
Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale
Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, Minlan Yu

California Institute of Technology, Microsoft Research, University of Southern California

Paper # 253

Abstract

As data analytics clusters grow in size and complex-
ity, providing scalable and predictable performance is
an important challenge. This requires scheduling hun-
dreds of thousands of tasks per second while still mak-
ing jobs immune to unforeseen interactions that cause the
emergence of straggler tasks. For these reasons, clusters
are (i) moving to decentralized designs where multiple
schedulers schedule tasks autonomously, and (ii) deploy-
ing straggler mitigation schemes that schedule specula-
tive copies for stragglers, picking the earliest completion.

In this paper, we design Hopper, the first decentral-
ized speculation-aware job scheduler that is provably op-
timal. We implement Hopper and show that it speeds
up low latency (sub-second) Spark jobs on a 200 ma-
chine cluster by up to 66% over state-of-the-art decen-
tralized schedulers. Further, since speculation-aware job
scheduling is an open problem even in centralized sched-
ulers, we also evaluate a centralized implementation of
Hopper inside the Hadoop and Spark schedulers. This
yields job speedups by 50% over all existing centralized
solutions.Thus, Hopper provides a unified speculation-
aware job scheduler for centralized and decentralized
schedulers that is provably optimal.

1 Introduction
Data analytics frameworks have been successful in real-
izing the promise of “scaling out” by automatically com-
posing user-submitted scripts into jobs of many parallel
tasks and executing them on large clusters. However, as
clusters increase in size and complexity, providing pre-
dictable and scalable performance for interactive ana-
lytics [1, 2] presents an important ongoing challenge. In-
deed, providing predictable and scalable performance is
acknowledged as a prominent goal in production clusters
at Google and elsewhere [3].

Scalability: With clusters scaling to tens of thousands
of machines, where each machine is equipped with tens
of compute slots for tasks, schedulers have to make hun-
dreds of thousands of scheduling decisions per second.
This requirement is about two orders of magnitude be-
yond the (already highly-optimized) centralized sched-
ulers adopted by current frameworks [4, 5, 6]. There-
fore, frameworks are beginning to adopt decentralized
designs [3, 7, 8] where multiple schedulers operate au-
tonomously, with each of them scheduling only a subset

of the jobs. Such designs are highly scalable since there
is no requirement to maintain central state.

Predictability: As the scale and complexity of clus-
ters increase, hard-to-model systemic interactions that
degrade performance of tasks become common [3, 9].
Consequently, many tasks become “stragglers”, running
slower than expected – nearly one-fifth of all tasks can
be categorized as stragglers in Facebook’s Hadoop clus-
ter and can run up to 8× slower than expected [9]. Strag-
glers lead to significant performance degradation, both in
terms of delay and variability. As a result, mitigating the
impact of stragglers has received widespread attention,
e.g., [9, 10, 11, 12, 13], and currently every major clus-
ter implements some form of straggler mitigation. The
most widely deployed solution is speculation, i.e., spec-
ulatively running extra copies of tasks that either have al-
ready, or are likely to become, stragglers, and then pick-
ing the earliest of the copies to finish. Speculation sig-
nificantly improves the predictability of task, and hence,
job completion times.

Providing scalability and predictability: In this pa-
per, we seek to design a decentralized job scheduler
that allocates resources to jobs while also accounting
for the speculative copies that will be spawned for strag-
gler mitigation. In fact, even current centralized sched-
ulers do not effectively coordinate job scheduling and
speculation. All existing schedulers take the require-
ments (number of slots/tasks) of jobs when they arrive
and allocate slots to them to minimize job completion
time [14, 15, 16, 17] and/or ensure fairness [18, 19].
Requirements of jobs, however, change due to dynamic
speculation of tasks. If the scheduler performs best-effort
speculation by treating speculative tasks as normal ones,
it often lacks the urgency required for speculative copies
to be effective. On the other hand, if the scheduler bud-
gets a fixed number of slots for speculation, it risks re-
serving too little so as to not speculate enough tasks, or
too much causing wastage of resources.

Our contribution is the design of a decentralized
speculation-aware job scheduler that provides both pre-
dictable and scalable performance. The scheduler we
propose, named Hopper, dynamically allocates slots
online to jobs, keeping in mind the speculation re-
quirements necessary for predictable performance while
maintaining scalability by avoiding the need to maintain
the state of all jobs centrally.

Hopper is based on structural (and simple) design

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216219362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

guidelines that provably guarantee optimal performance,
for both centralized and decentralized clusters. At the
core of its design is the idea of a virtual size for jobs,
which characterizes the point of diminishing returns for
the performance gains that come from allocating more
slots for speculation to a job versus speculating on other
jobs. Building on virtual job sizes, we also identify
different resource allocation strategies depending on the
cluster capacity constraints. When there are limited slots,
we ensure the smaller jobs are allotted their virtual job
sizes. When slots are not limited, we allocate them in
proportion to the virtual sizes.

Importantly, the core components of Hopper are easy
to decentralize, and so the decentralized version of Hop-
per nearly matches what is possible given perfect global
information. A key factor in this is that Hopper adopts a
“power of many choices” viewpoint to approximate the
global state, which is more appropriate than the tradi-
tional “power of two choices” viewpoint due to the fact
that stragglers create heavy-tailed task sizes. Addition-
ally, Hopper provides lightweight mechanisms to obtain
the cluster capacity constraints and virtual job sizes.

To demonstrate the potential of Hopper, we have built
both centralized and decentralized prototypes. The de-
centralized prototype of Hopper is built by augmenting
the recently proposed Sparrow scheduler [7] that is de-
centralized across many independent schedulers. Hop-
per incorporates many practical features of jobs into its
scheduling. It estimates the amount of intermediate data
produced by the job and accounts for their pipelining be-
tween phases. It also carefully balances data locality re-
quirements of tasks while staying faithful to the guide-
lines. The centralized prototype of Hopper is built inside
current centralized scheduling frameworks Hadoop [20]
(for batch jobs) and Spark [5] (for interactive jobs).

We have evaluated our decentralized and centralized
prototypes on a 200 node private cluster using workloads
derived from Facebook’s and Microsoft Bing’s produc-
tion analytics clusters. The decentralized implementa-
tion of Hopper reduces the average job completion time
by up to 66% compared to the Sparrow [7] decentralized
scheduler. The gains are consistent across speculation al-
gorithms, DAGs of jobs, and locality constraints, while
providing fine-grained control on the amount of unfair-
ness introduced. The centralized prototype of Hopper
also reduces average job completion time by 50% com-
pared to state-of-the-art centralized schedulers.

2 Challenges and Opportunities
In this section, we first briefly present details of exist-
ing schedulers, both how they allocate resources across
jobs and how they handle straggling tasks (§2.1). Then,
using simple illustrations, we illustrate the inefficiencies
that come from a lack of coordination between schedul-

ing and speculation. This highlights the challenges and
opportunities associated with speculation-aware schedul-
ing (§2.2). We then explain the additional challenges
for such a coordinated design in decentralized schedulers
(§2.3). Note that, to this point, even centralized systems
do not coordinate job scheduling and straggler mitiga-
tion, let alone decentralized designs.

2.1 Background on Cluster Schedulers

Job scheduling – allotting compute slots to jobs for their
tasks – is a well-studied topic, so here we describe only
two widely-deployed approaches. For simplicity, we
omit important practical factors like data locality [21],
placement constrains [22], and multi-phase (e.g., map
and reduce phases) jobs, though all existing solutions and
our design do incorporate them.

A policy of particular interest is Shortest Remaining
Processing Time (SRPT), which assigns slots to jobs in
ascending order of their remaining duration (or, for sim-
plicity, the remaining number of tasks). For example, in
Figure 1a, there are two jobs, job A with 4 tasks, and job
B with 6 tasks (we deal with the assignment of specula-
tive slots shortly). Under SRPT, four slots are assigned to
job A and the remaining two slots to job B. SRPT, in the
case of a single server, provably minimizes job comple-
tion time in a very strong sense [23]. In multiple server
setting, although SRPT is no longer optimal, it achieves
the best competitive ratio among online algorithms [14].

Of course, unfairness is a concern for SRPT given its
prioritization of small jobs at the expense of large jobs.
Fairness is a crucial issue in many clusters, and as a re-
sult, popular job schedulers [18, 19, 21, 22, 24] incor-
porate notions of fairness in dividing resources among
the jobs. Without loss of generality, we focus on the
so-called Fair Scheduler [18] that allocates the available
compute slots evenly among all the active jobs. Such
strong fairness naturally comes with performance ineffi-
ciencies compared to SRPT.

Importantly, all existing job schedulers (including the
above two) do not consider upfront the possibility of
tasks in the job straggling when allocating resources to
them. In cluster workloads today, nearly one-fifth of
tasks can be categorized as stragglers, and can run up
to 8× slower than the median task of the job [9]. The
dominant technique for straggler mitigation is to spawn
speculative copies for straggler tasks, and then pick the
results from the earliest among them (and kill the unfin-
ished copies) [10, 11, 13].1

2.2 Combining Scheduling and Speculation

We next show that if job schedulers and speculation
mechanisms operated jointly, there can be significant

1Speculation strategies mainly differ in when to spawn speculative
copies and how many speculative copies to spawn.

2

(a) Best-effort Speculation. (b) Budgeted Speculation
Figure 1: Combining SRPT scheduling and speculation for
two jobs A (4 tasks) and B (6 tasks) on a 6-slot cluster. The
+ suffix indicates speculation. Table 1 has task durations
for both the initial tasks and the speculative copies.

Figure 2: Hopper: comple-
tion time for jobs A and B are
3 and 6, respectively.

!" !#"!$"!%"!&"

'
()('"

*" %" %" %"

'
)+,"

$" $" $" $"

-" -#" -$" -%" -&" -." -/"

'
()('"

/" /" %" %" #" #"

'
)+,"

$" $" $" $" #" #"

Table 1: tinit and tnew are
task durations of the orig-
inal and speculative copies
of each task. trem = tinit –
elapsed time.

gains. We first explore two intuitive baseline approaches
for combining decisions on job scheduling and specula-
tion using illustrative examples. In these examples we
assume that stragglers can be detected after a task is run
for 1 time unit and that, at this point, speculation is per-
formed if the remaining running time (trem) is longer
than the time to run a new task (tnew). For simplicity, in
these examples we assume that tnew < tinit for all tasks,
though this will not be true in practice. Further, we as-
sume that schedulers do not preempt running tasks due
to the overheads and complexity.

Best-effort Speculation: A simple approach, which is
also the most common in practice, is to treat speculative
tasks the same as normal tasks. So, the job scheduler
allocates resources for speculative tasks in a “best effort”
manner, i.e., whenever there is an open slot.

Consider the example in Figure 1a with two jobs A (4
tasks) and B (6 tasks) that are scheduled using the SRPT
policy. The scheduler has to wait until time 3 to find an
open slot for the speculative copy of A1, despite detect-
ing it was straggling at time 1.2 Clearly, this approach
is problematic. In Figure 1a, if the job scheduler had al-
located a slot to A’s speculative task at time 1 (instead
of letting B use it), then job A’s completion time would
have been reduced, without slowing down job B (see Ta-
ble 1 for the task durations). In the interest of space, we

2At time 3, when A2 finishes, the job scheduler allocates the slot
to job A. This is because based on SRPT, job A’s remaining processing
time is smaller than job B’s. Job A speculates task A1 because A1’s
trem = tinit − 3 = 5 is larger than tnew = 2 (see Table 1).

omit a similar illustration for fair scheduling when both
jobs are allotted 3 slots each.

Budgeted Speculation: The main problem in the above
example is a lack of slots for speculation when needed.
Thus, an alternative approach is to have the job scheduler
reserve a fixed “budget” of slots for speculative tasks. In
this way, speculative tasks for stragglers do not have to
wait and can be run much earlier. Budgeting the right
size of the resource pool for speculation, however, is
challenging because of time-varying straggler character-
istics and fluctuating cluster utilizations. If the resource
pool is too small, it may not be enough to immediately
support all the tasks that need speculation. If the pool is
too large, resource are left idle.

Figure 1b illustrates budgeted speculation with two
slots (slot 5 and slot 6) being reserved for speculative
tasks. This, unfortunately, leads to slot 6 lying fallow
from time 0 to 3. If the job scheduler could have used
the wasted slot to run a new task, say B1, then job B’s
completion time would have been reduced. It is easy to
see that similar wastage of slots occur even with a fair
scheduler. Note that reserving one instead of two slots
will not solve the problem, since two speculative copies
are required to run simultaneously at a later time.

Speculation-aware Job Scheduling: Figure 2 shows
how joint decision making helps in the above example.
At time 0−3, we allocate 1 extra slot to job A (for a total
of 5 slots), thus allowing it to speculate task A1 promptly.
After time 3, we can dynamically reallocate the slots to
job B to optimize its speculation solution and reduce its
completion time. As a consequence, the average comple-
tion time drops compared to both the budgeted as well as
best-effort strategies. The joint design allowed idling of
slot 5 until time 1 (budgeting) but after task A1 finished,
it allocated all the slots. Further, in this example it can
easily be seen that the schedule in Figure 2 is optimal
(for completion time).

Thus, the goal of speculation-aware job scheduling
distills to dynamically allocating slots for speculation
based on the distribution of stragglers and cluster uti-
lization. In doing so, it should take care to not deviate
too far from fair allocations. Although straggler mitiga-
tion and job scheduling are heavily-studied problems in
both research and practice, devising a joint optimal solu-
tion is still an open problem even for centralized schedul-
ing. Our solution achieves 50% improvement even in the
centralized context compared to these prior proposals.

2.3 Decentralized Scheduling

Thus far we have discussed the challenges in joint
speculation-aware job scheduling in centralized sched-
ulers. To cope with growing sizes and jobs having
larger parallelism [25], clusters are adopting decentral-
ized schedulers (e.g., at Google [3], Cosmos [8] at Mi-

3

crosoft, Sparrow [7]). Briefly, decentralized schedulers
have many autonomous schedulers that assign tasks to
machines. When assignments on a machine collide, they
get queued and workers on machines process the queue
to schedule tasks (explained in detail in §4).

In addition to the challenges mentioned in §2.2, decen-
tralized speculation-aware scheduling has further con-
straints. Since the schedulers are autonomous, there is no
central state and thus, no scheduler has complete infor-
mation about all the jobs in the cluster. Further, decen-
tralized schedulers work by probing machines for their
tasks. Consequently, every scheduler has information
about only a subset of the cluster (to avoid overheads).
Therefore, the algorithm for dynamically allocating slots
for speculation has to function with incomplete informa-
tion about both the machines as well as jobs in the clus-
ter. Finally, decentralized schedulers are mainly critical
for interactive analytics (jobs running sub-second or in a
few seconds), thus precluding any time-consuming gos-
siping between schedulers.

In §3 and §4, we describe the details of our
speculation-aware job scheduler whose design is not only
optimal in a centralized setting but also can be decentral-
ized easily and efficiently.

3 Central Speculation-Aware Scheduling
In this section, we introduce the design of the optimal
speculation-aware job scheduler in a centralized setting
before extending the design to a decentralized setting in
§4. The design is motivated by guidelines that provably
lead to throughput-optimal performance. For ease of ex-
position, we do not include the details of the analyses
(they can be found in [26]), but instead provide a discus-
sion of guidelines that emerge from the analysis.

The key questions raised in the design of speculation-
aware job scheduling are the following. How many spec-
ulative copies to spawn for a task? How to prioritize be-
tween speculative and original copies across jobs, espe-
cially when slots in the cluster are limited? Finally, how
are the above decisions made within DAGs of dependent
tasks? We address all the above questions in this section.

At a high level, the design includes two key compo-
nents. The first is the notion of a “virtual job size”, which
we use to quantify the impact that job-specific factors
like straggler likelihood, the DAG of tasks, etc., have on
the speculation for a given job (§3.1). The second is the
dynamic capacity allocation to jobs using very different
scheduling rules depending on cluster utilization (§3.2).
We incorporate DAGs of tasks and fairness in §3.3.

3.1 Virtual Job Sizes

A crucial aspect of speculation-aware job scheduling is
understanding how much speculation is necessary to op-
timize a given job’s completion time. Our analysis leads

to the notion of “virtual job size” that is an estimate of
the original size of the job plus the speculative copies
that will be spawned. It is this “virtual job size” that
is crucial for determining how to divide capacity across
jobs, as we illustrate later in §3.2.3

The number of speculative copies spawned for tasks in
a job is naturally a function of the magnitude of the strag-
glers (i.e., the distribution of task durations). Task dura-
tions in production traces from Facebook and Microsoft
Bing [13] follow a heavy-tailed Pareto distribution, and
so the Pareto tail parameter β represents the likelihood of
stragglers. Roughly, smaller β means that, if a task has
already run for some time, there is higher likelihood of
the task running longer. In our traces 1 < β < 2.

Given these assumptions, we derive the “desired (min-
imum) level of speculation” for a job as 2/β. This level
of speculation is important because it is the point of di-
minishing return, i.e., speculating on a job above this
level results in a lower throughput improvement than the
improvement that would come from speculating on a job
whose allocation is below this level. So, for a scheduler
to be throughput optimal, no job should speculate above
this level until all jobs speculate at this level [26]. Note
that, overall, this ensures that more speculation is used
when stragglers are more frequent (smaller β).

Motivated by the above, we define the virtual size of a
job (Vi(t), at any time t) as its number of remaining tasks
(Ti(t)) multiplied by the 2/β, i.e., Vi(t) = 2

βTi(t).

An important consequence of defining virtual size of a
job in this way is that the allocation of slots to jobs can
consider speculation decisions through a simple transla-
tion (size→ virtual size); see line 2 in Pseudocode 1.

Note that this discussion has assumed homogeneous
β, but in our implementation β is learned and can be both
time-dependent and job-dependent.

3.2 Dynamic Resource Allocation

Given the virtual job sizes defined above, the next ques-
tion is how to allocate resources across jobs. There are
two cases that matter: whether the system is capacity
constrained or not.

(i) Slots in the cluster are constrained: If the sum of
the virtual sizes of jobs in the cluster is more than the
number of slots, then the key design challenge is to de-
cide how much capacity to trim from the allocations of
each job. Options vary from giving the limited slots to a
few jobs and allowing them to maintain the desired level
of speculation, to giving all jobs some sub-optimal num-
ber of slots to avoid starving any of the jobs. Our analysis
indicates the following guideline.

3Of course, straggler mitigation strategies typically spawn specula-
tive copies for a task only after observing its performance for a short
duration. We ignore this observation duration in analyses as it is rela-
tively negligible compared to the task’s duration in practice.

4

1: procedure HOPPER(〈Job〉 J , int S, float β)
totalVirtualSizes← 0

2: for each Job j in J do
j.Vrem = (2/β) j.Trem

. j.Trem: remaining number of tasks
. j.Vrem: virtual size

totalVirtualSizes += j.Vrem

3: SortAscending(J , Vrem)
4: if S < totalVirtualSizes then
5: for each Job j in J do

j.slots← bmin(S, j.Vrem)c
S ← max(S − j.slots, 0)

6: else
7: for each Job j in J do

j.slots← b(j.Vrem/totalVirtualSizes)× Sc

Pseudocode 1: Hopper (centralized) for jobs in set J with
S slots in the cluster and task distribution parameter β.

Guideline 1 If there are not enough slots for every job to
maintain its desired level of speculation, then, to achieve
throughput-optimality, slots should be dedicated to the
smallest jobs and each job should be given a number of
slots equal to its virtual size.
Intuitively, this results from the fact that task durations
are heavy-tailed, and thus the benefit from additional
speculation (up to the desired level) is larger than the
benefit from scheduling additional tasks. The scheduler
should process jobs in ascending order of virtual sizes
Vi(t) giving each job its desired speculation level until
capacity is exhausted (see lines 3− 5 in Pseudocode 1).

This guideline is similar to the spirit of SRPT; how-
ever (unlike SRPT) it crucially pays attention to the de-
sired speculation level of jobs when allocating capacity.
Note that prioritizing small jobs may lead to unfairness
for larger jobs. We discuss this issue in §3.3.

(ii) Slots in the cluster are plenty: If the sum of the vir-
tual sizes of jobs in the cluster is less than the number
of slots, then we have enough slots to allocate every job
its virtual size, while still having slots left over. Thus,
the key design challenge becomes how to divide the ex-
tra capacity among the jobs to make best use of it. The
scheduler could give all the extra slots to a few jobs in
order to complete them very quickly, or split the slots
evenly across jobs, or pick other options in between. Our
analysis leads to the following guideline.
Guideline 2 If there are enough slots to permit every
job to maintain its desired level of speculation, then, to
achieve throughput-optimality, the slots should be shared
“proportionally” to the virtual sizes of the jobs.
Specifically, jobs should be allocated slots proportional
to their virtual job sizes, i.e., every job i receives(

Vi(t)∑
j Vj(t)

)
S =

(
Ti(t)∑
j Tj(t)

)
S slots, (1)

where S is the number of slots available in the system
and Vi(t) is the virtual size; see line 7 in Pseudocode 1.

Note that this guideline is different in spirit from SRPT
– large jobs get allocated more slots than small jobs. The
reason for this is that every job is guaranteed the desired
level of speculation already. Extra slots are more valu-
able for large jobs due to the fact that they are likely to
incur more stragglers. In the context of the examples
in §2, the above guidelines prescribe how many slots to
budget at every point in time based on straggler probabil-
ities in the currently running jobs and cluster utilization.

3.3 Additional practical complexities

The design guidelines we have discussed so far are based
on single-phased jobs. In this section, we extend the
guidelines to handle DAGs of tasks and fair allocations.
DAG of Tasks: The characteristic of importance in jobs
with multi-phased DAGs is that phases that are not of-
ten separated by strict barriers but are rather pipelined.
Downstream tasks do not wait for all the upstream tasks
to finish but read the upstream outputs as the tasks fin-
ish [27]. Pipelining the reads is beneficial because the
upstream tasks are typically bottlenecked on other non-
overlapping resources (CPU, memory), while reading
takes network resources.

The scheduler’s goal in this setting is to balance the
gains due to overlapping network utilization while still
favoring upstream phases with smaller remaining num-
ber of tasks. We capture this using a simple weighting
factor, α per job, set to be the ratio of remaining work in
the downstream phase’s network transfer to the remain-
ing work in the upstream phase. We approximate the
remaining works using the amount of data remaining to
be read and written, respectively; the exact details of es-
timating α are deferred to §5.3. It suffices to understand
that α favors jobs with higher remaining communication
and lower remaining tasks in the current phase.

Given the weighting factor α, there are two key ad-
justments that need to be made to Hopper. First, in
Guideline 1, the prioritization of jobs based on the virtual
size Vi(t) should be replaced by a prioritization based
on max{Vi(t), V ′

i (t)}, where Vi(t) is the virtual remain-
ing number of tasks in the current phase and V ′

i (t) is the
virtual remaining work in communication in the down-
stream phase.4 Second, the virtual size itself needs to be
redefined as Vi(t) = 2

βTi(t)
√
αi to ensure throughput-

optimality [26]. This result is similar in spirit to the op-
timality of square-root proportionality in load balancing
across heterogeneous servers [28].
Incorporating Fairness: While fairness is an important
constraint in clusters to ensure basic predictability, con-
versations with datacenter operators reveal that it is not

4Results in [15] show that picking the max{Ti(t), T
′
i (t)} is 2-

speed optimal for completion times.

5

Scheduler2

Job Req

Req

Req …

…… …

Reqqqqq

Response

d probes

Worker

Worker

Worker

Worker

Scheduler1

Figure 3: Decentralized scheduling architecture.

an absolute requirement. Thus, we relax the notion of
fairness currently employed by cluster schedulers, e.g.,
[18]: if there are N(t) active jobs at time t, then each job
is assigned S/N(t) slots. To allow some flexibility while
still tightly controlling unfairness, we define a notion of
approximate fairness as follows. We say that a scheduler
is ε-fair if it guarantees that every job receives at least
S/N(t) − ε slots at all times t. The fairness knob ε can
be set as a fraction of S/N(t); ε → 0 indicates absolute
fairness while ε→ 1 indicates focus on performance.

Hopper can be adjusted to guarantee ε fairness in
a very straightforward manner. In particular, if a job
receives less than the its fair share, i.e., fewer than
S/N(t) − ε slots, the job’s capacity assignment is
bumped up to S/N(t)− ε. Next, the remaining slots are
allocated to the remaining jobs according to Guidelines
1 and 2. Note that this is a form of projection from the
original (unfair) allocation into the feasible set of allo-
cations defined by the fairness constraints. Further, note
that, while we have described the mechanism in terms of
“job fairness” the same approach can be used to ensure
approximate “user fairness” if desired.

Our experimental results (§6.3) highlight that even at
moderate values of ε, nearly all jobs finish faster then
they would have under fair scheduling. This fact, though
initially surprising, is similar to the conclusions about
SRPT-like policies in other contexts. For example, in sin-
gle server scheduling SRPT is intuitively unfair to large
job sizes but in reality improves the average response
time of every job size (when job sizes are heavy-tailed)
compared to fair schedulers [29, 30, 31].

4 Hopper: Decentralized Scheduling
In this section, we adapt the guidelines described in §3 to
decentralized schedulers. Decentralized schedulers are
growing in importance as cluster sizes grow. As we will
explain in this section, a key benefit of our guidelines in
§3 is that they are easy to decentralize.

Decentralized schedulers, like the recently proposed
Sparrow [7] and others [3, 8], broadly adopt the follow-
ing design (see Figure 3). There are multiple indepen-
dent schedulers each of which is responsible for schedul-
ing one or a subset of jobs; for simplicity, a single job

never spans across schedulers. Every scheduler assigns
the tasks of its jobs to machines in the cluster (referred
to as workers) that executes the tasks. The architecture
allows for an incoming job to be assigned to any of the
available schedulers, while also seamlessly allowing new
schedulers to be dynamically spawned.

A scheduler first pushes reservation requests for its
tasks to workers; each request contains the identifier of
the scheduler placing the request along with the remain-
ing number of unscheduled tasks in the job. When a
worker is vacant, it pulls a task from the corresponding
scheduler based on the reservation requests in its waiting
queue. In this framework, workers decide which job’s
task to run and scheduler for the corresponding job de-
cides which task to run within the chosen job. This de-
coupling naturally facilitates the design of Hopper, given
the interface between job scheduling and straggler miti-
gation in the design. Though we adopt the overall design
structure of Sparrow for the decentralization of Hopper,
it is important to note that Hopper’s design is fundamen-
tally different because it integrates straggler mitigation
based on the guidelines behind Hopper introduced in §3.

Decentralizing Hopper involves the following steps—
approximating worker-wide information at each sched-
uler (§4.1), deciding if the number of slots are con-
strained (§4.2), and calculating virtual sizes (§4.3).

4.1 Power of Many Choices

Decentralized schedulers have to approximate the global
state of the cluster—states of all the workers—since they
are unaware of other jobs in the system. A common way
to accomplish this is via the “power of two choices” [32].
This celebrated and widely used result highlights that,
in many cases, one nearly matches the performance of
an optimal centralized implementation by querying two
workers for their queue lengths, and choosing the shorter
of the queues. In fact, this intuition underlies the design
of Sparrow as well, which combines the idea with a form
of “late binding”; schedulers send reservation requests
for every task to two workers and then let workers pull
a task from the corresponding scheduler when they have
a free slot. We adopt “late binding”, as used in Sparrow,
but replace the “power of two choices” with the “power
of many choices”.

The reason for this change is that the effectiveness
of the “power of two choices” relies on having light-
tailed task size distributions. The existence of stragglers
means that, in practice, task durations are heavy-tailed
(see §3.1). Recent theoretical results have indeed proven
that when task sizes are heavy-tailed probing d > 2
choices can provide orders-of-magnitude improvements
[33]. The value in using d > 2 comes from the fact that
large tasks, which are more likely under heavy-tailed dis-
tributions, can cause considerable backing up of worker

6

�

��

��

��

� � �� �� ��

���	
����� ���	
������

���	
������ ���	
������

��������	
��
�
��
��
��
�
�
�
	�
�
	

�
�
	
�
��
��
�
�
	

�
��
�
	�
�
�
��
�
���
�

	�
�
�
�

�
��
�

(a) Number of probes, d

�

��

��

��

��

� � � � � ��

�	
������ �	
������

�	
������ �	
������

����������	
�
�
��
��
��
�
�
�
	�
�
	

�
�
	
�
��
��
�
�
	

�
��
�
	�
�
�
��
�
���
�

	�
�
�
�

�
��
�

(b) Number of refusals
Figure 4: The impact of number of probes and number of
refusals on Hopper’s performance.

queues. Two choices may not be enough to avoid such
backed-up queues, given the higher frequency of large
job sizes. More specifically, d > 2 allows the schedulers
to have a view of the jobs that is closer to the global view.

We use simulations in Figure 4a to highlight the ben-
efit of using d > 2 probing choices. Our simulation
considers a cluster of 50 schedulers and 10,000 workers
with job sizes and task durations as per Pareto distribu-
tion (§3.1). Job performance with decentralized Hopper
is within just 15% of the optimal centralized scheduler;
the difference plateauing beyond d = 4. Sparrow, that
uses d = 2, is 70% off from the optimal schedule. In
practice, however, there are overheads due to increased
message processing, which we will capture in §6.

4.2 Is the system capacity constrained or not?

In the decentralized setting, workers implement our
scheduling guidelines. Recall that Guideline 1 or Guide-
line 2 is applied depending on whether the system is con-
strained for slots or not. This necessitates comparing the
sum of virtual sizes of all the jobs and the number of slots
in the cluster, which is trivial in a centralized scheduler.
To keep overheads low, we avoid costly gossiping proto-
cols among schedulers regarding their states.

Instead, we use the following adaptive approach.
Workers start with the conservative assumption that the
system is capacity constrained (this avoids overload-
ing the system with speculative copies), and thus each
worker implements Guideline 1, i.e., enforces an SRPT
priority on its queue. Specifically, when a worker is idle,
it sends a type-0 response to the scheduler correspond-
ing to the reservation request of the job it chooses from
its queue. However, since the scheduler queues many
more reservation requests than tasks, it is possible that
its tasks may have all been scheduled (with respect to
virtual sizes). A type-0 response allows the scheduler to
refuse sending any new task for the job if the job’s tasks
are all already scheduled to the desired speculation level
(ResponseProcessing in Pseudocode 2). In its refusal, it
sends information about the job with the smallest virtual
size in its list which still has unscheduled tasks (if such

procedure RESPONSEPROCESSING(Response response)
Job j← response.job
if response.type = 1 then

Accept()
else

if (j.current occupied < j.virtual size) Accept ()
else Refuse()

Pseudocode 2: Scheduler Methods.

procedure RESPONSE(〈Job〉 J , int refused count)
. J : list of jobs in queue of the worker excluding

already refused jobs
if refused count ≥ 2 then . 2 is refuse threshold

j← J .PickAtRandom()
SendResponse(j, 1) . type-1 response

else
j← J.min(virtual size)
SendResponse(j, 0) . type-0 response

Pseudocode 3: Worker: choosing the next task to schedule.

an “unsatisfied” job exists).
Subsequently, the worker sends a type-0 response to

the scheduler corresponding second smallest job in its
queue, and so forth till it gets a threshold number of re-
fusals. Note that the worker avoids probing the same
scheduler more than once. Several consecutive refusals
from schedulers without information about any unsatis-
fied jobs suggests that the system is not capacity con-
strained. At that point, it switches to implementing
Guideline 2. Once it is following Guideline 2, the worker
randomly picks a job from the waiting queue based on
the distribution of job virtual sizes. If there are still un-
satisfied jobs at the end of the refusals, the worker sends
a type-1 response (which cannot be refused) to the sched-
uler whose unsatisfied job is the smallest. Pseudocode 3
explains the Response method.

The higher the threshold for refusals, the better the
view of the schedulers for the worker. Our simula-
tions (with 50 schedulers and 10,000 workers) in Figure
4b show that performance with two or three refusals is
within 10%− 15% of the optimal central scheduler.

4.3 Updating Virtual Job Sizes

Computing the remaining virtual job size at a scheduler
is straightforward. However, since the remaining vir-
tual size of a job changes as tasks complete, virtual sizes
need to be updated dynamically. Updating virtual sizes
accurately at the workers that have queued reservations
for tasks of this job would require frequent message ex-
changes between workers and schedulers, which would
create significant overhead in communication and pro-
cessing of messages. So, our approach is to piggyback
updates for virtual sizes on other communication mes-
sages that are anyway necessary between a scheduler and

7

a worker (e.g., schedulers sending reservation requests
for new jobs, workers sending responses to probe sys-
tem state and ask for new tasks). While this introduces a
slight error in the virtual remaining sizes, our evaluation
shows that the approximation provided by this approach
is enough for the gains associated with Hopper.

Crucially, the calculation of virtual sizes is heavily im-
pacted by the job specifics. Job specific properties of the
job DAG and the likelihood of stragglers are captured
through α and β, respectively, which are learned online.

5 Implementation Overview
We now discuss the decentralized and centralized imple-
mentations of Hopper.

5.1 Decentralized Implementation

Our decentralized implementation uses the Sparrow [7]
framework, which consists of many schedulers and
workers (one each on every machine) [34]. Arbitrarily
many schedulers can operate concurrently; though we
use 10 in our experiments. Schedulers allow submissions
of jobs using Thrift RPCs [35].

A job is broken into a set of tasks with their depen-
dencies (DAG), binaries and locality preferences. The
scheduler places requests at the workers for its tasks; if a
task has locality constraints, its requests are only placed
on the workers meeting its constraints [36, 5, 37]. The
workers talk to the client executor processes (e.g., Spark
executor). The executor processes are responsible for ex-
ecuting task binaries and are long-lived to avoid startup
overheads etc. Figure 6 in [7] explains the architecture.

Our implementation modifies the scheduler as well
as the worker. The workers implement the core of
the guidelines in §3—determining if the system is slot-
constrained and accordingly prioritizing jobs as per their
virtual sizes. This required modifying the FIFO queue at
the worker in Sparrow to allow for custom ordering of
the queued requests. The worker, nonetheless, augments
its local view by coordinating with the scheduler. This
involved modifying the “late binding” mechanism both
at the worker and scheduler. The worker, when it has a
free slot, works with the scheduler in picking the next
task as per Pseudocode 3. The scheduler deals with a re-
sponse from the worker as per Pseudocode 2. Note that
the scheduler does not “cancel” its pending requests even
after the job’s tasks have been scheduled (including vir-
tual size), because if the system is not slot-constrained, it
would be able to use more slots (as per Guideline 2).

5.2 Centralized Implementation

We also implement Hopper inside two centralized frame-
works: Hadoop YARN (version 2.3) and Spark (version
0.7.3). Hadoop jobs read data from HDFS [38] while
Spark jobs read from in-memory RDDs.

Briefly, these frameworks implement two level
scheduling where a central resource manager assigns
slots to the different job managers. When a job is sub-
mitted to the resource manager, a job manager is started
on one of the machines, that then executes the job’s DAG
of tasks. The job manager negotiates with the resource
manager for resources for its tasks.

We built Hopper as a scheduling plug-in module to the
resource manager. This makes the frameworks use our
design to allocate slots to the job managers. We also
piggybacked on the communication protocol between the
job manager and resource manager to communicate the
intermediate data produced and read by the phases of the
job to vary α accordingly; locality and other preferences
are already communicated between them.
Data Locality: Unlike the Sparrow model where locality
constraints are implicitly met by queuing the reservation
requests, centralized schedulers have more leeway since
they have a global view. This raises the following trade-
off between locality and our guidelines.

As per our guidelines, however, tasks of the next best
job to schedule may not have memory local slots avail-
able [39]. Our analysis shows that memory locality drops
from 98% of tasks with currently deployed techniques to
as low as 54% if scheduled purely based on our guide-
lines without regard to memory locality. Not only are the
tasks not achieving memory locality slowed down, the
ensuing increase in network traffic also slows down the
data transfers of intermediate phases.

To counter this, we devise a simple relaxation ap-
proach to balance adherence to our guidelines and local-
ity. In the ordering of jobs, instead of allotting slots to the
job with the smallest virtual size, we allow for picking
any of the smallest k% of jobs whose tasks can run with
memory locality on the available slots. Among these
smallest k% jobs, we pick the one which can achieve
memory locality for the maximum number of tasks. Fur-
ther, once we pick a job, we schedule all its tasks (so that
a few unscheduled tasks do not delay it) before resuming
to the scheduling order as per our guidelines. In practice,
a small value of k suffices (≤ 5%) due to high churn in
task completions and slot availabilities (evaluated in §6).

5.3 Estimating Intermediate Data Sizes

Recall from §3.3 that our scheduling guidelines recom-
mend scaling every job’s allocation by

√
α in the case of

DAGs. The purpose of the scaling is to capture pipelin-
ing of the reading of upstream tasks’ outputs.

The key to calculating α is estimating the size of the
intermediate output produced by tasks. Unlike the job’s
input size, intermediate data sizes are not known upfront.
We predict intermediate data sizes based on similar jobs
in the past. Clusters typically have many recurring jobs
that execute periodically as newer data streams in, and

8

produce intermediate data of similar sizes.
For multi-waved jobs [37, 25], Hopper can do better.

It uses the ratio of intermediate to input data of the com-
pleted tasks as a predictor for the future (incomplete)
tasks. Data from Facebook’s and Microsoft Bing’s clus-
ters (described in §6.1) shows that while the ratio of input
to output data size of tasks vary from 0.05 all the way to
18, the ratios within tasks of a phase have a coefficient-
of-variation of only 0.07 and 0.24 at median and 90th

percentile, thus lending themselves to effective learning.
Hopper calculates α as the ratio of the data remaining to
be read (by downstream tasks) over the data remaining
to be produced (by upstream tasks).

Hopper’s approach for pipelining phases easily com-
poses to DAGs of arbitrary depths since it deals with only
two phases at time, i.e., the currently running phase and
the downstream phase that is reading its output.

6 Evaluation
We evaluate our prototypes of Hopper – with both decen-
tralized and centralized scheduling – on a 200 machine
cluster. We evaluate Hopper’s overall gains in §6.2 and
design choices in §6.3. In §6.4 we evaluate the gains with
Hopper in a centralized scheduler. Key highlights:

1. Hopper’s decentralized prototype improves the av-
erage job duration by up to 66% compared to an ag-
gressive decentralized baseline that combines Spar-
row with SRPT. (§6.2)

2. Hopper’s balancing of fairness and performance en-
sures that only 4% of jobs slow down, and jobs
which slow down do so by ≤ 5%. (§6.3)

3. Hopper’s centralized prototype improves jobs by
50% compared to centralized SRPT. (§6.4)

6.1 Setup

Workload: Our evaluation is based on traces from Face-
book’s production Hadoop [20] cluster (3, 500 machines)
and Microsoft Bing’s Dryad cluster (O (1000) machines)
from Oct-Dec 2012. The traces capture over a million
jobs (experimental & production). The tasks have di-
verse resource demands of CPU, memory and IO, vary-
ing by a factor of 24×. To create our workload, we retain
the inter-arrival times of jobs, their input sizes and num-
ber of tasks, resource demands and job DAGs of tasks
whose lengths vary considerably.

To evaluate our prototype of decentralized Hopper, we
use in-memory Spark [5] jobs. These jobs are typical of
interactive analytics whose tasks vary from sub-second
durations to a few seconds. Since the performance of
any decentralized scheduler depends on the cluster uti-
lization, we speed-up the trace by appropriate factors,
and evaluate on utilizations between 60% and 90%, con-
sistent with Sparrow [7]. For the centralized Hopper’s
evaluation, we replay the original trace unchanged.

�
��
��
��
��
��
��
��

�� �� �� �� 	� 	�
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(a) Facebook

�

��

��

��

��

��

��

��

�� �� �� �� 	� 	�
�

���������	
�����

���������	
������
����
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������

(b) Bing
Figure 5: Hopper’s gains with cluster utilization.

�

��

��

��

��

��

��
�	
������ �	
������

����
������������ ! "

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

#�� $�� ��%

���

���%

���
&���

(a) Facebook

�

��

��

��

��

��

��
�	
������ �	
������

����
����������	�� �!

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

"�� #�� ��$

���

���$

���
%���

(b) Bing
Figure 6: Hopper’s gains by job bins over Sparrow-SRPT.

Cluster Deployment: We deploy our prototypes on a
200-node private cluster. Each machine has 16 cores,
34GB of memory, 1Gbps network and 4 disks. The
machines are connected using a network with no over-
subscription. Each experiment is a 6 hour run and it is
repeated five times; we report the median.
Baseline: We compare Hopper to the state-of-the-art de-
centralized scheduler: Sparrow [7], which performs de-
centralized scheduling using a “batched” power-of-two
choices. We also augment Sparrow to include an SRPT
heuristic to improve its performance. In short, when a
worker has a slot free, it picks the task of the job that has
the least unfinished tasks (instead of the standard FIFO
ordering in Sparrow). Finally, we augment Sparrow by
combining it with LATE [10] using “best effort” spec-
ulation (§2).5 The combination of Sparrow-SRPT and
LATE performs strictly better than Sparrow, and serves
as an aggressive baseline. Our improvements over this
aggressive benchmark highlight the importance of the
coordination between scheduling and speculation. Note
that comparisons between decentralized schedulers (in-
cluding Hopper) and a centralized baseline is not the fo-
cus of our work.

6.2 Hopper’s Improvements

In our experiments, unless otherwise stated, we set the
fairness allowance ε as 10%, probe ratio as 4 and spec-
ulation algorithm in every job to be LATE [10].6 The

5We do not consider “budgeted” speculation due to the difficulty of
picking a fixed budget.

6For tasks in the input phase (e.g., map phase), when the number of
probes exceeds the number of data replicas, we queue up the additional

9

�

��

��

��

��

���

� �� �� �� ��

��	
���

����

�
��	������������

��
���
�������������

�
�
�

(a) Distribution

�

��

��

��

��

��

� � � � � � 	

������ ����

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

������������������

(b) DAG
Figure 7: (a) CDF of Hopper’s gains, and (b) gains as the
length of the job’s DAG varies; both at 60% utilization.

values of the α (§5.3) and β (§3.1) are learned appropri-
ately. While the accuracy of these learnings is high, we
do not present the details due to space constraints.
Overall Gains: Figure 5 plots Hopper’s gains for
varying utilizations, compared to stock Sparrow and
Sparrow-SRPT. Jobs, overall, speedup by over 60% at
lower utilizations. The gains compared to Sparrow are
marginally better than Sparrow-SRPT at low cluster uti-
lizations. At high utilizations, Hopper’s gains compared
to both are similar. An interesting point is that Hopper’s
gains with the Bing workload in Figure 5b are a touch
higher (difference of 7%), perhaps due to the larger dif-
ference in job sizes between small and large jobs, allow-
ing more opportunity for Hopper. Gains fall to < 20%
when utilization is high, naturally because there is not
much room for any optimization at that occupancy.

The results so far highlight that Sparrow-SRPT is a
more aggressive baseline that Sparrow, and so we com-
pare only to it for the rest of our evaluation.
Job Bins: Figure 6 dices the gains by job size (num-
ber of tasks). Gains for small jobs are less compared to
large jobs. This is expected given that our baseline of
Sparrow-SRPT already favors the small jobs. Nonethe-
less, Hopper’s smart allocation of speculative slots offers
18% − 32% improvement. Gains for large jobs, in con-
trast, are over 50%. This not only shows that there is suf-
ficient room for the large jobs despite favoring small jobs
(due to the heavy-tailed distribution of job sizes [37, 9])
but also that the value of deciding between speculative
tasks and unscheduled tasks of other jobs increases with
the number of tasks in the job. With trends of smaller
tasks and hence, larger number of tasks per job [25], Hop-
per’s allocation becomes important.
Distribution of Gains: Figure 7a plots the distribution
of gains across jobs. While the median gains are just
higher than the average, there are > 70% gains at higher
percentiles. Encouragingly, gains even at the 10th per-
centile are 15% and 10%, which shows Hopper’s ability
to improve even worse case performance.

requests at randomly chosen machines. Consequently, these tasks may
run without data locality, and our results include such loss in locality.

0

20

40

60

80

100

Overall < 50 51-150 151-500 > 500

LATE +Hopper vs. LATE + Sparrow-SRPT

Mantri + Hopper vs. Mantri + Sparrow-SRPT

GRASS + Hopper vs. GRASS + Sparrow-SRPT

Job Bin (Number of tasks)

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 8: Hopper’s results are independent of the straggler
mitigation strategy.

DAG of Tasks: Hopper’s gains hold steady for jobs with
varying DAG lengths. The scripts in our Facebook (Hive
scripts [40]) and Bing (Scope [41]) workloads produce
DAGs of tasks which often pipeline data transfers of
downstream phases with upstream tasks [27]. The com-
munication patterns in the DAGs are varied (e.g., all-
to-all, many-to-one etc.) and thus the results also serve
to underscore Hopper’s generality. As Figure 7b shows,
Hopper’s gains hold with across DAG lengths.
Speculation Algorithm: We now experimentally eval-
uate Hopper’s performance with different speculation
mechanisms. LATE [10] is deployed in Facebook’s clus-
ters, Mantri [11] is in operation in Microsoft Bing, and
GRASS [13] is a recently reported straggler mitigation
system that was demonstrated to perform near-optimal
speculation. Our experiments still use Sparrow-SRPT as
the baseline but pair with the different straggler mitiga-
tion algorithms. Figure 8 plots the results.

While the earlier results were achieved in conjunction
with LATE, a remarkable point about Figure 8 is the sim-
ilarity in gains even with Mantri and GRASS. This indi-
cates that as long as the straggler mitigation algorithms
are aggressive in asking for speculative copies, Hopper
will appropriately allocate as per the optimal speculation
level. Overall, it emphasizes the aspect that resource al-
location across jobs (with speculation) has a higher per-
formance value than straggler mitigation within jobs.

6.3 Evaluating Hopper’s Design Decisions

We now evaluate the sensitivity Hopper to our key design
decisions: fairness and probe ratio.
Fairness: As we had described in §3.3, the fairness knob
of ε decides the leeway for Hopper to trade-off fairness
for performance. Thus far, we had set ε to be 10% of the
perfectly fair share of a job (ratio of total slots to jobs),
now we analyze its sensitivity to Hopper’s gains.

Figure 9a plots the increase in gains as we increase ε
from 0 to 30%. The gains quickly rise for small values
of ε, and beyond ε = 15% the increase in gains are flat-
ter with both the Facebook as well as Bing workloads.
Conservatively, we set ε to 10%.

An important concern, nonetheless, is the amount of
slowdown of jobs compared to a perfectly fair allocation

10

�

��

��

��

� � �� �� �� �� ��

�	
���

����

�	������������

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

(a) Sensitivity

�

�

��

��

� � �� �� �� �� ��
���	
�������

��
��
�
��
�
	

��
�
�

(b) (%) of Jobs Slowed

0

5

10

15

20

25

0 5 10 15 20 25 30

Average Worst

Fairness ɛ (%)

In
c
re

a
s
e

 (
%

)
in

J
o

b
 d

u
ra

ti
o

n
 o

f

S
lo

w
e

d
 J

o
b

s

(c) Magnitude (%) of Slowdown
Figure 9: ε Fairness. Figure (a) shows sensitivity of gains
to ε. Figure (b) shows the fraction of jobs that slowed down
compared to a fair allocation, and (c) shows the magnitude
of their slowdowns (average and worst).

0

10

20

30

40

50

60

2 2.5 3 3.5 4 4.5 5

Util=60% Util=70%

Util=80% Util=90%

Probe Ratio

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Figure 10: Power of d choices: Impact of the number of
probes on job completion.

(ε = 0), i.e., all the jobs are guaranteed their fair share
at all times. Figure 9b measures the number of jobs that
slowed down, and for the slowed jobs, Figure 9c plots
their average and worst case slowdowns. Note that fewer
than 4% of jobs slow down with Hopper compared to a
fair allocation at ε = 10%. The corresponding numbers
for the Bing workload are 3.8% of jobs slowing down.
In fact, both the average and worst case slowdowns are
limited at ε = 10%, thus demonstrating that Hopper’s
focus on performance does not unduly slow down jobs.
Probe Ratio: An important component of decentralized
scheduling is the probe ratio – the number of requests
queued at workers to number of tasks in the job. A higher
probe ratio reduces the chance of a task being stuck in
the queue of a busy machine, but also increases messag-
ing overheads. While the power-of-two choices [32] and
Sparrow [7] recommend a probe ratio of 2, we adopt a
probe ratio of 4 based on our analysis in §4.

Figure 10 confirms that higher probe ratios are indeed
beneficial. As the probe ratio increase from 2 onwards,

0

20

40

60

80

100
Hadoop

Spark

Job Bin

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

������� ��	 �
�

�	

�
�

�		

��		

(a) Gains

0

10

20

30

40

50

60

2 3 4 5 6 7 8

Hadoop

Spark

R
e

d
u

c
ti
o

n
 (

%
)

in

A
v
e

ra
g

e
 J

o
b

 D
u

ra
ti
o

n

Length of Job’s DAG

(b) DAG
Figure 11: Centralized Hopper’s gains over SRPT, overall
and broken by DAG length (Facebook workloads).

the payoff due to Hopper’s scheduling and straggler miti-
gation results in gains increasing until 4; at utilizations of
70% and 80%, using 3.5 works well too. At 90% utiliza-
tion, however, gains start slipping even at a probe ratio
of 2.5. However, the benefits at such high utilizations are
smaller to begin with.

6.4 Evaluating Centralized Hopper

To highlight the fact that Hopper is a unified design,
appropriate for both decentralized and centralized sys-
tems, we also evaluate Hopper in a centralized setting us-
ing Hadoop and Spark prototypes. Analogous to earlier
evaluations, we use a centralized SRPT scheduler with
LATE speculation as our baseline. Again, this an aggres-
sive baseline since it sacrifices fairness for performance.
Thus, improvements can be interpreted as coming solely
from better coordination of scheduling and speculation.

Figure 11 plots the gains for the two prototypes with
Facebook and Bing workloads. We achieve gains of
∼ 50% with the two workloads, with individual job
bins improving by up to 80%. The equally encourag-
ing performance of Hopper in the centralized and decen-
tralized settings highlight that it is a unified solution for
speculation-aware scheduling.

As with the decentralized setting, gains for small jobs
are lower due to the baseline of SRPT already favor-
ing small jobs. Between the two prototypes, gains for
Spark are consistently higher (albeit, modestly). Spark’s
small task durations makes it more sensitive to stragglers
and thus it spawns many more speculative copies. This
makes Hopper’s scheduling more crucial.

Two new issues crop up in the centralized design: how
DAGs of tasks are handled and how locality constraints
are handled. Thus, we discuss each below.
DAG of Tasks: Like in the decentralized implementa-
tion, Hopper’s gains hold consistently over varying DAG
lengths, see Figure 11. Note that there is a contrast be-
tween Spark jobs and Hadoop jobs. Spark jobs have fast
in-memory map phases, thus making intermediate data
communication the bottleneck. Hadoop jobs are less bot-
tlenecked on intermediate data transfer, and spend more

11

�

��

��

��

��

���

�

��

��

��

� � � � � ��

����� ����	�
�

��	
���������
�	��������

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(a) Hadoop

�

��

��

��

��

���

�

��

��

��

� � � � � ��

����� ����	�
�

��	
���������
�	���� ���

�
�
�
�
�
��
�
	

�
�

�	

�
�
�
��
�
�

�
�
�

�
�
��
��
�
	

�
�
�
�
����

	
�
�

(b) Spark

0
5

10
15
20
25
30
35

0 2 4 6 8 10

Hadoop Spark

M
a

p
 P

h
a

s
e

 G
a

in
 (

%
)

Locality Allowance, k (%)

(c) Map Phase

0

5

10

15

20

25

30

0 2 4 6 8 10

Hadoop Spark

R
e

d
u

c
e

 P
h

a
s
e

 G
a

in
 (

%
)

Locality Allowance, k (%)

(d) Intermediate Phases
Figure 12: Centralized Hopper: Impact of Locality Al-
lowance (k) (see §5.2) with Facebook workload.

of their time in the map phase [37]. This difference is
captured via α, which is learned as described in §5.3.
Data Locality: Recall from §5.2 that, while locality was
implicitly handled in Hopper’s decentralized scheduling,
the centralized version requires a relaxation heuristic, al-
lowing any k subsequent jobs (as a % of total jobs).

As Figures 12a and 12b show, a small relaxation of
k = 3% achieves appreciable increase in locality. Gains
steady for a bit but then start dropping beyond a k value
of 7%. This is because the deviation from the theoret-
ical guidelines overshadows any increase in gains from
locality. The fraction of data local tasks, naturally, in-
crease with k (Figures 12a and 12b, right axis).

An interesting aspect is that not all the gains with k
are attributed to increases in locality. To see this, we
slice the gains of individual phases—map phase, which
is directly affected by locality, and other intermediate
phases (e.g., reduce, join). Figure 12c, shows that the
map phases in Spark speed up significantly as locality
increases; Hadoop jobs’ map phases much less so. This
is because data locality is more significant in Spark’s in-
memory system as opposed to Hadoop’s disk-based stor-
age; fast networks make disk locality less useful [42].
Hadoop jobs gain by improvement in their other inter-
mediate phases due to lesser network contention during
intermediate data transfers (Figure 12d).

7 Related Work
The problem of stragglers was first identified in the orig-
inal MapReduce paper [12], and since then there have
been many works that propose to mitigate the strag-
glers by utilizing speculative copies, e.g., [9, 10, 11, 13].

These solutions, however, aim at mitigating the strag-
glers within each job, and lack coordination of resource
allocation among all concurrently running jobs.

Job scheduling, on the other hand, is often done via
algorithms that do not integrate straggler mitigation.
Specifically, FIFO [14], the default scheduler for Hadoop
and Spark, suffers from well known head-of-line block-
ing in multi-user cloud sharing settings. The inefficiency
of FIFO inspired two different approaches: (i) introduc-
ing fairness among jobs; (ii) prioritizing small jobs.

Based on the first approach, widely used solutions in-
clude the Fair Scheduler [18], Capacity Scheduler [24],
DRF [19], FLEX [43], and Quincy [21]. While these
schedulers guarantee fair sharing among jobs, fairness
comes with its performance inefficiencies, e.g., [44, 45].

On the second approach, the optimality of SRPT
scheduling in both single [23] and multi-server [14] set-
tings in queueing theory motivates a focus on prioritiz-
ing small jobs. Variations of SRPT that accommodate a
variety of workload properties have been proposed. For
example, incorporation of the dependency of two adja-
cent phases is highlighted in [15, 17]. Various queuing
models (such as two-stage flexible flow-shop model [46],
overlapping tandem queue model [15]) have also in-
spired new algorithmic designs. Importantly, no system
yet provides coordination of scheduling and speculation.

Another crucial challenge is that of scale. As clusters
scale to tens of thousands of machines, it is increasingly
desirable to have decentralized job scheduling. A variety
of decentralized designs have emerged to this point, e.g.,
[3, 7, 8]. The closest of these to the current work is Spar-
row [7], which combines “late binding” with the “power
of two choices” but does not consider stragglers. In fact,
no decentralized schedulers have considered stragglers
to this point. Thus, Hopper, represents the first decen-
tralized speculation-aware job scheduler.

8 Conclusions
This paper proposes a decentralized speculation-aware
cluster scheduler, Hopper. With launching speculative
copies of tasks being a common approach for mitigat-
ing the impact of stragglers, schedulers face a decision
between scheduling speculative copies of some jobs ver-
sus original copies of other jobs. While this question is
seemingly simple at first blush, we find that the prob-
lem is not only unsolved thus far, but also has signifi-
cant performance implications. From first principles, we
derive simple structural scheduling guidelines that are
provably optimal for both decentralized as well as cen-
tralized schedulers. We deploy our prototype Hopper
(built in Sparrow [7], Spark [5] and Hadoop [20]) on a
200 machine cluster, and see jobs speed up by over 50%
in both decentralized and centralized settings compared
to current state-of-the-art schedulers.

12

References
[1] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivaku-

mar, M. Tolton, T. Vassilakis. Dremel: Interactive Anal-
ysis of Web-Scale Datasets. In VLDB, 2010.

[2] Cloudera Impala. http://www.cloudera.com/content/
cloudera/en/products-and-services/cdh/impala.html.

[3] J. Dean and L. Barroso. The Tail at Scale. Communica-
tions of the ACM, (2), 2013.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.
Joseph, R. Katz, S. Shenker, I. Stoica. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center. In
USENIX NSDI, 2011.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. Franklin, S. Shenker, and I. Stoica. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing. In USENIX NSDI,
2012.

[6] The Next Generation of Apache Hadoop MapRe-
duce. http://developer.yahoo.com/blogs/hadoop/posts/
2011/02/mapreduce-nextgen/.

[7] Ousterhout K, P. Wendell, M. Zaharia, and I. Stoica. Spar-
row: Distributed, Low Latency Scheduling. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 69–84. ACM, 2013.

[8] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Par-
allel Processing of Massive Data Sets. Proceedings of the
VLDB Endowment, (2), 2008.

[9] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Effective Straggler Mitigation: Attack of the Clones.
In USENIX NSDI, 2013.

[10] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in Hetero-
geneous Environments. In USENIX OSDI, 2008.

[11] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-
ica, E. Harris, and B. Saha. Reining in the Outliers in
Map-Reduce Clusters Using Mantri. In USENIX OSDI,
2010.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the
ACM, 2008.

[13] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. GRASS: Trimming Stragglers
in Approximation Analytics. In USENIX NSDI, 2014.

[14] K. Pruhs, J. Sgall, and E. Torng. Online scheduling.
Handbook of scheduling: algorithms, models, and per-
formance analysis, pages 15–1, 2004.

[15] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint Opti-
mization of Overlapping Phases in MapReduce. Perfor-
mance Evaluation, 2013.

[16] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang . A
Throughput Optimal Algorithm for Map Task Scheduling
in Mapreduce with Data Locality. In ACM SIGMETRICS,
2013.

[17] Y. Wang, J. Tan, W. Yu, L. Zhang, X. Meng. Preemptive
ReduceTask Scheduling for Fast and Fair Job Comple-
tion. USENIX ICAC, 2013.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Job scheduling for multi-user
mapreduce clusters. In UC Berkeley Technical Report
UCB/EECS-2009-55, 2009.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fairness:
Fair Allocation of Multiple Resource Types. In USENIX
NSDI, 2011.

[20] Hadoop. http://hadoop.apache.org.

[21] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair Scheduling for Distributed
Computing Clusters. In ACM SOSP, 2009.

[22] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy:
Max-min fair sharing for datacenter jobs with constraints.
In Proceedings of EuroSys, pages 365–378, 2013.

[23] L. Schrage. A proof of the optimality of the shortest re-
maining processing time discipline. Operations Research,
16(3):687–690, 1968.

[24] Hadoop Capacity Scheduler. http://hadoop.apache.org/
docs/r1.2.1/capacity scheduler.html.

[25] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica. The Case
for Tiny Tasks in Compute Clusters. In USENIX HotOS,
2013.

[26] X. Ren. Speculation-aware resource allocation for cluster
schedulers. Master’s thesis, Caltech.

[27] Hadoop Slowstart. https://issues.apache.org/jira/browse/
MAPREDUCE-1184/.

[28] H. Chen, J. Marden, and A. Wierman. On the Impact of
Heterogeneity and Back-end Scheduling in Load Balanc-
ing Designs. In INFOCOM. IEEE, 2009.

[29] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve web
performance. ACM Transactions on Computer Systems
(TOCS), 21(2):207–233, 2003.

[30] A. Wierman and M. Harchol-Balter. Classifying schedul-
ing policies with respect to unfairness in an m/gi/1.
In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 238–249. ACM, 2003.

13

[31] A. Wierman. Fairness and scheduling in single server
queues. Surveys in Operations Research and Manage-
ment Science, 16(1):39–48, 2011.

[32] A. Richa, M. Mitzenmacher, and R. Sitaraman. The
power of two random choices: A survey of techniques and
results. Combinatorial Optimization, 9:255–304, 2001.

[33] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load
balancing with general service time distributions. In Pro-
ceedings of Sigmetrics, pages 275–286, 2010.

[34] Sparrow. https://github.com/radlab/sparrow.

[35] Apache Thrift. https://thrift.apache.org/.

[36] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat,
C. R. Das. Modeling and Synthesizing Task Placement
Constraints in Google Compute Clusters. In ACM SOCC,
2011.

[37] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. PACMan: Coordinated Memory Caching for Parallel
Jobs. In USENIX NSDI, 2012.

[38] Hadoop Distributed File System. http://hadoop.apache.
org/hdfs.

[39] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Green-
berg, I. Stoica, D. Harlan, E. Harris. Scarlett: Coping
with Skewed Popularity Content in MapReduce Clusters.
In EuroSys, 2011.

[40] Hive. http://wiki.apache.org/hadoop/Hive.

[41] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Par-
allel Processing of Massive Datasets. In VLDB, 2008.

[42] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica.
Disk Locality Considered Irrelevant. In USENIX HotOS,
2011.

[43] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K. Wu, and A. Balmin. FLEX: a Slot Alloca-
tion Scheduling Optimizer for MapReduce Workloads. In
Middleware 2010. Springer, 2010.

[44] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling. In ACM EuroSys, 2010.

[45] J. Tan, X. Meng, and L. Zhang. Delay Tails in MapRe-
duce Scheduling. ACM SIGMETRICS Performance Eval-
uation Review, 2012.

[46] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. On
Scheduling in Map-reduce and Flow-shops. In ACM
SPAA, 2011.

14

