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Total intracranial volume (TIV/ICV) is an important covariate for volumetric analyses of the brain and brain
regions, especially in the study of neurodegenerative diseases, where it can provide a proxy of maximum pre-
morbid brain volume. The gold-standard method is manual delineation of brain scans, but this requires careful
work by trained operators. We evaluated Statistical Parametric Mapping 12 (SPM12) automated segmentation
for TIV measurement in place of manual segmentation and also compared it with SPM8 and FreeSurfer 5.3.0.
For T1-weighted MRI acquired from 288 participants in a multi-centre clinical trial in Alzheimer's disease we
find a high correlation between SPM12 TIV and manual TIV (R2 = 0.940, 95% Confidence Interval (0.924,
0.953)), with a small mean difference (SPM12 40.4± 35.4ml lower thanmanual, amounting to 2.8% of the over-
all mean TIV in the study). The correlation with manual measurements (the key aspect when using TIV as a
covariate) for SPM12 was significantly higher (p b 0.001) than for either SPM8 (R2 = 0.577 CI (0.500, 0.644))
or FreeSurfer (R2 = 0.801 CI (0.744, 0.843)). These results suggest that SPM12 TIV estimates are an acceptable
substitute for labour-intensive manual estimates even in the challenging context of multiple centres and the
presence of neurodegenerative pathology. We also briefly discuss some aspects of the statistical modelling
approaches to adjust for TIV.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

A well-known source of between-subject variability in total and
regional brain volume is the variation in head size (Mathalon et al.,
1993), often measured by total intra-cranial volume (TIV, equivalently
intra-cranial volume: ICV). For example, someof the difference between
the sexes in brain volume can be accounted for by differences in TIV
(Barnes et al., 2010; Perlaki et al., 2014; Whitwell et al., 2001). By
modelling otherwise unexplained variability, adjustment for TIV can
increase power in studies of overall brain volume (Barnes et al., 2010),
total or local greymatter (GM) volumes (Peelle et al., 2012), or individ-
ual regions of interest (ROI) (Barnes et al., 2010; Nordenskjöld et al.,
2013; Westman et al., 2013). Similarly, TIV can be a confound in the
analysis of group differences or covariate correlates if there is an
imbalance in head size between groups, an association of TIV with the
covariate of interest, or an interaction involving TIV (Ueda et al.,
2010). Beyond volumetric analysis, TIV may need to be accounted for
. This is an open access article under
in structural connectivity measures (Dennis et al., 2013). In neurode-
generative conditions such as Alzheimer's disease (AD) TIV may be
used as a proxy for maximum pre-morbid brain volume, which in turn
might relate to cognitive reserve (Perneczky et al., 2010).

TIVmay be estimated from volumetricMRI bymanual delineation of
the cranial vault (for example Whitwell et al., 2001), however this
requires trained operators, introduces within- and between-rater vari-
ability, and is often impractically labour-intensive when dealing with
large numbers of scans. Manual measurement of a covariate is an addi-
tional burden to the measurement of the variable of interest (such as
ROI delineation). Rapid, reproducible, automatic estimation of TIV
based on image registration and/or segmentation has obvious appeal.
However, automatically derived estimates could be less useful – or
even detrimental – if they are more error-prone than manual estimates
or if they introduce systematic biases.

Nordenskjöld et al. (2013) performed an extensive comparison of
FreeSurfer 5.1.0 (Dale et al., 1999) and Statistical Parametric Mapping
8 (SPM8, Ashburner and Friston, 2005) on T1-weighted MRI against
manual TIV on PD-weighted MRI, with 399 elderly subjects. Despite
good correlation, both automated methods were found to have
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 Often referred to as “Jacobian (determinant) modulation”, which was used in SPM5,
although SPM8's New Segment and SPM12 actually preserve volume with a push-
forward transformation procedure akin to the RAVENS maps (Davatzikos et al., 2001).
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systematic errors compared to manual segmentation, with SPM8
overestimating TIV by 20.86% and FreeSurfer overestimating by 5.87%.
These errors were shown to impact the ability to detect differences in
hippocampal volume amongst groups. However an improved segmen-
tation was incorporated into SPM8 as the ‘New Segment’ toolbox
(Weiskopf et al., 2011 Appendix A); this included additional tissue
maps for non-brain soft-tissue, bone and air/background, which help
to reduce the amount of non-brain tissue misclassified as the grey mat-
ter or CSF. A smaller study (55 subjects) by Ridgway et al. (2011) found
that this segmentation produced more accurate TIV results than the
previous versions.

In the new release, SPM12, ‘New Segment’ has been made the stan-
dard segmentation with further improvements, including changes
whichmaymake itmore robust to brain volume variation. It is therefore
an open question whether the problems identified by Nordenskjöld
et al. have been addressed in SPM12; we endeavour to answer this
question and to compare SPM12 with the latest version of FreeSurfer.

Methods

Data collection

We analysed T1-weighted MPRAGE scans of 288 (m/f 130/158) sub-
jects aged 50–85 collected as part of a “real-world” multi-centre clinical
trial (Fox et al., 2005; Gilman et al., 2005). Subjects met the NINCDS-
ADRDA criteria for probable Alzheimer's disease (McKhann et al., 1984),
mean age was 71.8(7.9) years, MMSE (Folstein et al., 1975) at baseline
20.4(3.3). Scans were coronal volumetric acquisitions lasting ≤7.5 min,
slice thickness 1.5–1.8 mm adjusted to cover the entire brain, slice FOV
25 × 25 cm, and effective matrix size of 256 × 256 × 124. Acquisition pa-
rameters varied over the 17 MRI centres, full details can be found in Fox
et al. (2005).

Manual estimation of TIV

Baseline scans were manually segmented for TIV by four validated
operators according to the protocol described in Whitwell et al.
(2001), whichwe summarise here for convenience. The intracranial vol-
ume is defined as the “volume within the cranium, including the brain,
meninges, and CSF.” Measurements were conducted with the MIDAS
software (Freeborough et al., 1997). Whole-brain volumes were first
manually delimited using a 3D morphological method (Freeborough
et al., 1997).

The T1-weighted volumes are rigidly registered to the Montreal
Neurological Institute MNI305 brain average (Evans et al., 2012,
1993). A threshold of 30% of the mean brain signal intensity was used
to outline the outer border of the dura as an aid to manual delineation
of the outer edge of the intra-cranial volume, and the inferior limit of
segmentation is set as the lowest slice inwhich cerebellar tissue is pres-
ent. Every 10th axial section was segmented starting from the inferior
limit working to the most superior slice with any brain tissue present.
Slice areas are linearly interpolated to estimate the TIV for the interven-
ing slices. Intra-rater and inter-rater variabilities were reported to show
coefficients of variation (CV) 0.16% (n = 10) and 0.62% (n = 5).

Automatic estimation of TIV using FreeSurfer

FreeSurfer determines estimated TIV (known there as eTIV or just
ICV) using an atlas scaling factor (i.e. the determinant of an affine trans-
formation matrix) derived from registering images to an average tem-
plate using a full (12-parameter) affine transformation (Buckner et al.,
2004; see also http://surfer.nmr.mgh.harvard.edu/fswiki/eTIV). Seg-
mentation is not used. Here, we use FreeSurfer 5.3.0 (the latest stable
release as of April 2014), running “recon-all -autorecon1” and obtaining
the ICV using “mri_segstats --etiv-only”.
Automatic estimation of TIV using SPM

There are severalmethods available to compute TIV using SPM's uni-
fied segmentation and spatial normalisation procedure. Methods can be
broadly categorised into two main approaches:

1. The spatial normalisation transformation can be used, either inverse-
transforming (preserving voxel values rather than volumes) a
template-space TIV mask to the individual and determining the
volume of the resultant individual-space mask (Keihaninejad et al.,
2010) or (equivalently, apart from numerical errors) performing
Jacobian integration (Boyes et al., 2006) over a template-space TIV
mask.

2. Probabilistic tissue class images can be integrated (i.e. voxels are
summed, accounting for the voxel volume) to give tissue volume es-
timates, with TIV simply being the sum of grey matter, white matter
and CSF volumes. A subtlety here is that SPM can provide various sets
of tissue class images: native, rigidly-reoriented (and resliced) to
standard space, or non-linearly warped to standard space. With
volume-preserving transformations1 for the latter, all three sets of
images should theoretically agree, except for the fact that they can
have different fields of view; this can be important, since the amount
of e.g. spinal cord contained in the three fields of view can differ,
leading to different TIV estimates. The “modulated” non-linearly
warped images (with mwc prefixes) should have the most consis-
tent inferior cut-off, whichmay be the reason for their slightly better
performance compared to the “native” subject-space segments in
Ridgway et al. (2011).

It is important to note that the tissue prior probability templates
used in SPM are based on averaging multiple automatically segmented
images in standard space (for example, SPM12's priors come from seg-
mentations (using New Segment) of images from the IXI data-set,
http://www.brain-development.org/ (Heckemann et al., 2003)), so
there is no guarantee that the sum of grey matter, white matter and
CSF classes will be exactly consistent with accepted definitions of TIV,
particularly with regard to the inferior cut-off and the inclusion of
blood-filled sinuses. For this reason, we used the SPM12 tissue prior
maps (and corresponding average T1-weighted, T2-weighted and
proton-density weighted images from the same IXI data) to create a
manually-corrected TIV mask consistent with the protocol described
above (though segmented at each slice). Fig. 1 shows the TIV mask ap-
plied to tissue classes. Supplementary Fig. 1 shows a typical illustration
of the non-brain classes, which are almost entirely located outside the
ICV.

Although Ridgway et al. (2011) found only very small differences
between SPM-based estimates related to approach 1 and approach 2
above, one theoretical advantage of the former is that it yields a contig-
uous TIVmask, less prone to isolatedmis-segmentations far from the in-
tracranial boundaries; a theoretical advantage of the latter approach is
that the segmentation can potentially better model finer spatial detail
(for example in the slightlymore convoluted areas around the temporal
lobe and cerebellum) than the regularised (smooth) spatial transforma-
tion. In an attempt to combine these advantages, we implemented a
“Tissue Volumes” Utility in SPM12, which computes the totals of the
modulated warped segmentations within the aforementioned
manually-corrected TIV mask. This is available as a built-in SPM utility
through the batch editor in the recent beta versions of SPM12.

The unified segmentation algorithm itself in SPM12 is similar to that
in SPM8's New Segment, but with recomputed tissue priors (using
multi-modal data from IXI, as mentioned above). An additional change
is that the global rescaling of tissue priors present in SPM8's default
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segmentation but not New Segment was reintroduced.2 In SPM12, each
tissue probability map is rescaled by an additional (non-negative) pa-
rameter, and then re-normalised so that the priors sum to one at each
point in space. The advantage of this more flexible model of SPM12 is
that it allows for global decreases or increases in the amount of each tis-
sue type. This is especially important for dealing with the kinds of atro-
phy seen in studies of ageing or dementia. The models for old and new
segment and SPM12 are further detailed in Appendix A.

SPM12 TIVs were computed using the beta version of SPM12, revi-
sion 5647. For comparison, we also use SPM8 (revision 5236), simply
summing modulated warped segments without a TIV mask. Finally
the Supplementary Table 1 includes results for both the SPM12 Jacobian
integration over the TIV mask and volume of the ICVmask transformed
to subject-space.

Statistical analysis

Results were analysed in STATA 12. To assess suitability of automat-
ed TIV as a replacement for manual measurements we calculated
squared correlation coefficients (R2) of automatic with manual mea-
sures. As the R2 coefficient represents the degree to which variation in
each variable is explained by the other, the R2 between the two mea-
sures indicates the worst-case loss of explanatory power replacing one
with the other as a correlate in a linear model. A high R2 compared to
the gold standard therefore indicates a method that can be used as a
proxy for this purpose. Confidence intervals (CI, 95%) on R2 coefficients
and regression coefficients β were estimated using bootstrapping
(20,000 samples each test, bias-corrected and accelerated). The same
bootstrapping procedurewas used to test the paired difference in R2 co-
efficient between the automated TIV methods.

Bland–Altman (B–A) plots (Bland and Altman, 1986) were used to
assess the agreement of values from the automated and manual TIV. It
is expected that two measures of the same quantity should report the
same result, that is: a slope of regression close to 1 (measurement
error reduces the measured slope) and differences between measures
due only to random error with mean 0 and a standard deviation that
is acceptably small. Plotting difference against mean value allows as-
sessment of bias and deviation from parity, using standard t-tests and
linear regression. Pitman's test (significance of correlation of difference
to mean) was applied to compare variance of the measures.

We do not attempt to compare ICV classification images as two of
themethods do not produce them. Our reference,manual segmentation
is performed only for every 10th axial section, and the FreeSurfer esti-
mate uses only the atlas scaling factor.

Results

FreeSurfer failed to register two scans to its atlas correctly, producing
TIV estimates N3000 ml. These two were dropped from the analysis for
FreeSurfer, though these subjects were still included for the SPM8 and
SPM12 analysis. Mean (SD) manual TIV was 1428.0 (143.5) ml.
Table 1 shows correlation and difference for automated methods com-
pared to manual measurements. Direct comparison of R2 values using
bootstrapping found SPM12 R2 significantly higher than FreeSurfer (dif-
ference 0.139, CI (0.101 0.194), p b 0.001) and FreeSurfer R2 significant-
ly higher than SPM8 (difference 0.224, CI (0.158 0.294), p b 0.001).

The agreement of the different automated methods with manually
delineated TIVs is illustrated in Fig. 2. Pitman's test indicated significant
difference of variance compared to manual measure for both FreeSurfer
and SPM8 (p b 0.001). SPM12 was the only measure where the results
were consistent with the variance being the same (p= 0.95). A signif-
icant difference in Pitman's test may be due either to a difference in
2 This was partlymotivated by results reported in Peelle et al. (2012), and partly on the
basis of unpublished experiments we performed using the MIRIAD data (Malone et al.,
2013).
variance of the two methods being compared or not being bivariate-
normally distributed. This cannot be disambiguated without repeated
measurements (Bartlett and Frost, 2008; Dunn and Roberts, 1999).

Discussion

We have compared three automated measures (SPM12, SPM8,
FreeSurfer) of TIV with a manual (gold standard) measurement. The
high correlation coefficient, narrow limits of agreement and low slope
of the B–A plots for SPM12 shown in Fig. 2 suggest that this was the
most effective substitute for manual TIV as a covariate in linear models.
Results demonstrate a significant improvement over the default SPM8
segmentation and over FreeSurfer. There is a small underestimate in
the SPM12 TIV measure compared to manual, which might be due to
the blood-filled sinuses being effectively excluded from the tissue seg-
ments (i.e. they typically have low probabilities for GM, WM and CSF)
even though they are included in the mask. This small bias is of little
concern for the use of TIV as a nuisance covariate, since the effect on fac-
tors/covariates of interest when adjusting for a nuisance covariate is in-
variant to affine transformation of that covariate.

Whether the impact of TIVmeasurement accuracy on a studywill be
significant will inevitably vary depending on the strength and nature of
the underlying relationship, the size of the study, the effect size being
measured and the natural variation independent of TIV. In
Nordenskjöld et al. (2013) the differences betweenmethods are enough
to change the significance of results in a study of 399 subjects. In the
Supplementary material we have attempted to simulate the effect TIV
measurement error would have on estimated effect size in a simple
model of hippocampal volume, this is shown in Supplementary Fig. 2.
While there are many factors unaccounted for it remains a good rule
of thumb that reducing any measurement errors is a good practice.

Methods of adjusting for TIV

We have assumed above that adjustment for TIV will be performed
by including it as a covariate in a linear model (also known as analysis
of covariance, ANCOVA), rather than e.g. dividing regional brain vol-
umes by TIV (known as the proportion method); it is also possible to
use a previously fitted regression model (e.g. from a large normative
study) to adjust volumes in individuals (known as the residual[isation]
method). The relativemerits of thesemethods have been debated in the
literature. Arndt et al. (1991) demonstrated problems with the propor-
tion method (reduced joint reliability), and noted that other methods
such as regression, “may yieldmeasurements that aremore appropriate
than ratios”. Mathalon et al. (1993) observed that, “whereas residual
scores were uncorrelated with head size (by definition), measures
taken as a proportion of head size tended to persist in showing correla-
tions with head size,” which suggests that the former is preferable for
adjustment; however, they also note that this property of the latter
can be of interest in its own right, in terms of understanding the scaling
laws of the brain (see also the discussion of allometry in O'Brien et al.
(2006)). Sanfilipo et al. (2004), “found that the residual method gener-
ally was less affected by systematic and random errors in ICV and APV
[absolute parenchymal volume] values, with the exception of
dependent-related APV systematic error”, with the proportion method
only being preferable in the latter case. Barnes et al. (2010) regressed
logarithmically transformed regional volumes against log(TIV) and
found confidence intervals often excluded unity, which further argues
against the use of the proportion method; however, the question of
whether to log-transform or not arguably remains open.

O'Brien et al. (2011) observe that the ANCOVA and residual ap-
proaches have the flexibility to be extended to model a quadratic effect
of TIV, allowing for nonlinear relationships between regional volumes
and head size. For the case of mass-univariate voxel-wise or vertex-
wise analysis, the ANCOVA approach has the advantage that the
model can straightforwardly vary over the brain (Barnes et al., 2010;



Fig. 1. Illustration of SPM12 tissue segmentation results and manually edited intracranial
mask: (a) Original T1-weighted MRI [miriad_188],5 (b) grey matter, (c) white matter,
(d) cerebrospinal fluid; overlaid on each image in red is a contour showing the outline
of the intracranial mask after inverse spatial normalisation (i.e. warping from MNI to na-
tive space). It can be seen in (d) that themask excludes some voxels incorrectly segment-
ed as the CSF, and in (c) that the mask achieves a consistent anatomically-defined inferior
cut-off, independent of the acquired field-of-view.
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Peelle et al., 2012). Furthermore, the ANCOVAmodel allows interaction
terms to be modelled, e.g. between diagnostic group and TIV (O'Brien
et al., 2011; Sanfilipo et al., 2004; Ueda et al., 2010). One could even con-
sider higher order polynomial expansions of TIV – and/or logarithmical-
ly or otherwise transformed TIV – interacting with group or other
variables. In combination with the above-surveyed advantages, the
greater flexibility of the ANCOVA model leads us to recommend it as
the first choice to consider. In situations where it is feasible (i.e. no
more than a few ROIs) we would also recommend O'Brien et al.
(2011) approach of graphically investigating the relationship between
regional volume(s) and TIV.

On the use of “nonlinear-only modulation”

Two popular software packages for voxel-based morphometry,
VBM83 and FSL-VBM4 recommend a strategy to adjust for head-size
by modifying the volume-preserving Jacobian-modulation step such
that the affine component is ignored and only the nonlinear volume
changes are preserved. This is equivalent to fully preserving the original
volume with the usual (affine and nonlinear) Jacobian modulation and
subsequently dividing by an estimated TIV obtained from the determi-
nant of the affine transformation. We have not here evaluated the use
of the affine determinant from SPM12's unified segmentation to esti-
mate TIV, but there seems no reason to expect SPM12's affine determi-
nant to perform better than FreeSurfer's affine-based estimate.

Since (a)we have shown that SPM12 can provide significantly better
estimated TIV than FreeSurfer's affine-based estimate, and (b) we have
discussed the limitations of adjustment by division, nonlinear-only
modulation may be seen as a convenient but possibly suboptimal
procedure.

Outliers and algorithmic failures

It is often the practice when dealing with automated methods to
screen for failures and attempt alternative methods to recover from
them (either adjustments to parameters or resorting to another tech-
nique). Doing so raises questions of how to define and screen for fail-
ures, as well as whether any adjustments should be incorporated as
improvements to the method used. On inspecting the range of results
we decided to regard as suspicious any estimated TIV greater than
3000ml and that omitting the two clear failures in the case of FreeSurfer
was a fairer comparison of “out-of-the-box” performance. Omission of
the corresponding values from the SPM comparisons has little effect
on results (Supplementary Table 1). Additionally we attempted to fix
the two FreeSurfer failures by suppressing the automated registration
checking using the “-notal-check” option for those cases and results
for these can be found in Inline Supplementary Table 1. The absence of
any notable outliers for SPM12 suggests a good degree of algorithmic
robustness.

Only the numerical results were screened for outliers, no routine
quality control was applied to the individual images.

Limitations and further work

We have not directly investigated the effect of atrophy on TIV esti-
mates (cf. Pengas et al., 2009). Our sample population were all
probable-AD trial participants with varying degrees of atrophy at base-
line (mean manual brain volume:manual TIV ratio 0.69 ± 0.05, min
0.56 max 0.81); the high agreement with manual measures shown by
SPM12 is apparently not affected by this. Both Nordenskjöld et al.
(2013) and Ridgway et al. (2011) find only small variability over time
for manual TIV measures. However, further longitudinal evaluation (as
3 http://dbm.neuro.uni-jena.de/vbm8/, see also http://dbm.neuro.uni-jena.de/vbm/
segmentation/modulation/.

4 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM/UserGuide.
in Pengas et al. (2009)) of the SPM12method could provide greater re-
assurance that tissue loss does not change TIV estimates.

Although a large number of different sites and scannerswere includ-
ed here, without obvious detriment to the results, all scanners were
1.5 T, so we cannot claim to have demonstrated robustness to different
field strengths (cf. Keihaninejad et al., 2010).

Whilst we have shown very good agreement between SPM12 and
manually-measured TIV, we have not directly evaluated the effect of re-
placing manual with SPM12 values in investigations of other factors
such as hippocampal volume as in Nordenskjöld et al. (2013), though
the simulations in Supplementary Fig. 2 shed some light on this.

It would also be of interest to evaluate SPM12's performance on data
other than T1-weighted MRI; for example, Pengas et al. (2009) and
Nordenskjöld et al. (2013) favour proton-density (PD) weighted imag-
ing, whilst Vuong et al. (2013) shows the advantages of T2-weighted
MRI. Multi-spectral segmentation of quantitative multi-parametric
maps Weiskopf et al. (2013) would be expected to yield even better
5 http://www.ucl.ac.uk/drc/research/miriad.
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Table 1
Comparison of automated TIV measures vs manual: squared Pearson's correlation coeffi-
cient (R2) and slope of regression (β), both with 95% confidence intervals, difference to
manual ± standard deviation.

R2 β Difference/ml

SPM12 0.940 (0.924 0.953) 0.971 (0.943 0.999) −40.4 ± 35.4 (p b 0.001)
FS 5.3.0 0.801 (0.744 0.843) 1.046 (0.983 1.109) 53.0 ± 74.1 (p b 0.001)
SPM8 0.577 (0.500 0.644) 0.968 (0.878 1.057) 198.3 ± 119.0 (p b 0.001)
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results, since the combination of PDwith other contrasts (including R2*,
related to T2) should enhance the distinctions between brain tissue and
blood-filled sinuses, and between the CSF and bone/air. It is plausible
that automatic methods, perhaps with further refinements, could actu-
ally yield more accurate measurements than the current manual gold
standard, especiallywith the latter's use of only every 10th slice, howev-
er, demonstrating this would be challenging, requiring somewhat indi-
rect evaluation.
Conclusions

We have shown that TIV estimated using SPM12 correlates very
strongly with manually-traced TIV, providing superior performance to
TIV estimates from SPM8 or FreeSurfer. For regional and mass-
univariate volumetric studies, we recommend the use of TIV as a covar-
iate in a linear model, which enables the consideration of nonlinearities
(i.e. with TIV and TIV-squared) and/or interactions between TIV and
other terms.
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Appendix A. Changes to the unified segmentation algorithm

A.A. Old and new segment in SPM8

The “old segment” (OS) algorithm of SPM8 is essentially the same as
the default tissue segmentation procedure in SPM5 (Ashburner and
Friston, 2005). The “new segment” (NS) algorithm of SPM8 is based
on the same principles, although some changes were made to the orig-
inal algorithm; these changes are briefly described in Appendix A of
Weiskopf et al. (2011).

Both implementations produce probabilistic segmentations of im-
ages into C tissue classes, where each class is defined by a tissue proba-
bility map that is warped into alignment with the image. The C = 4
tissue probability maps of OS (grey matter, white matter, CSF and
other) were extended in NS to include tissue priors for bone, non-
brain soft-tissue and air (C = 6), which resulted in greater robustness
rough the origin), and 95% confidence interval for regression line shaded grey. Bottom: B–A
ith 95% limits of agreement shaded grey. Outliers indicated for FreeSurfer by rings are ex-

image of Fig.�2
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in terms of registering the tissue priors to the image. The othermain ex-
tensions were an increased flexibility of the registration part of the
model (by using more parameters), and the ability to do multi-
spectral segmentation by simultaneously modelling multiple images
of the same subject (eg. T2-weighted and PD-weighted).

When modelling a single image, both versions estimated a correc-
tion for intensity nonuniformity, parameterised by coefficients β. In
what follows, we denote the nonuniformity correction at voxel i by
pi(β). Intensity distributions for each tissue class aremodelled by amix-
ture of Gaussians, such that themeans and variances are adjusted to ac-
count for the correction field.

Each of theKcGaussians of each tissue class is describedby itsmixing
proportion (γck, such thatγck≥ 0 and∑k=1

KC γck=1), amean (μck) and a
variance (σck

2 ). With this model, the probability of observing a voxel of
intensity yi in the image is given by:

p yijγc; μc;σ
2
c ;βc

� �
¼
XKc

k¼1

γckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

ck
=ρi βð Þ2

q exp

 
−ðyi−μck

=ρi βð ÞÞ2
2σ2

ck
=ρi βð Þ2

!
:

ðA:1Þ

In both cases, warping the tissue maps into alignment involves esti-
mating a vector of coefficients (α) that parameterise displacement
fields. The ith voxel of the warped version of the cth tissue prior is de-
noted by bic(α). For NS, the likelihood model that is maximised (with
suitable regularisation) is simply:

εn ¼
XI
i¼1

log
XC
c¼1

bic αð Þp yijγc; μc;σ
2
c ;βc

� � !
: ðA:2Þ

For OS, there is effectively an additional set of C scaling parameters
that are estimated, η, such that ηc ≥ 0 and∑c=1

C ηc =1. This model ac-
counts for situations where there may be globally more or less of some
particular tissue type.

εo ¼
XI
i¼1

log
XC
c¼1

ηcbic αð ÞX
ηdbid αð Þ p yijγc; μc;σ

2
c ;βc

� � !
: ðA:3Þ

A.B. Segmentation in SPM12

The absence of these scaling parameters has impacted the behaviour
of NS in SPM8. This issue has been pointed out numerous times on the
SPM mailing list, and is the likely cause of some of the findings in
Callaert et al. (2014) as well as Peelle et al. (2012). The issue has now
been resolved in the beta version of SPM12, as the segmentation algo-
rithm of SPM12 is essentially NS, but with the η parameters included
again. Other changes fromNS to SPM12 include thenew tissue probabil-
ity maps (described earlier) and a change to the regularisation of the
spatial transformation model. The single-parameter bending energy
regularisation mentioned in Appendix A of Weiskopf et al. (2011) has
been extended to a more sophisticated regularisation model in SPM12,
which now has five penalty terms: absolute displacement, membrane
energy, bending energy, linear elasticity and divergence; though the
bending energy has the largest weight by default. SPM12 also
reintroduces a version of the morphological clean-up procedure from
OS, and includes a Markov Random Field (MRF) based clean-up that
was introduced in later versions of NS in SPM8, but was not document-
ed in Weiskopf et al. (2011). For the present work, the key changes are
the tissue priors and the scaling parameters.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.09.034.
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