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ABSTRACT: Human growth research requires knowledge of longitudinal statistical methods that can be analytically
challenging. Even the assessment of growth between two ages is not as simple as subtracting the first measurement from
the second, for example. This article provides an overview of the key analytical strategies available to human biologists in
increasing order of complexity, starting with a review on how to express cross-sectional measurements of size, before cover-
ing growth (conditional regression models, regression with conditional growth measures), growth curves (individual growth
curves, mixed effects growth curves, latent growth curves), and patterns of growth (growth mixture modeling). The article
is not a statistical treatise and has been written by a human biologist for human biologists; as such, it should be accessible
to anyone with training in at least basic statistics. A summary table linking each analytical strategy to its applications is
provided to help investigators match their hypotheses and measurement schedules to an analysis plan. In addition, worked
examples using data on non-Hispanic white participants in the Fels Longitudinal Study are used to illustrate how the ana-
lytical strategies might be applied to gain novel insight into human growth and its determinants and consequences. All too
often, serial measurements are treated as cross-sectional in analyses that do not harness the power of longitudinal data.
The broad goal of this article is to encourage the rigorous application of longitudinal statistical methods to human growth
research. Am. J. Hum. Biol. 27:69–83, 2015. VC 2014 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

The assessment of human growth requires serial obser-
vation (Cameron, 2012), thereby resulting in longitudinal
data that present an analytical challenge (Hauspie et al.,
2004). This article describes the key analytical strategies
available to human biologists. Each strategy has one or
more applications; one of the applications of regression
with conditional growth measures (Keijzer-Veen et al.,
2005), for example, is to identify sensitive developmental
periods for some outcome (Adair et al., 2009). By explain-
ing each strategy, and summarizing this information and
each strategies applications in Table 1, researchers are
provided with a guide to the best methods to test their
hypotheses. This resource is not only for human biologists
wanting to analyze existing data, but also for those want-
ing to design studies that correctly match their hypothe-
ses and measurement schedule to an analysis plan.

Clearly, the field of growth research is broad. This article
does not cover all of the techniques available and is not a
statistical treatise on growth analysis methods. Most
growth research published by human biologists can be
assigned to one of three themes. The first theme comprises
questions about how children grow and normal variation
and between-population variation in this process (Duran
et al., 2013; Johnson et al., 2013b; Kurki, 2013; Staiano
et al., 2013); the second about the evolutionary, intergenera-
tional, bio-cultural, genetic, and other factors that affect the
growth process (Alwasel et al., 2013; Azcorra et al., 2013;
Bingham et al., 2013; Vazquez-Vazquez et al., 2013); and
the third about the consequences of certain growth traits
and patterns of growth (Moura-Dos-Santos et al., 2013;
Redmond et al., 2013; Richards et al., 2013; Ruiz-Castell
et al., 2013). After reading this article, the investigator
should be well equipped to select the best analytical strat-
egy to test any hypothesis that falls into one of these
themes. The strategies are presented in increasing order of
complexity, starting with a review on how to express cross-
sectional measurements of size (internal Z-scores, external
Z-scores, indices, conditional size measures), before cover-
ing growth (conditional regression models, regression with
conditional growth measures), growth curves (individual

growth curves, mixed effects growth curves, latent growth
curves), and patterns of growth (growth mixture modeling).
Each of the main sections ends with a worked example
using data on non-Hispanic white participants in the Fels
Longitudinal Study (Roche, 1992) to illustrate how the ana-
lytical strategies might be applied to gain novel insight into
human growth and its determinants and consequences.

SIZE

The term size is used here to refer to any cross-sectional
measurement of the body (e.g., lengths, breadths, circumfer-
ences, weight, etc.). This is a natural starting point and this
section contains necessary knowledge for the following sec-
tions. Size varies according to age at assessment and studies
in which all children are assessed at the same exact age are
rare. In addition, most measures of size differ between sexes
and vary according to total body size, which is normally
taken to be height. One option is to adjust in an analysis for
these variables. A more parsimonious approach, however, is
to first compute a variable that is standardized for age, sex,
and total body size, where necessary.

Internal Z-scores

The most common measure of size that is standardized
for sex is obtained by converting values into internal Z-
scores using sample statistics:
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where z is Z-score, x is size, l is mean size, and r is the
standard deviation (SD) of size.

The Z-score is normally distributed if x is normally dis-
tributed. Stratifying computation by sex standardizes for
sex because boys and girls are placed on the same scale
(i.e., mean 0 and SD 1). If the target assessment age was
five years, a child measured at age 4.5 years is, however,
likely to have a lower Z-score than a child measured at
age 5.5 years, even if both children were average size for
children of the same age. This means that l and r need to
vary with age. To formalize the problem, and to adjust for
possible skewness in the distribution, the lambda-mu-
sigma (LMS) method of constructing a growth reference
can be used to estimate age-specific statistics (Cole and
Green, 1992). Briefly, LMS models variation in size across

age as a function of three curves: (1) the lambda curve
describes the Box-Cox power needed to remove skewness,
(2) the mu curve describes the median, and (3) the sigma
curve describes the coefficient of variation. After fitting
the LMS model to estimate the three curves, Z-scores can
be computed:

z5
ðx=lÞk21

lr

where z is Z-score, x is size, k is lambda, l is mu, and r is
sigma.

In the same way that sex-specific statistics can be used
to standardize for sex, age-specific statistics produced
using LMS can be used to standardize for age. Both the
child measured at age 4.5 years and the child measured
at age 5.5 years would now have a Z-score close to zero.
Data requirements for LMS can, however, be obstructive;

TABLE 1. Analytical strategies in growth research and their applications

Strategy Applications

Size Internal Z-scores Standardize a measure for systematic differences between sexes (or systematic differences
between any other sub-groups, such as ethnicities)

Standardize a measure for between-child differences in exact age at assessment (using the
LMS method)

Transform a skewed measure so that it is normally distributed (using the LMS method)
External Z-scores Compare the mean and distribution of a measure against that in some other sample (typi-

cally the reference sample of a growth chart)
Standardize, to some extent, a measure for systematic differences between sexes (when a

small sample size prohibits the use of internal Z-scores)
Standardize, to some extent, a measure for between-child differences in exact age at assess-

ment (when a small sample size prohibits the use of internal Z-scores)
Transform a skewed measure so that it approximates a normal distribution (if the growth ref-

erence was constructed using LMS or some other technique that adjusts for skewness)
Indices Standardize a measure for between-child differences in total body size (typically taken to be

height)
Conditional size measures Standardize a measure for between-child differences in total body size (typically taken to be

height)
Growth Conditional regression models Quantify the association of size at one age with an outcome at a second age, conditional on

size at the second age (combined with a life course plot to quantify the association of
growth between the two ages with the outcome)

Quantify the association of growth between two ages with an outcome at the second age, con-
ditional on size at the first age

Regression with conditional
growth measures

Quantify the associations of growth during different consecutive age periods with some out-
come, conditional on size at the first age

Growth
curves

Individual growth curves Characterize a child’s growth (by fitting a growth curve that summarizes his or her longitudi-
nal data in a few biologically meaningful parameters and/ or derived traits)

Characterize average growth in a sample, after fitting multiple individual growth curves (by
producing a mean-constant growth curve)

Characterize between-child and population variation in growth, after fitting multiple individ-
ual growth curves (by inspecting the pooled biologically meaningful parameters and/ or
derived traits)

Relate growth to some distal outcome, other growth process, or survival process (using a two-
step strategy)

Mixed effects growth curves Simultaneously characterize the growth of every child in a sample and the average growth in
that sample (by modeling and therefore quantifying within-child and between-child
variation)

Quantify systematic differences in growth due to independent variables, such as sex and eth-
nicity (by adding these variables into the model as fixed effects)

Relate growth to some distal outcome, other growth process, or survival process (using a one
or two-step strategy)

Latent growth curves *Same as for mixed effects growth curves*
Patterns of

growth
Growth mixture modeling *Same as for mixed effects growth curves*

Identify distinct unobserved groups (i.e., latent classes) of individuals who share similar
average growth curves

Characterize the determinants of latent class membership and investigate whether or not
systematic differences in growth due to independent variables, such as sex and ethnicity,
differ across the latent classes

Relate the latent classes to some distal outcome, other growth process, or survival process
(using a one or two-step strategy)

LMS, lambda-mu-sigma.
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50 measurements per sex per binned age (e.g., week,
month, year) will normally provide enough information to
estimate M and S precisely, but up to 400 observations per
sex per binned age may be needed to estimate L precisely
(Cole, 2012). In the absence of definitive recommendations
and no statistically justified way to estimate sample size
for LMS through a power calculation, the latter number
provides a “ball park” target.

External Z-scores

If a researcher has a small sample size, one option is to
use statistics from some other sample. The most common
type of external Z-score is computed using LMS values
from a growth reference that is the basis of a growth
chart, such as those produced by the Centers for Disease
Control and Prevention in the United States of America
(http://www.cdc.gov/growthcharts/) (Kuczmarski et al.,
2000), the Royal College of Paediatrics and Child Health
in the United Kingdom (http://www.rcpch.ac.uk/growth-
charts) (Wright et al., 2010), and the World Health Orga-
nization (http://www.who.int/childgrowth/standards/)
(WHO, 2006). These Z-scores describe how a sample com-
pares against the growth reference source sample (De
Onis et al., 2007; Johnson et al., 2012a,b). They are nor-
mally less standardized for age and sex than internal
Z-scores computed using LMS because the sample differs
from the growth reference source sample. They are, how-
ever, more convenient than internal Z-scores for making
comparisons across datasets.

Indices

Indices can be used to standardize measures of size for
total body size. Body mass index (BMI) is the obvious
example; it works on the basis that weight increases pro-
portionately to height squared, so dividing weight by
height squared results in an index that is uncorrelated
with height in a sample (Keys et al., 1972). In reality, how-
ever, the BMI is always at least party correlated with
height, because the mathematical determination of the
best index varies according to factors such as age, sex,
ethnicity, etc (Cole, 1986; Franklin, 1999; Frontini et al.,
2001; Hattori and Hirohara, 2002; Metcalf et al., 2011).
Log-log regression can be used to find out how a measure
of size scales with total body size (Benn, 1971; Cole, 1979).
It is then possible to calculate an index that is uncorre-
lated with total body size in the sample used for
computation:

y5
x

hb

where y is index, x is size, h is height (or some other mea-
sure of total body size), and b is the coefficient obtained
from regressing ln(x) on ln(h).

Stratifying computation by sex will ensure that the
index is standardized for total body size within each sex.
It is then possible to convert to age and sex specific
Z-scores to standardize for these variables, where
necessary.

Conditional size measures

A different approach is to regress size on total body size
and save the residuals (Keijzer-Veen et al., 2005). The for-
mula (without the denominator) is actually the same as

that obtained by applying a logarithmic transformation to
the previous equation, with the exception that here the
variables are not logged (Cole, 1991):

zy5
x2bh

r

where zy is conditional size Z-score, x is size, h is height
(or some other measure of total body size), b is the coeffi-
cient obtained from regressing x on h, and r is the resid-
ual SD from the regression.

The resulting measure is size conditional on total body
size and as such the two variables should be uncorrelated.
This formula needs to be modified if the relationship
between size and total body size is non-linear; adding a
total body size squared term to the regression works in
many instances. The dependent variable is a Z-score with
mean 0 and SD 1 because the residuals are standardized.
Stratifying by sex will ensure that the conditional size
measure is standardized both for total body size and sex.
Alternatively, conditional size can be computed without
the denominator, before converting to age and sex specific
Z-scores to standardize for these variables, where
necessary.

Worked example

Each of the strategies was applied to weight data on
402 boys and 383 girls born 1928 to 2000 and aged 12
years (range 11.8–12.2) and the properties of the resulting
variables are shown in Table 2. Girls weighed 2.3 kg more
than boys and exhibited greater variation (P values
<0.05), which was expected given that more girls than
boys would have started puberty and their growth spurt
at this age. The data were not correlated with age
(q 5 0.05, P value 5 0.2), but were positively skewed (P-
value<0.001) and correlated with concurrent height
(q 5 0.7, P value <0.001), to the extent that 45% of the
variance in weight was explained by height. Converting
to Z-scores, either using the sex-specific mean and SD or
sex and age-specific LMS values, placed boys and girls on
the same scale, such that there no longer existed any dif-
ferences between sexes in the mean and SD (P values
>0.1). The LMS approach had the additional advantage of
removing the skewness in the distribution and theoreti-
cally would have also removed any association with age.

The only remaining adjustment was for height. The
Z-scores could have been computed using BMI, but this
would not have fully resolved the problem as BMI was
correlated with height (q 5 0.3, P value <0.001), with 19%
of its variance explained by height. The power needed to
create an index of weight independent of height was found
by log-log regression to actually be closer to three than
two in both sexes. On the original scale, this corresponded
to sex-specific estimates of approximately a 90 kg increase
in weight per 1 m increase in height that were used in the
computation of conditional size measures. In addition to
being uncorrelated with height, the conditional size mea-
sure that comprised standardized residuals had the
advantage that it placed boys and girls on the same scale.
All indices and conditional size measures were, however,
skewed (P-values< 0.001) and could have theoretically
been associated with age.

It is possible to convert variables that are standardized
for total body size to LMS Z-scores that standardize for

ANALYTICAL STRATEGIES IN HUMAN GROWTH RESEARCH 71

American Journal of Human Biology

http://www.cdc.gov/growthcharts/
http://www.rcpch.ac.uk/growthcharts
http://www.rcpch.ac.uk/growthcharts
http://www.who.int/childgrowth/standards/


sex and age and adjust for skewness. However, that
requires an appropriate growth reference that is unlikely
to exist and may be difficult to create internally (e.g., if
the power needed to create an index of weight independ-
ent of height changes over the studied age range). Alter-
natively, it is possible to compute an index or conditional
size measure using Z-scores, but the resulting variable
may be difficult to interpret and is not guaranteed to be
standardized in the same way as the Z-scores used for
computation. Clearly, expressing size is not straightfor-
ward. The scientist is tasked with striking a balance
between using a variable that is interpretable and one
that is perfectly standardized and normally distributed.

GROWTH

The term growth is used here to refer to change across
age in any measurement of the body. The simplest assess-
ment of growth is change in size between two ages, yet
even this seemingly straightforward assessment has
given rise to two different key analytical strategies.

Conditional regression models

Including size at one age and size at a subsequent age
as independent variables in a regression model results in
estimates of the association of each size measure with the
dependent variable conditional on the other size measure
(i.e., setting it at a value of 0):

y5b01b1z11b2z21E

where y is the dependent variable, b0 is the intercept, b1
is the regression coefficient for size at the first age, z1 is

size at the first age, b2 is the regression coefficient for size
at the second age, z2 is size at the second age, and E is the
residual error.

Z-scores are often used to make b1 and b2 comparable.
They can be plotted against age with a line connecting
them together in a life course plot (Cole, 2004). This plot
provides information about growth as well as size. If b1
was 210% per Z-score and b2 was 120% per Z-score, then
a one Z-score increase between z1 and z2 (i.e., growth)
would indicate a 30% increase in y. The life course plot is
an easy way to visualize relationships of size and growth
with a dependent variable. Alternatively, as discussed by
others (Cole, 2004; De Stavola et al., 2006; Lucas et al.,
1999), the equation can be re-parameterized to estimate
the relationship of growth between z1 and z2 with y:

y5b01ðb11b2Þz11b2ðz22z1Þ1E

or

y5b01ðb11b2Þz22b1ðz22z1Þ1E

Note that the estimates for b1 and b2 are unchanged.
The fundamental difference between the three equations
is that they address different questions. The first asks
“how is size at the first age associated with the dependent
variable (conditional on size at the second age)?”, the sec-
ond asks “how is growth between the first and second age
associated with the dependent variable (conditional on
size at the first age)?”, and the third asks “how is growth
between the first and second age associated with the

TABLE 2. The properties of different weight variables at age 12 years in 402 boys and 383 girls in the Fels Longitudinal Study

Mean (SD)

Sex difference
in the meana

Sex difference
in the SDb Skewness

Correlation
with age

Correlation
with height

Variance explained
by heightc

Estimate (P value) %

Raw data
Weight (kg) 42.976 (9.530) 2.324 (<0.001) 0.942 (0.045) 1.120 (<0.001) 0.045 (0.209) 0.693 (<0.001) 44.6

Internal Z-scores
Computed using
sample mean
and SD

0.000 (0.999) 0.000 (>0.999) 0.000 (>0.999) 1.134 (<0.001) 0.042 (0.241) 0.680 (<0.001) 43.4

According to a FLS
referenced

20.012 (0.995) 20.064 (0.368) 0.035 (0.488) 0.032 (0.711) 0.043 (0.229) 0.712 (<0.001) 46.3

External Z-scores
According to the
CDC reference

0.030 (0.996) 20.097 (0.174) 0.066 (0.190) 0.043 (0.623) 0.010 (0.771) 0.711 (<0.001) 46.2

Indices
BMI (kg/m2) 18.516 (3.066) 0.505 (0.020) 0.297 (0.056) 1.115 (<0.001) 20.004 (0.910) 0.347 (<0.001) 19.2
Weight-for-heightp

(kg/m�3)e
11.444 (1.818) 0.878 (<0.001) 0.310 (<0.001) 1.054 (<0.001) 20.037 (0.303) 0.046 (0.202) 2.3

Conditional size measures
Unstandardized
residuals from weight (kg)
regressed on height (m)e

0.000 (6.868) 0.000 (>0.999) 0.868 (0.012) 1.007 (<0.001) 20.046 (0.194) 0.000 (>0.999) 0.0

Standardized residuals
from weight (kg)
regressed
on height (m)e

0.000 (1.001) 0.000 (>0.999) 0.000 (0.994) 1.033 (<0.001) 20.043 (0.224) 0.000 (0.998) 0.0

aComputed as the mean for girls minus the mean for boys so that a positive value indicates a higher mean in girls compared with boys. P values are from t-tests.
bComputed as the SD for girls minus the SD for boys so that a positive value indicates a higher SD in girls compared with boys. P values are from variance ratio
tests.
cComputed using the formula (1 2 sqrt(1 2 r2)) 3 100, where r is the correlation with height.
dThe FLS reference was constructed by applying sex-stratified LMS models to all weight data collected between birth and age 18 years (1,509 participants, 31,121
observations).
eComputation was sex stratified.
BMI body mass index, CDC Centers for Disease Control and Prevention, FLS Fels Longitudinal Study, LMS lambda-mu-sigma, SD standard deviation.
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dependent variable (conditional on size at the second
age)?” The equations can easily be extended to include
more than two measurements (De Stavola et al., 2006).
The limitations of this strategy are that (1) conditioning
on multiple future measurements can make interpreta-
tion difficult and (2) multicollinearity between the serial
measurements can result in unstable estimates with wide
confidence intervals. Only direct associations of size or
growth with the outcome are estimated, but the same
models can easily be specified in path analyses to also get
estimates of indirect associations (i.e., those operating
through subsequent body size or growth) (Gamborg et al.,
2009, 2011).

Regression with conditional growth measures

A conditional growth measure can be computed as the
residuals from a regression of size at the second age on
size at the first age, similarly to the computation of a con-
ditional size measure (Keijzer-Veen et al., 2005). Because
the conditional growth measure is the portion of size at
the second age uncorrelated with size at the first age it
can be interpreted as growth over the age period adjusted
for regression to the mean (Cameron et al., 2005). For
growth research, it may be important to use Z-scores so
that catch-up or catch-down growth and regression to the
mean are on the same scale and thus distinguishable
(Cameron et al., 2005; Galton, 1886). Others have, how-
ever, argued that Z-scores should not be used for some
measures, such as BMI, because within-child variance of
serial measurements depends on the child’s level of adi-
posity more when using Z-scores than when using origi-
nal metrics (Berkey and Colditz, 2007; Cole et al., 2005).
Nonetheless, if Z-scores are used, a simple equation is
available for growth between two ages (Cole, 1993, 1995):

zy5
z22qz1ffiffiffiffiffiffiffiffiffiffiffi

12q2
p

where zy is conditional growth Z-score, z1 is size at the
first age, z2 is size at the second age, and q is the correla-
tion between z1 and z2.

The denominator is not essential, but it ensures that
the resulting conditional growth measure is a Z-score
with mean zero and SD one. In a subsequent regression of
a dependent variable on z1 and zy, the estimate for zy is
interpreted as the association between growth and the
dependent variable:

y5b01b1z11byzy1E

where y is the dependent variable, b0 is the intercept, b1
is the regression coefficient for size at the first age, z1 is
size at the first age, by is the regression coefficient for
growth between z1 and size at the second age, zy is
growth between z1 and size at the second age, and E is
the residual error.

This equation can easily incorporate multiple condi-
tional growth measures (Tu et al., 2013), each computed
to be independent of all previous size measures, and the
estimate for each interpreted as the association of growth
over the preceding age period with the dependent vari-
able. It is also possible to make the conditional growth
measures independent of concurrent growth in some

other dimension (e.g., weight gain independent of linear
growth) (Adair et al., 2013). Because conditional growth
measures are uncorrelated, the problems of multi- colli-
nearity and conditioning on the future seen in conditional
regression models are alleviated somewhat. The last coef-
ficient in a conditional regression model (i.e., b2) is the
same as the last coefficient in a regression with condi-
tional growth measures (i.e., zy), however, which has led
to concerns about the advantage of regression with condi-
tional growth measures over conditional regression mod-
els when just two serial observations are being analyzed
(Tu and Gilthorpe, 2007). More importantly, both strat-
egies require data to be collected at the same (or at least
approximately the same) ages in all children. A single con-
ditional growth measure can be used as a dependent vari-
able, but otherwise both strategies also have limited
utility if growth is the dependent variable.

Worked example

Each of the strategies was applied to data on 169 males
and 165 females born 1929 to 1974 to investigate the asso-
ciations of weight between ages 0 and 18 years with sys-
tolic blood pressure (SBP) at age 40 years (range 30.6–
49.8) (Table 3). Internal weight Z-scores at ages 0, 2, 10,
and 18 years, computed using LMS values from a Fels
Longitudinal Study reference, were used as they standar-
dized the raw data for sex and age and adjusted for skew-
ness. More frequent weight measurements are available
in the Fels Longitudinal Study, but these ages were cho-
sen for illustrative purposes as ages 0 to 2 years encom-
passes infancy, ages 2 to 10 years encompasses pre-
puberty, and ages 10 to 18 years encompasses puberty in
both sexes. The outcome was left on its original scale (i.e.,
mm Hg) and all models included an adjustment for sex,
but not for birth year or age when the outcome was meas-
ured as these variables where not nominally significant at
P value <0.05 when included (P values >0.8).

Models 1 to 3 are conditional regression models. Each is
an extension of one of the equations in the appropriate
section of the text. Model 1 simply included Z-score at
each age. Although none of the estimates were nominally
significant at P value <0.05, the estimates at ages 0 and 2
years were negative while the estimates at ages 10 and 18
years were positive, thereby indicating that weight gain
between ages 2 and 10 years may be associated with
higher SBP. This was confirmed in model 2, which
included variables of change in Z-score between consecu-
tive ages and Z-score at age 0 years. A one unit increase
in change in Z-score between ages 2 and 10 years incurred
a 2.136 mm Hg (95% confidence interval 0.407–3.866)
higher SBP. This estimate was attenuated to 1.809
(0.056–3.562) in model 3, which included the same varia-
bles as model 2 except for the replacement of Z-score at
age 0 years for Z-score at age 18 years. The pre-pubertal
weight gain-adulthood SBP association, therefore,
appears to be more independent of weight at age 0 years
than weight at age 18 years. Estimates of this association
in models 2 and 3 are difficult to interpret, however, as
they are also conditional on infant weight gain (i.e., ages
0–2 years) and pubertal weight gain (i.e., ages 10–18
years).

Model 4 is a regression with conditional growth meas-
ures. The formula in the appropriate section of the text
was not used as some measures needed to be independent
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of more than one previous weight measurement. Instead,
unstandardized residuals from regression of Z-score at any
given age on Z-scores at all previous ages were used.
Standardized residuals could have been used but that
would have made model 4 less comparable to models 1 to 3.
The same would have been true if residuals from sex-
stratified regressions were used. Regardless of how the
conditional growth measures are computed, their use helps
with interpretability because each estimate represents the
association of change in Z-score with the outcome, inde-
pendent of Z-scores at all previous ages but not any future
ages. The estimate for conditional Z-score at age 10 years
(1.611; 20.006 to 3.573) also provided evidence for a pre-
pubertal weight gain-adulthood SBP association.

Although all of the models appear to be telling the same
story, it is important to remember that the estimates are
making different contrasts because they are conditional
on different variables (Wills et al., 2014). In addition, com-
parison of effect sizes across the models may be difficult
because the change in Z-score and the conditional Z-score
growth measures are not guaranteed to have mean 0 and
SD 1. There was no evidence of non-linearity or effect
modification by sex or birth year (data not shown), but the
models could be further developed to consider interactions
between the size/weight gain variables (e.g., is the pre-
pubertal weight gain-adulthood SBP association stronger
in those with lower birth weight?) and adjustment in
some way for linear growth.

GROWTH CURVES

The most common data in growth research comprise a
large number of serial measurements on a sample of chil-
dren seen at varied ages. There are nearly always missing
data due to missed assessments, drop out, and other fac-
tors. In these circumstances, data reduction techniques
are necessary to summarize the available data for each
child in a few biologically meaningful traits. This is done
most effectively by fitting growth curves that describe
how the measure changes over age.

Individual growth curves

The first growth curve was published in 1930 (Scam-
mon, 1972). In that publication, Richard E. Scammon
plotted, against age, the length/ height data of a child
measured semiannually between birth and age 18 years
and “fitted a curve” by connecting the dots together. By
inspecting that growth distance curve and the first and
second derivatives of that curve (i.e., growth velocity and
acceleration curves) it was possible to identify certain
traits that are now commonly used in growth research,
such as the timing and magnitude of peak height velocity.
Auxologists sought to improve this process by finding
mathematical functions or models that best describe the
growth process in individuals. These are called structural
models because they postulate that the growth curve has
a specific functional form. Hauspie and Molinari (2004)
provide a good review of structural models. For the pur-
pose of the present article, the Preece-Baines (1978) 1
(PB1) model for height growth between approximately
eight to 18 years of age is used as an example:
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y5h12
2ðh12huÞ

es0ða2uÞ1es1ða2uÞ1E

where y is height, a is decimal age, h1 is adulthood height,
u is age at peak height velocity, hu is height at peak height
velocity, s0 and s1 are growth rate constants related to
prepubertal and postpubertal velocities, and E is the resid-
ual error.

Each parameter approximates a biologically meaningful
trait, although analytical solutions using the model
parameters were included in the original publication (Pre-
ece and Baines, 1978). Corrections to these solutions have
recently been published, along with a Stata command
called pbreg which allows the user to fit individual PB1
curves and derive the traits and their confidence intervals
(Sayers et al., 2013).

The majority of structural models, of which PB1 is just
one example, were developed for linear growth. Human
biologists wanting to model change over age in some other
measure, for which no structural model exists, typically
employ some generic method of curve fitting that is not
specific to human growth research. The reader may be
familiar with some of these methods, in particular splines,
kernel estimators, and local polynomials. These are called
non-structural models because they do not postulate that
the growth curve has a specific functional form. Gasser
et al. (1993) provide a good review of the most important
structural models. For the purpose of the present article,
a cubic spline is used as an example:

y5bo 1 b1a 1 b2a2 1 b3a3 1
Xk

k50

ukða2kkÞ31 1 E

where y is size, a is decimal age, k1 to kk are a set of k
knots in the range of a, bo to b3 and u1 to uk are estimates,
and E is the residual error.

The reader will notice that the first part of this model is
a cubic polynomial. The latter part is a set of additional
age cubed terms that “tweak” different sections of curve to
better fit the data. The number and location of knots spec-
ify how the curve is split into different sections. More
knots will result in more parameters and a greater degree
of “smoothing.” Because there is no upper limit on the
number of knots allowed, this model could be over-
parameterized to produce a “wiggly line” that provides a
perfect fit for the data. The scientist is tasked with com-
promising between a small degree of smoothing (which
results in small bias and large variance) and a large
degree of smoothing (which results in large bias and small
variance). This subjectivity is common in non-structural
model fitting. When the researcher is happy with their
model, biologically meaningful traits can be derived using
calculus (e.g., to estimate age at adiposity rebound after
modeling childhood BMI data, find the age when the first
derivative of the model is zero).

Nonstructural models are more flexible than structural
models, but their parameters often have no biological
interpretation. Both strategies share the assumptions
that residuals (i.e., observed—fitted values) should be nor-
mally distributed, homoscedastic, and serially independ-
ent (Hauspie and Molinari, 2004). The residual SD (RSD)
can be used to quantify the overall goodness of fit of the
model in the original metric of measurement:

RSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i51
ðyi2ŷiÞ

2

N2k

s

where yi are the observed values at ages i, ŷi are the cor-
responding fitted values, N is the number of observations,
and k is the number of parameters in the model.

The benchmark that growth modelers aim for is to
fit a curve with an RSD similar to the measurement
error of the dimension under consideration (Hauspie
and Molinari, 2004). Note that models for indices will
inevitably have relatively large RSDs because the out-
come includes two sources of measurement error (e.g.,
BMI includes measurement error in weight and
height). Model fit should also be checked by visual
inspection of (1) a plot of the fitted curve against the
observed values and (2) a scatter plot of the residuals
against age. After doing this for each child in a sam-
ple, it is possible to estimate a mean-constant curve
using the mean values of the parameter estimates,
thereby characterizing average growth in the sample.
It also possible to quantify variation in the biologically
meaningful parameters or derived growth traits and
use them in secondary analyses to test their associa-
tions with other variables.

Fitting individual growth curves is a laborious process,
but one that human biologists used to have to face. Fortu-
nately, strategies are now available to fit growth curves
for an entire sample in one model.

Mixed effects growth curves

Mixed effects models were largely developed in the
1980s and 1990s (Goldstein, 1986; Laird and Ware,
1982). The terminology “multilevel model” is used by
others in recognition that longitudinal growth data have
a hierarchical data structure, with serial measurements
clustered within children; the first level is measurement
occasion and the second level is child. Nonetheless, the
terminology “mixed effects” is used here because these
models handle longitudinal growth data on a sample of
children by simultaneously estimating (1) sample aver-
age parameters called “fixed effects” that govern the
sample average growth curve and (2) corresponding
child specific parameters called “random effects” that
are individual departures from the fixed effects. The
fixed and random effects together (i.e., mixed effects)
describe the growth of every child in a sample (Johnson
et al., 2013a). A simple model is used to demonstrate
how this is done:

yij5bo1uj1Eij

uj � N 0;r2
u

� �

Eij � N 0;r2
E

� �

where yij is the size at age i of child j, bo is a fixed effect
indicating mean size in all children, uj is a random effect
indicating how each child’s intercept differs from bo, and
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Eij is the residual error. The uj and Eij are assumed to be
independent and normally distributed with zero means
and variances r2

u and r2
E .

This is called a variance components model because it
shows how, in a single model, variance in size is decom-
posed into between-child differences (i.e., uj) and within-
child differences over age or residual error (i.e., Eij). This
is the fundamental difference from individual growth
curve models that only capture the latter. The between-
child differences are called “level two residuals” and the
within-child differences over age are called “level one
residuals” by some researchers. The proportion of total
variance in the measure being modeled due to differences
between children is given by the variance partition coeffi-
cient (VPC), which in this example is calculated as (r2

u/
(r2

u 1 r2
E)) 3 100 (Goldstein et al., 2002). The VPC of

mixed effects growth curve models is typically very high
because there is large variability between children in the
growth process (Cameron, 2012), but nonetheless it is
worth checking to provide reassurance that a mixed effect
strategy is necessary.

Any structural or nonstructural function can be
expressed as a mixed effects growth curve model. For
example, a quadratic polynomial could take the form:

yij5ðbo1u0jÞ1 b1aij1u1jaij

� �
1 b2a2

ij

� �
1Eij

u0j

u1j

 !
� N

0

0

 !
;

r2
u0

ru01 r2
u1

 !( )

Eij � Nð0;r2
EÞ

where yij is the size at age i of child j, aij is the correspond-
ing age, bo to b2 are fixed effects, u0j and u1j are random
effects, and Eij is the residual error. The u0j and u1j are
assumed to follow a bivariate normal distribution with
zero means, variances r2

u0 and r2
u1, and covariance ru01.

The Eij are assumed to be normally distributed with mean
zero and variance r2

E . The u0j and u1j are assumed to be
independent of Eij.

The reader will notice that there is no random effect
for the quadratic age term. More complicated models are
more computationally challenging, and researchers will
often remove one or more random effects from their
model to achieve convergence (Johnson et al., 2013a).
This should be done with caution and only when confi-
dent that there is little between-child variation in the
parameter in question. In the present example, there are
two random effects that form a variance-covariance
matrix. If we were modeling infant weight, a negative
covariance between the intercept and the linear slope
term would indicate that infants who were lighter at
birth grew faster postnatally, for example. Centering the
age scale (e.g., at birth) will help with interpretability of
the variance-covariance matrix (and the other model
estimates).

The same checks for model fit for individual growth
curve models apply to mixed effects growth curve mod-
els, with the additional check that the level two residuals
are normally distributed. Although there is a tendency to

assess model fit using statistics summarizing the level
one residuals in the whole sample, it is possible to use
the level one residuals to compute the RSD of each child’s
estimated growth curve to identify those that did not pro-
vide a good fit for that child’s observed data (Wen et al.,
2012).

The real strength of mixed effects growth curve models
is that children don’t need to have been measured at the
same ages or the same number of times. Selecting for
analysis children who have a certain number of measure-
ments spanning a certain age range may be prudent, but
it is not a requirement. Statistical programs efficiently
handle non-consistently collected data (assuming missing
at random) using probability functions to describe the rel-
ative likelihood of each random effect occurring at a given
point in the observation space (Rabe-Hesketh and Skron-
dal, 2008).

Independent variables can easily be included as fixed
effects to investigate systematic differences in the sample
average intercept or curve between sexes or ethnicities,
for example (Johnson et al., 2013a). Further, the level two
residuals or derived growth traits in the individual curves
can be used in secondary analyses to test their associa-
tions with other variables. Linear spline models and the
SuperImposition by Translation And Rotation (SITAR)
model are becoming popular approaches to use for this
purpose, namely because the level two residuals (or ran-
dom effects in the case of SITAR) have some biological
interpretation and thus their associations with other vari-
ables is meaningful (Cole et al., 2010; Howe et al., 2014).
The caveats of this two-step strategy are that (1) level two
residuals suffer from a statistical phenomenon of being
shrunk toward the mean (Robinson, 1991) and (2) any sec-
ondary analysis does not properly consider uncertainty in
the level two residuals or derived growth traits. As a
result, some studies have weighted each child in second-
ary analyses by the number of serial observations used in
the initial growth curve fitting process (Sovio et al., 2011,
2014). More sophisticated one-step strategies are avail-
able to relate level two residuals to some distal outcome,
other growth process, or survival process in a bivariate
(i.e., two outcomes) model, but these go beyond the scope
of the present article.

Latent growth curves

A child’s growth is not directly observed from serial
measurements, but is estimated by fitting a curve through
those data. Latent growth curve models are a special type
of structural equation model (SEM) (Schumacker and
Lomax, 2010), where the parameters that govern the
shape of the curve of each child in a sample are estimated
as latent or unobserved variables using confirmatory fac-
tor analysis (Bollen and Curran, 2006). The reader will
notice the similarity to mixed effects growth curve models,
where fixed and random effects instead of latent variables
are estimated. When a linear trajectory is specified, a
mixed effects growth curve model and a latent curve
model can in fact be analytically and empirically identical
(Bauer, 2003; Curran, 2003). Non-linear models cannot
always, however, be parameterized in the same way
(Bauer, 2003; MacCallum et al., 1997).

Readers wanting to explore the algebra of latent growth
curve models are directed to the book “Latent Curve Mod-
els: A Structural Equation Perspective” (Bollen and Cur-
ran, 2006). For the purpose of the present article, Figure 1
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provides a pictorial representation of a latent curve
growth model. In this example, there are three latent var-
iables in circles that together describe a quadratic polyno-
mial curve. The repeated measures of weight in
rectangular boxes are related to the latent variables
through factor loadings, which are generally specified a
priori. All of the loadings for the intercept factor are set to
one, so that it equally influences all of the serial measure-
ments; the loadings for the linear factor reflect the pas-
sage of age, and are equally spaced because of the uniform
age between consecutive assessments; and the loadings
for the second factor reflect the passage of age squared
(Bollen and Curran, 2006). The child specific F-scores for
the intercept and linear factors are equivalent to the
respective random effects estimates in the model in the
previous section. The variance of the quadratic factor in
the latent growth curve model could even be constrained
to be zero, thereby making the two models identical.

Given their similarity, why would a researcher be
tempted to learn latent growth curve modeling instead of
mixed effects growth curve modeling? In reality, nearly
everything that can be done using one strategy can be
done using the other, but with varying degrees of diffi-
cult. While mixed effects growth curve models might
lend themselves specifically to the analysis of growth,
latent growth curve models can easily be developed to
take advantage of the SEM framework. Here, there are
omnibus measures of model fit and it is easier to (1)
incorporate other latent variables and time-varying con-
founders; (2) relate growth to some distal outcome, other
growth process, or survival process; and (3) identify
unobserved patterns of growth in the data (Curran,
2003).

Worked example

To illustrate the use of growth curve modeling, a mixed
effects extension of the Berkey-Reed (1987) first order
model was fitted to 7,518 measurements of infant weight
(target assessment ages 0, 1, 3, 6, 9, 12, 18, and 24
months) on 391 boys and 362 girls born 1929–2011:

yij5ðbo1u0jÞ
1 b1aij1u1jaij

� �
1 b2lnðaij11Þ1u2jlnðaij11Þ
� �

1 b3

1

aij11
1u3j

1

aij11

� �
1b4girlij1b5girlijaij

1b6girlijlnðaij11Þ1b7girlij
1

ðaij11Þ 1Eij

u0j

u1j

u2j

u3j

0
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0

0
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0
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r2
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ru01 r2
u1
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u2

ru03 ru13 ru23 r2
u3
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1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

Eij � Nð0;r2
EÞ

where yij is the size at age i of child j, aij is the correspond-
ing age, bo to b7 are fixed effects, u0j to u3j are random
effects, girl is a dummy variable coded 0 for boys and 1 for
girls, and Eij is the residual error. The u0j to u3j are
assumed to follow a multivariate normal distribution with

Fig. 1. A latent quadratic polynomial growth curve model.
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zero means, variances r2
u0 to r2

u3, and covariances ru01 to
ru23. The Eij are assumed to be normally distributed with
mean zero and variance r2

E . The u0j to u3j are assumed to
be independent of Eij.

The base of the model comprises an intercept and three
age terms. A transformation is required for the last two
age terms as they are not defined at birth (e.g., it is impos-
sible to log 0) and that proposed by Simondon et al (1992)
was employed. Together, the four parameters postulate
that the growth curve has a specific functional form, thus
this is a structural model. Of particular importance, is
that the third age term allows the distance curve to have
one inflection point, where either (1) maximum velocity
occurs and growth changes from acceleration to decelera-
tion or (2) minimum velocity occurs and growth changes
from deceleration to acceleration. In the present example,
all of the functional parameters were allowed to have ran-
dom effects, thereby ensuring that the individual growth
curves were not constrained in any way to be the same.
Not including a random effect for the third age term
would have, for example, constrained all the individual
curves to have the same inflection point. Including sex as
an independent variable and interacting it with all of the
age terms allowed the sample average growth curve to be
different for boys and girls. The same model could have
been specified as a latent growth curve model.

In order to capture inflection points in the individual
curves, an a priori decision was taken to apply the model
to data from infants with at least five serial measure-
ments (median 8, interquartile range 7–9) spanning at
least one year of the age range (median 2.00, interquartile
range 1.99–2.04). Five measurements is the minimum
number required to fit the Berkey-Reed model for each
participant separately (i.e., number of parameters 2 1),
and 1 year ensures that each individual’s curve is fitted to
his or her data across a reasonable section of the age
range. A less prudent approach would have been to apply
to the model to all data and then restrict investigation of
individual curve characteristics to infants with good lon-
gitudinal data. After fitting the model once, 44 observa-
tions with level one residuals greater than 1 0.8 kg or less
then 20.8 kg were removed from the dataset before fitting
the model a second time. This “trimming of residuals” is
becoming a popular approach used in growth curve model-
ing and works on the assumption that the deleted obser-
vations suffer from large measurement error and/ or
mistakes made during data recording/ entry.

The final model provided a reasonable fit for the data
with a RSD of 0.26 kg. The parameter estimates are not
shown because they are not particularly easy to interpret.
Instead, Figure 2 illustrates some key findings/ properties
of the model. Panel A shows that the sample average
growth curve was higher in boys than girls at birth, and
that the magnitude of this difference increased to approxi-
mately age one year, after which it remained relatively
stable. Panel B shows that the level one residuals were
relatively homoscedastic over age and that there was little
evidence of systematic fitting of curves that were too high
or too low at any given age, perhaps with the exception of
fitting too low at birth (causing positive level one resid-
uals) and too high at age 1 month (causing negative level
one residuals). This pattern has been reported before
(Berkey and Reed, 1987; Johnson, 2010; Simondon et al.,
1992) and could be expected given that the Berkey-Reed
model cannot describe any period of neonatal weight loss.

Nonetheless, it has consistently been found to be the best
structural model for infant growth (Berkey and Reed,
1987; Chirwa et al., 2014; Johnson, 2010; Pizzi et al.,
2014; Simondon et al., 1992). Panel C show the growth
distance, velocity, and acceleration curves of one infant
who had an early inflection point at age 0.3 years and
Panel D shows the curves of one infant who had a late
inflection point at age 1.311 years. The majority of infants
(70%) actually had an inflection point that occurred out-
side the studied age range, with only 5% having an early
inflection between ages 0.006 and 0.508 years and 25%
having a late inflection between ages 0.807 and 1.992
years. Typical weight gain in the sample was therefore
characterized by deceleration and declining velocity
across the entire age period studied. Similar results were
reported in the original publication of the Berkey-Reed
(1987) model, but other studies with more frequent data
early in life claim to have identified (using the Berkey-
Reed model) early inflection points and thus a peak in
velocity for all infants in their sample (Mook-Kanamori
et al., 2011; Sovio et al., 2009; Tzoulaki et al., 2010).
Clearly, the identification and location of traits in the dis-
tance, velocity, and acceleration curves are dependent on
the number of inflection points the model allows and the
amount and frequency of data to which the model fits. A
relatively simple example has been used for demonstra-
tive purposes; the model could be developed to account for
secular trends, neonatal weight loss, more than one inflec-
tion point for some infants, possible complex level one var-
iation (e.g., explicitly model the level one residuals as a
function of age, sex, or some other variable), and possible
autocorrelation of level one residuals.

PATTERNS OF GROWTH

It should now be clear that three different strategies
can be used to estimate individual growth curves in a
sample, and subsequently (i.e., individual curve models)
or simultaneously (i.e., mixed effects and latent growth
curve models) estimate a mean-constant or sample aver-
age growth curve. The assumption here is that all individ-
uals are drawn from a single population and that a single
average growth curve adequately approximates the entire
population. Given our knowledge of the growth process,
this assumption is likely to be unrealistic in most instan-
ces. Take infant linear growth, for example; one group of
infants will show catch-up growth, another will show
catch-down growth, and another will adhere to a particu-
lar centile position (Cameron, 2012).

Growth mixture modeling

Growth mixture models relax the assumption of there
being a single average growth curve by allowing parame-
ter differences across unobserved subsamples; different
average growth curves are thus estimated for different
latent classes of people. In practice, growth mixture mod-
els combine a latent curve model (to estimate the average
growth curves) with a multinomial logistic regression
model (to estimate a categorical latent class variable)
(Muthèn, 2001, 2004). As with mixed effects growth curve
models, there are child specific deviations from the aver-
age growth curve parameters within each latent class.
Constraining this between-child variance within each
latent class to be zero results in a special type of growth
mixture model called a latent class growth model.
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These models allow empirical quantification of different
patterns of growth and epidemiological investigation of
the determinants and consequences of latent class mem-
bership. Independent variables can also be included to
investigate systematic differences in the sample average
growth curves. A real strength of this strategy is that,
when doing this, the estimates can be allowed to vary
across the latent classes. The gradient of a curve may be
steeper for girls compared with boys in one latent class
but shallower in another latent class, for example. Con-
versely, in terms of limitations, the models are computa-
tionally challenging, which makes it difficult to fit
anything other than linear or low order polynomial mod-
els; model selection is subjective, even if based on overall
fit according to the Bayesian Information Criterion (BIC)
(Schwarz, 1978), quality of classification judged by the
entropy statistic (Muthèn, 2001), and interpretability of
the latent classes; the models are likely to identify latent
classes even if none exist; and interpretation of the latent
classes is not always straightforward. As a result, this
strategy should be approached with due caution.

Worked example

A series of growth mixture models with increasingly
greater number of latent classes were applied to 4,929

serial measurements of BMI, collected semiannually
between 10 and 18 years of age, on 417 girls born 1929
to 2000. The only requirement was that each girl had a
minimum of three measurements. A quadratic polyno-
mial function of age (such as that in Fig. 1) was used
to account for any non-linearity in the BMI trajecto-
ries. The means of the growth factors were allowed to
vary across the latent classes, but the variances and
covariances of the growth factors were each con-
strained to be equal across the latent classes. In addi-
tion, residual errors were constrained to be constant
over age and the same in all latent classes. Applying
such constraints is common practice and can help
model estimation.

The sample average growth curves of the different mod-
els are shown in Figure 3. The model with two latent
classes in Panel A identified a “normal weight" class to
which 94% of the girls were most likely to belong and an
“obese” class to which 6% of the girls were most likely to
belong. These classes were present in all subsequent mod-
els, with the addition of a “overweight/ pubertal obese”
class in Panel B, the further addition of a “overweight/
pre-pubertal obese” class in Panel C, and the even further
addition of an “overweight” class in Panel D. Growth mix-
ture models compute probabilities for each participant of
belonging to each class; entropy was high for each model

Fig. 2. Example results from a mixed effects Berkey-Reed growth curve model applied to serial infant weight data on 391 boys and 369 girls
in the Fels Longitudinal Study: 95% confidence interval of sample average curve plotted against the observed data by sex (A), residuals by sex
(B), example girl with an early inflection point (C), and example boy with a late inflection point (D).
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(0.911–0.955), thereby indicating that the average proba-
bilities of girls belonging to the class to which they were
assigned (based on the one with the highest probability)
were close to one. The BIC decreased across the models,
from 14,844 in the model with two classes to 14,774 in the
model with five classes, thereby indicating that there was
marginal improvement in model fit as the number of
classes increased.

In this scenario, where all models seem to be biologi-
cally plausible and there is little distinction between them
in terms of model fit, it is very difficult to pick a “best”
model. It may not be sensible to select the three, four, or
five class solutions because at least one of the classes com-
prises less than 5% of the sample (Muthèn, 2001; Nagin
and Tremblay, 2001). The two class solution is easy to
interpret, but could be viewed as being overly simplistic.
Nonetheless, even this simple model provides the opportu-
nity to explore how other variables are related to class
membership and the sample average growth curves. It
would have been possible, for example, to test whether or
not more recent birth year (1) incurred increased odds of
being in the obese class compared with the normal weight
class, or (2) was more strongly related to a higher inter-
cept and steeper slope of the sample average growth curve
in the obese class compared with that in the normal
weight class.

CONCLUSIONS

Human growth research requires grounding not only in
human biology but also in statistics, and specifically in
longitudinal data analysis techniques. This is true regard-
less of whether you are a human biologist, biological
anthropologist, or epidemiologist, etc. The key analytical
strategies for growth research in the present article are
presented is in increasing order of complexity, such that a
researcher using one strategy ought to already be compe-
tent in all the preceding strategies. “Jumping in at the
deep end” will inevitably lead to reliance on overall model
fit statistics, without really knowing what a model is
doing or how to fine tune it to provide the most biologi-
cally plausible representation of the growth process.

Of course, none of the above negates the need to use the
most appropriate strategy to address a research aim,
given the available data. All too often, serial measure-
ments are treated as cross-sectional in analyses that do
not harness the power of longitudinal data. There is also a
natural tendency to become accustomed to a strategy,
without critiquing all of the options each time a new study
is initiated. The table in the present article may be useful
here, because it clearly shows when the key analytical
strategies in growth research should be used. If the choice
is not obvious, the logical thing to do is to analyze the
data a number of different ways and compare the results.

Fig. 3. Example results from growth mixture models with two (A), three (B), four (C), or five (D) latent classes applied to serial body mass
index (BMI) data on 417 girls aged 10 to 18 years in the Fels Longitudinal Study.
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Such methodological investigation is, in itself, important
because this will guide other researchers in their decision
making.

Finally, it is necessary to reiterate that this article only
provides as overview of growth analysis methods; it could
in fact be given as a one or two hour lecture, complete
with references for further reading. As the researcher
delves deeper, they will quickly become aware that the
statistical methods necessary to analyze human growth
data can be as complex as the biology underlying the
process.
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Useful Resources

This is a core text book on human growth research
methods and is recommended to all researchers consider-
ing any type of growth curve analysis :

Hauspie RC, Cameron N, Molinari L. 2004. Methods in
Human Growth Research. Cambridge, UK: Cambridge
University Press.

This book is recommended to researchers wanting to
apply mixed effects growth curve models:

Goldstein H. 2010. Multilevel statistical models. Lon-
don: Wiley-Blackwell.

This book is recommended to researchers wanting to
apply latent growth curve models:

Bollen KA, Curran PJ. 2006. Latent curve models: A
structural equation perspective. Hoboken, New Jersey,
USA: John Wiley & Sons.

The website of the Centre for Multilevel Modelling is an
excellent resource for researchers wanting to apply mixed
effects growth curve models. There you can find online
courses, videos and voice-over presentations, datasets
with accompanying code, software, recommended books,
and so on:

http://www.bristol.ac.uk/cmm/
Although many universities and other organizations

run short courses on statistical techniques relevant to
human growth research, those provided by the Utrecht
Summer School and the Interuniversity Consortium for
Political and Social Research (ICPSR) are recommended
to researchers wanting to apply latent growth curve mod-
els or growth mixture models:

http://www.utrechtsummerschool.nl/courses/social-sciences
http://www.icpsr.umich.edu/icpsrweb/landing.jsp
From the website of Harlow Healthcare, it is possible to

download a free excel macro called LMSgrowth which,
among other things, computes external Z-scores according
to a number of growth references. Also available from this
website is LMSchartmaker, a user-written program to
construct your own growth reference: http://www.health-
forallchildren.com/

The Centers for Disease Control and Prevention in the
United States of America and the World Health Organiza-
tion also have software that can be used to compute exter-
nal Z-scores according to their growth references:

http://www.cdc.gov/growthcharts/computer_programs.htm

http://www.who.int/childgrowth/software/
Most statistical packages have the capability to fit the

models described in this article, although Stata is recom-
mended for everything up to and including mixed effects
growth curve models and Mplus is recommended for
latent growth curve models and growth mixture models:

http://www.stata.com/
https://www.statmodel.com/
The utility of Stata for mixed effects growth curve mod-

eling is greatly improved with the use of the command
runmlwin, which calls on MLwiN, a specialist software
package for mixed effects modeling, to fit a model and
returns the results to Stata:

http://www.bristol.ac.uk/cmm/software/runmlwin/
The statistical packages R and SAS are recommended

for non-linear mixed effects growth curve models (i.e.,
where the dependent variable is not a linear function of
the parameters), because Stata and MLwiN do not have
this capability:

http://www.r-project.org/
http://www.sas.com/en_us/software/analytics/stat.html
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Muthèn B. 2001. Second-generation structural equation modeling with a
combination of categorical and continuous latent variables: new oppor-
tunities for latent class/latent growth modeling In: Collins LM, Sayers
A, editors. New methods for the analysis of change. Washington, DC:
American Psychological Association. p 291–322.
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