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The extension of the Majorana neutrino mass mechanism of the neutrinoless double-beta decay (0νββ) with the
inclusion of right-handed leptonic and hadronic currents is revisited. While only the exchange of light neutrinos
is assumed, the s1/2 and p1/2 states of emitted electrons as well as recoil corrections to the nucleon currents are
taken into account. Within the standard approximations the decay rate is factorized into a sum of products of
kinematical phase-space factors, nuclear matrix elements, and the fundamental parameters that characterize the
lepton number violation. Unlike in the previous treatments, the induced pseudoscalar term of hadron current is
included, resulting in additional nuclear matrix elements. An improved numerical computation of the phase-space
factors is presented, based on the exact Dirac wave functions of the s1/2 and p1/2 electrons with finite nuclear
size and electron screening taken into account. The dependence of values of these phase-space factors on the
different approximation schemes used in evaluation of electron wave functions is discussed. The upper limits for
effective neutrino mass and the parameters 〈λ〉 and 〈η〉 characterizing the right-handed current mechanism are
deduced from data on the 0νββ decay of 76Ge and 136Xe using nuclear matrix elements calculated within the
nuclear shell model and quasiparticle random phase approximation. The differential decay rates, i.e., the angular
correlations and the single electron energy distributions for various combinations of the total lepton number
violating parameters that can help to disentangle the possible mechanism, are described and discussed.
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I. INTRODUCTION

The neutrinoless double-beta (0νββ) decay is a process in
which an atomic nucleus with Z protons decays to another
one with two more protons and the same mass number A, by
emitting two electrons and nothing else:

(A,Z) → (A,Z + 2) + 2e−. (1)

Observing the 0νββ decay guarantees that neutrinos are
massive Majorana particles; this means that the neutrino is
identical to its own antiparticle [1]. 0νββ decay violates total
lepton number conservation and is forbidden in the standard
model.

When the light-neutrino exchange produced by left-handed
currents is the driving mechanism for 0νββ decay, the relation
between the effective Majorana neutrino mass and the inverse
half-life of the 0νββ decay can be written as [2]

[
T 0ν

1/2

]−1 = G0ν(Q,Z)g4
A|M0ν |2 |mββ |2

m2
e

, (2)

where G0ν(Q,Z), gA, and M0ν represent the phase-space
factor, the axial-vector coupling constant, and the nuclear
matrix element of the process, respectively. In that case the
ultimate goal of the search for 0νββ decay is the determination
of the effective Majorana neutrino mass,

mββ = U 2
e1m1 + U 2

e2m2 + U 2
e3m3. (3)

Here, Uei and mi (i = 1,2,3) are elements of the Pontecorvo-
Maki-Nakagawa-Sakata neutrino mixing matrix and masses
of neutrinos, respectively.

An improved calculation of G0ν in that case, taking into ac-
count the electron Dirac wave functions with finite nuclear size
and electron screening, was performed in Ref. [3]. The main
theoretical uncertainty is represented in the computed values of
the nuclear matrix elements. There is a factor of 2–3 difference
between the different methods of calculations of the M0ν .

The left-right symmetric theories [4,5] provide a natural
framework to understand the origin of neutrino Majorana
masses. In general one cannot predict the scale where the
left-right symmetry is realized, but it is natural to assume that
it is as low as ∼ a few TeV, which can affect the 0νββ decay
rate significantly.

In the left-right symmetric theories, in addition to the
left-handed V − A weak currents also leptonic and hadronic
right-handed V + A weak currents are present. In that case a
new mechanism of the 0νββ decay needs to be considered. In
the past the 0νββ decay rate in the presence of the right-handed
leptonic and hadronic currents was discussed in Refs. [6,7].
Recently, contributions to the 0νββ decay in TeV-scale left-
right symmetric models for type-I seesaw dominance were
revisited [8–11]. By making a qualitative analysis without
considering relevant phase-space factors and nuclear matrix
elements, it was found that WL-WR exchange (λ mechanism)
and WL-WR mixing (η mechanism) could give a dominant
contribution to the 0νββ-decay amplitude by assuming a wide
particle physics available parameter space including left-right
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neutrino mixing [10,11]. We note that the discovery of a
nonstandard 0νββ-decay mechanism such as a right-handed
current would rule out most models of baryogenesis at scales
above 40 TeV [12].

The goal of this paper is to revisit the 0νββ-decay
mechanism due to the right-handed currents by considering
an exact Dirac wave function of electrons and the higher
order terms of nucleon current. We note that in Ref. [6] the
effect of an induced pseudoscalar term of nucleon current
was neglected and phase space factors were expressed using
approximate electron wave functions for a uniform charge
distribution in a nucleus by keeping only the lowest terms in
the power expansion in r . In that context the subject of interest
is the comparison of the power expansion versus the exact
treatment and the finite nuclear size effects. In this work the
newly derived decay rate will be written in a compact form and
the corresponding nuclear matrix elements will be presented
by assuming the usual closure approximation for intermediate
nuclear states. The phase-space factors will be evaluated by
using the exact Dirac wave functions with finite nuclear
size and electron screening. The differential characteristics,
i.e., the angular correlations and the single-electron energy
distributions will be described and discussed, and the decay
rates and updated constraints on the lepton number violating
parameters for different combinations of the total lepton
number violating parameters will be recalculated. This will
make it possible to judge the importance of the λ and η
mechanism.

II. ELECTRON WAVE FUNCTIONS

An important ingredient in the calculation of the electron
energy spectrum is the radial electron wave function distorted
by the Coulomb field. We adopt the Dirac wave functions in a
central field,

�(ε,r) =
∑
κμ

(
gκ (ε,r)χκμ(r̂)

ifκ (ε,r)χ−κμ(r̂)

)
, (4)

given, e.g., by Rose [13]. Here, ε and r stand for energy
and position vector of the electron, respectively, r = |r| and
r̂ = r/r . The index κ takes positive and negative integer values
(κ = ±k, k = 1,2,3, . . . ). Total angular momentum is given as
jκ = |κ| − 1/2 while orbital angular momentum takes values

lκ =
{|κ| − 1 for κ < 0,

κ for κ > 0.
(5)

Radial wave functions gκ (ε,r) and fκ (ε,r) obey the radial
Dirac equations,

dgκ

dr
= −κ + 1

r
gκ + (ε − V (r) + me)fκ,

dfκ

dr
= −(ε − V (r) − me)gκ + κ − 1

r
fκ,

(6)

where V (r) is the central Coulomb potential. The natural units
� = c = 1 are used.

The electron wave function expressed in terms of spherical
waves is given by

�(ε,r) = �(s1/2)(ε,r) + �(p1/2)(ε,r) + · · · . (7)

Here, the superscript displays the orbital angular momentum
(lκ = 0,1,2, . . . ) in a spectroscopic notation (lκ = s,p,d, . . . )
and the total angular momentum jκ . The states of particular
interest in our calculations are

�(s1/2)(ε,r) =
(

g−1(ε,r)χs

f+1(ε,r)(σ · p̂)χs

)
,

(8)

�(p1/2)(ε,r) = i

(
g+1(ε,r)(σ · r̂)(σ · p̂)χs

−f−1(ε,r)(σ · r̂)χs

)
,

where p̂ = p/p and p is the electron momentum. The
asymptotic behavior of the radial wave functions for large
values of pr is given by

(
gκ (ε,r)

fκ (ε,r)

)

≈ 1

pr

⎛
⎝

√
ε+me

2ε
sin

(
pr − l π

2 + δk + αZf
ε
p

ln 2pr
)

√
ε−me

2ε
cos

(
pr − l π

2 + δk + αZf
ε
p

ln 2pr
)
⎞
⎠. (9)

Zf is the charge of the final system which generates the
potential V (r).

In what follows, different approximation schemes for the
calculation of radial wave functions g±1 and f±1 associated
with emitted electrons in the s1/2 and p1/2 wave states are
briefly presented.

The approximation scheme A. The relativistic electron wave
function in a uniform charge distribution in the nucleus is
considered. The lowest terms in the power expansion in r are
taken into account. The radial wave functions take the form

(
g−1(ε,r)

f+1(ε,r)

)
≈ √

F0(Zf ,ε)

⎛
⎝

√
ε+me

2ε√
ε−me

2ε

⎞
⎠,

(
g+1(ε,r)

f−1(ε,r)

)
≈ √

F0(Zf ,ε)

×
⎛
⎝

√
ε−me

2ε
[αZf /2 + (ε + me)r/3]

−
√

ε+me

2ε
[αZf /2 + (ε − me)r/3]

⎞
⎠.

(10)

Here, Fk−1 (for k = 1,2, . . . ) is given by

Fk−1 =
[

�(2k + 1)

�(k)�(1 + 2γk)

]2

(2pr)2(γk−k)eπy�(γk + iy) |2 ,

(11)

where

γk =
√

k2 − (αZf )2

y = αZf

ε

p
.

(12)

This approximation scheme was commonly used in the past
calculations of the phase-space integrals of double-beta decay
processes [6].

The approximation scheme B. The analytical solution of
the Dirac equation for the pointlike nucleus is considered [14].
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Radial wave functions then take the form

gκ (ε,r) = κ

k

1

pr

√
ε + me

2ε

|�(1 + γk + iy)|
�(1 + 2γk)

(2pr)γk eπy/2

× Im{ei(pr+ξ )
1F1(γk − iy,1 + 2γk, − 2ipr)},

fκ (ε,r) = κ

k

1

pr

√
ε − me

2ε

|�(1 + γk + iy)|
�(1 + 2γk)

(2pr)γk eπy/2

× Re{ei(pr+ξ )
1F1(γk − iy,1 + 2γk, − 2ipr)},

(13)

with

e−2iξ = γk − iy

κ − iyme/ε
. (14)

Here, 1F1(a,b,z) is the confluent hypergeometric function.
The approximation scheme C. The exact Dirac wave

functions with finite nuclear size, which is taken into account
by a uniform charge distribution in a sphere of nuclear
radius R, are assumed [3]. The numerical calculation can be
accomplished by the subroutine package RADIAL [15], where
the input central potential is given by

V (r) =
{

−αZf

2R

(
3 − (

r
R

)2)
for r � R,

−αZf

r
for r > R.

(15)

Here, R = r0A
1/3 with r0 = 1.2 fm. In the code the radial

Dirac equations are solved by using piecewise exact power
series expansion, which is summed up to a prescribed accuracy
so that truncation errors can be avoided completely.

The approximation scheme D. The exact Dirac wave
functions with finite nuclear size and electron screening are
used [3]. The effect of screening of atomic electrons is taken
into account by the Thomas-Fermi approximation. It uses the
solution of the Thomas-Fermi equation,

d2ϕ

dx2
= ϕ3/2

√
x

, (16)

with x = r/b, where

b = 1

2

(
3π

4

)2/3

a0Z
−1/3
f . (17)

The Thomas-Fermi function can be rewritten in terms of
an effective charge ϕ(x) = Zeff(x)/Zf . Therefore, boundary
conditions

ϕ(0) = 1, ϕ(∞) = 2

Zf

(18)

of Eq. (16) take into account the fact that the final atom is
a positive ion with electric charge +2. We adopt here the
Majorana method described in Ref. [16] in order to solve
Eq. (16). The input potential is then V (r) = ϕ(r)V0(r), where
V0(r) is defined in Eq. (15).

In Fig. 1 radial wave functions of an electron in the s1/2

wave state [g−1(ε) and f+1(ε)] and in the p1/2 wave state
[g+1(ε) and f−1(ε)] evaluated at r = R are plotted as a function
of the electron kinetic energy ε − me for the case of the
double-β decay of 150Nd. We see that wave functions A, which
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FIG. 1. (Color online) The radial wave functions of an electron
in the s1/2 wave state, g−1(ε) and f+1(ε) (upper panels), and in
the p1/2 wave state, g+1(ε) and f−1(ε) (lower panels), as function
of the electron kinetic energy ε − me. Results are presented for an
electron emitted in the double-β decay of 150Nd. In an evaluation of
radial wave functions (w.f.) four different approximation schemes are
considered [see Sec. (II) for details]: (A) the standard approximation
of Doi et al. [6]. (B) An analytical solution of Dirac equations
assuming a pointlike nucleus. (C) An exact solution of Dirac equations
for a uniform charge distribution in the nucleus, considered at the
nuclear surface. (D) The same as the preceding case but the electron
screening is taken into account [3].

correspond to leading finite-size Coulomb, agree qualitatively
well with wave functions of the other approaches in the case of
g−1(ε) and f−1(ε) but that there are significant differences for
g+1(ε) and f+1(ε). These differences are apparent especially
at lower energies. We notice also a rather good agreement
between results for wave functions of B and C in general. The
screening of atomic electrons affects mostly the p1/2 wave
functions, but is essentially negligible for the s1/2 states.

III. DECAY RATE FOR THE NEUTRINOLESS
DOUBLE-BETA DECAY

One of the most prominent new physics model that
incorporates the lepton number violation (LNV) and which
leads to potentially observable rates for the 0νββ decay is
the minimal left-right symmetric model (LRSM) [4,5] which
extends the standard model gauge symmetry to the group
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. The right-handed neutrinos
necessary appear here as a part of the SU(2)R doublets. The
lepton multiplets Li = (νi,li) are characterized by the quantum
numbers QLL

= (1/2,0,−1) and QLR
= (0,1/2,−1) under

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. The Higgs sector contains a
bidoublet φ and two triplets �L and �R with vacuum
expectation values (VEVs) vL and vR , respectively. The VEVs
fulfill the condition vLvR = v2. The VEV vR breaks SU(2)R ⊗
U(1)B−L to U(1)Y and generates masses for the right-handed
WR and ZR gauge bosons and the heavy neutrinos. The WL

and WR are in general not mass eigenstates and are related
to the mass eigenstates W1 and W2 with masses M1 and M2
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(M1 < M2) as(
W−

L

W−
R

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
W−

1

W−
2

)
. (19)

Then, the effective current-current interaction which can
trigger the 0νββ decay can be written as [6]

Hβ = Gβ√
2

[
j

ρ
LJ

†
Lρ + χj

ρ
LJ

†
Rρ + ηj

ρ
RJ

†
Lρ + λj

ρ
RJ

†
Rρ + H.c.

]
.

(20)

Here, Gβ = GF cos θC , where GF and θC are the Fermi con-
stant and Cabbibo angle, respectively. The coupling constants
λ, η, and χ are chosen to be real. We have

η 
 − tan ζ, χ = η, λ 
 (
MW1

/
MW2

)2
. (21)

The left- and right-handed leptonic currents are given by

j
ρ
L = ēγρ(1 − γ5)νeL, j

ρ
R = ēγρ(1 + γ5)νeR. (22)

The νeL and νeR are the weak eigenstate electron neutrinos,
which are expressed as superpositions of the light and heavy
mass eigenstate Majorana neutrinos νj and Nj , respectively.
The electron neutrinos eigenstates can be expressed as

νeL =
3∑

j=1

(UejνjL + Sej (NjR)C),

νeR =
3∑

j=1

(T ∗
ej (νjL)C + V ∗

ejNjR).

(23)

The (3 + 3) scenario is assumed. The 3 × 3 block matrices
in flavor space U,S,T ,V , generalizations of the Pontecorvo-
Maki-Nakagawa-Sakata matrix, constitute the 6 × 6 unitary
neutrino mixing matrix [17]

U =
(

U S

T V

)
, (24)

which diagonalizes the general 6 × 6 neutrino mass matrix in
the basis (νL,(NR)C)T :

M =
(

ML MD

MT
D MR

)
(25)

with Majorana and Dirac mass terms, which are proportional to
ML ≈ yMvL, MR ≈ yMvR , and MD ≈ yDv, where yM and yD

are the Yukawa couplings. The full parametrization of matrixU
includes 15 rotational angles and 10 Dirac and 5 Majorana CP
violating phases. It is possible to decomposeU as follows [17]:

U =
(

1 0

0 U0

)(
A R

S B

)(
V0 0

0 1

)
, (26)

where 0 and 1 are the 3 × 3 zero and identity matrices,
respectively. The parametrization of matrices A, B, R, and S
and the corresponding orthogonality relations are given in [17].
In the limit case A = 1, B = 1, R = 0, and S = 0 there would
be a separate mixing of heavy and light neutrinos, which would
participate only in left- and right-handed currents, respectively.
In that case only the neutrino mass mechanism of the 0νββ
decay would be allowed and exchange neutrino momentum

dependent mechanisms associated with the WL-WR exchange
and WL-WR mixing would be forbidden. If masses of heavy
neutrinos are above the TeV scale, the mixing angles respon-
sible for mixing of light and heavy neutrinos are small. By
neglecting the mixing between different generations of light
and heavy neutrinos, the A, B, R, and S matrices can be
approximated as follows:

A ≈ 1, B ≈ 1, R ≈ mD

mLNV
1, S ≈ − mD

mLNV
1. (27)

Here, mD represents the energy scale of charged leptons
and mLNV is the total lepton number violating scale, which
corresponds to masses of heavy neutrinos. For the sake
of simplicity the same mixing angle is assumed for each
generation of mixing of light and heavy neutrinos. We see
that U0 can be identified to a good approximation with the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and V0 is
its analog for the heavy neutrino sector. Since V0 is unknown,
it is common to assume that the structure of V0 is the same one
as U0.

Assuming the nonrelativistic impulse approximation, the
left and right hadronic currents J

ρ†
L and J

ρ†
R become [6]

J
ρ†
L (x) =

∑
n

τ+
n δ(x − rn)

[
(gV − gACn)gρ0

+ gρk

(
gAσ k

n − gV Dk
n − gP qk

n

�σn · qn

2mN

)]
,

J
ρ†
R (x) =

∑
n

τ+
n δ(x − rn)

[
(g′

V + g′
ACn)gρ0

+ gρk

(
−g′

Aσ k
n − g′

V Dk
n + g′

P qk
n

�σn · qn

2mN

)]
.

(28)

Here, qn = pn − p′
n is the momentum transfer between the

nucleons. The final proton (initial neutron) possesses energy
E′

n (En) and momentum p′
n (pn). �σn, τ+

n , and rn are the Pauli
matrix, the isospin raising operator, and the position operator,
respectively. These operators act on the nth nucleon.

The nucleon recoil operators Cn and Dn are given by

Cn = �σ · (pn + p′
n)

2mN

− gP

gA

(En − E′
n)

�σ · qn

2mN

,

(29)

Dn = (pn + p′
n)

2mN

− i

(
1 + gM

gV

) �σ × qn

2mN

.

Here, mN is the nucleon mass. qV ≡ qV (q2), qM ≡ qM (q2),
qA ≡ qA(q2), and qP ≡ qP (q2) are, respectively, the vector,
weak-magnetism, axial-vector, and induced pseudoscalar form
factors in the case of left-handed hadronic currents. As the
strong and electromagnetic interactions conserve parity there
are relations among form factors entering the left-handed and
right-handed hadronic currents [6]:

gA

gV

= g′
A

g′
V

,
gM

gV

= g′
M

g′
V

,
gP

gV

= g′
P

g′
V

. (30)
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We note that the induced pseudoscalar term of the space
component of hadronic currents was not taken into account
in derivation of the 0νββ-decay rate presented in Ref. [6].
This simplification is avoided here.

Due to helicity matching of the propagating neutrino the
decay amplitude can be divided into two parts:

(a) If both vertices are V − A or V + A, the amplitude of
the process is proportional to the neutrino mass mj . We
shall denote the corresponding parts of the 0νββ-decay
amplitude L-L and R-R terms, respectively.

(b) If one vertex is V − A and the other is V + A, the
four-momentum of propagating neutrino qμ = (ω,q)
contributes. The corresponding part of the amplitude,
which is denoted as L-R, is further separated into two
terms, the ω term and the q term.

In the case of L-L and R-R terms the dominant contribution
is associated with the emission of electrons in the s1/2-wave
state [18]. However, the q term changes the parity and therefore
it requires that one of the final electrons be in the s1/2 wave
while the other must be in the p1/2 wave, or both electrons
must be in the s1/2 wave and the nucleon recoil operator is
taken into account. Nevertheless, the q term is not negligible
since the ω term is suppressed by a factor ε12/q ≈ 1/40 [6],
that makes the q term comparable or even larger in comparison
with the ω term.

The standard approximations of Ref. [6] are adopted:

(i) Only mechanisms with the exchange of light neu-
trinos are considered and contributions from heavier
neutrinos are neglected. Recently, it was concluded
in Refs. [10,11] that mechanisms with the exchange
of light neutrinos could give dominant contributions
to the 0νββ amplitude in a wide range of the LRSM
parameter space.

(ii) Closure approximation. Within this approximation
energies of intermediate nuclear states En − (Ei +
Ef )/2 are replaced by an average of Ēn − (Ei +
Ef )/2 ∼ 10 MeV and the sum over intermediate
states is taken by closure,

∑
n |n〉〈n| = 1.

(iii) The R-R-part of the amplitude, that is multiplied
by factor |λ2 ∑

j mjT
∗2
ej |, becomes negligible in

comparison with mββ . Thus it is neglected.
(iv) The terms proportional to the square of the nucleon

recoil operators are also neglected.
(v) For the L-L part of the amplitude only electrons in

the s1/2 wave state are included. The inclusion of the
p1/2 electrons leads only to negligible contribution
to the 0νββ standard decay rate [18].

(vi) In the case of the L-R term, two-nucleon potentials
associated with the spatial q and time ω components
of neutrino exchange potentials are simplified as
follows:

Hl
q(x) =

∫
dq
2π2

(
ql

q + �− ε12
+ ql

q + �+ ε12

)
eiq·x

≈
∫

dq
π2q

ql

q + �
eiq·x,

Hω(x) =
∫

dq
2π2

(
1

q + �− ε12
− 1

q + �+ ε12

)
eiq·x

≈ ε12

∫
dq
π2

1

(q + �)2
eiq·x, (31)

where � = Ēn − (Ei + Ef )/2 and ε12 = ε1 − ε2.
Here ε1 and ε2 represent the energies of the final
electrons. Furthermore, contribution of the p1/2-
wave electrons and terms in which the nucleon recoil
is multiplied by the small ω term are also neglected.

(vii) Since |χUejg
′
V /gV | � |Uej |, the coupling constant

χ in Hamiltonian (20) is neglected.
(viii) A factorization of phase-space factors and nuclear

matrix elements is achieved by the approximation in
which electron wave functions g±1(ε,r), f±1(ε,r) are
replaced by their values at the nuclear radius R. The
notation

g±1(ε) ≡ g±1(ε,R), f±1(ε) ≡ f±1(ε,R) (32)

is used.

Within the above approximations the 0νββ-decay half-life
can be written as

[
T 0ν

1/2

]−1 = �0ν

ln 2

= g4
A|MGT |2

{
Cmm

( |mββ |
me

)2

+ Cmλ

|mββ |
me

〈λ〉 cos ψ1

+Cmη

|mββ |
me

〈η〉 cos ψ2 + Cλλ〈λ〉2 + Cηη〈η〉2

+Cλη〈λ〉〈η〉 cos (ψ1 − ψ2)

}
. (33)

The effective lepton number violating parameters associated
with right-handed currents and their relative phases are given
by

〈λ〉 = λ

∣∣∣∣∣∣
3∑

j=1

UejT
∗
ej (g′

V /gV )

∣∣∣∣∣∣,

〈η〉 = η

∣∣∣∣∣∣
3∑

j=1

UejT
∗
ej

∣∣∣∣∣∣,

ψ1 = arg

⎡
⎣

⎛
⎝ 3∑

j=1

mjU
2
ej

⎞
⎠

⎛
⎝ 3∑

j=1

UejT
∗
ej (g′

V /gV )

⎞
⎠

∗⎤
⎦,

ψ2 = arg

⎡
⎣

⎛
⎝ 3∑

j=1

mjU
2
ej

⎞
⎠

⎛
⎝ 3∑

j=1

UejT
∗
ej

⎞
⎠

∗⎤
⎦.

(34)

With help of (23) and by assuming (27), U0 
 V0 and
(g′

V /gV ) 
 1 we get

〈λ〉 ≈ (
MW1/MW2

)2 mD

mLNV
|ξ |,

〈η〉 ≈ − tan ζ
mD

mLNV
|ξ |,

(35)
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with

|ξ | = ∣∣c23c
2
12c13s

2
13 − c3

12c
3
13 − c13c23c

2
12s

2
13

− c12c13
(
c2

13s
2
12 + s2

13

)∣∣ 
 0.82 (36)

Here, cij ≡ cos(θij ) and sij ≡ sin(θij ). ξ was evaluated by
assuming the best fit values for mixing angles θ12, θ13, and
θ23 entering the PMNS matrix [19]. The experimental upper
bound on the mixing angle of left and right vector bosons is
ζ < 0.013, and if the CP violating phase in the mixing matrix
for right-handed quarks is small one gets ζ < 0.0025. The
flavor and CP violating processes of kaons and B mesons
make it possible to deduce the lower bound on the mass of
the heavy vector boson MW2 > 2.9 TeV [11]. In the LRSM
there could be additional contributions to 0νββ decay due
to the double charged Higgs triplet. However, as pointed in
Ref. [11], in the considered case of type-I seesaw dominance,
these contributions can be neglected.

The coefficients CI (I = mm, mλ, mη, λλ, ηη, and λη)
are expressed as combinations of nuclear matrix elements and
phase-space factors:

Cmm = (1 − χF + χT )2G01,

Cmλ = −(1 − χF + χT )[χ2−G03 − χ1+G04],

Cmη = (1 − χF + χT )[χ2+G03 − χ1−G04

−χP G05 + χRG06],

Cλλ = χ2
2−G02 + 1

9χ2
1+G011 − 2

9χ1+χ2−G010, (37)

Cηη = χ2
2+G02 + 1

9χ2
1−G011 − 2

9χ1−χ2+G010 + χ2
P G08

−χP χRG07 + χ2
RG09,

Cλη = −2
[
χ2−χ2+G02 − 1

9 (χ1+χ2+ + χ2−χ1−)G010

+ 1
9χ1+χ1−G011

]
.

The explicit form of nuclear matrix elements MGT and their
ratios χI are presented in Sec. III B. The integrated kinematical
factors are defined as

G0k = G4
βm2

e

64π5 ln 2R2

∫
δ(ε1 + ε2 + Mf − Mi)

× [h0k(ε1,ε2,R) cos θ + g0k(ε1,ε2,R)]

×p1p2ε1ε2dε1dε2d(cos θ )

=
∫ 1

−1

(
Gθ

0k

ln 2
cos θ + G0k

2

)
d(cos θ ), (38)

where k = 1,2, . . . ,11. p1 and p2 are momenta of electrons
and θ is the angle between emitted electrons. The functions
h0k(ε1,ε2,R) and g0k(ε1,ε2,R) are defined in Sec. III A. These
definitions are independent of the weak axial-vector coupling
constant gA. The quantities G0k are given in units of inverse
years. We note that if the standard wave functions of electron
(w.f. A) are assumed, G010 = G03 and G011 = G04. If in
addition contributions from the induced pseudoscalar term
of nucleon current are neglected, the decay rate in Eq. (33)
reduces to that given in Ref. [6]. Quantity Gθ

0k is relevant for
the angular correlation between the two electrons. We note
that Gθ

03 = Gθ
06 = 0.

A. Components due to electron wave functions
in the phase-space factors

The s1/2 and p1/2 electron wave functions at the nuclear
surface associated with emission of both electrons enter into
the phase-space factors through the functions presented below.

For phase-space factors Gθ
0k related with the angular

distribution of emitted electrons the quantities h0k(ε1,ε2,R)
are

h01 = −4Css(ε1)Css(ε2),

h02 = 2ε2
12

m2
e

Css(ε1)Css(ε2),

h03 = 0,

h04 = − 2

3meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h05 = 4

meR

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) + Cg
sp(ε1)Css(ε2)

]
,

h06 = 0, (39)

h07 = −16

(meR)2

[
Cf

sp(ε1)Css(ε2) + Cf
sp(ε2)Css(ε1) − Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h08 = −8

(meR)2

[
Cf

sp(ε1)Cg
sp(ε2) + Cf

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
,

h09 = 32

(meR)2
Css(ε1)Css(ε2),

h010 = −9

2
h̃010 − h02,

h011 = 9h̃011 + 1

9
h02 + h̃010,
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with

h̃010 = 2ε12

3m2
eR

[
Cf

sp(ε1)Css(ε2) − Cf
sp(ε2)Css(ε1) + Cg

sp(ε2)Css(ε1) − Cg
sp(ε1)Css(ε2)

]
,

h̃011 = −2

(3meR)2

[
Cf

sp(ε1)Cf
sp(ε2) + Cg

sp(ε2)Cg
sp(ε1) + Css(ε1)Cpp(ε2) + Css(ε2)Cpp(ε1)

]
.

(40)

In addition, the components g0k(ε1,ε2,R) of the phase-space factors (38) are

g01 = g11 = C+
ss(ε1)C+

ss(ε2),

g02 = ε2
12

2m2
e

[C+
ss(ε1)C+

ss(ε2) − C−
ss(ε1)C−

ss(ε2)],

g03 = ε12

me

[C+
ss(ε1)C−

ss(ε2) − C+
ss(ε2)C−

ss(ε1)],

g04 = 1

3meR
[−C−

ss(ε1)C−
sp(ε2) − C−

ss(ε2)C−
sp(ε1) + C+

ss(ε1)C+
sp(ε2) + C+

ss(ε2)C+
sp(ε1)] − g03/9,

g05 = −2

meR
[C−

ss(ε1)C−
sp(ε2) + C−

ss(ε2)C−
sp(ε1) + C+

ss(ε1)C+
sp(ε2) + C+

ss(ε2)C+
sp(ε1)],

g06 = 4

meR
[C+

ss(ε1)C−
ss(ε2) + C+

ss(ε2)C−
ss(ε1)], (41)

g07 = −8

(meR)2
[C+

ss(ε1)C−
sp(ε2) + C+

ss(ε2)C−
sp(ε1) + C−

ss(ε1)C+
sp(ε2) + C−

ss(ε2)C+
sp(ε1)],

g08 = 2

(meR)2
[−C−

pp(ε1)C−
ss(ε2) − C−

pp(ε2)C−
ss(ε1) + C+

pp(ε1)C+
ss(ε2) + C+

pp(ε2)C+
ss(ε1) + 2C−

sp(ε1)C−
sp(ε2) + 2C+

sp(ε1)C+
sp(ε2)],

g09 = 8

(meR)2
[C+

ss(ε1)C+
ss(ε2) + C−

ss(ε1)C−
ss(ε2)],

g010 = −9

2
g̃010 − g02,

g011 = 9g̃011 + 1

9
g02 + g̃010,

with

g̃010 = ε12

3m2
eR

[−C+
ss(ε1)C−

sp(ε2) + C+
ss(ε2)C−

sp(ε1) + C−
ss(ε1)C+

sp(ε2) − C−
ss(ε2)C+

sp(ε1)],

g̃011 = 1

18m2
eR

2
[C−

pp(ε1)C−
ss(ε2) + C−

pp(ε2)C−
ss(ε1) + C+

pp(ε1)C+
ss(ε2) + C+

pp(ε2)C+
ss(ε1) − 2C−

sp(ε1)C−
sp(ε2) + 2C+

sp(ε1)C+
sp(ε2)].

(42)

Here, C are combinations of radial components of s1/2 and p1/2 wave functions,

Css(ε) = g−1(ε)f+1(ε), Cpp(ε1) = g1(ε)f−1(ε), Cf
sp(ε) = f−1(ε)f+1(ε), Cg

sp(ε) = g−1(ε)g+1(ε),
(43)

C±
ss(ε) = g2

−1(ε) ± f 2
+1(ε), C±

pp(ε) = g2
+1(ε) ± f 2

−1(ε), C±
sp(ε) = g−1(ε)f−1(ε) ± g+1(ε)f+1(ε).

B. Nuclear matrix elements entering the decay rate

The expression for the 0νββ-decay half-life in Eq. (33) contains matrix element ratios χI and their linear combinations χ1±
and χ2±. The quantities χI are defined as

χI = MI/MGT , (44)

where I = F , T , ωF , ωGT , ωT , qF , qGT , qT , R, and P and MGT is the dominant Gamow-Teller matrix element associated
with the mechanism due to the left-handed currents. The combinations χ1± and χ2± are given by

χ1± = χqGT − 6χqT ± 3χqF , χ2± = χGT ω + χT ω ± χFω − 1
9χ1∓. (45)

055502-7



DUŠAN ŠTEFÁNIK et al. PHYSICAL REVIEW C 92, 055502 (2015)

The nuclear matrix elements MI depend on the exchange potentials hI (r) through

MF,GT,T =
∑
rs

〈Af ‖hF,GT,T (r−)OF,GT,T ‖Ai〉,

MωF,ωGT,ωT =
∑
rs

〈Af ‖hωF,ωGT,ωT (r−)OF,GT,T ‖Ai〉,

MP =
∑
rs

i〈Af ‖hP (r−)τ+
r τ+

s

(r− × r+)

R2
· �σr‖Ai〉,

MqF,qGT,qT =
∑
rs

〈Af ‖hqF,qGT,qT (r−)OF,GT,T ‖Ai〉,

MR =
∑
rs

〈Af ‖[hRG(r−)OGT + hRT (r−)OT ]‖Ai〉,

where OF,GT,T are the familiar operators 1,�σ1 · �σ2 and 3(�σ1 · r̂12)(�σ2 · r̂12).
The two-nucleon exchange potentials hI (r) with F , GT , T , qF , qGT , qT , RG, RT , and P can be written as

hI (r) = 2R

π

∫
fI (q,r)

q dq

q + Ēn − (Ei + Ef )/2
, (46)

where

fGT = j0(q,r)

g2
A

(
g2

A(q2) − gA(q2)gP (q2)

mN

q2

3
+ g2

P (q2)

4m2
N

q4

3

)
,

fF = g2
V (q2)

g2
A

j0(qr),

fT = j2(q,r)

g2
A

(
gA(q2)gP (q2)

mN

q2

3
− g2

P (q2)

4m2
N

q4

3

)
,

fqF = r
g2

V (q2)

g2
A

j1(qr)q,

fqGT =
(

g2
A(q2)

g2
A

q + 3
g2

P (q2)

g2
A

q5

4m2
N

+ gA(q2)gP (q2)

g2
A

q3

mN

)
rj1(qr),

fqT = r

3

[(
g2

A(q2)

g2
A

q − gP (q2)gA(q2)

2g2
A

q3

mN

)
j1(qr) − 9

g2
P (q2)

2g2
A

q5

20m2
N

[2j1(qr)/3 − j3(qr)]

]
,

fRG = −R

3mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j0(qr)q2,

fRT = −R

6mN

(
1 + gM (q2)

gV (q2)

)
gA(q2)gV (q2)

g2
A

j2(qr)q2,

fP = R2

r

gV (q2)gA(q2)

g2
A

j1(qr)q.

(47)

The two-nucleon exchange potentials hI (r) with I = ωF ,
ωGT , and ωT take the form

hI (r) = 4R

π

∫
fI (q,r)

q2dq

[q + Ēn − (Ei + Ef )/2]2
, (48)

where

fωF = fF , fωGT = fGT , fωT = fT . (49)

Here, r+ = (rr + rs)/2, r− = (rr − rs). rr,s is the coordinate
of the decaying nucleon and ji(qr) (i = 1,2,3) are the
spherical Bessel functions. It is assumed that pr + p′

r 
 0,
Er − E′

r 
 0, and pr − p′
r 
 q, where q is the momentum

exchange. The form factors gV (q2), gA(q2), gM (q2), and
gV (q2) are defined in Ref. [20] and gA = 1.269.

If right-handed currents are switched off, all terms in
Eq. (33) except that proportional to C1 vanish. The connection
with the standard 0νββ-decay formula (33) is then G01 ≡ G0ν

and MGT (1 − χF + χT ) ≡ M0ν .
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TABLE I. Phase-space factors G0k (k=1, . . ., 11) in units yr−1 for the 0νββ decay of 76Ge, 130Te, and 150Nd. Calculation was performed
by assuming different approximations for the radial wave functions g±1 and f±1 of an electron: (A) The standard approximation of Doi et al. [6].
(B) An analytical solution of Dirac equations for a pointlike nucleus is assumed. (C) An exact solution of Dirac equations for a uniform charge
distribution in nucleus is considered. (D) The same as the preceding case but the electron screening is taken into account [3].

w.f. 76Ge 130Te 150Nd

A B C D A B C D A B C D

1014G01 0.261 0.244 0.240 0.237 1.807 1.535 1.453 1.425 8.827 6.986 6.432 6.316
1014G02 0.428 0.404 0.397 0.391 4.683 4.064 3.851 3.761 40.190 32.401 29.869 29.187
1015G03 1.478 1.340 1.316 1.305 12.237 9.566 9.065 8.967 70.032 49.465 45.593 45.130
1015G04 0.501 0.489 0.477 0.470 3.625 3.315 3.086 3.021 18.343 16.000 14.348 14.066
1013G05 0.791 0.727 0.572 0.566 6.390 5.185 3.842 3.790 28.537 21.183 15.061 14.873
1012G06 0.605 0.547 0.536 0.531 3.091 2.398 2.258 2.227 11.922 8.323 7.591 7.497
1010G07 0.365 0.345 0.274 0.270 2.713 2.383 1.788 1.755 13.625 11.362 8.233 8.085
1011G08 0.245 0.236 0.151 0.149 2.877 2.653 1.579 1.549 16.833 14.996 8.564 8.405
1010G09 1.360 1.263 1.238 1.223 6.398 5.354 5.063 4.972 27.582 21.530 19.799 19.454
1015G010 1.478 1.531 1.423 1.410 12.237 14.602 11.616 11.455 70.032 105.415 72.249 71.154
1015G011 0.501 0.500 0.484 0.476 3.625 3.564 3.220 3.148 18.343 18.334 15.376 15.055

IV. PHASE-SPACE FACTORS WITH
IMPROVED ACCURACY

In Sec. II different ways of treating the radial wave functions
g±1(ε,r) and f±1(ε,r) associated with emitted electrons in the
s1/2 and p1/2 wave states were presented. The derivation of the
0νββ-decay rate was accomplished by considering electron
wave functions for the pointlike nucleus (wave function B)
or an extended one (wave functions A, C, and D); that
allowed us to separate phase-space factors and nuclear matrix
elements. The accuracy of the calculation of phase-space
factors will be discussed next and the improved phase-space
factors associated with mechanisms due to right-handed
currents obtained using screened exact finite-size Coulomb
wave functions of emitted electrons (wave functions D) will
be presented.

1 2 3 4 5 6 7 8 9 10 11
k

0

2

4

6

8

10

12

14

16

18

10
p  G

0k
 [y

r-1
]

w.f. A
w.f. D

FIG. 2. (Color online) The phase factors G0k (k = 1, . . . ,11) in
units of yr−1 for the 0νββ decay of 150Nd. Results are pre-
sented for approximate electron wave functions (type A [6]) and
exact Dirac wave functions with finite nuclear size and electron
screening (type D [3]). The exponents p for k = 1, . . . ,11 are
14,14,15,15,13,12,10,11,10,15,15, respectively.

A numerical computation of all eleven phase-space factors
entering the 0νββ-decay rate was performed by using the
previously described four types of wave functions (A, B, C, and
D) for a sample of three isotopes ( 76Ge, 130Te, and 150Nd).
Results are presented in Table I. We see that by using the
standard treatment of electron wave functions, corresponding
to leading finite-size Coulomb corrections (wave functions
A), a significant difference with the results of the other three
approaches appears, especially for nuclei with large nuclear
charge Z. Surprisingly, results obtained with wave functions B,
corresponding to an analytical solution of Dirac equations for
a pointlike nucleus, better agree with results corresponding to
wave functions C and D (exact solution of Dirac equations for
a uniform nuclear charge distribution with the radius R) than
those obtained by the standard treatment of wave functions
(wave functions A). This indicates that the exact treatment of
the Coulomb field plays a more important role than the position
of the decaying nucleon in the nucleus. From the Table I it is

0 2 4 6 8 10 12
r1,2 [fm]

0

0.1

0.2

0.3

0.4

D
(r

1,
2) [

fm
-1

]

76Ge
136Xe

FIG. 3. (Color online) The normalized r1 (r2) dependence of M0ν

for 76Ge and 136Xe. r1 and r2 are absolute values of a position vector
of the β-decaying nucleon in a nucleus.
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TABLE II. The phase-space factor G01 in units yr−1 for the 0νββ

decay of 76Ge, 130Te, and 136Xe. Results are presented for exact
Dirac wave functions with finite nuclear size and electron screening at
nuclear radius R (exact, approximation scheme D) and those averaged
over the distribution deduced from the analysis of the dominant
nuclear matrix element [exact and averaged; see Eqs. (50)].

1014G01

76Ge 130Te 136Xe

Exact 0.23681 1.42547 1.46187
Exact and averaged 0.23987 1.47396 1.52851

apparent that the effect of the screening of atomic electrons
on the wave functions of emitted electrons does not play an
important role.

The phase-factors differ among themselves significantly in
magnitude. This fact is manifested in Fig. 2. One can see that
phase-factors obtained with standard wave functions (w.f. A)
are always larger than those with phase factors calculated with
the more advanced wave functions. Exact treatment reduces
the value of all studied phase-space factors.

The phase-space factors [see Eq. (38)] contain products of
g±1(ε) and f±1(ε), which were evaluated at r = R from radial
wave functions g±1(ε,r) and f±1(ε,r) [see Eq. (32)]. Thus, it
is assumed that the β decay of both nucleons happens at the
nuclear surface. This procedure can be generalized with the
help of the normalized-to-unity distribution function D(r1) as
follows:

g±1(ε,R) =
∫ ∞

0
g±1(ε,r1)D(r1)dr1,

(50)

f±1(ε,R) =
∫ ∞

0
f±1(ε,r1)D(r1)dr1,

where in this particular case D(r1) = δ(r1 − R).
In Fig. 3 the distribution function D(r1) [or equivalently

D(r2)] is shown corresponding to the nuclear matrix element
M0ν (associated with the mββ mechanism) of the 0νββ decay

of 76Ge and 136Xe and calculated within the quasiparticle
random phase approximation with restoration of isospin
symmetry [21]. We see that β decay of both nucleons happens
mostly in the vicinity of the nuclear surface. In Table II the
phase-space factor G01 calculated with the help of D(r1) =
δ(r1 − R) and D(r1) deduced from calculated nuclear matrix
elements of 76Ge, 130Te, and 136Xe are compared. We see that
the corresponding effect is very small for 76Ge and is only
about 4–5% in the cases of 130Te and 136Xe.

The improved phase-space factors G0j (j = 1, . . . ,11) in
units yr−1 associated with left- and right-handed mechanisms
of the 0νββ decay for nuclei of experimental interest are
presented in Table III. They were obtained using screened exact
finite-size Coulomb wave functions for s1/2 and p1/2 electron
states (wave functions D). In Table IV the phase-space factors
Gθ

0j associated with angular distribution of emitted electrons
are presented.

V. CONSTRAINTS ON THE EFFECTIVE TOTAL
LEPTON-NUMBER-VIOLATING PARAMETERS

Experimental 0νββ-decay half-life limits may be used, in
combination with the formula (33), to constrain the effective
Majorana neutrino mass mββ and the effective coupling
constants 〈λ〉 and 〈η〉 of the right-handed currents. This can be
done provided the values of phase-space factors and nuclear
matrix elements are available. We use the quasiparticle random
phase approximation (QRPA) [22] and interacting shell model
(ISM) [23] matrix elements for such analysis. Their values
are presented in Table V. In the case of ISM the magnitudes
of matrix elements MGT calculated in Ref. [24] are assumed.
We note that these matrix elements were evaluated when the
contribution from the induced pseudoscalar term of hadron
current was not taken into account. In the analysis below the
case of CP conservation (ψ1 = ψ2 = 0) is assumed.

Different contributions to the 0νββ-decay rate (33) are
associated with different products of effective lepton number
violating parameters mββ , 〈λ〉, and 〈η〉, whose values are

TABLE III. Phase-space factors G0j (j = 1, . . . ,11) in units yr−1 obtained using screened exact finite-size Coulomb wave functions for
s1/2 and p1/2 electron states (wave functions D). The Q values were taken from experiment when available, or from tables of recommended
value [3]. G01 is associated with the mechanism generated just by mββ . In the case of dominance of the 〈λ〉 (〈η〉) mechanism the decay rate
includes phase factors G02, G010, and G011 (G02, G07, G08, G09, G010, and G011). The remaining phase factors are due to interference of these
mechanisms [see Eq. (38)].

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

Qββ (MeV) 4.27226 2.03904 2.99512 3.35037 3.03440 2.01785 2.8135 2.28697 2.52697 2.45783 3.37138
1014G01 2.483 0.237 1.018 2.062 1.595 0.483 1.673 0.906 1.425 1.462 6.316
1014G02 16.229 0.391 3.529 8.959 5.787 0.814 5.349 1.967 3.761 3.679 29.187
1015G03 18.907 1.305 6.913 14.777 10.974 2.672 11.128 5.403 8.967 9.047 45.130
1015G04 5.327 0.470 2.141 4.429 3.400 0.978 3.569 1.886 3.021 3.099 14.066
1013G05 3.007 0.566 2.004 4.120 3.484 1.400 4.060 2.517 3.790 4.015 14.873
1012G06 3.984 0.531 1.733 3.043 2.478 0.934 2.563 1.543 2.227 2.275 7.497
1010G07 2.682 0.270 1.163 2.459 1.927 0.599 2.062 1.113 1.755 1.812 8.085
1011G08 1.109 0.149 0.708 1.755 1.420 0.462 1.703 0.939 1.549 1.657 8.405
1010G09 16.246 1.223 4.779 8.619 6.540 1.939 6.243 3.301 4.972 4.956 19.454
1014G010 2.116 0.141 0.801 1.855 1.359 0.309 1.418 0.660 1.146 1.165 7.115
1015G011 5.376 0.476 2.183 4.557 3.502 1.010 3.704 1.955 3.148 3.238 15.055
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TABLE IV. Phase-space factors Gθ
0j associated with angular distribution of emitted electrons [see Eq. (38)] in units yr−1 obtained using

screened exact finite-size Coulomb wave functions for s1/2 and p1/2 electron states (wave functions D). The Q values of Table III are assumed.

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd

−1015Gθ
01 8.010 0.679 3.141 6.484 4.951 1.397 5.153 2.699 4.328 4.426 20.101

1014Gθ
02 5.144 0.113 1.075 2.769 1.770 0.239 1.629 0.587 1.137 1.111 9.138

−1015Gθ
04 1.786 0.152 0.703 1.456 1.112 0.314 1.161 0.608 0.977 1.000 4.566

1015Gθ
05 10.714 0.910 4.219 8.734 6.674 1.884 6.965 3.650 5.862 6.002 27.397

1011Gθ
07 8.458 0.711 3.422 7.431 5.706 1.589 6.026 3.089 5.016 5.155 24.824

1012Gθ
08 3.553 0.402 2.121 5.383 4.271 1.251 5.054 2.651 4.498 4.787 26.100

1010Gθ
09 5.024 0.313 1.379 2.562 1.904 0.504 1.795 0.899 1.397 1.387 5.899

1015Gθ
010 0.695 0.028 0.317 1.118 0.764 0.114 0.884 0.334 0.706 0.741 7.816

−1015Gθ
011 1.790 0.152 0.707 1.466 1.120 0.317 1.172 0.615 0.988 1.012 4.594

unknown. The importance of these contributions depends also
on the value coefficients CI (I = mm, mλ, mη, λλ, ηη, and
λη, which can be calculated. The quantity is a superposition
of contributions C0k

I associated with phase-spase factors G0k

(k = 1, . . . ,11). In Fig. 4 we show ratios C0k
I /CI for the

0νββ decay 76Ge and 136Xe and both sets of nuclear matrix
elements. We note that coefficients Cmm, Cλλ, Cηη, and Cmη are
dominated by a single contribution associated with a different
phase factor. In the case of Cmλ and Cλη there is a competition
of mostly two contributions.

Using these nuclear matrix elements (Table V) and the
phase-space factors calculated here (see Table III) we can
deduce from the experimental data T 0ν

1/2 � 3.01025 yr for 76Ge

decay [25] and T 0ν
1/2 � 3.41025 yr for 136Xe decay [26] (we use

here the combined limit from the EXO and KamLAND-Zen
experiments) the constraints on the effective right-handed
current couplings 〈λ〉, 〈η〉 and the effective Majorana neutrino
mass mββ listed in Table VI. The constraints in Table VI
are of a similar magnitude as those in Table I of Ref. [11].
However, they are based now on the exact treatment of the
phase-space factors as well as on the more complete account
of nuclear matrix elements. Figure 5 shows the allowed
regions for mββ and 〈λ〉 (〈η〉) for 〈η〉 = 0 (〈λ〉 = 0). Results
are presented for the two sets of nuclear matrix elements
(ISM [23,24] and QRPA [22]) and the standard (w.f. A) and
improved (w.f. D) description of electron wave functions.

TABLE V. Nuclear matrix elements and their ratios. The quasi-
particle random phase approximation (QRPA) and interacting shell
model (ISM) matrix elements are from [22,23], respectively. In the
case of ISM matrix elements MGT calculated in Ref. [24] is used.

76Ge 136Xe

ISM QRPA ISM QRPA

MGT 2.350 3.014 1.770 1.120
χF −0.106 −0.389 −0.151 −0.412
χ1+ 0.686 0.811 0.782 1.969
χ1− 1.340 2.917 1.784 4.052
χ2+ 0.633 0.302 0.556 0.229
χ2− 0.912 1.216 0.965 1.195
χR 0.684 1.192 0.955 1.958
χP −0.544 −0.176 0.256 −0.321

Note that limits on lepton number violating parameters are
softened a little when other lepton number violating parameters
have nonvanishing values at the same time in comparison
with the case when only a single parameter is nonzero. By
assuming ζ = 0.013 and 0.0025 mentioned earlier and the
current limit 〈η〉 � 2.9810−9 ( 136Xe, ISM, w.f. D) we end
up with mD/mLNV = 2.810−7 and 1.510−6, respectively. For
MW2 = 2.9 TeV and 〈λ〉 � 3.3410−7 ( 136Xe, ISM, w.f. D)
we get mD/mLNV = 5.010−6. Thus, from the more stringent
limits on 〈η〉 we obtain mLNV/TeV = 0.3–2 mD/MeV, in
agreement with the assumption that the basic scale of LRSM is
O(TeV). It is therefore obvious that already the present limits
of 0νββ-decay half-lives can be used to constrain meaningfully
the allowed parameter space of LRSM, and that the mechanism
associated with right-handed currents can compete with the
one based on mββ that is so often used.
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FIG. 4. (Color online) The decomposition of coefficients CI

[I = mm, mλ, mη, λλ, ηη, and λη; see Eqs. (33) and (37)] on
partial contributions C0k

I associated with phase-space factors G0k

(k = 1, . . . ,11). The symbols standing for index I are shown on the x

axis. The partial contributions are identified by index k, whose value is
shown by the corresponding bar. The contributions from largest to the
third largest are displayed in red, blue, and orange colors, respectively.
Ratios C0k

I /CI calculated with the ISM and QRPA matrix elements
are presented with left and right bars for each value of index I ,
respectively. Results for 76Ge and 136Xe are presented in the lower
(b) and upper (a) panels, respectively.
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TABLE VI. Upper bounds on the effective neutrino mass mββ

and parameters 〈η〉 and 〈λ〉 associated with right-handed currents
mechanisms imposed by the constraints on the 0νββ decay of
76Ge (T 0ν

1/2 � 3.01025 yr [25]) and 136Xe (T 0ν
1/2 � 3.41025 yr [26]).

Nuclear matrix elements of the interacting shell model (ISM) [23]
(MGT is from [24]) and quasiparticle random phase approximations
(QRPA) [22] are used in the analysis. CP conservation is assumed
(ψ1 = ψ2 = 0). The standard electron wave functions (w.f. A) [6]
and screened exact finite-size Coulomb wave functions (w.f. D) are
considered.

w.f. 76Ge 136Xe

A D A D

QRPA
|mββ | (eV) 0.321 0.333 0.285 0.315

|mββ | (eV) for 〈η〉 = 〈λ〉 = 0 0.271 0.284 0.251 0.285

109〈η〉 3.093 3.239 2.077 2.337

109〈η〉 for |mββ | = 〈λ〉 = 0 2.652 2.807 1.840 2.118

107〈λ〉 4.943 5.163 3.822 4.370

107〈λ〉 for |mββ | = 〈η〉 = 0 4.841 5.068 3.792 4.349

ISM

|mββ | (eV) 0.515 0.535 0.222 0.245

|mββ | (eV) for 〈η〉 = 〈λ〉 = 0 0.436 0.458 0.194 0.220

109〈η〉 6.370 6.760 2.975 3.291

109〈η〉 for |mββ | = 〈λ〉 = 0 5.464 5.863 2.628 2.976

107〈λ〉 8.462 8.841 3.000 3.378

107〈λ〉 for |mββ | = 〈η〉 = 0 8.304 8.694 2.949 3.336
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FIG. 5. (Color online) Limits on the effective neutrino mass mββ

and right-handed parameters η (left panels, 〈λ〉 = 0) and λ (right
panels, 〈η〉 = 0) implied by the constraints on the 0νββ decay of
76Ge (lower panels, T 0ν

1/2 � 3.01025 yr [25]) and 136Xe (upper panels,
T 0ν

1/2 � 3.41025 yr [26]). To derive the bounds, the values of nuclear
matrix elements calculated within the ISM [23] and the QRPA [22] are
used. Results are presented for approximate electron wave functions
(type A) and exact Dirac wave functions with finite nuclear size
and electron screening (type D). Ellipses show the boundaries of the
allowed domains.

VI. DIFFERENTIAL DECAY RATES FOR
LIMITING CASES

It is of interest to consider the angular correlations of the
emitted electrons and the single-electron energy spectrum for
the three limiting cases of lepton number violating mecha-
nism, since with sufficient experimental accuracy one could
distinguish between decays due to coupling to the left-handed
and right-handed hadronic currents. It is assumed that some
future 0νββ-decay experiments, e.g., the SuperNEMO [27]
or NEXT [28], will have a unique potential to measure the
electron tracks and thus to observe the decay electron angular
correlations and individual electron energy spectra.

The differential rate for the 0+ → 0+ 0νββ decay with the
energy of one of the emitted electrons ε̃1 (ε̃1 is the kinetic
energy fraction with respect to Qββ of one electron, i.e.,
ε1 = ε̃1Qββ + me and ε2 = Qββ + 2me − ε1) and the angular
distribution with the angle θ between the two electrons for
three limiting cases can be written as follows:

0.0
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) d
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dε~
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(b)(a)
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FIG. 6. (Color online) The single-electron differential decay rate
normalized to the total decay rate vs the electron energy ε̃ [ε̃ =
(ε − me)/Qββ ] for 0νββ decay of 76Ge [left panels (a), (c), and
(e)] and 136Xe [right panels (b), (d), and (f)]. Results are presented
for mechanism determined by factors |mββ |2 (〈λ〉 = 〈η〉 = 0) [panels
(e) and (f)], |〈λ〉|2 (mββ = 〈η〉 = 0) [panels (c) and (d)], and |〈η〉|2
(mββ = 〈λ〉 = 0) [panels (e) and (f)]. Approximate electron wave
functions (w.f. A) and exact Dirac wave functions with finite nuclear
size and electron screening (w.f. D) are considered. Nuclear matrix
elements calculated within the ISM [23] and the QRPA [22] are used
in calculations.

055502-12



REEXAMINING THE LIGHT NEUTRINO EXCHANGE . . . PHYSICAL REVIEW C 92, 055502 (2015)

-1.0

-0.8

-0.6

-0.4

-0.2

a 1/a
0

w.f. A
w.f. D

-1.0

-0.5

0.0

0.5

1.0

a 1/a
0

0 0.2 0.4 0.6 0.8
ε∼

0

0.2

0.4

0.6

0.8

a 1/a
0

0 0.2 0.4 0.6 0.8 1
ε∼

(e) (f)

(d)

(a) (b)

(c)

FIG. 7. (Color online) The angular correlation factor [see
Eq. (55)] vs the electron energy ε̃ [ε̃ = (ε − me)/Qββ ] for 0νββ decay
of 76Ge [left panels (a), (c), and (e)] and 136Xe [right panels (b), (d),
and (f)]. Results are presented for mechanism determined by factors
|mββ |2 (〈λ〉 = 〈η〉 = 0) [panels (e) and (f)], |〈λ〉|2 (mββ = 〈η〉 = 0)
[panels (c) and (d)], and |〈η〉|2 (mββ = 〈λ〉 = 0) [panels (e) and (f)].
Approximate electron wave functions (w.f. A) and exact Dirac wave
functions with finite nuclear size and electron screening (w.f. D) are
considered. Nuclear matrix elements calculated within the ISM [23]
are used in calculations.

(i) Case mββ �= 0 (〈λ〉 = 0 and 〈η〉 = 0):

d� = g4
A|MGT |2

( |mββ |
me

)2

dCmm. (51)

(ii) Case 〈λ〉 �= 0 (mββ = 0 and 〈η〉 = 0):

d� = g4
A|MGT |2〈λ〉2dCλλ. (52)

(iii) Case 〈η〉 �= 0 (mββ = 0 and 〈λ〉 = 0):

d� = g4
A|MGT |2〈η〉2dCηη, (53)

where

dCmm = (1 − χF )2dG01,

dCλλ = χ2
2−dG02 + 1

9χ2
1+dG011 − 2

9χ1+χ2−dG010,

dCηη = χ2
2+dG02 + 1

9χ2
1−dG011 − 2

9χ1−χ2+dG010

+χ2
P dG08 − χP χRdG07 + χ2

RdG09, (54)
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FIG. 8. (Color online) The angular correlation factor [see
Eq. (55)] vs the electron energy ε̃ [ε̃ = (ε − me)/Qββ ] for 0νββ decay
of 136Xe. Results are presented for the |〈λ〉|2 term (mββ = 〈η〉 = 0).
Approximate electron wave functions (w.f. A) and exact Dirac wave
functions with finite nuclear size and electron screening (w.f. D) are
considered. Nuclear matrix elements calculated within the ISM [23]
and the QRPA [22] are used in calculations.

with

dG0k = d cos θdε̃1

G4
βm2

eQββ

64π5R2
(h0k(ε1,ε2,R) cos θ

+ g0k(ε1,ε2,R))p1p2ε1ε2

≡ ak
0 + ak

1 cos θ, k = 1,2, . . . ,11. (55)

Here, ak
0 and ak

1 are angular correlation coefficients. G0k =
ln 2G0k .

The differential decay rate can be written as

d�

d cos θ dε̃1
= a0(1 + a1/a0 cos θ ). (56)

Here a1/a0 is the energy-dependent angular correlation coef-
ficient, which depends also on the chosen limiting case for
lepton number violating parameters.

In Fig. 6 the single-electron spectra normalized to the total
decay rate are shown as function of the electron energy ε̃ for
the 0νββ decay of 76Ge and 136Xe due to nonvanishing mββ ,
〈λ〉, and 〈η〉. This quantity, ideally accessible experimentally,
depends only very weakly on the chosen isotope, the set of
calculated nuclear matrix elements, and whether a standard or
improved description of electron wave functions is used. The
different characteristics of these three limiting cases provide a
possibility to identify which of the parameters is responsible
for 0νββ decay.

In Fig. 7 the angular correlation factors a1/a0 are presented
as a function of the electron energy ε̃ for the 0νββ decay
of 76Ge and 136Xe due to nonvanishing mββ , 〈λ〉, and 〈η〉.
The ISM nuclear matrix elements are considered. The results
slightly depends on the type of electron wave functions and
manifest similar behavior for both isotopes. In Fig. 8 the a1/a0

behavior in detail for the 〈λ〉 limiting case is shown. Note that
results in this case are affected more significantly by the choice
of nuclear matrix elements and that the choice of electron
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wave functions changes a1/a0 only slightly for small and large
values of electron energy.

VII. SUMMARY AND CONCLUSIONS

It is often assumed that if and when the neutrinoless double
beta decay (0νββ) is observed, it will be caused by the
exchange of a virtual light Majorana neutrino and its decay
rate will be proportional to the square of the effective Majorana
mass mββ . It would be possible, therefore, to constrain or de-
termine the magnitude of this fundamental parameter based on
experimental limits or values of the decay half-life. However,
that is not the only possibility. Many other manifestations
of the “physics beyond the standard model” that would
cause the 0νββ decay were considered in the past. Among
them the possibility of the right-handed lepton and/or hadron
currents that could perhaps compete with the mass mechanism
was often discussed; see e.g. [6,7]. Such a possibility arises
naturally in the left-right symmetric models. In that case the
0νββ-decay half-life will depend not only on the mββ but also,
perhaps dominantly, on the parameters that characterize the
right-handed currents, denoted 〈λ〉 and 〈η〉 here.

When it is assumed that the right-handed currents exist, the
0νββ-decay half-life can be expressed as a sum of products
of the phase-space factors, nuclear matrix elements, and the
fundamental parameters that characterize the new physics. In
this work the particular emphasis is on the reformulation of this
relation, on a careful derivation of all terms in that expression,
and on the new and more general evaluation of the phase-space
factors. The phase-space factors depend on the wave functions
of the emitted electrons, and various approximations were used
in the past in their calculation. We use here the exact solutions
of the Dirac equation for the s1/2 and p1/2 electron states,
solving the Dirac equation in the potential that includes the
nuclear finite size and the electron screening. The possible
approximations to this problem are analyzed and discussed,
and in particular it is shown that using just the first-order
expansion in r , in order to include the nuclear finite size with
the sufficient accuracy, is not enough. A complete table of
accurate phase-space factors for nuclei of interest is given.
Compared with the treatment that uses only the first terms in
the r expansion (denoted as approximation A in this work),
the exact phase-space factors (approximation D) are smaller, in

particular in the heavier nuclei ( 130Te and 150Nd) the reduction
is ∼30% or even more.

It is also often assumed that the nucleons involved in the
0νββ decay are essentially at the nuclear surface, hence the
phase-space factors are evaluated with the electrons placed
at r = R. The adequacy of that assumption was not tested
until now. Here it is shown—see Fig. 3 and Table II—that it
is a reasonable assumption, even though an increase in the
phase-space factors by a few percent in the heavier candidate
nuclei is expected.

Having the full set of the phase-space factors, it is possible
by combining them with the full set of nuclear matrix elements
evaluated elsewhere, to obtain simultaneous or separate limits
for the fundamental parameters mββ and those associated with
the right-handed currents 〈λ〉 and 〈η〉. It turns out that again
the difference between the previously used approximation A
(just the first term in the expansion in r) and the more exact
treatment (exact Dirac electron wave functions with the nuclear
radius R and electron screening) in the final limits is relatively
benign in 76Ge, enlarging the limits on the fundamental
parameters only by about 5%. However, in the heavier nucleus
136Xe the effect is larger, 10–15%.

It is well known that by convincingly determining the 0νββ
half-life one would obviously show that the total lepton number
is not a conserved quantity. However, that determination by
itself will be insufficient to decide which of the possible
mechanisms is responsible for the decay. If, in addition, the
single-electron energy spectra, and the angular distribution
of the emitted electrons, could be detected, it will help
substantially in that task. If one of the possible parameters
mββ , 〈λ〉, or 〈η〉 dominates, the single-particle spectra and
angular correlations will be a decisive tool to determine the
mechanism. Formulas that determine these quantities and the
corresponding phase-space factors are shown here. In that case
the exact treatment of nuclear size makes only little difference.
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