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Achieving Target Equilibria in Network Routing Games
without Knowing the Latency Functions

Umang Bhaskar  Katrina Ligett ~ Leonard J. Schulmdn Chaitanya Swanty

Abstract

The analysis of network routing games typically assumegsi it the onset, precise and de-
tailed information about the latency functions. Such infation may, however, be unavailable or
difficult to obtain. Moreover, one is often primarily intsted in enforcing a desired target flow
as the equilibrium by suitably influencing player behaviothe routing game. We ask whether
one can achieve target flows as equilitwighout knowing the underlying latency functions

Our main result gives a crisp positive answer to this quastid/e show that, under fairly
general settings, one can efficiently compedge tollghat induce a given target multicommodity
flow in a nonatomic routing game usingoalynomial number of querig® anoraclethat takes
candidate tolls as input and returns the resulting equilibrflow. This result is obtained via a
novel application of the ellipsoid method. Our algorithmesnds easily to many other settings,
such as (i) when certain edges cannot be tolled or there ipperibound on the total toll paid
by a user, and (ii) general nonatomic congestion games. \tig@notighter bounds on the query
complexity for series-parallel networks, and single-cawdity routing games with linear latency
functions, and complement these with a query-complexitelobound. We also obtain strong
positive results for Stackelberg routing to achieve taeggitilibria in series-parallel graphs.

Our results build upon various new techniques that we devadotaining to the computation
of, and connections between, different notions of apprexéequilibrium; properties of mul-
ticommodity flows and tolls in series-parallel graphs; asdsstivity of equilibrium flow with
respect to tolls. Our results demonstrate that one can ¢hdieeumvent the potentially-onerous
task of modeling latency functions, and yet obtain meanihgfsults for the underlying routing
game.
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1 Introduction

Network routing gameare a popular means of modeling settings where a collecfiselBinterested,
uncoordinated users or agents route their traffic along aenlying network—prominent examples
include communication and transportation networks—an@ haen extensively studied from various
perspectives in the Transportation Science and Computen&zliterature; see, e.d., 134,[2) 23] 24,
[11,17,36/ 37,_33], and the references therein. These gamegpacally described in terms of an
underlying directed graplix = (V, E) modeling the network, a set of commodities specified by
source-sink pairs and the volume of traffic routed betweemtimodeling the different user-types,
and latency functions or delay functiofs : Ry — Ry).cp on the edges, with(z) modeling
the delay experienced on edgevhen volumer of traffic is routed along it. The outcome of users’
strategic behavior is described by the notion ofegpuilibrium traffic pattern, wherein no user may
unilaterally deviate and reduce her total delay.

The typical means of mathematically investigating netwailting games takes the above speci-
fication as input, and thus, assumes, right at the onsettieahas precise, detailed information about
the underlying latency functions. However, such precigerination may be unavailable or hard to
obtain, especially in large systems, without engaging iighlf non-trivial and potentially-expensive
modeling task. In fact, the task of capturing observed deldg suitable delay functions is a topic of
much research in itself in fields such as queuing theory anportation science. Recognizing that
the modeling task of obtaining suitable latency functianaften really a means to facilitating a math-
ematical analysis of the underlying routing game, we asktidreone can sidestep this potentially-
demanding task and analyze the routing gavitbout knowing the underlying latency functiofshis
is the question that motivates our work.

In routing games, there is often a central authority who lmmeslimited ability to influence
agents’ behavior by making suitable changes to the routimyeg e.g., imposing tolls on the network
edges. This influence can be used to alleviate the detriineffeats of selfish agent behavior, which
might be expressed both in terms of the agents’ costs (irieg pf anarchy) and externalities not
captured by these (e.g., pollution costs in a road networkus, a natural and well-studied goal in
network routing games is tmduce a desirable target traffic pattern as an equilibriloy suitably
influencing agents’ behavior. Such a target traffic patteay be obtained by, e.qg., limiting the traffic
on every edge to a fraction of its capacity, or reducing th#itr near hospitals and schools. It is
evident here that suitably modeling the latency functiensnly a means to the end goal of achieving
the target traffic pattern. Our work aims to shed light on tikoWwing question.can one achieve this
end without the means?

1.1 Our contributions

We initiate a systematic study of network routing games fittvn perspective of achieving target
equilibria without knowing the latency functions. We irdiue aquery modefor network routing
games to study such questions, and obtain bounds on the comglexity of various tasks in this
model.

The query model. We are explicitly given the underlying netwotk = (V, E), the set of com-
modities specified by the source-sink pairs and the demanukstouted between them, and theget
multicommodity flowf* that we seek to achieve. VW® not however, know the underlying latency
functions(1).cg. Instead, the only information that we can glean about ttenty functions is via
queries to @lack boxor oracle (e.g., simulation procedure) that outputs the equilibrilmaw under



a specified stimulus to the routing game. We investigate twthods for influencing agent behavior
that have been considered extensively in the literaturégiwdives rise to two types of queries.

We primarily focus on the task of computiregige tollsto induce f* (Sectiong B anfi’5l1). This
yields the following query model: each query consists of eaeof tolls on the edges, and returns
the equilibrium flow that results upon imposing these toll§ie goal is to minimize the number of
queries required to compute tolls that yigltlas the equilibrium.

We also explore, in Sectiofi$ 4 aphdl5.2, the us&taickelberg routindo induce f*. Here, we
control anc fraction of the total traffic volume. Each query is a Stackedprouting, which is a
flow of volume at mostr times the total volume, and returns the equilibrium flow uritiés Stack-
elberg routing. The goal is to minimize the number of queraguired to compute a Stackelberg
routing that induceg™ as the equilibrium.

Our results and techniques. Our main result is a crisp and rather sweeping positive rebiolwing
thatone can always obtain tolls that induce a given target ffdwvith a polynomial number of queries
(Section[3.11). With linear latency functions, our algamitttomputes tolls that enforcg* exactly
(Theoreni-3R). With more general latency functions, suatoasex polynomial functions, equilibria
may be irrational, so it is not meaningful to assume that aygueturns the exact equilibrium. Instead,
we assume that each query returns a (suitably-defined) dppate equilibrium and obtain tolls that
enforce a flow that is component-wise closefto(Theoreni 3.6).

The chief technical novelty underlying these results is mecoaventional application of the ellip-
soid method. We view the problem as one where we are searfririge (parameters of the) true
latency functiond* and tolls that inducg™. It is information-theoreticallympossible however, to
identify [* (or even get close to it) in the query model since,—as is tlse eaen wheld- is a single
edge—there may be no way of distinguishing two sets of Igtémactions. The key insight is that,
notwithstanding this difficulty, if the current candidatgl$ ~ do not enforcef*, then one can use
the resulting equilibrium flow to identify a hyperplane tisaparates our current candidéter) from
the true tuple(l*, 7*). This enables one to use the machinery of the ellipsoid ndetibv@btain tolls
enforcing f* in a polynomial number of queries.

Our ellipsoid-method based algorithm is quite versatild ean be easily adapted to handle var-
ious generalizations (Section B.2). For instance, we ceorpporateany linear constraints that tolls
inducing f* must satisfy, which one can separate over. This capturestreams where we disallow
tolls on certain edges, or place an upper bound on the tdktaddinl by an agent. All our machinery
extends seamlessly to the more-general settingpofitomic congestion gameisinally, another no-
table extension is to the setting afomic routing gameander the assumption that the equilibrium is
unique.

In Section§ 313 arld 3.4, we devise algorithms with substiyntmproved query complexity for (a)
multicommodity routing games on series-parallel (sepayoks, and (b) single-commaodity routing
games on general networks, both with linear latency funstid-or (a), we exploit the combinatorial
structure of sepa graphs to design an algorithm with neagti query complexity. We show that any
toll-vector in a sepa graph can be converted into a simpleormaal form, which can be equivalently
viewed in terms of certain labelings of the subgraphs of gmagyraph obtained via parallel joins;
leveraging this yields an algorithm with near-linear queomplexity. Our algorithm works more
generally whenever we have an oracle that returns the (egqailibrium. For (b), we prove that
(roughly speaking) the equilibrium flow is a linear functioftolls, and use linear algebra to infer the
constants defining this linear map@{| E|?) queries.

Complementing these upper bounds, we prov@i’|) lower boundTheoreni5.11) on the query



complexity of computing tolls that induce a target flow, ef@nsingle-commaodity routing games on
parallel-link graphs with linear delays. This almost matltihe query complexity of our algorithm
for sepa graphs.

En route to obtaining the above results, we prove variousltsethat provide new insights into
network routing games even in the standard non-black-badeiehere latency functions are known.
For instance, we obtain results on: (a) the computation pfag@mate equilibria and their properties
(Lemmad 34 and3.5); (b) structural properties of tolls endticommodity flows in sepa graphs
(Sectior3.B); and (c) sensitivity of equilibrium flow withspect to tolls (Theorem 3]18). We believe
that these results and the machinery we develop to obtain &ne of independent interest and likely
to find various applications.

In Sectior #, we investigate the use of Stackelberg routirigduce a given target flow. Stackel-
berg routing turns out to be significantly harder to leverd@a edge tolls in the query model. This
is perhaps not surprising given that designing effectivac&tlberg routing strategies turns out to be
a much-more difficult proposition than computing suitatidgetolls, even in the standard non-black-
box setting where latency functions are given (see, €.6,/9D. Nevertheless, we build upon the ma-
chinery that we develop for sepa graphs to give a ratherefiicind general combinatorial algorithm
that finds the desired Stackelberg routing using at féstjueries to an oracle returning equilibrium
flows. This applies to any strictly increasing latency fumes$, and in particular, to linear latency
functions. (Observe that this query complexity is evendsetian our query-complexity bound for
inducing flows via tolls on sepa graphs.) Moreover, our algor determines the Stackelberg routing
of smallest volume that can indugé.

We obtain various lower bounds in Sectlon]5.2 that alluddéodifficulty of computing a Stack-
elberg routing in general networks that induces a target flome possible strategy for finding such a
Stackelberg routing is to use the queries to infer an (apprately) “equivalent” set of delay functions
[, in the sense that any Stackelberg routing yields the sanar{mst the same) resulting equilibrium
under the two sets of delay functions. Then, since givenatenty functions, it is easy to compute a
Stackelberg routing that induces a target flow (see Lefinma @2 can find the desired Stackelberg
routing. Theoren 515 shows that such an approach cannot wotke query model, any algorithm
that learns even an approximately equivalent set of delagtions must make agxponentiahumber
of queries. Theorein 5.8 proves an orthogonal computatiomadr bound showing that determining
the equivalence of two given sets of latency functions idN&hard problem. As in the case of tolls,
along the way, we uncover a new result about the hardnessaok&berg routing. We show that
the problem of finding a Stackelberg routing that minimizes average delay of the remaining equi-
librium flow is NP-hard to approximate within a factor better th&f8 (Theoren{5.11). The query
complexity of finding a Stackelberg routing in general nakgdhat induces a target flow remains an
interesting open question for further research.

Our results on tolls and Stackelberg routing demonstragteitlis indeed possible to circumvent
the potentially-onerous task of modeling latency funaicend yet obtain meaningful results for the
underlying routing game. Our array of upper- and lower- libtesults indicate the richness of the
query model, and suggest a promising direction for furtbeearch.

1.2 Related work

Network routing/congestion games with nonatomic playesdiere each player controls an infinitesi-
mal amount of traffic and there is a continuum of players—iigseformally studied in the context of
road traffic by Wardrop [34], and the equilibrium notion irclugames is known as Wardrop equilib-



rium after him. Network routing games have since been widglgied in the fields of Transportation
Science, Operations Research, and Computer Science;.geethe monographs [23, 24] and the
references therein. We limit ourselves to a survey of thelt®gelevant to our work.

Equilibria are known to exist in network routing games, evdth atomic players with split-
table flow [22]. Nonatomic equilibria are known to be essaltiunique, but this is not the case
for atomic splittable routing games, where uniguenessraitwvere recently obtained by Bhaskar et
al. [3]. Equilibria in routing games are known to be ineffitieand considerable research in algo-
rithmic game theory has focused on quantifying this inefficy in terms of therice of anarchy
(PoA) [18,20] of the game, which measures, for a given objecthe worst-case ratio between the
objective values of an equilibrium and the optimal soluti@rcelebrated result of Roughgardén[25],
and Roughgarden and Tardds[30] gives tight bounds on thef®loAonatomic routing games for
the social welfare objective. Recently, similar resultgevabtained for the PoA in atomic splittable
routing gamed [13, 29].

Given the inefficiency of equilibria, researchers have stigated ways of influencing player be-
havior so as to alleviate this inefficiency. The most commemthiques studied to influence player
behavior in network congestion games are the impositiooltsf on the network edges, and Stackel-
berg routing. Network tolls are a classical means of comgesbntrol, dating back to Pigol [21], and
various results have demonstrated their effectivenedsofibrnonatomic routind [2,/ 6, 11, 17,136] and
atomic splittable routing [33, 37] showing that any minirflalv (in particular, an optimal flow) can be
enforced via suitable efficiently-computable tolls. Stlbkrg routing has also been well studied, and
it is known that this is much-less effective in reducing tleAPWhereas they can help in reducing the
POA to a constant for certain network topologies such adlpkliak graphs [26] and series-parallel
graphs|[38], it is known that this is not possible for gengralphs([5]. Furthermore, it is known that
it is NP-hard to compute the Stackelberg routing that minimizeddted cost at equilibrium, even for
parallel-link graphs with linear delay functioris [26]; aAg is known [19] for parallel-link graphs.
All of these results pertain to the setting where one is giherlatency functions.

To our knowledge, our query model has not been studied intdrature. It is useful to contrast
our query model with work irempirical game theornwhich also studies games when players’ costs
are not explicitly given. In empirical game theory, eachrguspecifies a (pure or mixed) strategy-
profile, and returns the (expected) cost of each player utiderstrategy profile. In contrast, in
our query model, we observe the equilibrium flow instead dfviidual player delays. This is more
natural in the setting of routing games: in the absence ofvledge of the latency functions, one
may only be able to calculate player delays under a strategffieoby routing players along the
stipulated paths (and then observing player delays); gty be infeasible since one cannot in fact
impose routes on self-interested players. Moreover, veseoer goal is to obtain a desirable outcome
as the equilibrium, the focus in empirical game theory isdmpute an (approximate) equilibrium.
Generic approaches to generate strategy-profiles for tirigope, and examples where these have
proved useful are discussed by Wellman/[35]. An obliviogpathm that does not depend on player
utilities, and instead uses best-responses to computesaNasgh equilibrium in bimatrix games was
given by Sureka and Wurman_[32]. Starting with/[28], varipagpers have studied the complexity of
computing an exact or approximate correlated equilibrimmmulti-player games using both pure- and
mixed-strategy queriesI[1, 14,/115]. More recently, Fearatal. [9] study algorithms in the empirical-
game-theory model for bimatrix games, congestion gamebkgeaphical games, and obtain various
bounds on the number of queries required for equilibrium atation.



2 Preliminaries and notation

A nonatomic routing gaméor simply a routing game) is denoted by a tuple= (G, [, K), where

G = (V, E) is a directed graph withm edges and nodes] = (l.).cr is a vector of latency or delay
functions on the edges of the graph, dad= {(s;,t;,d;)}i<k is a set ofk triples denoting sources,
sinks, and demands farcommodities The delay functiori, : R, — R, gives the delay on edge

as a function of the total flow on the edge. (HeRe, is the set of nonnegative reals.) We assume that
l. is continuous, and strictly increasing. For each commaodgitiie demandi; specifies the volume

of flow that is routed frons; to t; by self-interested agents, each of whom controls an infiinital
amount of flow and selects an-t; path as her strategy. The strategies selected by the agests t
induce a multicommodity flowif?),<x, where eaclf’ = (f!).cr is ans;-t; flow of valued;. That is,

the vectorf? = (f!). satisfies:

fi207 Z fgw_ Z szw:O VUGV\{Sivti}v Z f;w_ Z fés:dl

(vyw)eE (u,v)EE (s,w)eEE (u,8)EE

We call f = (f);<x a feasible flow. We say that is acyclic if {e : f¢ > 0} is acyclic for every
commodityi. We overload notation and ugeto also denote the total-flow vectgr= ", f*. For
a pathP, we usefp > 0 to denotef. > 0 for all e € P. We sometimes refer t‘@)i{si,_ti} as the
terminals of the routing game or multicommaodity flow. Givensat flow f, we use|f| to denote the
value of f.

Let P denote the collection of all;-t; paths. Given a multicommodity flowf?);< induced by
the agents’ strategies, the delay of an agent that selectstamath P is the total delay/p(f) :=
> ecple(fe), incurred on the edges @f. Each agent in a routing game seeks to minimize her own
delay. To analyze the resulting strategic behavior, we $amu the concept of Blash equilibrium
which is a profile of agents’ strategies where no individuggrat can reduce her delay by changing
her strategy, assuming other agents do not change theages. In routing games, this is formalized
by the notion olWardrop equilibrium

Definition 2.1. A multicommodity rowf is aWardrop equilibrium(or simply an equilibriym) of a
routing gamel if it is feasible and for every commodity and all paths?, Q € P? with f% > 0,

we havelp(f) < lo(f). A Wardrop equilibrium can be computed by solving the follegvconvex
program:

fe koo ‘
min ®(f) := Z/O le(x)dz st f=>f, flisans;t; flowofvalued; Vi=1,...,k.
[ =1
@)

Given a routing gamé™ and a feasible flowf, defineD?(l, f) := minp.p: Ip(f) for each com-
modity 7, and call an edge a shortest-path edge for commoditwith respect tof if e lies on some
pathP ¢ P’ such thatp(f) = Di(l, f). LetS(l, f) be the set of shortest-path edges for commaodity
1 with respect tof.

Tolls, Stackelberg routing, and our query model. We investigate both the use of edge tolls and
Stackelberg routing to induce a given target flow. Tolls at@ittonal costs on the edges that are paid
by every player that uses the edge. A vector of tells- (7.). € [R’}; on the network edges thus

changes the delay function on each edde [7 (z) := l.(x) + 7., and so the delay of an agent who



choosesP is nowlp(f) + 7(P), wherer(P) := > __p7.. We usef(l,7) to denote the equilib-
rium flow obtained with delay functions = (i.). and tollst = (7.).. We say that- enforces a
multicommodity flowf with latency functiong if the total flow f (I, 7). = f. on every edge.

For Stackelberg routing, in keeping with much of the litaraf we focus on single-commodity
routing games. Given a single-commodity routing gafhe- (G, [, (s,t,d)) and a parametet €
[0, 1], a central authority controls at most arfraction of the totals-¢ flow-volumed and routes this
flow in any desired way, and then the remaining traffic routeslfi selfishly. That is, a Stackelberg
routing g is ans-t flow of value at mostvd, which we call the Stackelberg demand. The Stackelberg
routingg modifies the delay function on each edg® [, (g; =) := l.(z+ g.). The remaining1— «)d
volume of traffic routes itself according to a Wardrop edpilim, denoted by (/, g), of the instance
(G,1, (1 — a)d). The total flow induced by a Stackelberg routing thusg + f(I, g).

We shortenf (I, 7) to f(7),andf(l, g) to f(g) whenl is clear from the context.

In our query model, we are given the graph the commodity seiC = {(s;,t;,d;)}i<x, and a
feasibletarget multicommodity floyi*. There is an underlying routing ganie= (G, I*, K), to which
we are given query access. If our method of influencing dayialiis via tolls, then the oracle takes
a toll-vectorr as input and returns the equilibrium flofl*, 7) or a (suitably-defined) approximate
equilibrium. Our goal is to minimize the number of queriequieed to compute tolls* such that
Fr ) = £,

If our method of influencing equilibria is via Stackelberguting, then we are also given the
parametery € [0, 1]. Each query takes a Stackelberg routingith |g| < ad as input and returns
the flow f(I*, g). Our goal is to minimize the number of queries required to poi@ a Stackelberg
routing ¢* of value at mostvd such thatf(I*, g*) + ¢* = f*, or determine that no such Stackelberg
routing exists.

Properties of equilibria.  The following facts about Wardrop equilibria, network spland Stackel-
berg routing will be useful. Recall that the delay functi@ms nonnegative, continuous, and strictly
increasing.

e Afeasible flowf is an equilibrium flow iff) " _(fe — ge)le(fe) < O for every feasible flow); see,
e.g., [23]. Thus, the total-flow vectdy, ). induced by an equilibrium flow is unique for strictly
increasing delay functions.

e Every routing game admits an acyclic Wardrop eqyilibri;ﬁnﬁ the delay functions are polytime
computable, then one can sol{é (1) and computef () polytime for linear delay functions; (ii)
an acyclic flowf such thatb(f) < ®(f) + e in time poly (input sizelog(1)). See, e.g.[123], for
details.

e Every minimal feasible flowf is enforceable via tolls [11, 17, B6], whefeis minimal if there is
no other feasible flowy # f such thay, < f. for every edge=. Given the edge dela)(sle(fe))e,
these tolls can be computed by solving an LP, and are ratmmoalded the commodity demands
(d;); and the delayl.(f.)), are rational.

The following lemma was essentially shown[in][16]; we in&waself-contained proof in Appendi¥ A.
Lemma 2.2. Let(G,,(d, s, t),a) be a Stackelberg routing instance, afitibe a feasible flow. Then,

f(g) + g = f* for a Stackelberg routing; iff go < fZ for every edges, and g. = f for all
e &S, f7).



Standard delay functions and encoding length. Our results hold for a broad class of underlying
delay functions, that we now formally describe. Throughaug useZ denote the input size of the
given routing game. We assume that we have an estithatith log U = poly(Z) such that the target
flow f*, the parameters of the unknown true delay functigfis., and the quantities that we seek to
compute—tollsr™ or the Stackelberg routing® inducing f*—all have encoding lengt®(log U). So
we may assume that eveyfy, 7, g value is a multiple o%, and is at mosv.

When considering non-linear delay functions, we assumigtied’s are convex polynomials of
degree at most some known constantGiven theO(log U) encoding length, we may assume that
all coefficients lie in0, U] and and are multiples q% We also assume that eaé’%% > % for all
x > 0. We refer to such functions atandard degree-polynomials Under these conditions, it is
easy to show (see LemrhaR.3) that there is some con&tart K (r) = poly(U, Y, d;) such that
every delay functiord} satisfies

(@ —y) (@)~ l(y) <% = |z —y|<e forallz,y,e>0 2)
12 (z) = 12 (y)| < K|z —y)| for all -,y € 0,3, dj] (3)
17(2z) < K% (x) forallz >0 4)

These properties are referred tarmserses -continuity, X -Lipschitz andK -growth-boundedness
respectively.

Lemma 2.3. Leti(z) = ap+ai1x+. ..+ a,2" be a convex degreepolynomial such that; > 0, and
all a;s lie in[0, U] and are multiples of;. Then satisfies2)—@) with K = max{U, 2", rU (>, d;)"~'}.
Proof. Let I'(z) := dg(f) denote the derivative of Sincel is convex, we havel(z) — I(y)
& —y| - I'(min{z,y}) > |z —y| - 1'(0) > |z —y|/U. Therefore T2 < (z — y)(i(x) — U(y)) <
and solz — y| <e.
Again, by convexity|l(z) — l(y)| < |z — y| - I'(max{z,y}) andl'(z) < rU(>,d;)" ' < K fo
Finally, it is clear thai(2z) < 2"l(z) < Kl(x) for all > 0. [

X [V

=

3 Inducing target flows via tolls

Recall that here we seek to compute tolls that enforce a darget flow f* given black-box access
to a routing gamd ™ = (G, 1", (s;, i, d;)i<k), 1.€., without knowing/*. Our main result is a crisp
positive result showing that we can always achieve this eitid apolynomial number of queries by
leveraging the ellipsoid method in a novel fashion (Sed8dk). Our algorithm computes tolls that
enforce: (a)f* exactly, for standard linear latency functions (where iteiasonable to assume that
the black box returns the exact equilibrium); and (b) a float ls component-wise close i, for
standard polynomial functions, where we now assume thdt g@aery only returns an approximate
equilibrium (see Definition-3]13). The main idea here is tawibe parameters of the latency functions
and the tolls as variables, and use the ellipsoid methodarisdor the tuple(l*, 7*), wherer* is
such thatf (I*,7*) = f*. The key observation is that although we cannot hope to oaihd*, given
a candidaté/, 7) such thatf (I*,7) # f*, one can derive a hyperplane separafihg) from (I*, 7*)
using f* and the equilibrium flowf (I*, 7) returned by our oracle.

We showcase the versatility of our algorithm by showing thiateasily adapted to handle various
extensions (Sectiopn_3.2). For instance, we can imp@oselinear constraints on tolls given by a
separation oracle; examples include the constraint thitdineedges cannot be tolled or that the total

7



toll paid by a user is at most a given budget. Other notablensibns include the extension to general
nonatomic congestion games, and to atomic splittablerrgudames under the assumption that the
equilibrium is unique.

Finally, we devise algorithms with significantly improvedayy complexity for multicommodity
routing games on series-parallel (sepa) networks (Se8idn and single-commodity routing games
on general networks (Sectién B.4), both with linear latehuyctions. We exploit the combinato-
rial structure of sepa graphs to design an algorithm with-tisear query complexity, which almost
matches the linear lower bound shown in Theokem 5.1 for eaeallpl-link graphs with linear laten-
cies. For single-commaodity routing games on general grapthslinear latencies, we show that flows
are linear functions of tolls and infer this linear map usingn?) queries.

3.1 An ellipsoid-method based algorithm for general routirg games

The ellipsoid method for finding a feasible point starts byteming the feasible region within a
ball and generates a sequence of ellipsoids of successimajler volumes. In each iteration, one
examines the center of the current ellipsoid. If this is @sfble, then one uses a violated inequality
to obtain a hyperplane, called a separating hyperplanesparate the current ellipsoid center from
the feasible region. One then generates a new ellipsoid bynfinthe minimum-volume ellipsoid
containing the half of the current ellipsoid that includes feasible region. We utilize the following
well-known theorem about the ellipsoid method.

Theorem 3.1([12]). Let X C R™ be a polytope described by constraints having encodingtieat
mostM. Suppose that for each € R", we can determine if ¢ X and if so, return a hyperplane
of encoding length at most/ separatingy from X. Then, we can use the ellipsoid method to find a
pointz € X or determine thatX = () in timepoly(n, M).

Linear latencies. We first consider the case where each latency funétion) is a standard linear
function of the forma}x + b}, and our black box returns the exact equilibrium flow indubgdhe
input (rational) tolls. Thus, for every, a} € (0,U),b; € [0,U], anday, b} are multiples of}. In
a somewhat atypical use of the ellipsoid method, we use tips@id method to search for the point
(ak,b:,7F)e. Abusing notation slightly, for a linear latency functidfx) = ax + b, we usel to also

denote the tupléa, b).

Theorem 3.2.Given a target acyclic multicommodity flofi and query access t6*, we can compute
tolls that enforcef* or determine that no such tolls exist, in polytime using aypomial number of
queries.

Proof. We utilize the ellipsoid method and Theoréml3.1. Given theterg/ = (a., be )., 7) of the
current ellipsoid, we first check if, b, # > 0, and if not, use the violated constraint as the separating
hyperplane. Next, we use the black box to obtain= f(i*,7). If ¢ = f*, then we are done.
Otherwise, we obtain a separating hyperplane of encodimgthieoly(Z) as follows. (Note that the
encoding length o(i, 7) is poly(Z).) We consider two cases.

Case 1:f(i, 7) # f*. Note that we can determine this without having to computesthelibrium

flow f(i, 7). Sincef* is acyclic, we can efficiently find a commodityands;-t; pathsP, @ such that
f5 > 0andip(f*) + 7(P) > lo(f*) + 7(Q). Butsincef* = f(I*,7*), we also have’ (f*) +

TH(P) < IG5 (f*) + 77(Q). Thus, the inequality

Ip(f*) +7(P) < lo(f*) +7(Q)
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where the parameters bandr are variables yields the desired separating hyperplane.

Case 2:f([, 7) = f*. Now sinceg # f* and is acyclic, we can again find efficiently a commodity
i and paths?, Q € P’ such thaigp > 0 andip(g) + 7(P) > lg(g) + 7(Q). Sinceg = f(I*,7), we
also havéy(g) + 7(P) < I (g9) + 7(Q). Thus, the inequalityr(g) + 7(P) < lg(g) + 7(Q), where
now onlythel.s are variables, yields the desired separating hyperplane. |

Polynomial latency functions and approximate equilibria. We now consider the setting where the
latency functiong(}). are standard degreepolynomials, where is a known constant. As before,
we also usd to denote the tuple of coefficients of the polynomial given/bySince the Wardrop
equilibrium may now require irrational numbers, it is urseaable to assume that a query returns the
equilibrium flow. So we assume that our black box returns alecapproximate equilibrium and
show that we can nevertheless compute tolls that induce wlibeym that is component-wise close
to f*. We first define approximate equilibria. Recall th2(/, ) = minpcpi [p(f), and given tolls

7, we define’ (z) := l.(z) + Te.

Definition 3.3. We say that a feasible floy is an e-approximate equilibriumor simply ane-
equilibrium, of a routing gameG, 1, (s, ti, d;)i<k) it 32, fele(fe) < 30, di(D'(1, f) + €).

Notice that our approximate-equilibrium notion is implibg the more-stringent (and oft-cited)
condition requiring that iffp > 0 for P € P’ thenlp(f) < Di(l, f) + e. Importantly, our notion
turns out to be weak enough that one can argue that an aeyatjailibrium can be computed in time
poly(I, log(%)) for anye > 0, which lends credence to our assumption that the black baxnst
an acyclice-equilibrium, and yet is strong enough that one can leverage it withinrdo@adwork of
the ellipsoid method (see Theorém]3.6). Unless otherwatedt when we refer to a routing game
below, we assume that the latency functions satisfy the ouliditions [2)-£(#), withog K being
polynomially bounded. The following Lemma is proved in Appe[B.

Lemma 3.4. Given a routing game with polytime-computable latency fions, one can compute an
acyclic e-equilibrium in timepoly (Z,log(2)).

Lemma 3.5. Let f be a Wardrop equilibrium ang be ane-equilibrium of a routing gameG, I, (s, ti, d;)i<k)-

Then,|lg — f”oo = maxe |ge — fe‘ < VKe > di-

Proof. We have}", gele(ge) < >, di(D'(l,g) +¢) and", fele(ge) > >, diDi(1,g). S0 (ge —
fe)le(ge) S € Zz dz AISO! Ze(fe - ge)le(fe) S 0. Soze(ge - fe) (le(ge) - le(fe))A S € Zz dz EaCh
term of this summation is nonnegative and hence, at mp3td;; therefore|g. — fo| < /K€D, d;
by inversef-continuity. [

Define ane-oracle for tollsto be an oracle that receives totse R¥ as input and returns an
e-equilibrium of the routing gaméG, I*", (s;, t;, d;)i<i;) having encoding lengtholy (Z,log(1)).

Theorem 3.6. Let f* be a target acyclic multicommodity flof and§ > 0. Lete = ﬁ

Then, in timepoly (Z,log(5)) and usingpoly (Z, log(})) e-oracle queries, we can compute totts
such that]| f(I*,7) — f*|l« < 26 or determine that no such tolls exist.

Proof. As before, we use the ellipsoid method. (kt) be the center of the current ellipsoid. Assume
thatl, 7 > 0 and each functio, has slope at Ieas;}; otherwise, we can use a violated constraint as
the separating hyperplane. We use the oracle with tollevecto obtain an acyclie-equilibrium flow

g. Then, we havdlg — f(I*,7)||cc < /K€, di = d/vVmk by Lemme3.b.
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We can efficiently determine if(i, 7) # f*, and if so, then as in Case 1 in the proof of Theo-
rem[3.2, we can obtain a separating hyperplane of encodigHeoly (I). So assume otherwise.

Now we check ify is anmke-equilibrium for the latency function@? ... If so, then||g— f*||oc < 0
and so|| f(I*,7) — f*[lc < 26 and we are done. Otherwise, we find a valid path-decompositio
x = (z;,p); pepi Of g having support of size at mostk. That is, we have: > 0, > pcpi 2 p = d;
for every commodityi, >, > pcpicep Tip = ge foralle, and); [{P : z; p > 0}| < mk. We may
assume that every non-zerg p value has encoding length that is polynomialZimnd the size of.
Then

Z Z xi’p(ﬁ;(g) - Di(ﬁag)) = deZZ(ge) — ZdiDi(lA%,g) > mk:eZdi

i Pep?

where the last inequality follows singeis not anmke-equilibrium for(ZZ)e. Since the support of
has size at most:k, this implies that there is some commodijtynd some patiR € P7 such that
2;r(lR(g) — DI(I7,9)) > €3, d;. Moreover, we can find suchjaand pathR € P/ efficiently by
simply enumerating the paths in the supportof et Q € P’ be such thaifQ(g) = Di(I7, g).

Sinceyg is ane-equilibrium for the latency functiong:™ )., again considering the path-decomposition
z, we have}"; > popi zip (17 (9) — DY(1*7,g)) < €Y, d;. Each term in this sum is nonnegative,
so each term is at most)_, d;. In particular, we haver; r(I57 (9) — Iy (9)) < 2 r(IF (9) —
Di(I*7,g)) < €Y, d;. So the inequality; r(lr(g) + 7(R) — lg(g) — 7(Q)) < €, di, with IS
as the variables, is valid fdi*, 7*) but is violated by(i, 7). This yields a separating hyperplane of
encoding lengtipoly (Z,log(2)). [ |

3.2 Extensions

Linear constraints on tolls given by a separation oracle. Here, we require that the tolls' impos-

ing the target flowf* should lie in some polyhedroA’, whereX is given by means of a separation

oracle. This is rich enough to model the following intenegtscenarios.

e A subsetF’ of edges cannot be tolled. This corresponds to the explicisitaint7, = 0 for all
eeF.

e The total toll paid by any player under the flofi is at most a given budged®. This corresponds
to the constraints (P) < B for every commodityi and pathP € P with f5 > 0. One can
separate over these exponentially-many constraintsesfflgivia a longest-path computation since
f*is acyclic.

The only change to our algorithm is that we first check if ourrent toll-vector7 lies in X. If not

then the separation oracle provided yields the separayipgrplane; otherwise, we proceed as before.

The query complexity is now polynomial in the input size anel €ncoding length ok.

General nonatomic congestion games. This is a generalization of network routing games, where
the graph is replaced by an arbitrary 0f resources, an®® C 2% is the strategy-set associated
with player-typei; a more complete definition appears in Apperidix B. Our adiigghased algorithm
uses essentially no information about the underlying gr&gé only require that given a congestion-
vector f, we can find the maximum-delay sét € P° for a given player-type, and can find a
valid decomposition off of small support. Both of these are trivial since fResets are explicitly
given in the input. Thus, our algorithms readily extend toegal nonatomic congestion games and
Theorem§ 312 arld 3.6 (withk replaced by}, |P?|) continue to hold.
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Atomic splittable routing games. Here, each commodityrepresents aingleplayer who controls
d; volume of flow and her strategy is to choosesast; flow f* of valued;. The cost incurred by a
playeri under a feasible multicommodity flow (i.e., strategy profife= (f*)i<x is >, filc(fe).

Our results extend to atomic splittable routing games if w&uene that for all valid choices of
parameters of the latency functions and tolls (as encoeahtéuring the ellipsoid method), the under-
lying atomic splittable routing game has a unique Nash dxitim. Here, by uniqgueness we mean
that if f andg are two Nash equilibria, thefii = g for all commoditiesi and edges:. This is
not without loss of generality, but is known to hold, for exae if all latency functions are convex
polynomials of degree at most 3, or if the graph is a generdlizearly-parallel graph and,(z) is
strictly convex for alle (see [8]). When we say that toltsinduce a flowf* = (f**);<x here, we
mean that the flow of every commodityon every edge is £ in the resulting equilibrium. Our re-
sult shows that the task of computing tolls that induce $ecbmmodity-flowsan be reduced to the
task of computing Nash equilibria (under the uniquenessnagton), even in the black-box setting.
Although, to our knowledge, no algorithm is known for eitloéthese tasks, even when latency func-
tions are given, we believe that this reduction is of indejeen interest. The proof of Theorédm 8.7 is
very similar to that of Theorein 3.2: the only change is thdirtd the separating hyperplane, we now
consider the marginal delay functions instead of the dalagtions; see Appendix|B.

Theorem 3.7. In an atomic splittable routing game satisfying the aforatimned assumption, tolls
that induce a target floy* = (f**),< at equilibrium, if they exist, can be obtained with a polyaim
number of queries to an oracle that returns the equilibrivowfunder tolls.

3.3 An algorithm for series-parallel networks with near-linear query complexity

We now give an algorithm for series-parallel networks v{ﬁfm) query complexity. This is a sig-
nificant improvement over the ellipsoid-based algorithmg almost matches the linear lower bound
proved in Theorerm 5} 1 for single-commodity routing gamepanallel-link graphs with linear latency
functions.

Theorem 3.8. On two-terminal series-parallel graphs, one can computedtytime tolls that induce
a given target multicommaodity floy usingO(m) gueries to an oracle that returns the equilibrium
flow. Thus, we obtai)(m) query complexity for multicommaodity routing games witmdtd linear
delay functions.

We first recall some relevant details about series-pargibgbhs. Atwo-terminal directed series-
parallel graph abbreviated series-parallel (sepa) graph, with terrsinandt is defined inductively
as follows. A basic sepa graph is a directed efige). Given two sepa graph&; = (V4, Ey)
andG, = (Vk, E»), with terminalssy, t; and s, to respectively, one can create a new sepa graph
G = (V, E) as follows. Aseries joinof G; andG», yields the graph obtained by identifying and
s9, With terminalss = s; andt = to. A parallel join of G; and GG» yields the graph obtained by
identifying s; andss, andt; andts; its terminals are = s; = so andt = t1 = ¢s.

For every series-parallel gragh = (V, E), the recursive construction naturally yields a binary
decomposition treeThe leafs of the tree are edges(@fand each internal node specifies a series- or
a parallel- join. Each node of the tree also represents aapb@f theG (obtained by performing the
joins specified by the subtree rooted at that node), whiclsts @early a sepa graph. In the sequel,
we fix a decomposition tree corresponding@o Whenever we say a subgraph Gf we mean a
subgraph corresponding to a node of this decomposition @een a subgrapli/, we usesy, ¢ty to
denote its two terminals, arfl( /) to denote the set of all;-t; paths. We sometimes cal}; and
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tr, the source and sink dff respectively. Let{ be the collection of subgraphs corresponding to the
parallel-join nodes of the decomposition tree. For eBcle 7 obtained via the parallel join off;

and H,, we identify one of these as the “left” subgrafih, and the other as the “right” subgrapfy.
Let P denote the set of ali-¢ paths, where = s, t = ig.

Proof outline. Before we delve into the proof of Theordm13.8, we give someition and give a
roadmap of the proof. Itis useful to first consider the siraptase of a graph with two parallel edges.
Observe that any target flow can be obtained by varyingdifierencein tolls on these two edges.
Further, the correct difference in tolls can be obtained binary search. Our key insight is that this
intuition can be extended to series-parallel graphs vidtalde transformation of tolls. We show that
tolls required to obtain a target flow can actually be desctiby the difference in tolls for each pair
of parallel subgraphs, and then use binary search to olftaiodrrect differences that yield the target
flow.

Formally, we show that any edge tolls in a sepa graph can inbladransformed into certain
canonical tolls that are defined in terms of subgraphs (G&if). Further, formalizing the intuition
that what is relevant is only the difference in tolls on pilaubgraphs, we make the novel connection
that canonical tolls are in fact equivalent to labels on sapasH € H (Lemma[3.1]l), where the
label on subgrapli/ € H stores the difference in the canonical tolls of subgrafihsand Hz whose
parallel-join yieldsH .

Thus, our problem reduces to finding the correct labels ogrsyihs H € H, which we aim to
find via binary search. To do so, we establish certain stracproperties of multicommaodity flows in
sepa graphs (Lemnia_3]13). We leverage these to argue thatéanhonical edge-tolls obtained from
our current labels do not enforce the target flow, then we cahdisubgrapttf € H and deduce
whether its label should be increased or decreased. Thg qaeplexity is thus at mogt| times
a logarithmic term depending on the accuracy required aegérameters of the routing game. A
detailed description appears after Claim 3.14.

The presence of multiple commaodities complicates thinggesin the particular decomposition
tree that we fix forz, all edges in a subgraph may be shortest-path edges for oma@dity but not
for another. Thus creates problems with the binary searefe sTlaini3.I4 may not hold. We handle
this by first arguing that there always exist tolls enforcfiigsuch thakeverys-t path, and hence every
s;-t; path is a shortest-path under edge co&fs (f7)). (Claim[3.9).

We believe that our structural insights into tolls and nmaithmodity flows on sepa graphs are
of independent interest and likely to find other applicagiorin fact, our results on flows in sepa
graphs also play an important role in our algorithm for iridgdarget flows via Stackelberg routing
in Sectior{ 4.

Claim 3.9. For I'* = (G, I*, (s;, t;, d;)i<);) and target flowf* there exist tolls* € R¥ such that:
(I) minpep T*(P) =0;
(i) p(f*)+77(P)=15(f") +77(Q) for every: and pathsP, Q € P*; and therefore
(i) f(,7)=r"
Proof. We will show that for any edge costs. ), there exist tolls- so that every-t path is a shortest

path under edge costs. + 7)., andminpcp 7(P) = 0. The claim follows simply by taking edge
costs(c. = IX(fF))e and setting* = 7, since every;-t; path clearly belongs to somet path.
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The proof is by induction on the height of the decompositi@e tforG. In the base case, if the
decomposition tree has height@ consists of a single edge and setting= 0 satisfies the claim. For
the inductive step, suppose is formed by the composition dff; and H», and letc' andc? be the
edge costs in subgraplis; and H, respectively. Let-! andr? be the tolls that satisfy the claim for
costsc! in subgraphi, and costs? in subgraphH, respectively.

If G consists offf; and H, composed in series, let = 7! if e € E(H;) andr, = 72 otherwise.
Then since any-t path P consists of ars;-t; path and a,-t, path, each of which is a shortest path
in H, and H, respectively, everg-t path is a shortest path. Secondly, by the inductive hyp&hes
there is a pathP in H; with 71(P) = 0, and a pathQ in H, with 72(Q) = 0. The concatenation of
pathsP and@ yields ans-t path R with 7(R) = 0.

Supposes consists ofH; and H, composed in parallel. For any paths e P(H;) and@ €
P(Hy), letd = ¢(Q) + 74(Q) — ¢(P) — 71(P). We may assume that> 0 (otherwise switchf;
and H,). Note that by the inductive hypothesis the value @ independent of the choice &f and
Q. Define tollsr for graphG as follows:

T} if v# sand(v,w) € E(Hy).

vw?

72 if (v,w) € E(Ha).

vw?

{ rho+06, ifv=sand(v,w) € E(Hy).
Tow =

Then for anys-t path P, if P € P(H;) thenc(P) + 7(P) = ¢(P) + 7Y(P) + 6. If Q € P(H>)
thenc(Q) + 7(Q) = ¢(Q) + 7%(Q). By definition of§ and the induction hypothesis, every path
is thus a shortest-¢ path. Since the tolls on paths i, remain the same, there is alsoahpath R
with 7(R) = 0. [

Claim 3.10. For any tollsT € RY on the edges o, there existv € RY such that:
(i) 7(P) = «(P)forall P €P,and

(i) for every subgraph and every edge = (sy,v) € E(H), ae > minpep gy a(P).

Proof. The proof is again by induction on the height of the decomjuosiree. IfG is a single edge,
thena = 7. If G is composed of subgraplig, and H, let 7! andr2 be the projection of onto the
subgraphs. If; and H, are in parallel, and tolls! and«? satisfy the claim for tolls-* and? in
the subgraphs, it is easy to verify that tafisdefined bya, = «! for e € E(H;) anda, = o2 for
e € E(H,) satisfy the claim.

If H, and H, are in series, let! anda? satisfy the claim for tolls-! and 7?2 in the subgraphs.
Defined = minpep(sr,) @*(P) and define the tolls

al,+9, ifv=syand(v,w) € E(H;)

N al,, if v# sy and(v,w) € E(H;)
Y a2, -0, ifv=syand(v,w) € E(Hs)
a2, if v# soand(v,w) € E(Hs).

Any s-t path P consists of segmen®; between vertices = s; andt;, and segmenf, between
t1 = S9 andt = to. Then

a(P) = a(P) +a(P2) = o (P)+6+a%(P) -0 = 74(P) +2(P) = 7(P).

Thus the first part of the claim is satisfied.
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For the second part, consider any subgrdph If H = G, then since every patk € P(H)
consists of segments; € P(H,;) andP, € P(H,), for every edge: = (s,v) € E,

1
gy = Qg + 0

> min o'(P)+ min o*(P) (by the inductive hypothesis and definition®f
PeP(Hy) PeP(H2)

= min o'(P)+d+ min o*(P)-§
PEP(Hy) PEP(Hz)

= min «a(P).
PEP(H)

If H # G, then since every path pafh € P(H) contains exactly one edge incidentdg, the toll
along every path changes by exactly the same quantidy 9, or zero). |

We call tollsa € [R’f that satisfy property (ii) of Clairhi3.16anonical tolls Thus, any edge tolls
can be modified to obtain canonical edge tallsThese in turn can be mapped téabeling (L, A),
where A = (AH)HE’H € [Rz-rl, by SettingL = minpep a(P), andAyg = minpep(HL) a(P) —
minpep g,y @(P) forall H € H. Lemma 3.1l shows that this mapping is in fact invertibleve@i
the labeling(L, A) we can obtain canonical edge tollsby the following procedure. Note that
|H| < m.

M1. Initialize o, = 0 for all e.

M2. We traverse subgraphs#in a bottom-up manner, i.e., we consider all subgrapl#s that are descen-
dants ofH € H before considering/. When we consider a subgraph we setv, = o, +max{0, Ay}
foralle = (sy,v) € E(HL), anda, = a, + max{0, —Agy} foralle = (sy,v) € E(Hg).

M3. Finally, we setv, = o + Lforalle = (s,v) € E.

Lemma 3.11. Let (L, A) be the labeling obtained from some canonical tall& R¥, and 3 be the
tolls obtained from( L, A) by the above procedure. Then= 5.

Proof. Let 3’ be the tolls obtained after step 1 of the above procedure biefore addingl to the
edges incident te. We will show that for each edgenot incident tas, 5. = a., while for each edge
e incident tos, 8. = a, — minpep aP).

The proof is by induction on the size 6f. If G = {e}, then since there are no parallel composi-
tions,H = (), and hences!, = 0 = o, — minpep a(P). If G is the series-join of; and H,, then
for each edge not incident tg;, or sy, , 5. = «. by the inductive hypothesis. Further, note that the
minimum toll a( P) over all si,-ty, paths must be zero, since otherwise, on any edge (s, v),

. would be strictly less than the minimum toll ovett paths. Hence by the inductive hypothesis
B, = «a. for edges that leavey,. For edges incident te, since anys-t path consists of a path
betweens andt; = s, and between, and¢, and by the inductive hypothesis,

Bl = ae — PEI%i(rIIﬁ) a(P) =a, — glei%oz(P)
where the second equality follows because, as earlier wdxbethe minimum tolkv(P) over all sy, -
t 7, paths must be zero. Thus the inductive hypothesis holdssicise.

If G is the parallel-join offf; and Ho, then for each edge not incident4ps,, = a. by the induc-
tive hypothesis. Further, assume without loss of gengrddatmin pcp(f,) (P) = minpep a(P).
Then by the inductive hypothesis, for each edge (s,v) € E(H1),

L0 i, oP) = o yio()
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as stated in the claim. Lét= minpcp(p,) a(P) — minpep g,y a(P) > 0. By the procedure for
computingp’, if Hy = Hy andHy = Hpg, thenAy = —§, otherwiseAy = 4. In both cases, when
considering&, we only modify the tolls on edges @f( H>) incident tosy, by addingd to these. So
for each edge = (s,v) € E(H3), we have

B, =a.— min a(P)+§

PcP(Hz2)
=ae— min o(P)+ min «P)— min «aP)
PEP(Hs) PEP(H>) PEP(Hy)

= a, — min a(P)
PeP

which completes the induction step, and hence, the proof. |

Definition 3.12. Given multicommodity flowsf and f, we call a pairH,, H> of subgraphs(f, f)-
discriminatingif:

() the parallel-join ofH; and Hs is a subgraph ifi{; and
(i) f.> f.foralle e E(H,), andf. < f.foralle € E(H,).

Lemma 3.13. Let f and f be two feasible multicommodity flows fa®, (s;, t;, d;)i<k). If f # f,
then there exists afyf, f)-discriminating pair of subgraphs.

Proof Sketch.We use induction on the series-parallel structure to firsivsh slightly weaker state-
ment: there exist subgrapt$, and H, whose parallel join is if{ such that: (a)f. > f. for all
e € E(Hy), f. < f.foralle € E(Hy), and (b)|fz,|, which we define to be the total flow routed
under f in H, for commodities not internal téf;, is greater thanfy, |, and|fu,| < |fm,|. Now
if f. > f.forallec E(H,) then we are done. Otherwise, we show that if we consider timé mi
mal subgraphk” of H; (under the same decomposition tree useddpthat contains botfyf. > fe
and f. = f. edges, ther< must be a parallel-join of subgraphs that form(gﬂ;lf) discriminating
pair. [

We defer a full proof of Lemm@a_3.13 until AppendiX C.

Claim 3.14. Let f = f(l*, 7). If there is a subgrapl such thatf, > frforall e € E(H) then
there is some commaoditysuch that every -t ; path is part of a shortest;-t; path under edge costs

(L7 (fe))e-

Proof. The proof is by induction on the size éf. If H is an edgee, there is some commodity
such thatf‘g > 0, so the statement holds. H is the parallel join ofH;, H,, then it follows from

the induction hypothesis that evesy;-t ;; path must be of equal length (since there are commodities
corresponding to both/, and Hs); hence, there is a commaodity correspondingftand the statement
follows. Supposé is the series composition éf;, H». Let K be the set of commoditiessuch that

D e sy ) E(H) fZ > 0. For every: € K such that; € V(H) \ {tu}, the set of edgeésy,v) €

(
E(H) forms ans;-t; cut, and so the flow across the cut must be the sanfé and f*'. However,
Ze:(smv YEE(H) fe > Y e (sywer(m) e, SO there is some commodify € K such thats;, t; ¢
V(H)\{sm,tr}. For commodityj, somesy-ty path is part of a shortes§-t; path under edge costs
5 ( Ae))e Applying the induction hypothesis tH,, H» yields that aIIsH-tH paths are of the same

ength. Thus, everyg-ty path is part of a shortest-¢; paths under edge cos(tlgT(fe))e. |

T

_—
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We now describe the algorithm for Theorém|3.8. kétbe tolls given by part (b) of Claiin 3.9
and (0, A*) be the labeling obtained from*. We may assume that* € [0,U’] and is a multiple
of % for all e, whereU’ = mpoly(U, >, d;). E.g., with standard linear latencies, since every
*,a%,b; € [0,U] and is a multiple of-, we can také/’ = max{U?, mK ", d;}.

e’ el e

T1. Initialize,Ly = —mU’, Uy = mU’, Ay = 0forall H € H. Let L = 0. Let M = mlog(8mU"?).

T2. Forr =1,..., M, we do the following. Magd L, A) to canonical tollsx as described in steps M1-M3.
Query the oracle to obtaifi = f(I*,«). If f = f*, then exit the loop. Otherwise, find dif, /*)-
discriminating pair of subgraphf$,, Hs (which exists by Lemma3:13).

Let H be the parallel join offfy, Ho. If Hy = Hjp, updateLy < Ap, else updaté/y < Apg. If
Uy — Lu| < &, setAy to be the multiple off; in [Ly, Uyl; else update\y = (Ly + Up)/2.
T3. Return tolls.

Proof of Theorerh 3]8Let a* be the canonical tolls obtained from via Claim3.10, and letL*, A*)

be the corresponding labeling. We hae= 0 due to Claim§3]9 arld 3.110. The proof of Cldim 3.10
shows that, under the assumptionsrdnwe havex is a multiple of%, and is in[0, mU’] for all e.
Hence A}, € [-mU’, mU’] and is a multiple of}, for all H € H.

We say that the intervald i, Uy | assigned tdd € #H are valid ifA%; € [Ly,Uy|forall H € H.
We argue below that our algorithm maintains valid interv@sse this, in each iteration we halve the
length of some interval, and this may happen at mestSmU’?) times for the interval of some
H € H until we find A%, sinceA7; is a multiple of%. Since there are at most subgraphs irH,
after M iterations (without reaching*), we obtainA*.

We now prove that the algorithm maintains valid intervalsive@ tolls 7 and a subgrapti,
definery := minpepy) 7(P). SOAY = aj;, — aj,.. The intervals are clearly valid at the start
of the algorithm. Suppose the intervals are valid at thet staan iteration in step T2. We may
assume thaf # f*. By Claim[3.14, there is some commoditysuch that evenyy,-ty, path is
part of a shortest;-t; path under edge costg (f.) + ). Let P = argmin prep g,y @*(P') and
Q = argming cpp,) @(Q). SinceP is a segment of a shortest-path for commoditye have

() +am < p(f) + am < 1p(f) +a(P) <IG(f) +a(Q) = () + am, < 1G(f) + an,.

Here, the first and last inequalities follow sinflg, H> is (f, f*)-discriminating. The second inequal-
ity follows from the definition ol ; the third, sinceP is part of a shortest;-t; path; and the fourth
equality, from the definition of). We know that every-t path is a shortest-t path under edge costs
(I5(f¥) + a)e. So we have

Ip(f*) + aq, = 1p(f) + o (P) = Io(f) + a"(Q) = Io(f") + -

Combining this with the earlier inequality gives;, — am, < Qg — Oy, SO if Hy = Hj, then
Apg < A%, otherwise Ay > Aj,. Thus, our update fol preserves the validity of the intervalsill

Remark3.15 Our analysis shows that the above algorithm works wheneednave a “sign oracle”
that given input tolls- and a flowf*, returns the sign of (I*, 7). — f2 for all edges. This is clearly
weaker than having an exact-equilibrium oracle.

3.4 Nearly quadratic query complexity for single-commaodiy, linear-delay routing games

Theorem 3.16. For a single-commodity routing gamé with standard linear delay functions, tolls
that enforcef* can be obtained in at mo§(m?) queries.
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Throughout, we assume without loss of generality that> 0; otherwise, we impose infinite
tolls on any edge wherg = 0, effectively removing these edges from the grﬂpN\/e assume
the delay function on any edgeis l.(z) = acx + b.. Definelyax(z) := maxecp acx + b, and
k(z) = 22/ Kd. Define thesupportof a flow f to be the set of edges with strictly positive flow. We
will use negative tolls in our proof; however, by Claim3.1%ieh we prove in AppendikD, this is
again just a notational convenience. Similar argument&wsed in[[10] to show boundedness of
tolls, but the results are not directly applicable. Noté tfiais acyclic.

Claim 3.17. For a single-commodity routing game and totlsthere exist tolls” > 0 so thatf(7) =
f(r')yand7), < 7o+ ... |7 for all ¢’. If the graph is acyclic,/” can be obtained without
knowledge of the delay functions.

Proof outline. We show that if the support of the equilibrium flow remains dixéhe equilibrium
flow is a linear function of the tolls. Thus if we can obtainlsat so that the support of (7) is the
same ag'™*, we can solve a linear system of equations to obtain tolksaihfmrcef*. Accordingly, our
algorithm consists of the following two steps.

Step 1: Enforcing the correct support. We first obtain tollsr so thatf.(7) > 0 < f* > 0. By
suitably large tolls on edgesfor which fF = 0, we already have tolls that satisfy one direction of
the implication. The other direction is roughly by binanasgh, described in Lemnia_3]20: we pick
an edger that does not yet have flow, and impose increasingly negttligeon this edge until it has
positive flow at the equilibrium. The difficulty here is in méining monotonicity of the support
of the equilibrium flow. Increasing the flow on edgealecreases flow on the other edges. We use
a number of results regarding the sensitivity of equilibrilow for this step. In fact, this step has
quadratic query complexity, while the second step thatadigtobtains tolls that enforcg* has linear
query complexity.

Step 2: Obtaining the target flow f*. We now use LemmpA_3.22 which establishes the linearity
of equilibrium flow as a function of tolls, if the support ofetequilibrium flow does not change.
Obtaining the coefficients of this linear map requires usueryg the oracle with a small toll on each
edge. The query complexity of this step is thus linear.

We start with some results about the continuity, monotdyieind sensitivity of equilibrium flow
as a function of tolls. Theorem 3]18(ii) was earlier provedd]. Let1, € R” be the vector with
value 1 in coordinate, and O everywhere else.

Theorem 3.18. Let I" be a single-commodity routing game with standard lineamgdlnctions.
Then,

() 11£(0) = f(Ler()lloo <,
(i) f(r)is continuous,
(ii) foredger andé > 0, f-(1,9) < f-(0), and
(iv) for edger ands > 0, [ £,(~1,0) — fr(0)] > [|/(~1,8) = F(0) |oc-

The proof of (i) and (ii) are straightforward from the follavg immediate Corollary of Lemnia3.5.
We prove (iii) and (iv) in AppendikD.

1The use of infinite tolls is a notational convenience; theesaffect can be obtained with tolg?2™ [yax (d).
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Corollary 3.19. For a multicommodity routing gamé, let f be the equilibrium flow. 1§ is a
valid multicommodity flow that satisfies for @l P € P, gp > 0 = Ip(g) < Di(l,g) + ¢, then

Hg_fHoo <V KEZz‘di'

We now show a lemma that is used to prove the first step of owfpteemma3.2D shows that
if edger has no flow or very little flow at equilibrium, then with a smalimber of queries we can
obtain tolls so that the flow on edgeincreases, and the flow on the other edges does not change
significantly.

Lemma 3.20. Let I" be a single-commaodity honatomic routing game, and let0, 6 < d. For tolls
7,letS :={e: fe(r) > ¢}, and edge € S. Then withlog (—N/x(J/3)) queries, we can determine
tolls 7’ so thatf.(7') > §/3 forall e € S N {r}, where N := minpep 7p — minpep.,cp7p —
Mlmax(d) <0 .

Proof. To obtain tolls7’, we will only vary the tolls on edge. We thus parametrize tolls’ by «,
wherer’ =7 + 1,0.

If f.(7) > §/3, we are done. Otherwise, we claim thatvit= N, thenf,. (') = d. To see this, let
Q be the path that minimizes’ ., a.d + b, + 7. over all pathsP € P with » € P, and letf be the
flow that sends the entire demand along this path. Then tlag dédng this path with tolls’ is

D (aed+be+7)) = (acd+be+70) + N

ecq e€q
= A 2 (e bk T T = B TR ()
ecP
< min7(P),
pPePp

while for any pathP with » ¢ P, the delay along patl? is at least this quantity. Henggis actually
an equilibrium flow, and itx < N, thenf,.(7') = d.
Definea, b € [N, 0] as follows.

a := max{a € [N,0] : f.(7') = §/3}
b :=min{a € [N, 0] : f,(7") =25§/3}

By the continuity of equilibrium flow with respect to tolls f€oreni3.18, (ii))a, b exist. By the
monotonicity of equilibrium flow, for anyv € [b,a], f-(7') € [0/3,2§/3]. Then by Theorerh 3.18,
(iv), for any edgee € S anda € [b,al, fo(7') € [§/3,6]. Thus our problem reduces to finding an
a € [b,a], which we can find by binary search. We will show that- b > x(6/3), which gives
us the bound on the number of queries required. To see this®land 7 be the tolls obtained
by settinga = a anda = b respectively. Then it — b < k(6/3), then by Theorenh~3:18 (i),
1 (%) = F(0)] < 6/3. 0

F1. Initializer. < Oforalle,i « 1,andS « {e: f.(7) < d/3'}.
F2. WhileS # E
F3. Pick an edge £ S
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F4. By Lemma3.20, find: € [N, 0] so thatifr’ = 7 + 1,.«, thenf.(7') > d/3" ! foralle € S U {r}.
F5. T 7i+i+1,8+ {e: fo(r) <d/3}

Lemma 3.21. The stated algorithm terminates with toltsso thatf.(7) > d/3™ on every edge, and
requiresO(m? log(3mlnax(d)) queries.

Proof of Lemm&3.21Let N (i) be the value ofV in the ith iteration of the while loop. Then by
Lemma3.2D, théth iteration requiresog(—N (i)/x(d/3"1)) queries to complete, and adds at least
one edge to the sef. Thus, there are at most iterations of the while loop. We will show that
|N(i)| < m2i~ .. (d), thus proving the bound on the number of queries. Note thaesall tolls
are negatlve] minp 7p — Minp.,.cp Tp’ < ’ minp Tp’.

The proof is by induction. In the first iteration sinee= 0 initially, N(1) < mipax(d). In the
ith iteration, there are at most- 1 other edges with tolls on them, and along any path the sum of
the absolute values of these tolls is at MpSL; | 2/~ 'mimax(d) = (27" — 1)mlnax(d), and hence

IN ()| < 207 Y mlax(d). u

This completes the first step of our proof. We now proceed thiéhsecond step. Lemrha 3122
shows that the equilibrium flow is a linear function of thdgphas long as the set of edges with strictly
positive flow remains constant. While a similar result on lihearity of the equilibrium flow was
shown in[7], Lemm&3.22 shows how to obtain the coefficiehth®linear map.

Lemma 3.22. For any routing game” and tolls7(), let f((!)) > 0. Then there exist coefficients
(Be,e’)e,e'c £ SO that for any tolls,

() f(r+ 7'(1)) >0= f(r+ 7'(1)) = f(T(l)) + B7, and
i)y fFrD)+B8r>0= f(r+70) = f(=W) + Br.

Proof. We first show how to obtain the coefficients, ./ )c . Define fumi, = min, f(0) > 0. For
each edge’, let o := 1. k(fiin/2). By Corollary(3I9,f (7Y 4+ o) > fumin/2 for each edge’.
Then for each edge € E, defines, . = (fe(T(l) +af) = fo(rM )) /6 (frain/2)-

Given tolls7, let g := f(r() + > e BeerTer. In general,g may be negative on some edges.
However, we show thaj is ans-t pseudoflow of valuel: it satisfies all the conditions for being a
flow except nonnegativity. Further, we show thyas a minimizer of [[1) if we allow eaclf to be a
pseudoflow, rather than a flow.

To see the first claim, note that for a fixed edgsincef, . is the difference of two (scaled) flows
of the same value, it is a circulation. Theis the sum of a flow and a set of circulations, and is hence

a pseudoflow.
To show thaty equalizes the delay on evesyt path with tollsr, for any s-t pathp,

Zle(g) - Zae e e = Za625e,e’7_e’

ecp ecp ecp e’

= n(f%p) Y a (fe(T(l) taf) - fe(T(l))) )

ecp

Sincef (M) + o) and f(+(V) are equilibrium flows with tolls-(!) + ¢ andr() respectively, and
both are strictly positive on every edge, it follows franmh {Bat
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Slele) () = 3 s (D(f(T(” +a”) = D(F) =3 az’>

eEp eep

and sincex¢’ = 0 fore # ¢/,

D lelg) ~ () = 3 s (DU +a?) = D)) =3 7.

ecp k jhﬂn/2) ecp

Thus for any pattp,

S le(g) + e = D L(F(rD)) + Z m (DU +a) = DY)

eEep ecp

Further, forany patp, >, L (f (7)) = D(f(r1 =X, 7Y Hence for any path, D eep le(9)+
Te + Te( Vis equal. It follows immediately that if the second conditim the lemma is true, i.e., if
g > 0, theng must be an equilibrium flow with tolls(*) + 7, and since the equilibrium is unique,
f(r+ (M) = g. This completes the proof of the second statement.

For the first statement, fér < \ < 1 defineh(\) = f(7() 4+ 7) + A(g — f(v() 4 7)). Since on
any pathp as shown earlie}” . l.(g) + 7 + Wis equal, andf ((Y) + 7) > 0 by assumption, this
is also true fork()\). Further sincef (r(Y) + 7) > 0, there exists\ > 0 so thath()\) > 0. Thenh()\)
must also be an equilibrium flow with tolls By the uniqueness of equilibria, this is only possible if
fir+rM)=g. [ |

L1. Use the earlier algorithm to get tohs®) so thatf(r(1)) > d/2™.
L2. Obtain the coefficient§3, ¢ )e - as in Lemma3.22
L3. Solve the linear equationir®) = f* — f(7(V)) fortolls 7). Thenf (7 + (1)) = f*,

Proof of Theoreriz3.16We will show that the algorithm is correct, and requi®sn? log(3mimax(d))
gueries. The correctness of the first step follows from Lerffa#d. To use Lemmia_3.P2, since
Jmin > d/2™, to obtain the coefficient§s. ). .-, we require an additionah queries, each of which
applies an additional toll (relative td1)) of x(d/2"*1) on individual edges.

Letr be tolls such thaif (7*) = f*. By the first part of Lemmmz thefi = f(r(V)) +
B(r* — (). Now 7 is a solution to the system of linear equalitigs® = f* — f(r(1); since
™ — 71 satlsfles this, we know a solution exists. Further, by th@msgpart of the Lemma since
FrWYy + 7@ = f* > 0, infact f(r() + 72)) = f*. Hencer(!) + 7(2) are the tolls required to
obtain the target flow. |
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4 Inducing target flows via Stackelberg routing on series-peallel graphs

Recall that here we have a single-commodity routing gdfhe= (G,1*, (s,t,d)). We are given a
parameteix € [0,1] and a target flowf*, and we seek as-t flow ¢ of value of at mostvd such
thatg + f(I*,g) = f*, if one exists. We abbreviatg(i*, g) to f(g). We consider the setting where
G is a directed sepa graph with terminaland¢, and devise an efficient algorithm that computes a
Stackelberg routing inducing* using at mostn queries to an oracle that returns the equilibrium flow.
The flowg we compute is in fact of minimum value among all Stackelberg/dlthat inducef™*. (So
eitherg is the desired Stackelberg flow, or none existg|if> «d.) Our algorithm works for arbitrary
increasing delay functions provided, as in Secfion 3.3, aelan oracle that returns the correct sign
of ((f(g) —|—g)e — f*)e given a Stackelberg routing In particular, the algorithm works for increasing
linear latencies.

As before, we fix a decomposition tree 1Gr and a subgraph refers to a subgraph corresponding
to a node of this tree. For a flojvand subgrapl#, let fr denote(fe)ccp(m)- We again leverage the
concept of a good pair of subgraphs, which becomes much airtgpktate in the single-commodity
setting.

Definition 4.1 (specialization of Definitiof Cl1)Given s-t flows f, f, we call a pair of subgraphs
Hy, Hy (f, f)-goodif:

() the parallel-join ofH,, H> is a subgraph;
(i) f.> f.foralle e E(H,)andf, < f.forall e € E(H,); and

(i) |fr,| > |fo| @nd| fr,| < |fi,-

Lemma 4.2. Letg be any Stackelberg routing. fi(g) + g # f*, there exists afif (¢) + g, f*)-good
pair of subgraphs.

Lemma4.2 follows from a more general result proved in Lerin#f@ multicommodity flows.
The proof in the single-commodity setting becomes much Emjnd follows immediately from
Claim[Z:3 since f () + g| = | /7.

Claim 4.3. For any twos-t flows f, f in a sepa graphG, either there is an'f, f‘)-good pair of
subgraphs, or one of the following holds:

() If |f| = |f| thenf = .
(i) If |f] > |f| thenf > f.
(i) 1f | f| < |f|thenf < f.

Proof. The proof is by induction on the size of the graph. For a sieglge, there is no good pair of
subgraphs, but one of the three cases must hold. For thetionstep, let: be the join of subgraphs
GiandGa. Let fi = fa,, [1 = fa, andfa = fa,, f2 = fa,. Clearly, fi1, f1 aresg, -ig, flows, and
fa2, f2 aresq,-tq, flows. If G contains ar(fi, f1)-good pair, orGy contains ar( f2, f2)-good pair,
then the same pair is dif, f)-good pair, and we are done. So assume otherwise.

Suppose&?; andG, are in series. Thenfi| = |f| = |f2|, and|fi| = |f| = |f2]. So whichever
case applies t¢g and f, the same applies tfy, f1, and f», f. By the induction hypothesis, we have
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the desired relationship betwe¢n f; and fs, f», and hence betweehand f. So the statement holds
for G.

Supposé~; andG are in parallel. If f;| > |f1land| fo| < |fal, then by the induction hypothesis,
fi = fi, f2 < fa, 80G1, Gais an(f, f)-good pair. Similarly, ifl f1| < [f1| and|f2| > |f2], thenGa,
Gy is an(f, f)-good pair. So assume neither case holds. ) )

Now if | f| = |f], then (after eliminating the above casgk) = |f1], |f2| = |f2|- Hence, by the
induction hypothesis, we have = f1, f2 = f2, and sof = f. ) )

If [f] > [f], then it must be thatfi| > |f1| and|f2| > [f2|. Therefore,f1 > fi, fo > fo, and so
f=r ) _ ~ _ N

Finally, if [ f| < [f], then it must be thatf1| < |f1], |f2| < [f2|- Hence,f1 < f1, f2 < f2, and so
f < f. This completes the induction step, and hence, the proof. [

Our algorithm is now quite simple to describe. We keep traicthe setS, initialized to (), of
edges not on any shortest path under the edge cot$(f>)).. By Lemmd22,S must be saturated
by any Stackelberg routing that inducgs We repeatedly do the following.

S1. Find the flow; of minimum value that saturates every edg&iand satisfieg. < f for all .

S2. Query the oracle with as the Stackelberg flow. jf* = f(g) + g, exit and returry. Otherwise, find an
(f(g) + g, f*)-good pair of subgraph&;, H>. Add every edge irH» to S (and repeat the process).

Theorem 4.4. The above algorithm computes a Stackelberg fjafminimum value that induce®
in at mostm queries.

Proof. In every iteration,|S| increases by at least 1: sinty,(9) + gm,| < |f};,| andg saturates
every edge inS, we know that at least one edgefify is not in the current set. WhenS = FE, we
haveg = f*. So the algorithm terminates in at mestiterations with some flowy that inducesf™*.
To complete the proof, we only need to show that any edge aitd€ds indeed a non-shortest-path
edge. Leth = f(g) + g. Lets' = sy, = sy,, t' = ty, = ty,. Sincelhy,| > [f}, |, there is some
s'-t' path P in Hy such that(h — f*)p > 0. So P belongs to a shortestt path under edge costs
(12 (he))e- So for everys'-t' path@ in Hy, we havelp(f*) < Ip(h) < I5(h) < 15 (f*). So every
edge ofH;, is a non-shortest-path edge under edge d@stg;)).. |

5 Query- and computational- complexity lower bounds

5.1 Alinear lower bound for query complexity with tolls

We show a lower bound d®(m) on the number of queries required to obtain tolls that gieeténget
flow.

Theorem 5.1. Any deterministic algorithm that computes tolls requirecenforce a target flow re-
quires)(m) queries, even for a single commodity instance on paralfsliwith linear delay func-
tions.

Our example for the lower bound consists of a single commattitm parallel links, with the
demand] = m and the target flowf® = 1 on each edge. In fact, our lower bound is actually for the
problem of obtaining tolls- with the right support;f.(r) > 0iff f* > 0.

For our lower bound example, our delay functions are defined permutationt™ : [m| — [m].
The delay function on the parallel edggis be given by(z/m) + 2(7*(:) — 1). Thus, we use the
notation f(m, 7) for the equilibrium flow, where the permutationidentifies the delay functions.
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We show that any algorithm that computes the correct tollsrfimrce f* must obtain the correct
permutation7*, and we design an oracle that aftequeries has only revealed information about
7~ Y1),--- , 7~ 1(k). Thus, in order to compute the correct tolls, any algoriteguiresm — 1
queries.

Our oracle works as follows. Initially, lett® = () be the set of assigned edges in the partial
permutations*. For thejth queryr/ = (7).cx, our oracle returns the equilibrium flow described
below.

Oracle: Pick an arbitrary edge that with minimum toll{, so thate is not in A7—1. Letn*(e) = j
andA’ = A7~ U {e}. Letn; be a complete permutation that extends the partial periontat,
and returnf (), 77) as the equilibrium flow in response to tots.

Claim 5.2. For j € [m], leto be any permutation that satisfiege) = 7(;)(e) for all edgese € A7.
Then for any edge ¢ A7, f.(o,77) =0

Proof. By description of the oracle and sineeZ A7, e is not the unique edge with minimum toll in
7;. That is, there exists an edfe= AJ with T}JZ < 7. Sinceh € A, o(h) < j < o(e). Further since

T}{ <7, by description of the delay functiong,(0) > [;(d), and hence edge cannot have flow at
equilibrium. |

We now show that the equilibrium flows returned by our oracgecmnsistent.
Lemma 5.3. There exists a permutationso that for every € [m], f(7(;), /) = f(o,77).

Proof. Fix j < m, and letc be a complete permutation that extends The image of every edge
e € Al is the same imr* andn ;). Thus the delay functions on both edges is the same. By Cl&m 5
the equilibrium is zero for any edge not #¥. Since edges i’ have the same delay function, the
equilibrium flow must be the same for permutatienandr ). |

Proof of Theoreri 5]1From Lemmd 5.3, for any sequenceraf— 1 toll queries, the oracle returns
a consistent sequence of equilibrium responses. Furtteen €laim[5.2, sinceA’| < m — 1 for
j < m — 1, there is an edge with no flow in the equilibrium returned by the oracle. Hersiace /*
has positive flow on every edge, any deterministic algoriteguires at least: queries to compute
tolls that obtainf™. |

5.2 Lower bounds for determining equivalence with Stackelbrg routing

Given the ability to query a routing game and obtain the dguulm flow, a natural question is if
we can in fact obtain the delay functions on the edges. It igonis that the exact delay functions
cannot be obtained, even for a single edge. However, is dlilplesto obtain delay functions that are
equivalent, in the sense that any Stackelberg routing wgeld almost the same equilibrium flow as
in the routing game?

Definition 5.4. Given a graphG with demandd betweens andt¢ and a Stackelberg demand fraction
a, two sets of delay functions on the eddésindi? aree-equivalent if for every Stackelberg routing

gwith [g] < ad, [|[f(I',9) = f(I?,9)]lec <

We prove strong lower bounds for this problem, both for therguomplexity and the computa-
tional complexity. In fact, for the query complexity, thener bound instance is a graph of constant
size. The size of the input is determined by the dem@rahd we show that although the size of the
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input is O(log d) any deterministic algorithm that determinegquivalence for a fixed must make
Q(v/d) queries. For computational hardness, we show that evenairevexplicitly given affine delay
functionsi! andi?, determiningl /2-equivalence isNP-hard. Our proof for computational hardness
builds upon a reduction given by Roughgarden [27].

Query complexity. We are now given a grapty with demandd betweens andt, a Stackelberg
demand fractiony, and a set of delay functiori$ on the edges aofi. In addition, we are given query
access to a second set of delay functithsAs before, each query consists of a Stackelberg routing
g, and the response is the equilibrium flgiii?, g). We show the following result.

2 + axr

ax x2+az

Figure 1: Braess graph instance for proving hardness of/algmice determination.

Theorem 5.5. Any deterministic algorithm that determinesquivalence foe < 1/16 requires an
exponential number of queries.

Our proof of the theorem is based on a particular propertybéel by the Braess graph shown in
Figure[1: there exist demands < d, that depend on the parameterandb so that for any demand
d < dy andd > ds the set of shortest-path edges is the same, and differs frerset of shortest-path
edges for any demant] < d < ds. This is formalized by the following claim.

Claim 5.6. For the routing game depicted in Figuté 1, and ady, do € Ry withdy, > dy > 1,
there exist parameters and b so that the equilibrium flowf on the Braess edge is strictly positive
iff di < d < dg, whered is the demand being routed. Furtherdf — d; > /2(d; + dz), then
fuvs > 1/12 for demandi = (d; + ds)/2.

Proof. We chooser = 1 + (dy + d3)/2 andb = (d1dz)/4. Then for anyd, consider the flow that
routesd/2 on thes-u-t path andi/2 on thes-v-t path. It is easy to verify that this is the equilibrium
flow if and only ifd < d; ord > d,. Given the symmetric delay functions, it is then appareat tbr
d € (dy,dz) the (u,v) edge must have strictly positive flow.

For the second part of the proof, tet= dy +ds, § = do—dy. Thusa = 1+0/2,b = (¢2—52)/16,
andd = 0/2 = a — 1. Let f,, = z. Then by the symmetry of the delay functiofis = fu,: =d — x
andf,, = 2z —d. Since we know for this demanf}, > 0, and edgés, v) has zero delay if,, = 0,

lsu(f) + luw(f) — lsu(f) = 0. Hence

0 =2?+2+b—a(d—x)

and solving forf,, = 2x — d, and substituting the values of b andd yields

20 —d=+/(a+1)2 +4(ad —b) — (a+1+d) =2+ (a+ 1)z + (b — ad)
=V(2+0)2+8%2/4—(2+0).
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Using the fact that/1 + « > 1 + z/3 for |z| < 1 by the Taylor expansion, we get

62
20 —d> ———
12(2 4+ o)
Sinced > /20 > /2 + o by assumption, this completes the proof. |

Proof of Theoreri 515We demonstrate that on the Braess graph in Figlre 1 with aticdd (s, ¢)
edge, demand > 8, and where, b have valueO(d?), any algorithm require§)(v/d) queries to
determine if two sets of delay function [? are equivalent. Since the size of the inputifog d),
this would prove the lemma.

For delay functiong! that are explicitly giveng = 1, b = oo andl}, = co. Delay functions
12 also havd?, = o but different values for. andb, which are determined after seeing the queries.
Let ¢, i < k be the set of queries. We will show thatkf < V/d then there exist;, b so that
f(It, ") = f(I? ¢%) for all i < k, but there existg so thatf,,(I%,¢') > 1/12. Sincel}, = oo, it
must be thatf,, (I, g') = 0, and hence the two delay functions are distinct. Thus anyritihgn that
makes less thaw'd must fail to distinguish between these delay functions.

For any query’, our oracle returns the equilibrium flofi(l!, g*). Now giveng’ for i < k < v/d,
let a1, e € [1,d] be such thatvy, — g > V/d, and for alli, d — gt & laq, as). Since edgés, t) has
infinite delay, any flow on this edge must be Stackelberg floend¢ we requirer; andas so that
the total flow on the Braess graph is always outside the iatémy, as], andas — a; > V/d. Since
k < V/d, such an interval must exist. We then seleeindb as in Claini5.b to complete our definition
of delay function/?.

It remains to show that for aly’, f(1%,¢") = f(I},4") for correctness of the oracle. Fixand
letd = d — g!,. Note thatd’ ¢ [ay,as]. Letgi, go andgs be the Stackelberg flow on patlasu-t,
s-u-v-t, ands-v-t respectively. By our choice dF, if g; = g» = g3 = 0, then the equilibrium flow
would split demand!’ equally between the-u-t ands-v-t paths, and hence

Lo(d/2) <b+13,(d/2). (6)

We consider the following cases.

Case 1: Eitherg; or g3 is strictly greater than (d'— g2)/2. Suppose > (d'—g2/2). We claim that
at equilibrium, the non-Stackelberg demand is entirelyedwn thes-v-t path, i.e.,f(g) = h where
hsw(g) = huwt(g) = d' — (g1 + g2 + g3). To see this, note thdt,, + g5, < d’/2, hence comparing
with (@), delay on thes-v-t path is less than the delay on thei-v-t. Further,hg, + g5, < gut, and
hyt + gut < gsu- By the symmetry of delay functions, tkev-¢ path is therefore the shortest path, and
henceh = f(g).

Case 2: Bothg; and g3 are at most (d’ — g2)/2. We claim that at equilibriumy,(g9) = fut(g)

=d /2 (g1 + g2) andfs,(g) = fut(g) = d'/2 — (g3 + g2). Thus at equilibrium the remaining flow
d' — g9 is divided equally between theu-t ands-v-t paths, and again the edge, v) has no flow at
equilibrium. To verify the claim, note that

fso(9) + gso < fsulg) + gsu = d//2 and fu:(9) + gut < for(g) + gut = dl/2
and hence, comparing withl(6),

12,(f(9) +9) <12,(f(9) +9) +bandi’,(f(g) +9) < Il2(f(g) +9) +b.
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It is further easy to see that, since the total flow on edges), (v, t) is equal, and the total flow on
edgeq(s, v), (u, t) is equal,

2,(f(9)+9) +12:(f(9) +9) = 2,(f(9) +9) + 12:(f(9) + 9)-

Hence paths-u-t ands-v-t are shortest paths with the described flow, and sfiigg) > 0 only on
these paths, it is an equilibrium.

As noted earlier, if the Stackelberg flow is rational, thenssfi(g). In fact as shown the equilib-
rium flow in all cases is very simple and can be computed dyréicm g. |

We note that in our example, the equilibrium flow returnedt®ydracle is particularly simple and
in fact does not depend on the delay functions. E.g., in thelsir case in the proof sketch, the oracle
always returngfc(g) = (d — gs¢)/2 for all e # (s, t), (u,v).

Computational complexity. We now show that even if delay functiotisandi? are given explicitly,
determining if they are-equivalent is computationally hard fer< 1/2. This is true even if all delay
functions are affine. Our proof uses properties of the Brgesgsh together with ideas from a reduction
from 2-Directed Disjoint Paths shown by Roughgarden [27].

Definition 5.7 (2-Directed Disjoint Paths (2DDPR)Given a directed grapy = (V, E') and two pairs
of terminalssy,t; andss, to, determine if there exist;-t; pathsp; so thatp; andp, are vertex-disjoint.

Figure 2: Braess graph instance for proving hardness oalguice determination with respect to
Stackelberg routing.

Figure 3: 2DDP instance with additional edges for provingdhass of equivalence determination
with respect to Stackelberg routing.

Theorem 5.8. The problem of determining theequivalence of delay functions fer< 1/2 is NP-
hard.
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We use the following claim about Stackelberg routing in thae®s graph.

Claim 5.9. In any Stackelberg routing instance on the graph with delagfions! as in Figurd2 and
Stackelberg routing, if f,,(g) > 0, thend < 2 andD(l, g) < 2. Further, ifg. = 0 for every edge in
the Braess graph and the demasd [1/2,3/2], thenf,,(g) > 1/2.

Proof. For the first part of the claim, hét = f(l,g9) + g. If (u,v) € S(I,g), then the patlp =
(s,u,v,t) must be a shortest path for flow Thenly, (h) + lu,(h) < ls,(R), and hencé,, (h) < 1.
Thushg, < 1. Similarly, h,; < 1. The first part follows. For the second partdiK 1 it is easy to see
that the equilibrium flow routes the entire demand onghev-t path. Ifd € [1, 2] then consider the
flow hgy = hyt = 1, hyy = 2 — d andhy, = hy = d — 1. It can be verified that is the equilibrium
flow. |

Proof of Theorerh 518We show a reduction from 2DDP. Given an instance of the 2DDBIpm, af-

ter the addition of a sourceand a sink and additional edges described next (and shown in Figure 3),
we add this graph in parallel with a standard Braess gragu(€li2). The delay functions, i? will

differ only on edggu, v) in the Braess graph. We ug# to refer to the Braess graph a#f to refer

to the graph in the 2DDP instance with verticeandt and the additional edges, atifl to refer to
their parallel composition. For a floy, | f, | is the value of the flow in subgrapH;.

The specifics of the construction are as follows. ket | E| be the number of edges in the given
instance of 2DDP. All of these edges have delay functigm?. We add a source, vertexs’ and
a sinkt. We add an edgés, s’) with constant delay functior/8, and edgess’, s;) and (¢;,t) for
i € {1,2}. Edges(s, s1) and(t2, t) have delay functior, while edgeqs, s2) and(t1,t) have delay
function 1. Further, there is &g, t) edge with delay functiono, and for every edge = (x, y) in the
original instance, the new instance additionally contadges(s,x) and (y, t) with delay function
oo. This constitutes the grapH,. GraphH; consists of the Braess graph instance in Figlire 2, and
graph H is obtained by a parallel composition &f; and H>. The Stackelberg instance has demand
m* + 3, anda = m*/(3 +m*). The delay functiong!, [? are as described, excdft, = oo on the
Braess edge.

Sincel!, 12 differ only on the delay function on edge, v), it is easy to see that for any Stackelberg
routing g, if f..(I*,g) = 0then f,,(I',g9) = fuw(? g). Further, sincd?, = oo, if fu,(I',9) =
fuww(1?,9) then in factf,, (I', g) = 0. Hence the delay functions are equivalentfiff,(i', g) = 0 for
every Stackelberg routing For the proof of the theorem, we will show that if the instaé 2DDP
is a positive instance, then there exists a Stackelbergnutso thatf,, (I*, g) > 1/2, otherwise for
any Stackelberg routing,,, (1!, g) = 0.

In the remainder of the proof we focus on delay functidhs Suppose that the instance is a
positive instance. Then the Stackelberg routingendsm? units of flow on every edge = (z,y)
in the original instance that is not on the vertex-disjoiathsp;, using the additional edgés, v),
(v,w). Any remaining Stackelberg flow is routed on tf¥et) edge. Thus every edge that is not on
the vertex-disjoint paths now has delay at leastwhile g. = 0 for every edge on the vertex-disjoint
paths. Furtherg. = 0 for every edge: € H;.

We claim that for the equilibrium flow, /2 < |fx,| < 3/2. To see this, if fx,| < 1/2, then the
delay at equilibrium inf; is at mostl. However| fx7,| > 5/2, hence at least one of the twe parallel
paths has delay at equilibrium greater than 1f}f, | > 3/2 then the delay at equilibrium if/; is 2.
However,|fr,| < 3/2, hence at least one of the twer parallel paths has delay at equilibrium less
thanl +1/8 +3/4 x (1 + 1/m) < 2. Thus at equilibrium]1/2 < |fy,| < 3/2, and by Claim 5.9,
fun(g) = 1/2.
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Now suppose that for some Stackelberg rougng,,(¢g) > 0. Then by Claint5.0|f, | < 2 and
the delay at equilibrium is at most 2. However, th¢p,| > 1 and the delay at equilibrium is at most
2. Since there is afs, s’) edge with constant delaly/8, following the proof of Theorefi 5.11, this is
only possible if the instance of DDP is a positive instance. |

In fact, using very similar ideas, we can show that the probdé minimizing D(f(g)) over all
Stackelberg strategies ($/3 — ¢)-inapproximable, even with linear delays. Roughgardenshas/n
that finding the Stackelberg routing that minimizes the agerdelay of theotal flow g + f(g) is
NP-hard, even in parallel links with affine delays [26]. Despibnsiderable interest in Stackelberg
routing, nothing stronger than NP-hardness is known far pioblem. Our result thus shows that a
closely related problem is APX-hard.

Definition 5.10(Stackelberg Equilibrium Delay Minimization (SEDM)&iven a Stackelberg routing
instance(G, [, (d, s,t), «), find the Stackelberg routing that minimizes the average delay for the
equilibrium flow f(g).

Theorem 5.11. The SEDP problem igt/3 — ¢)-inapproximable, for any fixed > 0.

Proof. Given an instance of the 2DDP problem, we modify it to obta8tackelberg routing instance
as follows. Letn = | E| be the number of edges in the original instance. All of thekges have delay
functionz/m?2. We add a source and a sink;, and edgess, s;) and(t;,t). Edges(s, s1) and(tz, )
have delay function:, while edgeqs, s3) and(t1,t) have delay function 1. Further, there is @nt)
edge with delay functioro, and for every edge = (v, w) in the original instance, the new instance
additionally contains edges, v) and (w,t) with delay functionoco. The Stackelberg instance has
demandn? 4 1, anda = m*/(1 + m*).

We claim that if the instance of 2DDP is a positive instankentthere exists a Stackelberg routing
g with D(I, f(g)) < 3/2 + 1/m, otherwise for any Stackelberg routing( f(g)) > 2. Suppose that
the instance is a positive instance. Then the Stackelbetingog sendsm? units of flow on every
edgee = (v, w) in the original instance that is not on the vertex-disjoiathysp;, using the additional
edgeqs,v), (v,w). Thus every edge that is not on the vertex-disjoint paths maswdelay at least,
while g. = 0 for every edge on the vertex-disjoint paths. Any remainitgckelberg flow is routed
on the(s,t) edge. Itis now easy to verify that the equilibrium flgifg) splits one unit of demand
approximately equally between the two paghsandps, and has a delay at equilibrium of at most
3/2+1/m.

Now suppose the given instance does not contain two veisjohat paths between,, t; and
s9, to. Following the argument iri_[4], for a contradiction lgtbe a Stackelberg routing for which
D(f(g)) < 2. Let F be the set of edges with positive flow at equilibrium. THeémnust contain all
four edgeq(s, s1), (s, s2), (t1,t), (t2,t); the absence of any of these edges would give a delay of at
least 2. FurtherF' cannot contain an-ss-t1-t path since again this would given delay of at least 2.
HenceF' must contain as-s;-t1-t path and arm-ss-to-t path. These paths cannot be vertex disjoint;
let v be the common vertex. Then the delay on anypath must be at least 1, and the delay on any
v-t path must be at least 1. Hence the total delay in any instdratedbes not contain two vertex-
disjoint paths is at least 2, which gives us a contradictitime hardness of determining the existence
of these paths thus shows that minimizing the delay of thdiequm flow with Stackelberg routing
is (4/3 — ¢) inapproximable, for any > 0. [ |
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A Proofs from Section[2

Proof of Lemm&2]2The necessity of the first condition, that< f on every edge, is obvious. For
the necessity of the second condition, assyihés an equilibrium flow and on some edgeZ 5,
ge < fE. Thenf.(g) > 0sincef(g)+g = f*. By definition of Wardrop equilibrium, then there must
exist a pathP with e € P andip(f*) < lo(f*) for any path@. This contradicts that ¢ S.

For the sufficiency of the conditions, consider the fliv— g. This is strictly positive only on
shortest-path edges, and hence satisfies the conditiokgafmirop equilibrium with Stackelberg flow
g. Since the equilibrium is uniquég,(g) = f* — g. |

B Proofs from Sectiond 3.1l and 3]2

Proof of Lemm@&3l4Let (G, 1, (s;, i, d;)i<) be the given routing game. Recall that we assume that
the [.s satisfy [2)4#) withog K = poly(Z). Recall the convex prograrhl(1) used to compute the
Wardrop equilibrium.

min ®(f Z/ z)dr st f= Zfl ftis ans;-t; flow of valued; Vi=1,...,k.
@
Setd = % (22" i) ,2K2} Let f be the Wardrop equilibrium, anglbe a feasible

flow such thatd(g) < ®(f) + ¢ that we compute in timgoly(Z,log(L)) = poly(Z,log(L)). (We
will later require thaty is computed via a specific algorithm for solvirig (1).)

First, we note that given any feasible flgwone can always obtain an acyclic feasible figw< g
by simply canceling flow along flow-carrying cycles (of eacimmmodity). So in the sequel, we ignore
the acyclicity condition and concentrate on obtaining goraximate equilibrium.

Observe that for any feasible flows f, we have®(h) — ®(f) > vy - (h— f),vf = (le(fe))es vy
is called thesubgradientof ¢ at f. So we have

dele(fe) - ZdzDZ(l>f) = Z(.ge - fe)le(fe) < (I)(g) - (I)(f) <e.

We show below tha}”, (g, — fo)lc(g.) < %. Sincef is an equilibrium, we also havg,(f. —
ge)le(f2) < 0. Adding the two inequalities gives., (ge — fe)(le(ge) — Le(f.)) < &. Each term in
this sum is nonnegative and hence is at n%s‘and therefore we have. — fe| < ¢ for every edge:

(due to inversek’-continuity). Given this, we have thgt(g) < lp(f)+mK5 due to theK-Lipschitz
condition, and sd*(l, g) < Di(l, f) + m K for every commodityi. Therefore,

dele(ge) < dele(fe) —i—mK6<Z di) < Zdi(Di(l,f) +mKod) +¢

<Zd D(l, g) + 2mKJ) g<2d (D(1, 9) +¢).
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We now show tha} (g — fe)le(ge) < % Suppose we obtain the near-optimal solutiori to (1) by
running the ellipsoid method with error parametes W This takes timeoly (I, 10g(%)) =

poly(Z,log(1)).) The near-optimality ofy then follows from the fact that there exists another
feasible flowh satisfying: () [|h — fllee < w, and s0®(h) — ®(f) < 3 (he — fo)le(he) <

wm(maxe le(he)) < wmK Y. di = ¢; (i) > (he ) c(ge) = 0; see, e.g., Sections 3 and 4 and
in particular, Lemma 4.5, ir_[31]. Thus, we ha@ (fo — ge)le(ge) = 0 — wm(maxe lo(ge)) >
—wmK Y. d; > ‘;? [ |

Definition of general nonatomic congestion games. This is the following generalization of nonatomic
routing games. The edge setis now replaced by & sétresources, and there dr@layer-types. Each
resource: has a nonnegative, continuous, and strictly increasingydehction,/. : R, — Ry. Each
player-typei is described by a player-volumg and an explicitly-given non-empty strategy $&tC
2F The combined strategy-choices of the infinitely-many itdsimal players of each typecan be
described by an assignmefit= (f,..., f*), wheref? : P* — R, satisfiesy_ p.p: fb = d;; the
cost incurred by a strategy € U; P is thenlq(f) := > .cq le(fe), Wherefe = 3 pey picep fp-
We defineDi(l, f) and ane-equilibrium as before: s®'(l, f) = minpepi lp(f), and f is ane-
equilibrium if " fele(fe) < 32, di(DY(1, f) + €). A Nash equilibrium or Nash assignment is a
0-equilibrium, and is known to be unique.

The question with tolls is whether one can impose tolls R on resources—which, as before,
yield delay functiong!] (z) := l.(x) + 7.).—in order to achieve a target assignméitas the Nash
assignment, or ensure that' ). is component-wise close to the Nash assignment.

Proof of Theoreri 317We first recall the definition of a Nash equilibrium. A Nash #diuium of the
atomic splittable routing game is a feasible figvguch that) °, Fie(fe) < X gile(fe — fi+gl)
for everys;-t; flow g' of valued,. Equivalently, defining the marginal latency functibn(f; =) :=

le(z) + fi.(x), wherel’(x) is the derivative of, this means that if, > 0 for P € P¢, thenP is a
shortests;-¢; path under the edge cogts . (f; f.)), .

We use the ellipsoid method and dovetail the proof of ThedB&n Given the current ellipsoid

center(i ,7), we obtain a separating hyperplane as in the proof of TheBt@irexcept that we use the
marginal delay functionﬁj’e)m. Letg = f(I*,7) = (g¢")i<x be the flow returned by the oracle. If

gt = f* for all 4, thep we are done, so suppose otherwise. Supposgf(ti)at) = f*, that is, there
is somei such thatf (I, 7)" # f*'. Note that this can be efficiently determined. We can find gepla
j and pathsP, Q@ € P7 such thatf/ > 0, but}"..p ]e(f* f&) > X eco je(f* f&). Thus, the
inequality

D el £ +r(P) < (5 £ +7(Q)

ecP ecQ

where both andr are variables is violated by, 7) but satisfied by/*, 7*) since(l*, 7*) induce f*
(by definition). Notice that the above inequality is indesear in/ andr.
Now supposef (I, 7)" = f* for alli. Then,g # f*, we can again find a playerand paths

P,Q € P such thay}, > 0, but>" . p 17 (i ge) > Yee 11.(g: ge). SO consider the inequality

>_Lielgige) +7(P) < D _Ticlgige) +7(Q)

ecP eeq

where now only thé,.s are variables. This is violated Iy, 7) but satisfied by(l*, 7*) sinceg =

fQ, 7). ]
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C Proofs from Section 3.3

C.1 Proof of Lemmal3.13

As mentioned in the proof sketch, we first show a propertyithaeaker than having a discriminating
pair. To this end, we definegood pair of subgraphgDefinition[C.1) and first show in Lemnia C.2
that a pair of subgraphs satisfying this weaker propertyagsiexist.

Let (G, {(si,t;,d;) }icex) be a multicommodity flow instance on a sepa graph. A die the col-
lection of parallel subgraphs @¥ under a given sepa decomposition tree ¢br For any subgraph
H € H we define thénternal nodes off asV'™(H) := V(H) \ {su,ty}. Theinternal commodi-
ties of H are K™ (H) := {i € K : {s;,t;} N VI"(H) # (Z)} The external commodities off are
K (H) :={i € K: sp,ty lie on somes;-t; path}.

Let f = (f1)iex andf = (f?);cx be two feasible multicommodity flows. Define

fal= coand|fy| = ) |fil.

e=(sg,v)EE(H) 1€KCext (H)

Definition C.1. Given feasible flows, f in G, subgraphs{,, H are(f, f,H)-goodif:
() the parallel-join ofH; and Hs is a subgraph ifH;
(i) f.> f.foralle e E(H,)andf, < f.forall e € E(H>); and
(iii) ’fH1’ > ‘ffh‘ and‘fH2’ < ’fH2’

Lemma C.2. For any subgraph of G, letH’ be the set of subgraphs f obtained by parallel joins
in a given decomposition tree 6f, and letf, f be feasible multicommodity flows i Either there
exists an(f, f,H')-good pair of subgraphs or one of the following must hold.

1. If|f| = |fu| thenf, = f. forall e € E(H).
2. If|fu| > |fu| thenf, > f.forall e € E(H).
3. If|fu| < |fu| thenf. < f. forall e € E(H).

Proof. We proceed by induction on the sizeléf In the base case, whéhis a single edge, there isno
good pair of subgraphs, but one of the three cases cleadis hBbr the induction step, suppoFeis
the join of subgraphéf; andH,. If H is the parallel join ofid; and Hs, then any external commodities
of H are external commodities ¢f; and H, as well; similarly, any external commodities Bf and
H, are external commodities & as well. Hencéfy| = |fm,| + |fu,|. Note that if| fr,| > |fu,|
and|fu;| < \ij\ fori # jandi,j € {1,2} thgnHl andH, fo[m a good pair.

To verify the three cases, suppdge | = |fu|. If | fu,| = |fm,| fori € {1,2}, then by induction
fe= f. for e € E(H). Otherwise, by the induction hypothesis foy j andi,j € {1,2}, |fu,| >
\fr, and|fp,| < ]fH | yielding a good pair. Ifify| > |fx| then again, eitheffy.| > |fm,| and
| fu;| < |ij| yielding a good pair, off,| > |fm,| and|fu;| = |ij| In this case, by induction,
f.> foforalle e E(H).

Now supposéd; andH, are in series. In this case, note th&t* (H) C K (H;) fori € {1,2}.
Further, if commodityi € K®**(H;) buti ¢ K™'(H), thent; must be an internal node &f,. Since
everys;-1; path contains,, andf, f are feasible flows i, |fH | = |fH |. Similarly, if commodity
i € K (Hy) buti ¢ K (H ), thens; must be an internal node &f, . Since every;-t; path contains

sty | i, | = | fip,|. Thus,
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Sl =Vl = X (il = 1il) + (10 = \in 1)
IEKext (H)NKext (H) i€Kext (H)\Kext (H)
I AR
€KXt (Hy )NKCext (H)
= > (ifinl = 1Fiml) = 1ful = |Ful

ieKext (H)

Similarly, | fu,| — |fm| = |fa| — | fu|. By induction, either there is a good subgraph, or one of
the three cases in the lemma must hold. [

Proof of Lemm&3.13Since f and f are feasible multicommodity flows anfl # f, LemmalC2
implies that there is afyf, f,)-good pair of subgraph&l;, H,. So (a)f. > f. foralle € E(H,)

and f. < f. forall e € E(Hsy), and (b)|fa,| > |fm,| and|fm,| < |fm,|- f fo > f for all

e € E(H,), then we are done. So suppose otherwise.

In the fixed decomposition tree @f, consider the subgraphs in the subtree rooted at subgraph
H,. Let K be a minimal subgraph that contains bgth> f. edges andf. = f. edges; that is,
every subgraph of< only containsf. > f. edges orf. = f. edges but not both. Lek be the
join of K7 and K5, whereK; containsf, > fe edges. IfK, K5 are in parallel, ther, K5 is an
(f, f, H)-discriminating pair.

To complete the proof, we show that it cannot be thiatand K» are in series. Let be the node
joining K7 and K, so all edges withy at their head lie in( k), and all edges with at their tail lie
in E(K>). Given a feasible multicommodity flow, defineb,(h) = >_, . e p fvu = 20 0)er Puo-
Observe thab,(h) is simply the node balancg’ di = > i.0—, di, @nd is thus independent of
the multicommodity flow. Therefore, (f) = b,(f). Rearranging, this giveEeeE(Kl):e:(u,v)(fe -

fe) = Xcc (k) e=(vm) (fe — fe), which is a contradiction. |

V=8,

D Proofs from Section3.4

Proof of Clain[3.1.We assume that im, there is a single edg€ = (u,w) with negative tolls. If
there are multiple such edges, simply repeating the praedduhis proof gives the required toHs.

If fo(7) = 0, increasing the toll on this edge does no change the equitibilow. Hence we assume
thatfe/(l, T) > 0.

Let £ be the edge set of the graph if it is acyclic; otherwise,Het be the set of edges with
strictly positive flow ing = f(I,7). Sinceg is an equilibrium flow, the set of edgds" is acyclic.
Let o(v) be an ordering of the vertices given by a topological sorthef graph(V, E*). Define
S ={veV:ow <o(u}, wheree = (u,v) is the edge with negative toll. Thene S and
t € V'\ S. Let7’ be the tolls obtained by addingr. to every edge ¢ E*, and also to every edge
e = (z,y) € ET across the cutS, V' \ S). That s,

o Ty Te ifreS,yeV\S or(e,y) & B
o Tay otherwise.

By this procedure, the toll does not decrease on any edgenarebises to zero on edge We claim
that the flow at equilibrium remains unchanged. Considet &irpathP with gp > 0. All edges
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e € P areinE™, and exactly one edge crosses the(&t” \ .S). Hence the delay on every such path
increases by exactly ... On any other path, there is at least one edgeE ", hence the delay these
paths increases by at least,.. The flowg is thus a flow on shortest paths with to#t§ and hence

g:f(laT/)' [ |

Proof of Theorerh 3.18We first prove (iii). Letr := 1,.5. Let ® be the potential function as defined
in (@) for the delay functions id’, and®" be the potential function with delay functions that include
the toll 7. Note that for any flowf, ®7(f) = ®(f) + 7..f,. Suppose for a contradiction thAt(r) >
f-(0). Then

7(f(0)) = (f(0)) + 7/ (0) < (f(0)) + 7 fr(7) < (f(7)) + 70 fr(7) = @7(f(7)).

But this is a contradiction, sincg(7) is the unique minimizer op™.

We now prove part (iv) of the theorem. Let= —1,.§. We first prove the lemma for the case that
S(l, f(r)) = S(, f(0)), and then extend it to the case when the set of shortest-gg#saliffer. For
two flows f and g of the same value i, the differenceh = f — g is a circulation and is possibly
negative on some edges. df,,, > 0 then(u,v) is a forward edge, and fi,,, < 0 then(u,v) is a
backward. We us&* and E~ for the set of forward and backward edges respectively.

We want to define a decomposition lofalong cycles. For this, leb be the directed graph with
the same vertex set &8 but with (u,v) € E(D) if (u,v) € E andh,, > 0, and(v,u) € E(D) if
(u,v) € E andh,, < 0. Thenh defines a circulatioh in graphD, whereh,,, = hy, if (u,v) is
a forward edge, andl,, = —h., if (u,v) is a backward edge. Létc}ccc be a decomposition of
h along directed cycles i. Then for(u,v) € EY, huy = Y. (yu)ec hos and for(u,v) € B,
Py = — ZC:(v,u)eC he.

Let edger = (x,y). We will show that(y, z) is in every cycleC. For a contradiction, suppose
there exists®” € C so that(y,x) € C’. For any edgee € E*, f.(1) > f.(0), and for any edge
e € E7, fo(1) < f.(0). Further, sinceS(f(0)) = S(f(7)), the sum of latencies along cyal& must
be zero for both flowg (7) and f(0). However,

Dolelfem)= Y lfe)+7) = D (elfe(r) +7)

ecC’ eeE+NC’ ecE—NC’
> Y WO - S (el0) + 7o)
ee E+NC’ ecE—NC’
> Z le(fe(o))_ Z le(fe(o)) =0.
ee E+NC’ ecE—NC’

where the second inequality is because= 0 for ¢ # r, andr ¢ E— N C’. This is a contradiction,
since the sum of latencies along cyc¢lé must be zero for flowf (7). Thus, for every cycl€' € C,
(y,x) must be inC'.

Then

fuv(T) = fuv(0)+ Z Jo— Z fo.

ceC:(up)eC ceC:(vu)eC

Since by the claim edgeis a backward edge in every cydee C, | f,(7)— f-(0)| = | X cec fol,
which is obviously an upper bound on the change in flow on agged
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We now extend the lemma for the case wh&(¢(0)) # S(f(7)). In fact, we show that for any
e >0, |fr(1) = £-(0)] > ||f(T) = £(0)]lsc — €. Pickv = €2/(Kd2*™), wherem is the number of
edges. Letig = 0. For anya; we define

b; = sup{z € [a;,d] : S(f(—1,2)) = S(f(—1,a;))}.

anda;1; = b; + v. Letj be such thad € [a;,a;.1]. By definition, eitherd = b; or o € [b;, a;41].
Since the number of possible sets of shortest-path edd@®s, is < 2. Also, for all 7, by the first
part of the lemma and by continuity of equilibrium floy, (—1,a;) — f.(=1,b;)| > || f(—1,a;) —
f(=1,b;)||0o- Further by Corollary-339|f(—1,b;) — fr(—1,a;41)| < vV Kdv. Summing up,

[£(0) = f(=1;6) [0 < Z 1f(—1rai) = f(—1rait1)]loo

=0

J J
< Z I|f(=1ra;) — f(=175)]| 00 + Z 1 f(=1b;) — f(—=TLrair1) |0
i=0 i=0

J
< Z ‘fr(_]lrai) - fr(_]lrbi)‘ + 2"V Kdv
1=0

< ’fr(o) - fr(_]lr(s)’ +e€

where the last inequality follows be the monotonicity fofas a function of the toll on edge By
taking limits, [| £ (0) — f(7)[lcc < [/-(0) = f3(7)]. u
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