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Abstract 

The possibility of using a planar artificially structured boundary as a charged particle beam deflector shield is studied via 
classical trajectory Monte Carlo simulation. The artificially structured boundary (ASB) is formed by a planar array of permanent 
disk magnets with like poles facing out and creates a spatially periodic magnetostatic field. A mono-energetic beam of charged 
particles is incident on the ASB, and the conditions under which particles penetrate through the array are determined. 
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1.  Introduction 

The manipulation and confinement of charged particles is important in many areas of current research. An 
example is the effort to synthesize and study antihydrogen.1–4 Antihydrogen with very low temperature is highly 
desirable for gravity experiments.5–8 Antihydrogen has been produced by mixing antiproton and positron plasmas in 
nested Penning traps, however various issues may need to be addressed before this method will yield antiatoms with 
temperatures suitable for precision spectroscopy or gravity experiments.1,9 
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An artificially structured boundary (ASB) creates a spatially periodic field, such that the spatial period of the field 
is much smaller than the dimensions of a source of charged particles that is near the boundary. Various 
configurations of electrodes and magnets can create an ASB, and previous work involving charged particle and 
plasma interactions with several of these configurations may be found in Refs. [10-12]. The work presented here is 
motivated by the possibility of developing an alternative scheme, using an artificially structured boundary, to confine 
and manipulate antimatter plasmas and beams for antihydrogen production. 

In the present work, a planar array of 25 permanent disk magnets with like-poles facing outward is used to create 
an ASB with a spatially periodic magnetostatic field. The spatial period of the field is considered to be much smaller 
than the dimensions of an incident beam of charged particles. As a result, the effective range of the magnetic field is 
smaller than the beam radius and the particles are effectively un-magnetized unless located relatively close to the 
ASB. The disk magnets are approximated as infinitesimally thin circular wire loops, each carrying current in the 
counter-clockwise sense as viewed from the positive z direction. A Cartesian coordinate system is defined such that 
the array lies in the x-y plane with the axis of symmetry of the middle loop along the z axis. A conceptual illustration 
of the configuration is shown in Fig. 1a, and a magnified view of the innermost nine current loops is shown in Fig. 
1b. The current loops are arranged in a grid pattern, where the distance between the centers of adjacent loops in both 
the x and y directions is S. Arranged in such a manner, the array of loops produces a magnetostatic field that is 
periodic in the x and y directions, with spatial period S. A classical trajectory Monte Carlo study is presented that is 
used to determine the conditions under which charged particles penetrate through the ASB. 

  
       (a)            (b) 

Fig. 1: (a) A conceptual illustration of the ASB. (b) A magnified view of the inner nine current loops. 

 

2.  Classical Trajectory Monte Carlo Simulation 

2.1. Magnetic Field of a Current Loop 

The components of the magnetic field due to a single current loop of radius , centered about the origin of a 
cylindrical coordinate system, and lying in the  plane are  

 

.  (1) 
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Here,  is the magnitude of the field at the origin,  is the current in the loop,  is the permeability of 
free space,  and the coefficients , , , and are, respectively, 

 

, 

, 

, 

.  (2) 

Also, the complete elliptical integrals of the first and second kind, and , are given by 
 

, 

.  (3) 

2.2. Normalization 

All parameters used in the simulation are normalized such that they are dimensionless quantities. Normalized 
parameters are denoted by the same symbol as their un-normalized counterparts, but with the subscript n attached. 
The parameters used for normalization are the spatial period of the magnetic field , the kinetic energy of the 
particle , the particle’s charge , and the particle’s mass . The normalized value for each of these parameters is 
unity, . The particle’s normalized position, velocity, and acceleration are then , 

 and , respectively. The normalized time and magnetic field are given by 
 and . A normalized version of Newton’s second law is obtained by solving these 

relations for the un-normalized parameters and substituting into , yielding . 
The cyclotron radius  of a particle with kinetic energy  and moving in circular motion in a uniform magnetic 

field of magnitude  is given by . In the case where the magnitude of the field is equal to that at 
the center of a single current loop (i.e., ), the magnitude of the normalized magnetic field may be written in 
terms of the cyclotron radius as 

 

  (4) 

 
Here,  and . Substitution of Eq. (4) into Eq. (1) and writing the field in terms of 

normalized parameters yields the normalized magnetic field due to a single current loop 
 

, 

, (5) 
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where the normalized coefficients , , , and   are 
 

 

 

, 

, 

.  (6) 

 

2.3. Field Due to an Array of Loops 

A Cartesian coordinate system is defined such that the origin lies at the center of the loop in the third row and 
third column as shown in Fig. 1b. The loops are numerically labelled by their position in the array, from left to right, 
top to bottom as shown in Fig. 1a. For example, row one contains loops 1-5, row two contains loops 6-10, row three 
contains loops 11-15, and so on. Therefore, the normalized magnetic field due to loop 13 is given by Eq. (5). To 
compute the field due to the entire array, it is convenient to first express Eq. (5) in Cartesian coordinates. Letting 

 in Eq. (5), the components of the magnetic field produced by loop 13 may be written as 
 

 

 

 (7) 

 
The field due to the ith current loop lying in the x-y plane and with center of mass coordinates ( , ) is 

then given by 
 

, 
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Fig. 2: Magnetic field lines in the x-z plane for one spatial period. 

, 

.  (8) 

 
The field created by the array of loops is given by the superposition of the fields of each individual loop: 

 

  (9) 

A plot of the magnetic field lines for one spatial period in the x-z plane is shown in Fig. 2. The black dots in Fig. 2 
represent the points where current loop 13 intersects the  plane. In the limit where the number of loops 
approaches infinity, or equivalently the array extends across the entire  plane, the magnetic field becomes 
spatially periodic in the  and  directions with spatial period . As shown in Fig. 3, the magnitude  of 
the magnetic field decreases rapidly over a few spatial periods from the  plane in the  direction. The 
parameters used to generate Figs. 2 and 3 are , , and . 

 
Fig. 3: The magnitude of the normalized magnetic field as a function of , evaluated at  along the  axis. 
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Fig. 4: Parametric plots in the x-z plane of the trajectories of six particles, two transmitted (red) and four reflected (two orange and two blue). 

2.4. Simulation 

A 3-D integration of each simulated particle’s trajectory is carried out, with some initial phase space 
coordinates sampled randomly as is common in Monte Carlo simulations. Each particle’s trajectory begins at 
normalized time . The initial coordinates for each particle  are considered to be equally likely to be 
located anywhere within a square of normalized side length  that is centered about the origin and has 
horizontal and vertical sides that are parallel with the  and  axes, respectively. The initial  coordinate of the 
particle is chosen sufficiently large such that the effect of the magnetic field is negligible, initially. The sampling 
expressions used for the initial Cartesian coordinates of each particle are 

 

, 

, 

.  (10) 

 
Here,  and  are random real numbers equally likely to have any value between −1 and 1.  The simulated 

particles are mono-energetic, each with normalized kinetic energy  and normalized speed . 
The beam of particles is considered to be incident normally on the array of loops, and the initial velocity for each 
particle is: 

 

.  (11) 

 
The normalized equations of motion are: 
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Fig. 5: The effect of varying the cyclotron radius for (a) positively charged particles and (b) negatively charged particles. 

, 

, 

. (12) 

The equations of motion are solved numerically to simulate single particle trajectories. If the particle passes through the 
 plane and has a positive velocity in the  direction, the particle is considered to be reflected by the array. If the 

particle passes through the  plane, it is considered to be transmitted through the array. In the case where the array 
spans the entire  plane, all particles would be either transmitted or reflected. However, for the case where only 25 
loops are present, it is possible for the particles to travel around the array. In the present work, particles reaching any o f the 

 or  planes prior to reaching the  or  planes are considered to be “lost.” Figure (4) 
shows the parametric plots, projected into the x-z plane, of the trajectories of six particles with initial coordinates along the 

 line in the  plane. The two red trajectories correspond to particles with initial coordinates , the 
two orange trajectories correspond to particles with initial coordinates , and the two blue trajectories 
correspond to particles with initial coordinates Parameter values used to generate Fig. (4) were 

, , and .  

A study was carried out to determine how effective the array was in reflecting both positively and negatively charged 
particles for various values of normalized cyclotron radius. Let , , and  denote the number of simulated particles, the 
average fraction of those particles that were reflected by the array, and the fraction of particles that are lost, respectively. 
Each simulation run (e.g., with a given set of parameter values for , , , and ) provides a single value for . 
Ten (10) runs are carried out for each set of parameter values and the average fraction  is recorded. Figures 5a and 5b 
show the dependence of the fraction of reflected particles as a function of cyclotron radius for positive and negative 
particles, respectively, when the parameter values , , and  are held constant. 
A fit of the classical trajectory Monte Carlo simulation results yields the expression: 

 

  (13) 

 

where  and . The grey circles in Figures 5a and 5b represent the data gathered from the 
simulation, and the solid black line is the graph of Eq. (13). Aside from  and , for 

 Eq. (13) predicts the fraction of reflected particles to within 9% of the simulated results for both signs of charge. 
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Fig. 6: Initial coordinates  of particles that were transmitted through the ASB for (a.) , (b.) , and (c.) 
.  

It is evident from Fig. 5 that the ASB is equally capable of reflecting particles of both signs of charge. In fact, 
the results for positively and negatively charged particles differ by no more than 11.7% at each data point. It should be 
noted that for certain values of , the fraction of lost particles was found to be as high as 9.2%. However, when 
they reached the or planes 8.67% had velocities in the positive  direction, while only 
0.53% had velocities in the negative  direction. The particles with positive velocities in the  direction may 
correspond to trajectories that would be reflected if the array did in fact cover the entire plane. Thus, the 
fraction of reflected particles may be slightly higher for certain values of  than is shown in Figs. 5a and 5b.  

In addition, the simulation was used to determine the location of weak points where particles are transmitted 
through the array. If a particle is transmitted, it’s initial coordinates, as well as the particle’s coordinates when it 
passes through the  plane are recorded. Each point in Figs. 6a-c represents the initial coordinates  of 
particles that were transmitted through the array. Alternatively, each of the points in Figs. 7a-c represents the 
coordinates  of these particles as they pass through the  plane. The black circles in figs. 6 and 7 
represent the locations of the current loops. To generate the results in Fig. 6 and 7, the parameter values 

, , and were held constant, while the values used for the normalized cyclotron radius were: 
a.) , b.) , and c.)  The number of particles that were transmitted through the ASB in 
Figs. 6 and 7 were: a.) 3, 666, b.) 19, 264, and c.) 33, 884. In Figs. 6a-c, all particles that had initial coordinates within a 
circle of normalized radius  were transmitted. 

Fig. 7: Coordinates of transmitted particles as they cross the  plane for (a.) , (b.) , and (c.) .  
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3.  Discussion and Concluding Remarks 

It should be noted that the apparatus envisioned would in fact be constructed using permanent disk magnets. As 
such, the constrained range of surface field strengths available in real magnets imposes limitations on the capability 
of the ASB to deflect high energy and heavy particles. To get an indication of these limitations, it is useful to write 
Eq. (13) in terms of un-normalized parameters. Taking the field strength  at the center of a current loop as a 
rough estimate of the surface field strength of a disk magnet, using Eq. (4), and noting that , Eq. 
(13) becomes 

   (14) 

For example, if we have 300 eV electrons incident on an array of disk magnets, all with surface field strengths 
 T and  cm, the model predicts that 93.7% of the beam would be reflected. However, if a beam of 300 

eV protons were incident on the same array only 1.5% would be reflected. This behaviour is easily seen qualitatively 
from Eq. (14). As the mass m or kinetic energy K increase, the denominator becomes larger, causing the predicted 
fraction of reflected particles to decrease. In current antihydrogen production experiments, the temperature of the 
positron and antiproton plasmas are typically less than 10 meV for both species; well within the range of energies 
the ASB can effectively reflect both species. 

The configuration presented in this work creates a spatially periodic magnetostatic field that is short in range, 
only affecting the motion of charged particles that are within a distance of a few spatial periods of the array. In 
addition, the array reflects charged particles of either sign equally well. However, even for small values of 
normalized cyclotron radius, or equivalently, large magnetic field strengths there is some transmission of particles 
through the ASB. The regions where particles penetrate through the array have been identified, and if electrostatic 
plugging is introduced in these regions, it may be possible to achieve full reflection of all incident particles. 
However, further work is required to determine this for certain. 

A classical trajectory Monte Carlo simulation has been used to determine the conditions under which the ASB 
deflects charged particles. A fit expression has been found for the fraction of particles that will be reflected by the 
ASB for a range of cyclotron radii. The fit can be used to predict the number of particles that will be reflected by the 
array of magnets forming the ASB.  
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