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1. PROBLEM FORMALIZATION
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FIGURE
1.1.

There are 5 kinds of objects in our analysis: states, stimuli, features, events,
and models.
states States can be both observable and unobservable. This distinction

is largely practical in nature, and dependent on the technology
available at the moment.

Examples of observable states: position/velocity of the animal.
Examples of unobservable states: metabolic states, neural states.

stimuli These are all the sensory cues available to the animal for decision
making. Stimuli are a function of the states. In this work, stimuli
are abstract entities: they are assumed to exist, as a function of the
states, but they are never computationally manipulated.

Examples of stimuli: perceived luminance at each photoreceptor, per-
ceived odor traces, perceived acceleration.

features We define “features” as the behaviorally-relevant low-dimensional
functions of the stimuli that are used for decision making. The ex-
istence of these features is postulated. The theoretical justification
to investigate low-dimensional functions of the stimuli is that, while the stim-
uli are very high-dimensional, the decisions are usually very low-dimensional.
Therefore, only a low-dimensional feature of the stimuli can possibly con-
tribute to behaviors.

Example of feature: left/right optic flow imbalance.
(behavioral) events Behavioral events (or simply: events) are the external

manifestations of decision making that we can observe. Our for-
mulation applies to behaviors that can be clearly identified in
time.

Examples of events: start of a saccades, landing, taking off.
(behavioral) models These are generative models that explain the observed

events, as a function of the external stimuli and the internal states.

1.1. Behavioral pathway of interest in this work. Naturally, a complete understanding
of animal behavior can only be attained by considering all possible stimuli and all ob-
servable behaviors. However, the complexity of a model that can be reliably identified is
bounded by the amount, diversity, and quality of the data that can be collected. There-
fore, in practice, one can only consider a limited “behavioral pathway” that interests only
a subset of the stimuli and a subset of the behaviors. We limit our analysis to the visual
stimulus, which is a function of the animal position, and we take discrete body saccade
events as the observable manifestation of behavior.

Whether the particular stimulus considered (visual stimulus) is sufficient to build a
model for the chosen behavior is something that is not justified a priori, but rather will
have to be confirmed a posteriori by the analysis.

1.2. Observable states. We call x(t) ∈ X the observable animal configuration, which in-
cludes the position and linear/angular velocity in 3D space, and X the configuration space.
The space X has dimension 12 (6 degrees of freedom for position/orientation, plus corre-
sponding velocities).

An estimate of x(t) is provided by our tracking software. While the observations are
occasionally very noisy, we assume that x(t) is observable, and we do not model the noise
on x in this analysis. In the following, it will be clear that this does not impact the analysis
much, as the method is very robust to bounded noise on x(t).

The tracking system provides data at 60Hz. We ignore this time discretization and
assume for convenience that t ∈ R.
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TABLE 1. Symbols used in this paper

Symbol meaning
t ∈ R Time index.
x(t) ∈ X Observable configuration (position and velocity).
ξ(t) Unobservable states.
y(t) Perceived stimuli.
C Reduced configuration space
c(t) ∈ C Reduced configuration at time t.
ri(t) Instantaneous event generation rates.
∆ Inhibition interval.
i ∈ {L, R} Index over event classes.
t1
i , t2

i , . . . , tj
i , . . . Detected events of the i-th class (i ∈ {L, R}).

j Index over discrete events in time
bi(t) Detected events as a series of impulses in time.
fi Event generation rate function.
δ(t− t) Impulse function centered at t.
{Ck}K

k=1 Partition of C in K cells.
k ∈ [1, K] Index over cells.
ck ∈ C Center of k-th cell.
nk

i Number of detected events in k-th cell.
nk Total number of detected events in k-th cell.
mk

i Measured event rate in the k-th cell.
rk

i Average event generation rate for i-th behavior in k-th cell.
ri = {rk

i }K
k=1 Vector containing all event generation rates over cells.

zk Feature associated to k-th cell.
z = {zk}K

k=1 Vector containing all feature values over cells.
order Function computing the order of each element in a vector.
a ◦ b Composition of the functions a and b.
Diff(R) Diffeomorphisms of R; set of strictly monotone functions.
N (µ, σ) Gaussian distribution with mean µ and standard deviation σ.
Unif(a, b) Uniform distribution on the interval [a, b].

1.3. Unobservable states. We call ξ(t) the set of all other states that are behaviorally rel-
evant but not observable:

ξ(t) , all behaviorally relevant states \ x(t).

These unobservable states include:

• unobservable kinematic properties (e.g., angle of fly neck);
• metabolic states that influence behavior (e.g., hunger);
• other unmodeled properties of the environment (residual odor traces, etc.).

1.4. Behavioral events. The observable behavioral events that we consider are the so-
called “body saccades”, or just “saccades”. These are the moments where a fly turns
rapidly in the horizontal plane.

There are two classes of events: left (L) and right (R) saccades. We limit our analysis to
only the saccade direction; in principle, there are many observable properties of a saccade
that would be interesting to analyze (top angular velocity, amplitude, etc.); those are left
for future work.

The index “i” will be used to index over event classes: i ∈ {L, R}. Every time we write
a formula with the generic index i, it is understood that i ∈ {L, R}.
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The criterion for defining a saccade and the algorithms for detecting it are discussed in
Section 7. Here, we assume that we have a procedure that, given a trajectory x(t), returns
a series of detected saccade events, represented by their initiation times {tj

i}:
detected left saccades: t1

L, t2
L, . . . , tj

L, . . .

detected right saccades: t1
R, t2

R, . . . , tj
R, . . .

The index “j” is an index over the sequence of events.
We assume that these events are observable (i.e. we detect all saccades perfectly). In

practice, we found that our saccade detection algorithms give false positives or false nega-
tives on less than 1% of the data against a subset of the data manually annotated; this error
can be neglected for our analysis, because all the statistics that we compute are essentially
averages over spatial patches, therefore robust to random failures of the detection proce-
dure.

We also introduce the variables bL(t), bR(t). These variables are an alternative repre-
sentation of the event sequences as trains of impulses:

bi(t) = ∑
j

δ(t− tj
i).

Here, δ(t− t) is the impulse centered at time t. This notation will be convenient for further
manipulations.

1.5. Stimulus and reduced configuration. We call y(t) the set of all external stimuli per-
ceived by the animal at time t. We assume that y(t) is a function h of the animal configu-
ration x(t), corrupted by a noise process ν(t):

y(t) = h(x(t), ν(t)).

In our case, y(t) would be the luminance perceived on the retina, plus odor traces, and
other sensory cues depending on position. The stimulus is also a function of the environ-
ment shape/textures/etc, which in the paper is indicated as “W”. However, because the
environment is considered fixed, we omit it from the formulation.

We do not assume that y(t) is observable, nor we are interested in estimating it; rather,
we use this variable only as theoretical device to formalize our intuition of environment
symmetry. We say that an environment has a symmetry if there exist two distinct points
x1, x2 ∈ X such that

h(x1, ν) = h(x2, ν).
If this is the case, then it makes sense to compress the state x(t) ∈ X, to a smaller, minimal
representation c(t) ∈ C. We call c(t) the reduced configuration, and C the reduced configu-
ration space. We assume that C is given, along with a projection map π : X → C, which
maps the point x(t) to π(x(t)) = c(t) ∈ C. In other words, the map π extracts from the
whole state x(t) the variables that are necessary to determine the stimulus. Moreover, we
assume that c(t) is a minimal representation, in the sense that, for all points x1, x2:

π(x1) = π(x2) ⇔ h(x1, ν) = h(x2, ν).

In other words, c(t) is sufficient to compute the stimulus (if one knew the function h), and
it cannot be further reduced to an even smaller representation.

In our particular case, we have a circular symmetry, as the environment is a circular
arena with uniform patterns on the walls. If one assumes X to describe position, orienta-
tion and linear/angular velocity of the animal, the circular symmetry allows to decrease
by 1 the number of degrees of freedom of the data, by projecting the 12-D space X to a 11-
D space. The reduced configuration stimulus depends on the details of each experiment
and on the experimenter’s assumptions. For example, even if the arena was circular, the
symmetry would not be valid if there were non symmetric patterns on the walls.

We consider the reduced configuration space and the projection map as other model-
ing choices whose validity must be justified a posteriori. Our assumptions regarding the
reduced configuration space are explained in Section 2.5.
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2. MODELING ASSUMPTIONS

This section introduces all modeling assumptions of our analysis and the implied ap-
proximations.

2.1. Behavioral events are generated by time-variant interacting Poisson processes. We
model the generation of observable events as a set of interacting Poisson processes with
time-variant rates ri(t) and inhibition interval ∆:

{bi(t)}i∈{L,R} ∼ InteractingPoisson({ri(t)}i∈{L,R}, ∆).

This means that, once any process generates one event at time t, no other event can be
generated in the interval [t, t + ∆], from the same or another process. A Poisson process
with time-variant rate is sometimes called a Cox process [1].

2.1.1. Interpretation of the inhibition interval ∆. The inhibition time is meant to model the
fact that we consider instantaneous events that correspond to the initiation of a motor
program, and one motor program must complete before another can be initiated.

2.2. The event generation rates depend on the instantaneous stimulus, unobservable
states, and endogenous random process. We assume that event generation rate ri(t) can
be written as the sum of three terms rS

i , rE
i , rR

i , which model the contributions of the
stimulus, the unobservable states, and an endogenous random process:

(2.1) ri(t) = rS
i (y(t))︸ ︷︷ ︸

instantaneous
stimulus

contribution

+ rE
i (ξ(t))︸ ︷︷ ︸

unobservable
states

contribution

+ rR
i︸︷︷︸ .

endogeneous
random process

contribution

2.3. The high-dimensional stimulus y can be compressed down to a smaller feature z.
The term rS

i (y) models the contribution of the stimulus to the event generation. We
assume that this contribution can be written as a function of a low-dimensional fea-
ture z ∈ Z of the stimulus y:

rS
i (y) = fi(z(y)).

We call the functions fi the event generation rates functions.

2.4. The feature has monotone effect on the two behaviors. We introduce another con-
straint on the two functions fR, fL that allows to obtain a closed-form solution to the iden-
tification problem. This assumption is very specific to the particular problem studied. We
assume that:

• The function fL is monotonically increasing:

(2.2) fL(z1) > fL(z2)⇔ z1 > z2.

• The function fR is monotonically decreasing:

(2.3) fR(z1) > fR(z2)⇔ z1 < z2.

These assumptions can be verified a posteriori after fitting the data.

2.5. Choice of the reduced configuration space C. Choosing the reduced configuration
space C is a critical step of the analysis. There is a clear tradeoff: if the C space is too small,
then we cannot represent the variability of behavior. If it is too large, then the data that
we have will not be dense enough to have accurate statistics. This is the reason we do not
use directly the values of x(t).

In our case, we project the original 12 degrees of freedom space X to only two. The
original degrees of freedom are, position (3), attitude (3), linear velocity (3), and angular
velocity (3). We make the following assumptions:

(1) The altitude can be ignored (removes 1 dof for the z position, and the correspond-
ing 1 dof for velocity).

(2) As for the attitude, only the yaw is relevant (removes 2 dof).
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(3) The angular velocity is ignored; the saccades start when the fly is flying approxi-
mately straight (removes 3 dof) .

(4) The fly has negligible sideway velocity (removes 1 dof).
(5) The linear forward velocity is not relevant (removes 1 dof).

These assumptions bring the degrees of freedom from 12 to 3. The circular symmetry
of the arena allows to further reduce the analysis to a 2D space. There is no particular
algorithmic complication if the space has more than 2 dimensions. Given the amount of
data we have, a 2D space allows the recorded trajectories to fill the space densely enough
to compute the statistics necessary.

Note that the particular parametrization of the space C does not matter. In the paper we
use two different parametrizations to display the results.

2.6. From time-variant to timeless spatial quantities. In the following, it will be conve-
nient to write the rates rS

i as a function of the configuration rather than as function of
time. This is possible because we have assumed that y(t) is a function of the reduced
configuration c(t) ∈ C.

Consequently, also the feature z is a function of the reduced configuration. We call γ :
C → Z the function that assigns a value of the feature to each reduced configuration:

z = γ(c).

2.7. Reduced model identified. While we assume (2.1) as the true model for the rate ri,
we will identify a reduced model that lumps together the contributions of the unobserv-
able states and the endogenous random process. We cannot distinguish the contributions
of rE

i and rR
i because we cannot access the unobservable states. However, we can show

that we can still identify the stimulus-dependent term rS
i by averaging over the trajecto-

ries.
We will identify the model:

(2.4) ri(c) = fi(z(c))︸ ︷︷ ︸
instantaneous

feature
contribution

+ r0︸︷︷︸,
unobservable states

+endogeneous process
average contribution

where r0 lumps together the contribution unobservable states and endogenous process.
To arrive at (2.4) from (2.1), we just need to average over time. Fix a point c∗ and let C∗

be a small area containing c∗. Define Ec(t)∈C∗{· · · } as the average of a quantity limited to
those times in which c(t) ∈ C∗. Then, by averaging the observed instantaneous rate in C∗,
we obtain

Ec(t)∈C∗{ri(t)} = Ec(t)∈C∗{ fi(z(c))}+ Ec(t)∈C∗{rE
i (ξ(t))}+ rR

i .

Define ri(c∗) = Ec(t)∈C∗{ri(t)} to be the average rates around the point c∗.
If we assume that the feature is a continuous function of the configuration and that the

neighborhood C∗ is small enough, then we can approximate:

Ec(t)∈C∗{ fi(z(c))} ' fi(z(c∗)).

If we assume that the unobservable states are uncorrelated with the external configura-
tion, then the value of the expectation Ec(t)∈C∗{rE

i (ξ(t))} does not depend on the config-
uration C∗:

Ec(t)∈C∗{rE
i (ξ(t))} = E{rE

i (ξ(t))} = rE
i

Therefore, by defining

r0 = rR
i + rE

i

we arrive at (2.4).
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3. OBSERVABILITY ANALYSIS

Our first step towards identification of the model is an observability analysis. We first
give some remarks on the dimensionality of the feature that we can identify; then we
show that, fixed the dimensionality, the problem is still underconstrained because there
are multiple solutions that satisfy the constraints.

3.1. Dimensionality of the feature. We can show that the dimension of the feature z such
that the problem is well posed is bounded by the dimension of the reduced configuration
space C and the number of event classes.

Proposition 1. For the identification problem to be well-posed, we must have

dim(Z) < min{dim(C), nevents}.
In particular, for two event classes and a two-dimensional configuration space, we can only esti-
mate a one-dimensional feature.

Proof. Our sets of constraints is{
z = γ(c),
rS

i (c) = fi(γ(c)), i = 1, . . . , nevents.

Geometrically, we have that the function γ maps C to Z, and then the function f = { fi}
maps Z to Rnevents :

C
γ−→ Z

f−→ Rnevents .
For the estimation problem to be well posed, we need to have the hourglass structure

dim(C) > dim(Z) < dim(Rnevents),

otherwise there are some trivial solutions.
(1) In the case

dim(C) = dim(Z) < dim(Rnevents),
we can choose γ = Identity and fi(z) = rS

i (c) as a trivial solution.
(2) In the case

dim(C) > dim(Z) = dim(Rnevents),
we can choose fi = Identity, z(c) = {rS

i (c)} as a trivial solution.
�

3.2. Observability. The model is not fully observable, in the sense that we can find mul-
tiple solutions for the parameters that fit the data equally well. This is formalized in the
following proposition.

Proposition 2. Suppose that the configuration space is discretized in K cells, each with center ck ∈
C. Let the bold vectors rL, rR ∈ RK

+ represent event generation rates associated to different animal
configurations (ri = {rk

i }, where k ranges over configuration), and similarly let z = {zk} be the
feature associated to the configurations c = {ck}. Assume that the model postulated so far holds
exactly. Then we can write the constraints in vector form as:

rL = fL(z),(3.1)
rR = fR(z),
z = γ(c).(3.2)

Assume that the rates rL, rR and the reduced configurations c are observable, and that the func-
tions fL, fR, γ are unknown a priori. Then it is possible to estimate z only up to a monotone
transformation, in the sense that it is not possible to distinguish between a solution z1 and a so-
lution z2, if z1 = α(z2) where α : R → R is a strictly monotone function. Consequently, one
cannot distinguish between the event generation rate functions ( fL, fR) and ( fL ◦ α−1, fR ◦ α−1),
where “◦” denotes function compositions.
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Proof. A “solution” of the system is a tuple ( fL, fR, γ, z) for which the constraints (3.1)–
(3.2) hold. If the system of constraints was completely observable, there could be only
one solution. However, suppose s = ( fL, fR, γ, z) is a solution, and consider an invertible
function α, and the solution tuple sα defined as

sα = ( f α
L , f α

R, γα, zα)

= ( fL ◦ α−1, fR ◦ α−1, α ◦ γ, α(z)).

One can verify that, assuming s is a solution, sα is another solution of the system, because
it respects the constraints (3.1)–(3.2):

rL = fL(z) = fL(α
−1(α(z))) = f α

L (z
α),

rR = fR(z) = fR(α
−1(α(z))) = f α

R(z
α),

zα = α(z) = α(γ(c)) = γα(c).

�

This is the formal way to show that there is an ambiguity. A more intuitive way to
see the same thing is by rewriting (3.1)–(3.2) in a slightly different way. Knowing γ is
equivalent to knowing z, so we can write the constraints in terms of γ only:

rL = fL(γ(c)),(3.3)
rR = fR(γ(c)).

Intuitively, we have “2 equations for 3 variables”; because γ always appears composed
together with fL and fR, it cannot be observed independently.

3.3. Interpretation of the unobservability. If the reduced feature is defined only up to
a monotone transformation, then it should not be thought as a physical quantity, or as a
measure of physiological activity. In fact, we cannot associate a meaningful measurement
unit to it. Rather, the feature represents an ordering of the configurations (in fact, the order
is what is conserved by any monotone function). All we can say is whether in a certain
configuration the feature is weaker or stronger than in another.

Still, from the point of view of the analysis and the visualization, it is useful to con-
sider z as a real-valued quantity associated to each configuration. From the point of view
of the estimation, we cannot distinguish between z and α(z); therefore, we can choose
any particular function α for visualizing the feature. We will choose a function α so that z
varies between −1 and +1 across the environment.

4. ESTIMATION OF EVENT GENERATION RATES

In the first part of the algorithm, we estimate the event generation rates {rk
i }, where i ∈

{L, R}, and k ranges over configurations. This operation is slightly more complicated than
just dividing the number of detected events by time, because the events are generated by
Poisson processes that interact with each other. For example, this means that the rate of
observed left saccade events depends not only on rL, but also the rate rR: if rR is very high,
then we expect to see fewer left saccade events, as there is more inhibition.

4.1. Statistics collected from the data. Divide the reduced configuration space C in cells
{C1, C2, . . . , Ck, . . . CK}, possibly overlapping, and each with center ck ∈ C. It is assumed
that the discretization is small enough to capture the variability of behavior, but large
enough so that the samples are dense enough.

For each cell, we compute the following statistics from the data:
nk

i The number of events of the i-th class detected in the k-th cell.
Tk The time spent in the k-th cell.
If one defines the variable Ik(t) as

Ik(t) =

{
1 if c(t) ∈ Ck,
0 otherwise.

, for k ∈ [1, K].
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then the two quantities nk
i and Tk can be written as follows:

nk
i = ∫ Ik(t)bi(t)dt,

Tk = ∫ Ik(t)dt.

We define also the following auxiliary statistics:

nk The total number of events detected in the cell:

nk = ∑
i

nk
i = nk

L + nk
R

mk
i The measured event rates, given by

mk
i =

nk
i

Tk .

mk The total event rate mk per cell:

mk = ∑
i

mk
i = mk

L + mk
R.

4.2. Robustness of statistics to measurements noise. These are all the statistics that we
need from the data. Note that the position x(t) need to be only accurate enough so that
it can be assigned to the correct cell. In particular, we do not need to compute higher
derivatives of x(t), therefore operations like smoothing are not necessary (some smooth-
ing might be necessary to detect the saccade events). Also, misdetection of saccade events
does not impact much the analysis; a 1% false positive/negative rate only changes the
statistics mk

i by 1%.

4.3. Measured saccade rates vs. saccade generation rates. Due to the inhibition pe-
riod ∆ > 0, the measured event rates underestimate the event generation rates: mk

i < rk
i .

This is true even in the case of 1 process, and the effect is more evident with multiple
processes.

4.3.1. Event generation rate estimation for one process without inhibition. Consider first the
case of only one Poisson process b(t), with event generation rate r, and no inhibition
period. Suppose we observe the process for T seconds, counting n events, obtaining the
measured rate m = n/T. Then m is the maximum likelihood estimate of r.

4.3.2. Event generation rate estimation for one process with inhibition. However, if there is a
non-zero inhibition period, ∆, then the measured rate m underestimates the true rate. For
example, the observed rate m cannot be higher than 1/∆, no matter how high the rate r
is, because due to inhibition we can observe at most one event every ∆ seconds.

A better estimate of the rate r can be found as follows:

r̂ =
n

T − ∆n
.

The interpretation is easy: if there were n events, then the process was inhibited for ∆n
seconds. Therefore, T′ = T− n∆ is the effective time in which the process was active and
could generate events.

The same formula can be written in terms of the measured rate:

r̂ =
n

T(1− ∆n
T )

=
m

1− ∆m
.

Note that r → m as ∆ → 0: if there is no inhibition, the measured rate is the generation
rate.
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4.3.3. Event generation rate estimation for multiple processes with inhibition. Next, consider
the case in which there are multiple processes {bi(t)} inhibiting each other. It is easy to
see that not taking into account the inhibition can strongly skew the estimate. In fact,
imagine that there is one process with very high rate. The rates of the other processes will
be severely underestimated because the frequent process will often inhibit them. Fortu-
nately, also in this case we can easily normalize the rates.

Suppose we observe a series of processes {bi(t)} over an interval T and we count ni
events for each process. Let n = ∑i ni be the total number of events observed. Then we
know that the effective time in which the processes were not inhibited is T− n∆ (note that
according to this model, it does not matter which process inhibits which). Accordingly,
the event generation rates can be estimated as

(4.1) r̂i =
ni

T − ∆ ∑i ni
,

or, writing it as a function of the measured event rates:

(4.2) r̂i =
mi

1− ∆ ∑i mi
.

Note that, as ∆ → 0, ri → mi and the estimate of the rate of one process does not depend
on the measured rates of the others. Also note that the correction factor necessary for one
process depends on the cumulative intensity of all the others.

4.4. Estimation of confidence bounds for the event generation rates. The formulas (4.1)-
(4.2) give the maximum likelihood estimators for the event generation rates. One can
estimate confidence intervals using the method discussed in Guerriero et al. ed[2]. Upper
and lower 95% confidence bounds are found as follows:

(4.3) r ∈ [r, r] =


(

1− 1.96√
n−1

)
n

T − ∆ ∑i ni
,

(
1 + 1.96√

n−1

)
n

T − ∆ ∑i ni

 .

5. FEATURE IDENTIFICATION

At this point, we assume to have an estimate of the event generation rates rk
i . We write

again our model with explicit dependence on the cell ck:

rk
L = fL(zk),

rk
R = fR(zk),

zk = γ(ck).

Our goal is to find z. Once z is known, then the three functions fL, fR, γ can be recovered
from these equations. For simplicity, we first assume that we know the event generation
rates rk

i precisely. Sections 5.1 and 5.4 show how to estimate z under this simplifying
assumption. Then, Sections 5.3 and 5.4 show how to take into account the uncertainty
in rk

i .

5.1. The order(·) function and its properties. We introduce the order(·) function, some-
times also called “rank”.

Definition 3. Define the function order : RK → Perm(K), which takes a vector in RK

and associates to it a permutation of length K, that gives the order of each element in the
sequence.

For example, we would have

order([10, 20, 30]) = [0, 1, 2],

and
order([100, 3.14, 42]) = [2, 0, 1].

We will need three simple properties of this function.
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Proposition 4. Properties of the order(·) function:
(1) The order of the elements of a vector does not change if a strictly increasing function is

applied to the vector.
Let a, b ∈ RK, let β : R→ R be a strictly increasing function, and let bk = β(ak). Then

order(b) = order(β(a)) = order(a).

(2) Applying a strictly decreasing function inverts the order in the vector.
Let a, w ∈ RK, let χ : R → R be a strictly decreasing function, and let wk = χ(ak).
Then

order(w) = order(χ(a)) = K− order(a).
(3) Two vectors with elements in the same order are equivalent up to a increasing function.

Let x, y ∈ RK and suppose that order(x) = order(y). Then there exists a strictly increas-
ing function ψ : R→ R such that yk = ψ(xk).

5.2. Estimating the reduced stimulus, assuming that there are no uncertainties. As a
first propaedeutic step, assume that the values of ri

K are known exactly without uncer-
tainty. From the relation rL = fL(z), the assumption that fL is strictly increasing, and
property (1) of Proposition 4, one obtains that

order(rL) = order(z).(5.1)

By applying the order function on both sides of the equality, we were able to simplify fL
from the expressions, because applying a strictly increasing function does not change the
order of the data.

Similarly, from the relation rR = fR(z), the assumption that fR is strictly decreasing,
and property (2) in Proposition 4, one obtains that

(5.2) order(rR) = K− order(z).

Here, because fR is decreasing, the order of the elements is reversed.
At this point, we can use (5.1) and (5.2) to obtain an overdetermined system of equa-

tions for order(z). The least square solution is obtained by simply averaging the two
terms:

ˆorder(z) = estimate of order(z)(5.3)

=
1
2

order(rL) +
1
2
(K− order(rR))

=
1
2

order(rL) +
1
2

order(−rR).

By property (3) of Proposition (4), we know that knowing order(z) is equivalent to
knowing z up to a diffeomorphism:

order(z) = γ(z) for some γ ∈ Diff(R).

By the observability analysis of the problem (Proposition 2), we know that we can esti-
mate z only up to a diffeomorphism, therefore we are done and use as our estimate of the
feature:

ẑ = ˆorder(z).
Because ẑ is determined only up to a diffeomorphism, for purely esthetic reasons we can
normalize it in the [−1,+1] range, by setting

(5.4) ẑ′ =
ˆorder(z)− K/2

K
.

Once we know an estimate of z, the shape of the functions fL and fR can be obtained
directly from the relations rL = fL(z), rR = fR(z).

This simplified procedure is valid only if the values ri are known without uncertainty.
If uncertainty is present, then a slightly more complicated computation is needed, de-
scribed in the next section. Most of the difficulty arises in understanding how uncertainty
propagates through the order function.
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5.3. Estimating the ranks of a collection of random variables. We now put uncertainty
back in the picture. The values rL, rR are not known precisely; rather, we only have a pos-
terior distribution estimated from the data. Here we want to show that the order function
is very sensitive to noise, therefore the approximation (5.3) cannot be used directly.

We want to solve the following problem: given a collection of K random variables X =
{Xk}K

k=1 with known probability distribution , estimate order(X).
There are several unsatisfactory ways to solve this problem. One could just use the

mean of the distributions to estimate the relative order:

(5.5) order(X) = order(E{X}).
However, this estimate is not satisfactory because it does not take into account the vari-
ance of the variables. An example of this situation is shown in the panels of Fig. 5.1. In
this figure, we simulate a collection of random variables X = {Xk}, where each random
variable has a uniform distribution over an interval of length 0.1 with center exp(−0.02 k):

Xk ∼ Uniform(exp(−0.02 k)− 0.05, exp(−0.02 k) + 0.05)

The probability distribution of the variables is represented in Fig. 5.1a. The result of com-
puting (5.5) is shown in Fig. 5.1b. The plot is a straight line because the means of the
variables are already ordered by k.

Fig. 5.1c shows two realizations x1, x2 of the random variables X, while Fig. 5.1d shows
the order of the realizations order(x1) and order(x2). As one can see, the order of the
variables changes dramatically, especially for large k, where the means of consecutive
variables are very similar. This shows that applying the order operation to r as in (5.3) is
not a sensible way to estimate order(r) if the data is noisy.

A reasonable estimate of order(X), along with error bounds, can be obtained by simu-
lation. Suppose that the distribution of X is known:

p(Xk = x) = Θk(x),

with Θk a known probability distribution. Then one can compute the distribution of
order(X) simply by drawing samples of X from the known distribution and computing
the observed order. More in detail, one computes a set of n samples x1, x2, . . . , xn all with
the same distribution: xi = sample(Θ). Then the distribution of order(X) can be approx-
imated by the samples {order(xi)}. In particular, we can derive mean and confidence
bounds. This method is summarized as Algorithm 1.

Remark 5. This method is very simple and requires only the ability to draw samples from
the distribution of X. For completeness, we briefly mention the analytical difficulties to

Algorithm 1 OrderBySampling

Input:
Θ = {Θk}K

k=1 The probability distributions of K random variables X = {Xk}K
k=1,

such that Xk ∼ Θk.
Parameters:

N Number of simulations.
Output:

Ψ = {Ψk}K
k=1: An estimate of the probability distribution of order(X).

Algorithm:
function Ψ = OrderBySampling(Θ, N):

(1) For j in 1, . . . , N:
(a) Draw the sample xj ∼ Θ.
(b) Compute oj = order(xj)

(2) Compute the density Ψk as the observed distribution of {ok
j }N

k=1.
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obtaining a more analytical solution. (Skipping this remark does not impact understand-
ing of the rest of this document). The reader will have noticed that we did not give an
analytical characterization of the distribution of order(X). In theory, the distribution of
order(X) can be thought as a sum of binomial distributions. In fact, we have:

order(Xk) = number of variables in {X j}K
j=1such that Xk ≥ X j

=
K

∑
j=1

bjk,

where bjk is a binomial variable defined as

bjk =

{
1 if X j ≥ Xk,
0 if X j < Xk.

The problem is that the variables bjk are not independent. Therefore all the convenient the-
oretical results about sums of independent binomials cannot be used. Assuming that the
distribution of X is uni-modal, one can expect the distribution of order(X) to be uni-modal
as well, and if the number of variables K is large enough, a Gaussian approximation could
be appropriate. For example, Fig. 5.1 shows the distribution of order(X10), order(X15), and
order(X40).

5.4. Estimating the reduced stimulus, taking into account the uncertainty in r. We now
refine the procedure in Section 5.4 taking into account the uncertainty in r. Let Θk

L, Θk
R be

the posterior distributions of rk
L, rk

R estimated from the data:

p(rk
L | bL ) = Θk

L,

p(rk
R | bR ) = Θk

R.

Using Algorithm 1, we can estimate the distribution of order(rk
L), order(rk

R); call the result-
ing distributions Φk

L and Φk
R.

p(orderk(rL) | bL) = Φk
L = OrderBySampling(Θk

L),

p(orderk(rR) | bR) = Φk
R = OrderBySampling(Θk

R).

From (5.1) and (5.2) we can compute the corresponding probability distributions of order(z),
which we call Γk

L and Γk
R:

Γk
L(m) = p(orderk(z) = m | bL) = Φk

L(m),(5.6)

Γk
L(m) = p(orderk(z) = m | bR) = Φk

R(K−m).(5.7)

We use a Gaussian approximation for these densities:

Γk
L ' N (µk

L, σ2 k
L ),(5.8)

Γk
R ' N (µk

R, σ2 k
R ).(5.9)

Assuming a non-informative prior on orderk(z):

p(orderk(z) = m) = 1/K,

we can find the posterior distribution of order(z) by fusing together (5.8)-(5.9), obtaining

orderk(z) ∼ N (µk, σ2 k), with(5.10)

µk =

(
1

σ2 k
L

+
1

σ2 k
R

)−1(
µk

L

σ2 k
L

+
µk

R

σ2 k
R

)
,

σk 2 =

(
1

σ2 k
L

+
1

σ2 k
R

)−1

.
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Normalize the feature distribution in the [−1,+1] range:

µk =
µk − K/2

K
.(5.11)

σk =
µk

K
.

This gives the best estimate for the feature zk.
At this point we can estimate the functions fL, fR directly using the relations

rk
L = fL(zk) and rk

R = fR(zk).
Note that the shape of fL, fR can be visualized directly by plotting the points (zk, rk

R) and
(zk, rk

R), along with confidence intervals (for both rk
L, rk

R and zk), and it is not strictly nec-
essary to impose some parametric form.
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FIGURE 5.1. Synthetic data used to illustrate the properties of the order
function and the order estimation procedure of Algorithm 1.
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6. ALGORITHM SUMMARY

This is a summary of the identification algorithm.
Input:

x(t) ∈ X Recorded configuration.
tj
i The series of detected events, where i ∈ {L, R} ranges over behaviors

and j ranges over events.
Parameters:

π : X → C Projection map from the configuration space to the reduced configura-
tion space.

{Ck}K
k=1 Partition of the reduced configuration space C in cells: C = ∪K

k=1CK.
Output:
{zk}K

k=1 Reconstructed feature over the reduced configuration space.
fL, fR Reconstructed event generation rate functions.

Procedure:
(1) Compute the reduced configuration c(t) using the projection π :

c(t) = π(x(t)).

(2) Define the variable Ik(t) as 1 if the animal is in the k-th cell at time t:

Ik(t) =

{
1 if c(t) ∈ Ck,
0 otherwise.

, for k ∈ [1, K].

Compute the permanence time in each cell:

Tk = ∫ Ik(t)dt, for k ∈ [1, . . . , K].

(3) Define bi(t) as a series of impulses centered at the observed events tj
i :

bi(t) = ∑
j

δ(t− tj
i), i ∈ {L, R}.

Count the number of events observed in each cell:

nk
i = ∫ Ik(t)bi(t)dt, for i ∈ {L, R}, k ∈ [1, K].

(4) Compute the observed event rates mk
L, mk

R:

mk
i =

nk
i

Tk , for i ∈ {L, R}, k ∈ [1, K].

(5) Estimate the inhibition interval ∆ from the inter-event statistics.
(6) Estimate the event generation rates using

rk
i =

mk
i

1− ∆ ∑i mk
i
, for i ∈ {L, R}, k ∈ [1, K].

Let the bold symbol ri indicate the set of values for all cells:

ri = {rk
i }K

k=1.

(7) Deterministic approximation:
(a) Compute an estimate of order(z) using (5.3).
(b) Compute the normalized feature using (5.4).
(c) Having estimated zk and rk

L, rk
R, fit the functions fL, fR directly from the

relations rk
L = fL(zk); and rk

R = fR(zk).
(8) Method taking into account the uncertainty of the data:

(a) Compute 95% confidence intervals [rk
i , rk

i ] for rk
i using (4.3):

[rk
i , rk

i ] =

[(
1−1.96/

√
nk

i−1
)

nk
i

Tk−∆ ∑i nk
i

,

(
1+1.96/

√
nk

i−1
)

nk
i

Tk−∆ ∑i nk
i

]
.

Take Θk
i = Unif([rk

i , rk
i ]) as an approximation of p(rk

i |bi).
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(b) Estimate the probability distribution Φk
i = p(orderk(ri)|bi) using the

method described as Algorithm 1:

{Φk
i }K

k=1 = OrderBySampling({Θk
i }K

k=1).

(c) Compute the distributions Γk
i = p(orderk(z)) from Φk

i using (5.6)–(5.7).
(d) Approximate Γk

i as a Normal distribution N
(
µk

i , σ2 k
i
)

using mean and
variance.

(e) Compute the posterior distribution N (µk, σ2 k) for zk using (5.10).
(f) Normalize the values of the feature in the [−1,+1] range using (5.11)

obtaining N (µk, σk), which is our final estimate for zk.
(g) Having estimated zk and rk

L, rk
R (both with appropriate confidence bounds),

estimate fL, fR directly from the relations rk
L = fL(zk); and rk

R = fR(zk).

7. DETAILS OF SACCADE DETECTION ALGORITHMS

The Python source code for both algorithms is available online at
http://github.com/AndreaCensi/geometric_saccade_detector

The Kalman filter/smoother implementation are available as part of Flydra.

7.1. Geometric saccade detector (GSD). The geometric saccade detector (GSD) algorithm
works using x, y tracking data, rather than using angular velocity. This makes it most use-
ful for noisy data, as it does not need to derive the data twice (once to obtain the linear
velocity, and again to obtain the angular velocity). However, it cannot be used for tethered
experiments, for which the x, y data is not available.

The algorithm can be summarized as follows:
(1) Obtain the trajectory p(k) = 〈x(k), y(k)〉.

We use the trajectory returned by Flydra which has been processed with a causal
Kalman filter. The algorithm is robust enough to be used on noisy data; so we do
not use smoothing.

(2) Consider separately each instant k.
(a) Translate the coordinate frame, such that p(k) = 〈0, 0〉 becomes the origin.
(b) Fix an interval ∆ and consider the samples in [k− ∆, k− 1] ∪ [k + 1, k + ∆].

∆ is a parameter which, for our data, is set to ∆ = 5 time steps (' 0.07s).
(c) Compute the polar coordinates of the samples with respect to the origin:

α(k) = arctan 2(y(k), x(k))

(d) Compute the average orientations before and after:

θbefore(k) =
1
∆

k+∆

∑
k=k+1

α(k)

θafter(k) =
1
∆

k−1

∑
k=k−∆

α(k)

In these computations, we consider that angles are defined modulo 360°.
(e) Similarly, compute the dispersion σbefore(k) , σafter(k).
(f) Define the amplitude of a potential saccade as

A(k) = θafter(k)− θbefore(k)

and the “score” of a saccade as

S(k) = σbefore(k) + σafter(k).

(3) Mark potential saccades as the points where

S(k) ≥ Smin = 20°

http://github.com/AndreaCensi/geometric_saccade_detector
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and
A(k) ≥ Amin = 20°.

(4) At this point, we have a sequence S(k) that describes the likelihood that there
is a saccade at time k. To segment the data, examine each point k in decreasing
order of S, and mark the points in the interval [k−∆, k + ∆] as unavailable as well.
Repeat until all points are marked unavailable.

7.2. Angular-velocity based saccade detector (AVSD). The AVSD algorithm operates us-
ing the angular velocity. The advantage of this algorithm is that it can be used also for
tethered data, where only the animal heading is available. However, if one starts with x, y
data, then one must derive the data twice to obtain the angular velocity.

The algorithm can be summarized as follows:
(1) Obtain the angular velocity ω(k).

In our case, this is done using a Kalman smoother on the position data, then
deriving once to obtain the translational velocity, obtain the angular heading as
the planar direction of the velocity vector, then derive again to obtain the angular
velocity.

(2) Define saccades as the intervals where |ω(k)| > ωmin.
In our case, set ωmin = 300 deg/s.

8. GUIDE TO THE EXPERIMENTAL RESULTS

8.1. Configuration space. The Flydra tracking system tracks the position and velocity of
flies in the cylindrical Mamarama arena. The arena has height 0.8m and radius 1m. The
data is returned at a temporal resolution of 60Hz, with spatial noise on the order of 0.5cm.
Much of the complexity of the saccade detection algorithm (explained in Section 7) is due
to handling this limited resolution. However, for the sake of simplicity, we are going to
ignore these issues in this section. We then consider the data to be a continuous signal.

We define the following quantities:

p(t) ∈ R3 Position of the animal with respect to a fixed coordinate frame.
v(t) ∈ R3 Linear velocity.
R(t) ∈ SO(3) Attitude (represented as a rotation matrix).
ω(t) ∈ R3 Angular velocity.
These quantities constitute the original observable configuration x(t) of dimension 12:

x(t) = 〈p(t), v(t), R(t), ω(t)〉 .

8.2. Reduced configuration space. As explained in Section 2.5, we project down the data
to a reduced configuration space C of dimension 2. This is done in two steps. In the first
step, we only assume that the planar configuration of the animal is relevant. This reduced
the configuration to 〈p1(t), p2(t), θ(t)〉, where p1 and p2 are the planar components of the
position, and θ is the planar orientation. This reduces the dimension from 12 to 3. By an
arbitrary choice of reference frame, we let p1 = 0, p2 = 0 correspond to the center of the
arena.

The second step consists in taking into account the symmetry of the environment. Due
to the circular symmetry of the environment, we assume that the animal perceives ap-
proximately the same stimulus if its planar configuration is rotated around the center of
the arena. Therefore, the two variables that contribute to the stimulus are the distance
from the center and the animal orientation.

More formally, we choose as reduced configuration space the two variables d, ϕ defined
as follows:

d = 1−
√

p2
1 + p2

2,

ϕ = θ − arctan 2(p2, p1)
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The angle ϕ, which we call axis angle, is the angle that the animal heading forms with the
axis that joins the animal position to the arena center. These are the two quantities that
are invariant to a rotation around the center of the arena.

The reduced configuration is defined as c = (d, ϕ) ∈ C. The bounds of the domain C
are as follows:

d ∈ [0.15, 1m],
ϕ ∈ [−180deg, 180deg].

We express angles in degrees. Note that all the operations on ϕ are to be executed modulo
360deg (ϕ = 180 and ϕ = −180 are the same point).

For the distance d, we have:

d =


1 fly at the center of the arena
0.15 limit for reliable data
0 fly landed on the wall.

We censor the data at around d ≥ 0.15. Albeit the tracking system returns data in the
whole domain of the arena, it is sometimes unreliable at d ≤ 0.15, as sometimes the
tracking cannot be obtained with full quality, notwithstanding the use of 11 cameras. In
the interval d ≥ 0.15, the data is always very reliable and of homogeneous quality.

For the axis angle, we have

ϕ =



−180◦ fly pointing directly away from the wall
−90◦ closest point on the wall is at the left
0 fly pointing towards the closest point on the wall
+90◦ closest point on the wall is at the right
+180◦ fly pointing directly away from the wall

Fig. 8.1a shows an example plot in these coordinate. Note that the discretization for d is
not uniform in [0, 1], but it is chosen such that each cell in the ϕ, d space corresponds to
an equal area in the p1, p2, θ space.

8.3. Fly-centric coordinate space. The c = (ϕ, d) space is the space where we collect
statistics and do all of our computations. For visualizing the results in a more intuitive
way, we use also another representation, which is just a change of coordinate, shown
in Fig. 8.1b. In this representation we use two “aligned” spatial coordinates xa, ya. The
animal always points “up”.

More formally, in these coordinates the dynamics of the animal is given by:

d
dt

xa(t) = 0,

d
dt

ya(t) > 0.

The change of coordinates is given by:[
xa

ya

]
=

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

] [
p1
p2

]
.

This means that the original configuration 〈p1, p2, θ〉 is rotated around the arena center to
obtain the configuration 〈xa, ya, 0〉.
8.4. On the choice of coordinates. When going from the configuration (ϕ, d) to (xa, ya),
there is a singularity at the center of the arena. Uniform cells in the (ϕ, d) domain appear
as elongated “pizza slices” in the (xa, ya) domain. This appears as a slight artifact when
the cells obtained in the (ϕ, d) domain are plotted in the (xa, ya) domain.

Note that all the operations done in the analysis are invariant to the choice of the coordi-
nates. However, once chosen one or the other, one cannot avoid a singularity in the change
of coordinates when converting between the two systems. Our rationale for choosing the
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(ϕ, d) domain is that these variables are behaviorally relevant even for environments with
different geometry (e.g., rectangular). This should make future comparisons with experi-
ments with different environment easier.

8.5. Nuisances in the analysis. Finally, we summarize all the approximations/limitations
of this analysis, which should be kept in mind when interpreting the results; Fig. 8.2 con-
tains a diagrams highlighting some of the factors.

(1) There might be unobservable states that influence behaviors. The contribution of
these states appears as a baseline event rate not explained by the feature.

(2) The reduced configuration space C might be too small to be a proxy for the true
configuration. If this is true, then the estimated features cannot be predictive of all
events.

For example, we ignore the altitude and the velocity of the fly.
(3) The dimension of the feature identified is bounded by the number of event classes

considered. To identify a feature of dimension n, one needs at least n + 1 events.
Therefore, the stimulus might contain more behaviorally-relevant information than
what is revealed just by the feature identified from the particular event classes con-
sidered.

(4) There are measurements errors:

(A) Axis angle (ϕ) / distance from
wall (d) plot.

close to the wall

pointing
towards 
the wall

arena center

pointing
away from 

the wall

pointing
away from 

the wall

(B) Fly-centric view (xa/ya plot).

xa

ya

0

0

FIGURE 8.1. Explanation of the two kinds of plots used.
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• The state x(t) is noisily observed, and the noise is not negligible with respect
to the partition of C.
• The events are not exactly detected.
The analysis is generally robust to this kind of noises, but still they are unmod-

eled phenomena.

stimuli

observable
events

behavioral 
models

unobservable
states

observable
states

noise

identified
features

non-identified
features

unobservable
events

Due to limited data, only 
some of the features can 
be reliably identified.

States are 
noisily 
observed.

Behaviors are 
noisily observed.

There might be unobservable 
behaviors that could 
discriminate additional features.

noise

Not all 
relevant  states 
are observable.

the influence of 
unobservable states 

is a disturbance in 
the analysis

FIGURE 8.2. Nuisances in the analysis
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9. COMPLETE PLOTS (GEOMETRIC SACCADE DETECTOR)

The next pages show the complete statistics using the events detected by the GSD al-
gorithm.

FIGURE 9.1. Time spent in each cell
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FIGURE 9.2. Mean speed (whole trajectory)
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FIGURE 9.3. Number of detected saccades (both left and right)
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FIGURE 9.4. Number of detected left saccades
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FIGURE 9.5. Number of detected right saccades
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FIGURE 9.6. Observed saccade rate (both left and right)
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FIGURE 9.7. Observed left saccade rate
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FIGURE 9.8. Observed right saccade rate
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FIGURE 9.9. Observed left saccade rate
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FIGURE 9.10. Observed right saccade rate
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FIGURE 9.11. Order of left saccade rate
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FIGURE 9.12. Order of right saccade rate
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FIGURE 9.13. Estimated feature
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FIGURE 9.14. Uncertainty of estimated feature
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FIGURE 9.15. Observed saccade rates as a function of the estimated feature
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(B) Confidence intervals
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FIGURE 9.16. Observed saccade rates as a function of the estimated feature
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FIGURE 9.17. Estimated event generation rates as a function of the estimated feature
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10. COMPLETE PLOTS (ANGULAR-VELOCITY BASED DETECTOR)

The next pages show the complete statistics using the events detected by the AVSD
algorithm.

FIGURE 10.1. Number of detected saccades (both left and right)
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FIGURE 10.2. Number of detected left saccades
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FIGURE 10.3. Number of detected right saccades

Number
of right

saccades

nk
R

(A) ϕ, d space

-180 ◦ -90 ◦ 0 +90 ◦ 180 ◦

axis angle ϕ

0.16
0.20

0.30

0.40

0.50

0.60
0.70

1.00

di
st

an
ce

 fr
om

 w
al

l d
 (m

)

0

199

(B) xa, ya space

0

199



1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059

DISCRIMINATING EXTERNAL AND INTERNAL CAUSES FOR HEADING CHANGES IN FREELY FLYING DROSOPHILA29

FIGURE 10.4. Observed saccade rate (both left and right)
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FIGURE 10.5. Observed left saccade rate
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FIGURE 10.6. Observed right saccade rate
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FIGURE 10.7. Observed left saccade rate
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FIGURE 10.8. Observed right saccade rate
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FIGURE 10.9. Order of left saccade rate

orderk(rL)
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FIGURE 10.10. Order of right saccade rate
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FIGURE 10.11. Estimated feature
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FIGURE 10.12. Uncertainty of estimated feature
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FIGURE 10.13. Observed saccade rates as a function of the estimated feature
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FIGURE 10.14. Observed saccade rates as a function of the estimated feature
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FIGURE 10.15. Estimated event generation rates as a function of the estimated feature
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