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Università di Roma Tor Vergata, CNISM, and European Theoretical Spectroscopy Facility

(ETSF), Via della Ricerca Scientifica 1, 00133 Roma, Italy

E-mail: jcg@mit.edu

∗To whom correspondence should be addressed
†Department of Materials Science and Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
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Methods

We performed ab initio DFT, GW, and Bethe Salpeter calculations using the Vienna Ab Initio Sim-

ulation Package (VASP),1,2 as detailed below.

TMD, graphene, and bilayer structures. Monolayer TMD were modeled using experimen-

tal lattice constants as in ref.,3 and further relaxed within DFT. This approach is known to give

accurate physical properties, such as direct DFT band gaps as well as accurate Raman shifts.3,4

For monolayer graphene, a relaxed lattice constant of 2.48Å was used. The bilayer structures were

relaxed using the van der Waals functional from Grimme5 as implemented in the VASP code. For

the MoS2/graphene bilayer, a 4x4 hexagonal supercell of MoS2 with experimental lattice con-

stants was placed at a van der Waals distance of 3.3Å from a 5x5 hexagonal supercell of graphene,

adopting the so-called TS stacking with C atoms on top of S atoms in MoS2 (see ref.6). To achieve

in-plane structural matching, a 1.3% strain was imposed in the graphene layer. We have verified

that 1) this strain does not affect the bandstructure of graphene, and 2) the relaxed and unrelaxed

bilayer structures yield the same bandstructures and Schottky barriers to within a few meV. The

MoS2/WS2 bilayer unit cell consisted of stacked three-atom unit cells of the two monolayers. The

experimental lattice parameters of MoS2 were adopted, and the two layers were arranged with AB

stacking (also called C7 stacking, see ref.7). Since the experimental lattice constants of MoS2 and

WS2 are almost identical,3 this choice led to a negligible strain in the WS2 layer. In both the mono-

layer and bilayer cases, spurious interactions with the image systems were avoided by using >18Å

vacuum in the layer-normal direction, consistent with previous work3,8,9 and leading to converged

results at all levels of theory used in this work.

DFT calculations. Commonly employed ab initio calculations in the framework of density

functional theory (DFT) are limited to quantities related to the electronic ground state, whereas

excited state phenomena − such as photoabsorption − need more accurate treatment of electron-

electron and electron-hole correlation.10,11 DFT is employed in this work within the GGA approx-
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imation as a starting point to compute the Kohn-Sham wavefunctions and eigenvalues in unit cells

of monolayer MoS2, MoSe2, and WS2, using a plane wave basis set and periodic boundary condi-

tions. Similar calculations have been previously shown to yield qualitatively correct bandstructures

for monolayer TMD, featuring a direct gap at the K point responsible for the optical absorption

onset.8,12,13 We employ the GW method14 and the Bethe-Salpeter equation (BSE)11 as two sub-

sequent levels of theory to obtain the macroscopic dielectric tensor including an accurate account

of electron-electron and electron-hole interactions. We apply the GW method perturbatively, using

so-called G0W0 calculations to obtain first-order corrections to the DFT eigenvalues, suitable as a

starting point for BSE. We employed the PBE exchange-correlation functional15 in combination

with projector augmented wave (PAW) type pseudopotentials as implemented in the VASP pack-

age.16,17 The GW version of the PAW pseudopotentials supplied by VASP was employed for all

atoms, providing accurate scattering properties at high energies.2 In the study of the TMD materi-

als, the PAW pseudopotentials represented the nuclei plus core electrons up to the 3d shell for Mo

(thus explicitly including the 4s and 4p semicore electrons in the calculation) and up to the 5s shell

for W (thus including the 5p semicore electrons in the calculation), while for S and Se atoms only

the s and p electrons of the outermost shell were included. While the explicit inclusion of semicore

electrons for the transition metals Mo and W does not affect the DFT bandstructure, it is crucial

to obtain a correct treatment of the exchange part of the self-energy at the G0W0 level of theory.

We have verified for the case of MoS2 that neglecting to include such semicore electrons in the

calculation leads to erroneous G0W0 corrections with strong~k-dependence, and to indirect quasi-

particle gaps due to inadequate treatment of the exchange energy; while all the calculations shown

here were performed using the VASP code, these test calculations without semicore electrons were

carried out using the Yambo code18 coupled to DFT calculations using Quantum Espresso.19We

employed kinetic energy cutoffs of up to 450 eV, and obtained spin-orbit split bandstructures by

using the LSORBIT tag in VASP with quantization axis in the plane-normal direction. We first per-

formed a self-consistent calculation using a 32x32x1 Γ-centered Monkhorst-Pack20~k-point grid

and with a strict tolerance of 10−8eV on the total energy to obtain an accurate ground state charge
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density. Subsequently, we performed non-selfconsistent calculations with Γ-centered~k-point grids

of up to 24x24x1 and over 170 empty bands to obtain Kohn-Sham wavefunctions and eigenvalues

as a starting point for optical absorption calculations using the GW-Bethe Salpeter method (see

below).

For the calculation of workfunctions and Schottky barriers, we averaged the Hartree potential in the

layer-normal direction and computed the Fermi energy for the monolayer or bilayer under study.

The workfunction was obtained as the difference between the vacuum Hartree potential and the

Fermi energy. The Schottky barrier at the MoS2/graphene interface was computed as the differ-

ence between the Fermi energy of the bilayer and the VBM energy in an isolated MoS2 monolayer,

corrected by the interface dipole potential as detailed in the work by Shan et al.21 This approach is

analogous to obtaining the Schottky barrier from the PDOS, by taking the difference of the Fermi

energy and the VBM in the bilayer calculation. For the MoS2/WS2 interface, the type-II alignment

was determined from the nature of the VBM and CBM in the PDOS, and would also be found at

the GW and BSE levels of theory as explained in the main text.

GW-Bethe Salpeter calculations. GW quasiparticle calculations were carried out using the

perturbative (“one-shot”) G0W0 approximation, starting from PBE Kohn-Sham wavefunctions and

eigenvalues as described above. The energy cutoff for the response function was set to 150 eV, and

increasing it up to 400 eV did not change the results for a fixed number (184) of empty bands. Our

convergence study for TMD monolayers within the VASP implementation of GW is consistent with

previous work,8 and our computed GW bandstructures and energy gaps agree with the literature.8,9

Calculations of the macroscopic dielectric tensor within the BSE framework were performed start-

ing from G0W0 eigenvalues and PBE Kohn-Sham wavefunctions (since the perturbative G0W0

scheme used here does not update the wavefunctions). A 16x16x1 Γ-centered Monkhorst-Pack20

~k-point grid was used in the calculation of the BSE spectra in Figure 1, and spin-orbit effects

were included as explained above. We have verified carefully the convergence of the absorption

spectrum with respect to the density of the~k-grid. We observed only slight variations between a

12x12x1 grid and the 16x16x1 grid employed for the spectra in Figure 1. Separate convergence
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tests of the BSE spectra were performed without spin-orbit employing~k-grids of up to 24x24x1,

confirming that an adequate convergence can be achieved for~k-grids of 12x12x1 and denser. The

BSE Hamiltonian was formed using the six highest valence bands and the eight lowest conduction

bands using the Tamm-Dancoff approximation, and the dielectric tensor was output on a fine en-

ergy grid (2,000 points) up to 8 eV. Our methodology is similar to ref.,8 but employs significantly

denser k-grids in the Brillouin zone leading to full convergence of the dielectric matrix. For the

three TMD monolayers, we observe optical gaps slightly exceeding the experimental value, likely

due to finite temperature effects in the experiment, or to self-interaction errors in the Kohn-Sham

orbitals.8 To predict the correct absorption at room temperature, we limited ourselves to slightly

red-shifting the optical spectrum by ∼100−200 meV to match the experimental absorption onset

of each monolayer TMD studied here. This approach is sufficiently accurate for the scope of this

work, as confirmed by the agreement with the experimental data (see Figure 1b).

Absorbance calculations. The procedure outlined above yields the imaginary part of the di-

electric tensor ε2(ω) as a function of photon frequency ω , at energies relevant for interband optical

transitions. Starting from ε2(ω), the monolayer absorbance A(ω) of monolayer TMD, defined as

the fraction of photons of energy E = h̄ω absorbed by the monolayer, is obtained using an approx-

imation analogous to what used by Yang et al. for graphene:22

A(ω) =
ω

c
ε2 ∆z (1)

where c is the speed of light, and ∆z is the size of the simulation cell in the layer-normal direc-

tion. This formula can be seen as a Taylor expansion for small thickness ∆z→ 0 of the absorbance

A = 1− e−α ·∆z for a flat layer of a bulk material with thickness ∆z and absorption coefficient23

α(ω) = ε2ω

cn , with refractive index n = 1 due to the presence of vacuum in the vast majority of

the simulation cell. Equivalently, it can be seen as deriving from the polarizability per unit area,22

or from the optical conductivity of the monolayer. The absorbance defined with this approach

is independent of the simulation cell size, since ε2 ∝ (∆z)−1 when a large vacuum is introduced.
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The ε2 and absorbance for the MoS2/graphene interface were computed within DFT using the

independent-particle (DFT-RPA) approximation (rather than BSE), since the large size of the sys-

tem (616 valence electrons) makes it impossible to apply BSE calculations in this case. Since

DFT-RPA spectra usually underestimate the absorbance at low energies near the onset (as ob-

served here, see Figure S1), our approach ensures a conservative estimate of Jsc and PCE for the

MoS2/graphene interface. This is confirmed by the fact that the sum of the BSE absorbances leads

to a 30% higher Jsc current than the DFT-RPA result, as discussed in the main text.
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Supplementary Figures

Figure S1. Absorbance of monolayer MoS2 computed using different approximations. Shown are

the DFT independent particle random-phase approximation (DFT-RPA) and the Bethe-Salpeter

equation (BSE) absorbance spectra. The BSE theory includes excitonic effects, which lead here to

a significant increase in the absorbance at visible photon energies. For the sake of comparing the

two absorbance spectra, the DFT-RPA spectrum was shifted by +200 meV and the BSE by −200

meV (see above) to match the experimental gap of monolayer MoS2.
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Figure S2. Absorption coefficient α for bulk MoS2. The formula α(ω) = ω·ε2(ω)
c·n(ω) was employed,

where ε2(ω) and n(ω) were both computed using BSE. The spectrum was shifted by −200 meV

similar to the MoS2 monolayer case. Values of α = 1−6 ·105 cm−1 are found at visible energies

of up to 2.5 eV, in excellent agreement with the measured absorption spectrum for bulk MoS2 (see

ref.24).
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