). Sinceg is an equilibrium flow, the set of edgesE+ is acyclic.
Let σ(v) be an ordering of the vertices given by a topological sort of the graph(V,E+). Define
S = {v ∈ V : σ(v) ≤ σ(u)}, wheree′ = (u, v) is the edge with negative toll. Thens ∈ S and
t ∈ V \ S. Let τ ′ be the tolls obtained by adding−τe′ to every edgee 6∈ E+, and also to every edge
e = (x, y) ∈ E+ across the cut(S, V \ S). That is,

τ ′xy =

{

τxy − τe′ if x ∈ S, y ∈ V \ S, or (x, y) 6∈ E+

τxy otherwise.

By this procedure, the toll does not decrease on any edge and increases to zero on edgee′. We claim
that the flow at equilibrium remains unchanged. Consider first a pathP with gP > 0. All edges

34

e ∈ P are inE+, and exactly one edge crosses the cut(S, V \S). Hence the delay on every such path
increases by exactly−τe′. On any other path, there is at least one edgee 6∈ E+, hence the delay these
paths increases by at least−τe′. The flowg is thus a flow on shortest paths with tollsτ ′, and hence
g = f(l, τ ′). �

Proof of Theorem 3.18.We first prove (iii). Letτ := 1rδ. LetΦ be the potential function as defined
in (1) for the delay functions inΓ , andΦτ be the potential function with delay functions that include
the toll τ . Note that for any flowf , Φτ (f) = Φ(f) + τrfr. Suppose for a contradiction thatfr(τ) >
fr(0). Then

Φτ (f(0)) = Φ(f(0)) + τrfr(0) < Φ(f(0)) + τrfr(τ) < Φ(f(τ)) + τrfr(τ) = Φτ (f(τ)) .

But this is a contradiction, sincef(τ) is the unique minimizer ofΦτ .
We now prove part (iv) of the theorem. Letτ := −1rδ. We first prove the lemma for the case that

S(l, f(τ)) = S(l, f(0)), and then extend it to the case when the set of shortest-path edges differ. For
two flowsf andg of the same value inG, the differenceh = f − g is a circulation and is possibly
negative on some edges. Ifhuv > 0 then(u, v) is a forward edge, and ifhuv < 0 then(u, v) is a
backward. We useE+ andE− for the set of forward and backward edges respectively.

We want to define a decomposition ofh along cycles. For this, letD be the directed graph with
the same vertex set asG, but with (u, v) ∈ E(D) if (u, v) ∈ E andhuv > 0, and(v, u) ∈ E(D) if
(u, v) ∈ E andhuv < 0. Thenh defines a circulatioñh in graphD, whereh̃uv = huv if (u, v) is
a forward edge, and̃hvu = −huv if (u, v) is a backward edge. Let{h̃C}C∈C be a decomposition of
h̃ along directed cycles inD. Then for(u, v) ∈ E+, huv =

∑

C:(u,v)∈C h̃C , and for(u, v) ∈ E−,

huv = −∑C:(v,u)∈C h̃C .
Let edger = (x, y). We will show that(y, x) is in every cycleC. For a contradiction, suppose

there existsC ′ ∈ C so that(y, x) 6∈ C ′. For any edgee ∈ E+, fe(τ) > fe(0), and for any edge
e ∈ E−, fe(τ) < fe(0). Further, sinceS(f(0)) = S(f(τ)), the sum of latencies along cycleC ′ must
be zero for both flowsf(τ) andf(0). However,

∑

e∈C′

le(fe(τ)) =
∑

e∈E+∩C′

(le(fe(τ)) + τe)−
∑

e∈E−∩C′

(le(fe(τ)) + τe)

>
∑

e∈E+∩C′

(le(fe(0)) + τe)−
∑

e∈E−∩C′

(le(fe(0)) + τe)

≥
∑

e∈E+∩C′

le(fe(0)) −
∑

e∈E−∩C′

le(fe(0)) = 0 .

where the second inequality is becauseτe = 0 for e 6= r, andr 6∈ E− ∩ C ′. This is a contradiction,
since the sum of latencies along cycleC ′ must be zero for flowf(τ). Thus, for every cycleC ∈ C,
(y, x) must be inC.

Then

fuv(τ) = fuv(0) +
∑

C∈C:(u,v)∈C

fC −
∑

C∈C:(v,u)∈C

fC .

Since by the claim edger is a backward edge in every cycleC ∈ C, |fr(τ)−fr(0)| = |
∑

C∈C fC |,
which is obviously an upper bound on the change in flow on any edge.

35

We now extend the lemma for the case whereS(f(0)) 6= S(f(τ)). In fact, we show that for any
ǫ > 0, |fr(τ) − fr(0)| ≥ ‖f(τ) − f(0)‖∞ − ǫ. Pick ν = ǫ2/(Kd22m), wherem is the number of
edges. Leta0 = 0. For anyai we define

bi = sup{x ∈ [ai, δ] : S(f(−1rx)) = S(f(−1rai))} .

andai+1 = bi + ν. Let j be such thatδ ∈ [aj , aj+1]. By definition, eitherδ = bj or δ ∈ [bj , aj+1].
Since the number of possible sets of shortest-path edges is2m, j ≤ 2m. Also, for all i, by the first
part of the lemma and by continuity of equilibrium flow,|fr(−1rai) − fr(−1rbi)| ≥ ‖f(−1rai) −
f(−1rbi)‖∞. Further by Corollary 3.19,‖f(−1rbi)− fr(−1rai+1)‖ ≤

√
Kdν. Summing up,

‖f(0)− f(−1rδ)‖∞ ≤
j
∑

i=0

‖f(−1rai)− f(−1rai+1)‖∞

≤
j
∑

i=0

‖f(−1rai)− f(−1rbi)‖∞ +

j
∑

i=0

‖f(−1rbi)− f(−1rai+1)‖∞

≤
j
∑

i=0

|fr(−1rai)− fr(−1rbi)|+ 2m
√
Kdν

≤ |fr(0)− fr(−1rδ)| + ǫ

where the last inequality follows be the monotonicity offr as a function of the toll on edger. By
taking limits,‖f(0)− f(τ)‖∞ ≤ |fr(0)− fr(τ)|. �

36

	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Preliminaries and notation
	3 Inducing target flows via tolls
	3.1 An ellipsoid-method based algorithm for general routing games
	3.2 Extensions
	3.3 An algorithm for series-parallel networks with near-linear query complexity
	3.4 Nearly quadratic query complexity for single-commodity, linear-delay routing games

	4 Inducing target flows via Stackelberg routing on series-parallel graphs
	5 Query- and computational- complexity lower bounds
	5.1 A linear lower bound for query complexity with tolls
	5.2 Lower bounds for determining equivalence with Stackelberg routing

	A Proofs from Section ??
	B Proofs from Sections ?? and ??
	C Proofs from Section ??
	C.1 Proof of Lemma ??

	D Proofs from Section ??

