## Supplemental Materials Molecular Biology of the Cell

Liu et al.

| Mutant | Point mutations                   | Mutant | Point mutations                   |
|--------|-----------------------------------|--------|-----------------------------------|
| 1      | Q314A, Y315A, Q316A, S317A, L318A | 22     | E437A, Q440A, R441A               |
| 2      | L319A, N320A, S321A, Y322A        | 23     | Q444A, N448A, Y449A               |
| 3      | G323A, P325A, V326A, D327A        | 24     | H445A, C446A, S447A               |
| 4      | S330A, T332A                      | 25     | Q452A, E453A, L455A, R456A        |
| 5      | Q335A, L336A, T338A               | 26     | K459A, H461A, D462A               |
| 6      | K339A, T342A, N346A               | 27     | D462A, V465A, E466A               |
| 7      | T351S, A 352D, K353G, Y354Q       | 28     | K474A, L476A, P477A, V478A        |
| 8      | S358A, E359A, L360A               | 29     | E481A, M482A, H484A, N485A        |
| 9      | R365A, C367A, H371A               | 30     | K497A, P499A                      |
| 10     | Y368A, E372A                      | 31     | D503A, A504R                      |
| 11     | G375A, T377A, S380A               | 32     | E611A, R612A, K615A               |
| 12     | R376A, E379A                      | 33     | L613A, S616A, Y617A               |
| 13     | V381A, D382A, P383A, L384A        | 34     | R622A, K623A, N624A, Q626A        |
| 14     | G385D, G386E                      | 35     | D627A, S628A, K631A               |
| 15     | I390A, T394A, R397A               | 36     | H635A, F636A, N639A, H640A        |
| 16     | N398A, T400A                      | 37     | K642A, D643A, T644A, Q646A        |
| 17     | L406A, F407A, V408A, P409A        | 38     | S647A, E648A, V650A, G651A        |
| 18     | F413A, E414A, L415A, L416A        | 39     | K655A, S656A, S657A, L658A, L659A |
| 19     | R419A, R423A, E425A               | 40     | D660A, D661A, T664A               |
| 20     | E426A, P427A, L429A, R430A        | 41     | E667A, D668A, M669A               |
| 21     | E433A, L434A, H436A               | 42     | K674A, E675A, D678A               |

Table S1.Drp1 mutants used in yeast two-hybrid screen





(A) Multiple sequence alignment of Mff orthologs from human, mouse, fly, frog, and fish. Conserved residues are boxed in blue. Residues with 100% identity are highlighted in red with white text, and residues conserved in 70% of sequences are in red text. Notable regions included: Repeat 1 (R1) and Repeat 2 (R2) as previously identified (Gandre-Babbe and van der Bliek, 2008), an additional conserved region (R3), the coiled-coil domain (CC) and the transmembrane segment (TM). The Mff sequences used in this alignment are (RefSeq): Homo sapiens mitochondrial fission factor isoform b (NP 001263991.1), Mus musculus mitochondrial fission factor isoform 1, NP 083685.2, Danio rerio mitochondrial fission factor homolog A, (NP 001018402.2), Xenopus laevis mitochondrial fission factor homolog B, (NP 001085443.1), and Drosophila melanogaster transport and golgi organization 11, isoform A (NP 726111.1). Alignments were performed with MultAlin (Corpet, 1988) and formatted with ESPript (Robert and Gouet, 2014). (B) Disordered regions in Mff. DisMeta, the Disorder Prediction MetaServer (Huang et al., 2014), was used to predict disordered regions in mouse Mff isoform 1. The consensus among 8 different predictors is plotted against each residue. A consensus above 50% of these predictors (dotted line) is indicative of disorder. The diagram of mouse Mff isoform 1 is aligned with the plot.





(A) Auto-activation of Mff lacking the transmembrane region. Mouse Mff isoforms 1, 3 and 4 with the transmembrane domain deleted ( $\Delta$ TM) were expressed from the pGBDU vector as BD fusion proteins and tested against Drp1 expressed from the pGAD vector as AD fusion proteins. Growth on adenine-deficient plates, but not against AD or BD only, indicates an interaction. The growth of the Mff constructs against AD only on adenine-deficient plates (white asterisks) indicates auto-activation, making results with these constructs uninformative. (B) Diploid selection growths for the adenine-deficient plates in Figure 1E. (C) Lack of interaction between dynamin 2 and Mff. Mouse Dynamin 2, Drp1, MiD51, and Mff isoform 4 with the transmembrane domain deleted (Mff4 $\Delta$ CC) were expressed as BD fusion proteins and tested against Dynamin 2 expressed as an AD fusion protein. Dynamin 2 interacted with itself, but did not interact with Drp1, MiD51, or Mff4 $\Delta$ CC. (D) Diploid selection plates for the adenine-

deficient plates in Figure 3A. (E) Diploid selection plates for the adenine-deficient plates in Figure 3B.



## Figure S3. Phosphomimetic Drp1 does not interact with Mff61.

(A) GST pull-down assays for purified recombinant Drp1 $\Delta$ IB, Drp1 (full-length), Drp1 S579D (full-length), and Drp1 S579E (full-length) versus purified recombinant Mff61-GST or T7-GST. The Coomassie-stained SDS-PAGE gel shows the input protein (lanes 1-4) and eluates from the pull-downs (lanes 5-12). In lanes 5-12, the bottom row shows the isolated GST fusion proteins. The top row depicts the co-immunoprecipitated proteins.