
Supplementary Materials 

Hierarchical Nanolattice Design 

The hierarchical nanolattices fabricated in this work are designed using a recursive method that 

combines different unit cells into hierarchical geometries. The design process takes place as follows: 1) 

two (unique or identical) unit cell geometries are prescribed, 2) one unit cell is designated 1st order and 

the other 2nd order, and 3) the 1st order unit cell is patterned along the length of the 2nd order unit cell 

with N repeating units, resulting in a fractal-like geometry (Fig. S1). These steps can be repeated 

iteratively to create a fractal of any order, and the method is sufficiently general that it can be repeated 

for a wide range of unit cell geometries (Fig. S2). For the samples tested in this work, 1st order axial 

support beams were added along the length of the 2nd order beam to ensure that the hierarchical beams 

formed a stretching-dominated geometry.  

 
Figure S1: Hierarchical nanolattice design project showing the construction of an octahedron-of-octahedra unit cell. 

 
Figure S2: Hierarchical nanolattice geometries showing the versatility of the design process. The different 

geometries shown are: a) a cage of crosses, b) a cube of reinforced-BCC unit cells, c) an octet-truss of octahedra, 

and d) a cuboctahedron of embedded-octahedra. 

Fabrication Details 

Hierarchical nanolattices were fabricated out of solid polymer, polymer-ceramic core-shell composite, 
and hollow ceramic. There are three unique steps involved in the fabrication of these samples: 1) writing 
of a polymer sample, 2) coating of that polymer sample with a ceramic thin film, and 3) removal of the 
polymer. Each material system tested in this work represents one of the steps involved in the fabrication 
process. 

Fabrication of all samples begins with the writing of a polymer sample out of photoresist (IP-Dip 
780) using two-photon lithography (TPL) direct laser writing (DLW) in a Photonic Professional DLW 
system (Nanoscribe GmbH). Samples are written using laser powers in a range from 6-12mW and a 
writing speed of ~50µm/s. The minimum writing spot size (voxel) is an ellipsoid with a width between 
150-600nm and approximately a 4:1 height to width aspect ratio. The laser power is used to control the 
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diameter of the tubes, and the speed varies slightly during the writing process to control the quality of 
the structure. In the samples, individual 1st order beams are written with three lines – one central line 
and one on either side with a 150µm offset perpendicular to the axis of the beam – to reduce the 
ellipticity of the beam.  

After a polymer scaffold is written, samples are conformally coated with 20nm of aluminum 
oxide (alumina) using atomic layer deposition (ALD). Deposition is done at 150°C in a Cambridge 
Nanotech S200 ALD system using the following steps: H2O is pulsed for 15ms, the system is purged for 
20s, trimethyl aluminum (TMA) is pulsed for 15ms, the system is purged for 20s, and the process is 
repeated. The carrier gas is nitrogen, which is used at a flow rate of 20sccm (standard cubic centimeters 
per minute). The process was repeated for 200 cycles to obtain the desired thickness coating. The 
thickness of the coatings was verified using spectroscopic ellipsometry with an alpha-SE Ellipsometer 
(J.A. Wollam Co., Inc.). 

After deposition, a focused ion beam (FIB) (Versa 3D DualBeam, FEI) is used to mill away 
selected regions of the sample to expose the polymer to air. Once the polymer is exposed, samples are 
placed into an O2 plasma etcher (Zepto, Diener GmbH) for between 30-60 hours at a pressure of 0.5 
mbar and at 100W of power in order to fully remove the polymer. It is possible to determine whether 
the polymer has been fully etched away by looking for any contrast change in the beams using a 
scanning electron microscope (1). 

Polymer Constituent Properties 

Mechanical characterization of the IP-Dip polymer was performed through micropillar 
compression experiments in a nanomechanical testing device (TI 950 Triboindenter, Hysitron Inc.). 
Micropillars were compressed using a 20µm diamond flat punch tip to 10-15% strain at a rate of 10-3 s-1 
then held at their peak displacement for 50 s before unloading. Samples were fabricated out of IP-Dip 
photoresist using an identical DLW method to that described above for hierarchical nanolattices. 
Samples were fabricated and tested with diameters between 2-10µm, and length-to-diameter (L/D) 
ratios between 2 and 4.  

For each micropillar, stress-strain data was obtained and used to determine the Young’s 
modulus (𝐸) and compressive yield strength (𝜎𝑦). The Young’s modulus is calculated using the slope of 

the linear regime of the stress-strain curve. The compressive yield strength is calculated by finding the 
intersection of the stress-strain data with a 0.2% strain offset curve from the linear regime. Three 
representative data sets along with their corresponding yield strength and stiffnesses are shown in 
Figure S3. The stress-strain data has an initial toe region followed by a linear regime and then a plastic 
flow region. The toe region is likely due to improper alignment or contact of the indenter tip with the 
sample, and was consequently ignored in the calculation of the Young’s modulus. Based on the stress-
strain data, we found that the IP-Dip polymer had an average modulus of 𝑬 = 𝟐. 𝟏 ± 𝟎. 𝟑 𝑮𝑷𝒂 and an 
average yield strength of 𝝈𝒚 = 𝟔𝟕. 𝟐 ± 𝟒. 𝟕 𝑴𝑷𝒂 (Fig. S3).  

 

 

 



 
Figure S3: Representative stress-strain data for each slenderness ratio tested (L/D = 2, 3, 4) with various radii. The 

arithmetic mean of the Young’s modulus (E) and compressive yield strength (σy) are plotted. The inset image shows 

a set of pre-compression micropillar samples (scale bar: 50 µm). 

Composite Constituent Properties 

The properties of the composite were calculated using a Voigt model rule of mixtures, with the 

properties of the ALD Al2O3 taken from (Refs. 2–6). In the 2nd order half cells, the polymer beams have 

dimensions of 𝑎 = 753𝑛𝑚 and 𝑏 = 317𝑛𝑚, where 𝑎 and 𝑏 are the major and minor radii of the ellipse, 

respectively. The ceramic shell has a thickness of 𝑡 = 20𝑛𝑚; the volume fraction of polymer in the 

beams can be calculated to be 𝑓 = 𝐴𝑝𝑜𝑙𝑦𝑚𝑒𝑟/(𝐴𝑝𝑜𝑙𝑦𝑚𝑒𝑟 + 𝐴𝑐𝑒𝑟𝑎𝑚𝑖𝑐) = 91.6%. Given the polymer 

properties of 𝐸𝑝 = 2.1 ± 0.3 𝐺𝑃𝑎 and 𝜎𝑦𝑝 = 67.2 ± 4.7 𝑀𝑃𝑎, and the ceramic properties of 

𝐸ℎ = 165 𝐺𝑃𝑎 and 𝜎𝑦ℎ = 5.2 𝐺𝑃𝑎, we can obtain the core shell composite properties to be 𝑓𝐸𝑝 +

(1 − 𝑓)𝐸ℎ = 𝑬𝒄 = 𝟏𝟓. 𝟖 𝑮𝑷𝒂 and 𝑓𝜎𝑦𝑝 + (1 − 𝑓)𝜎𝑦ℎ = 𝝈𝒚𝒄 = 𝟓𝟎𝟗 𝑴𝑷𝒂. 

Relative Density Calculations 

The relative density of each hierarchical sample was determined using a representative CAD 
model (SOLIDWORKS, Dassault Systèmes). The model enabled quick calculations for solid and hollow 
samples. Figure S4 illustrates the design process of the CAD model.  
 



 
Figure S4: Illustration of the design approach used to construct a CAD model. The above images show the 

construction of a 2
nd

 order octahedron-of-octets unit cell. (1) Unique nodes that make up the unit cell. (2) Nodes are 

minimally patterned to create a unit cell beam. (3-4) Assembled nodes are patterned to create the full geometry. 

(5) Boundaries are cut to form the unit cell. (6) Finished unit cell whose volume properties can be measured. 

Failure Mode Formulation 

Failure in hierarchical nanolattices primarily initiated in 1st order beams. In polymer samples, failure 

occurs via beam (Euler) buckling, while in composite samples failure occurs via brittle fracture. The 

continuous and serrated flow behavior of the hollow nanolattices indicates the occurrence of Euler 

buckling and shell buckling, the combination of which gives rise to a ductile-like deformation with a near 

100% recovery. Large drops in the stress generally correspond to large Euler buckling events; smaller 

drops are more likely to coincide with localized shell buckling events. The failure criterion for beam 

buckling and shell buckling in an elliptical beam with a semi-major axis 𝑎, semi-minor axis 𝑏, thickness 𝑡, 

and length 𝐿 are 
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Here, 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio of the material. By equating the failure 

criterion for beam buckling and shell buckling, it is possible to find a transition between the two. Here, 

we quantify the transition using a critical dimensionless parameter 𝑆𝐵 as 
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If the critical buckling transition value for a beam is 𝑆𝐵 ≤ 12.2, shell buckling will be the dominant 

failure mechanism over beam buckling, and if 𝑆𝐵 > 12.2, beam buckling will be the dominant failure 

mechanism. In the hollow samples tested in this work, the 𝑆𝐵 values range from 14.8 to 33.3, meaning 

that all the samples tested here are in a beam buckling failure mode regime.  

Previous work by Meza et. al. reported that hollow Al2O3 nanolattices exhibit ductile-like behavior with 

near complete recoverability when the wall-thickness-to-tube-radius ratio is below a critical transition 

value of (
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)
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√3(1 − 𝜈2) ≈ 0.03, where 𝜎𝑓𝑠 is the fracture strength of the constituent material 

(1). All samples tested in this work have (
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𝑎
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)

𝑐𝑟
, meaning that shell buckling will take place 

preferentially over yielding. This analytical formulation shows that in the 1st order beams, beam buckling 

will take place preferentially over shell buckling, and after the occurrence of beam buckling, shell 

buckling will take place over fracture, allowing samples to deform in a ductile-like manner and 

accommodate large strains. This matches very closely to what is observed experimentally.  

Full Hierarchical Nanolattice Mechanical Behavior 

2nd order full hierarchical nanolattices were fabricated in a 3x3x3 array using octahedra-of-octahedra 

hierarchical unit cells. Samples were compressed using an in-situ nanoindenter at a strain rate of 10-3 s-1 

to 50% strain in a manner nearly identical to the half-cell samples. Failure mechanisms in the 2nd order 

full nanolattices closely matched those in the 2nd order half-cells for each material type: polymer 

samples underwent ductile failure via beam buckling, composite samples underwent catastrophic brittle 

collapse via fracture of the constituent Al2O3, and hollow samples underwent serrated ductile-like failure 

via a combination of beam buckling and shell buckling.  

The stiffness and strength of the hierarchical nanolattice samples closely matched that of the half-cell 

samples, and a full list of results can be found in Figure S5. The primary distinction between the failure 

of the full samples and the half-cell samples is the emergence of a layer-by-layer collapse deformation 

mechanism, which led to high local stresses in the beams and reduced the recoverability in the full 

nanolattices compared with the half-cell samples. 2nd order polymer nanolattices recovered immediately 

to 65-85% of their original height, with additional viscoelastic recoveries of 5-20% after unloading. 2nd 

order composite nanolattices had a catastrophic strain burst with failure localized to the top of the 

lattice and exhibited little to no recovery. 2nd order hollow nanolattices had layer-by-layer deformation 

that limited their recovery to only 60-75% of the original height, compared with 85-98% in the 

equivalent hollow half-cell samples. 

In hollow samples, the layer-by-layer collapse generated local highly strained regions where the buckled 

beams partially fractured without complete failure. The bifurcated beams experienced marginal 

recovery due to the residual strain energy being insufficient to return the sample to its original 



configuration. Preventing layer-by-layer collapse would improve recovery but requires a more efficient 

hierarchical geometry to optimize load distribution. 

 

Figure S5: Comparison of mechanical data of 2
nd

 order half-cells against full hierarchical nanolattices showing their 

close agreement for (a) Young’s modulus vs. relative density and (b) yield strength vs. relative density. 

Effect of Slenderness on Deformation 

Samples with a range of structural parameters and slenderness ratios were tested in this work. We show 

a number of representative samples of different material systems demonstrating the deformation and 

failure modes of samples with high and low slenderness in Figure S6 below. 

 

Figure S6: Compression experiments performed on 2
nd

 order half-cells showing the samples in an undeformed 

configuration, at 50% strain, and unloaded, along with the corresponding load (mN) v displacement (µm) data. All 

‘high slenderness’ samples are octahedra-of-octahedra and all ‘low slenderness’ samples are octahedra-of-octets. 

Samples a-c have 𝐿 = 8𝜇𝑚 and 𝑁 = 10, and samples d-f have 𝐿 = 12𝜇𝑚 and 𝑁 = 20. Samples A and D are pure 

polymer, B and E are polymer-ceramic core-shell composites, and C and F are hollow Al2O3. 



FEM Modeling 

Modeling hierarchical lattices is a computationally demanding problem because the problem size scales 

exponentially. To reduce problem size one can use either a simplistic method or an adaptive method.  

The first, simplistic method uses bar elements in the Truss Model. Bar elements are the simplest and 

computationally least expensive method of modeling lattices. Our simple refined model is significantly 

more complex but can adaptively scale with the level of hierarchy through repeated use of substructure 

generation and utilization. 

Two modeling approaches were used to predict lattice stiffness and stress distributions. The first 

approach uses an in-house finite element code with small-strain bar elements having only axial stiffness. 

A linear elastic material model is assumed to govern the bar response. Figure S7 shows an example truss 

structure with the half-cell bottom fully constrained and the vertical displacements imposed on the top 

nodes of the cell. Vertical reaction forces were calculated at the top nodes to determine the lattice 

stiffness.   

 
Figure S7: Truss model of half-cell octahedron of octahedrons with applied boundary conditions: red – all 

translation DOF constrained, blue – prescribed vertical displacement. 

In contrast to the first model approach, the second, referred to as the refined model, is a scalable 

solution to modeling hierarchical lattices by using degree-of-freedom (DOF) condensation. The refined 

model consists of two stages: substructure generation and substructure utilization. Substructure 

generation begins with identifying the geometrically unique nodes and beams (Fig. 4).  

For compatibility between nodes and beams generalized DOFs, referred to as compatibility DOF, are 

introduced at the center of each node- and beam-connecting edge or face and the latter are assumed to 

deform rigidly; e.g. the end faces of each beam deform rigidly so that their motion can be described 

solely by its compatibility DOFs (i.e., its generalized translational and rotational DOFs). A substructure 

condensation method is applied to each beam or node part such that the only remaining DOFs are the 

compatibility DOFs. Substructure utilization then extracts the effective stiffness matrices of all 



substructure parts, assembles those accordingly into a hierarchical half-cell lattice, and couples the 

compatibility DOF of each substructure to the appropriate adjacent substructure (Fig. 4D and E).  

Substructure generation and utilization can be performed repeatedly on increasingly larger levels of 

hierarchy to reduce the computational cost of evaluating the final lattice stiffness. Also, the extraction of 

the effective beam and node response from full-scale finite element models of the latter can be 

performed a priori so there is no need to recover full-resolution simulations during the final simulation 

run. 

Two general trends are observed for solid and hollow lattices. First, solid lattice stiffness predicted by 

the simple truss model is generally less than that of the refined model. Secondly, hollow lattice stiffness 

predicted by the truss model is greater than that of the refined model. These differences arise because 

of the contributions of bending and node junctions to degrading the overall lattice stiffness in the 

refined model. Figure S8 summarizes computational and experimental stiffness data and compares the 

simulated stiffnesses obtained from each model for geometrically perfect lattices. The refined model 

more accurately predicts properties of solid polymer and hollow ceramic lattice stiffness by 5.0 and 1.4 

times, respectively, relative to the truss predictions.  In simulating composites nanolattices, the truss 

model is 1.4 times more accurate than the refined model. If one takes into account geometric 

imperfections of the nanolattices, such as the beam waviness, the predicted stiffness of both the refined 

model and the truss model would decrease such that the refined model is always more accurate than 

the truss model relative to experimental data.  



 
Figure S8: Comparison of model approximations and experimental data of second order half-cell lattices consisting 

of (a) solid polymer, (b) solid polymer with ceramic coating, (c) hollow ceramic. 

 



Complete List of Samples Tested 

Composition Geometry Unit Cell Size (µm) Fractal Number Relative Density  

Solid Polymer 

Octahedron-of-Octahedra 

8 10 1.03E-2 

8 15 4.49E-3 

8 20 2.50E-3 

12 10 4.80E-3 

12 15 2.09E-3 

12 20 1.16E-3 

Octahedron-of-Octets 

8 10 2.10E-2 

8 15 9.46E-3 

8 20 5.34E-3 

12 10 9.82E-3 

12 15 4.41E-3 

12 20 2.49E-3 

Composite 

Octahedron-of-Octahedra 

8 10 1.12E-2 

8 15 4.88E-3 

8 20 2.72E-3 

12 10 5.23E-3 

12 15 2.28E-3 

12 20 1.27E-3 

Octahedron-of-Octets 

8 10 2.28E-2 

8 15 1.03E-2 

8 20 5.83E-3 

12 10 1.07E-2 

12 15 4.81E-3 

12 20 2.73E-3 

Hollow Al2O3 

Octahedron-of-Octahedra 

8 10 8.95E-4 

8 15 3.90E-4 

8 20 2.17E-4 

12 10 4.30E-4 

12 15 1.87E-4 

12 20 1.04E-4 

Octahedron-of-Octets 

8 10 1.82E-3 

8 15 8.36E-4 

8 20 4.89E-4 

12 10 8.78E-4 

12 15 3.95E-4 

12 20 2.41E-4 

Table S1: Full list of fabricated 2
nd

 order half-cell geometries with corresponding relative densities 

Composition Unit Cell Size (µm) Fractal Number Relative Density 

Solid Polymer 
8 5 2.32E-2 

3 10 3.55E-3 

Composite 

8 5 1.83E-2 

8 5 2.51E-2 

3 10 2.15E-3 

Hollow Al2O3 
8 5 1.83E-3 

3 10 4.73E-4 

Table S2: Full list of fabricated 3
rd

 order octahedron half-cell geometries with corresponding relative densities 

Composition Unit Cell Size (µm) Fractal Number Relative Density 

Solid Polymer 

8 10 1.03E-2 

6 15 4.95E-3 

4 20 3.26E-3 

Composite 
8 10 1.12E-2 

6 15 5.49E-3 

Hollow Al2O3 

8 10 8.95E-4 

6 15 5.35E-4 

4 20 4.71E-4 

Table S3: Full list of fabricated 2
nd

 order octahedron full-lattice geometries with corresponding relative densities  
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