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Abstract 

A new physical model of liquid He4 based on the hypothesis that 

rotons behave like tiny quantized circular vortex rings is presented. It 

is shown that the energy of a state will not only depend on the distribution 

in numbers of rotons with various momenta, but also on the arrangements 

and orientations of the rotons. The A. -transition then can be interpreted 

to reveal two aspects: TA. is both the lowest temperature at which all 

helium atoms partake in excitation, and the point of the initiation of the 

general destruction of order, i.e. the general randomization of the 

orientation of the rotons. Other implications from the theory are also 

discus sed. 



A Physical Model of Liquid Helium 

I. Introduction 

In this paper, a new physical model for liquid He4 is presented. 

From the outset, it should be emphasized that it is far from a complete 

theory. Rather, it is a first step towards a complete theory. Therefore 

it is liable to serious objections and criticisms. But when we are facing 

a difficult problem and cannot make significant progress for a long time, 

every avenue of some promise should be explored. This is the motive 

behind the publishing of the theory in this preliminary form. To the 

author, the existing physical theory of liquid helium, stripped down to 

its essentials, only consists of the following few ideas: Landau 1 s postu

lated spectrum of excitations (1), which he identified one part to represent 

phonons and the other part as rotons, and Feynman' s (Z) proposition of 

quantized vortices. Most of the voluminous arguments are just sophis-

ticated dressings. They do make the basic hypotheses of Landau and 

Feynman more plausible, but they really do not improve the validity of 

the theories. This opinion may not be shared by eveyone. However, it 

is with this assessment that the author ventures to present his somewhat 

naive theory, which he hopes may at least offer some food for thought to 

other workers in this field. 

In the physical theory as originated by Landau (l), excitations cor

responding to different parts of a single spectrum are identified with 

phonons and rotons. Our experience in solid state physics makes it easy 

for us to visualize the phonons. Not very many persons have a clear idea 

as to what rotons are. The nomenclature suggests that rotons are 
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associated with rotation. Indeed, the ordinary fluid motion can be de

composed into the dilatational and rotational parts. With phonons taking 

care of the dilatational aspect, we need other excitations to take care of 

the rotational motion; hence we have rotons. Landau borrowed the analogy 

that angular momenta are quantized in quantum mechanics to infer the 

energy gap for the roton spectrum. The argument is of doubtful validity, 

since Feynman (
3

) argued later that the energy gap results from the Bose 

statistics that helium atoms have to obey. Feynman (
4

), in constructing 

the wave function for rotons, found them to behave very much like tiny 

classical vortex rings. If they can be identified with vortex rings, they 

should of course be quantized vortex rings; and in Landau's original 

analogy, the quantization of the angular momentum should correspond to 

the quantization of circulation. In this sense, the quantized vortices of 

macroscopic size may now be interpreted as large rotons. The physical 

model developed in the following is based on the postulate that rotons be-

have essentially like quantized circular vortex rings. It should be em

phasized here that this is really an independent postulate, not an exten

sion of Feymnan's ideas, and the author is solely responsible for its 

drawbacks and imperfections. 

II. Excitations in Liquid Helium 

In this model, liquid He4 is considered to consist of two distinct 

types of excitations, i.e. phonons and rotons, each having its own spec-

trum. For phonons, we have the dispersion relation 

( 1 ) 

where p is the momentum and c, the sound speed. For rotons, the 
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dispersion relation is taken to be 

e(r) = Ap~ (2) 

The last dispersion relation is borrowed from classical hydro-

dynamics. For a classical vortex ring, if its radius R is much greater 

than its core radius a, the energy and momentum associated with it are 

given by( 5 ), (6 ): 

( 3) 

and 

(4) 

while the velocity of the vortex ring is 

( 5) 

where K is the circulation around the core of the vortex ring, and 

Then, for this case, we have 

1 

A= (11- ~)(~)2 ( 6) 

The parameter 11 is a slowly varying function of R, thus A may 

be treated approximately constant. The extrapolation from a classical 

vortex ring down to a vortex ring of interatomic dimension raises the most 

serious objections. So far we can not justify this extrapolation. As we 

stated in Section I, the nature and the dispersion relation of rotons in this 

theory should be taken as a hypothesis, whose merit is to be judged by 

whether it leads to any better understanding of the phenomena. 

Now the circulations are quantized( 6
). Therefore, for He4 with 



atomic mass m, we have 

K = 
h = 0. 9 9 7 X 1 0 -

3 
c m 2 sec -l 

m 

Most rotons would have only one unit of circulation, since for the 
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same momentum, to have two units of circulation would increase the energy 

by about three -fold. Formally, for an assembly of multitudes of phonons 

and rotons, the energy of a given state may be schematically written as 

E = E(p) + E(r) + E(pr) (7) 

where E(p) is the energy due to phonons if no rotons are present; E(r), 

that due to rotons if no phonons are present; and E(pr), the remaining 

part which may be called the phonon-roton interaction energy. Let us 

neglect E(pr) as a first approximation. In the same approximation, we 

shall neglect the interactions among phonons, then 

E(p) = '\' n_(p) E .(p) = '\' n.(p)cp. 
L 1 1 L 1 1 

( 8) 

i i 

where n.(p) is the number of phonons with momentum p .. 
1 1 

The expression of E(r) will not be as simple as that of 

J. J. Thomson, more than eighty years ago, with a view to constructing 

a kinetic theory of fluids, had investigated in detail the motion of vortex 

rings in the Adam Prize essay(?) Among others, it is found that the 

energy of a system of circular vortex rings is 

T = "'[ 2p. V'. - R.• d.!\ ] + £. r(' V2 r • n dS L 1 1 ~1 dt z J~ "'"' ..... 
i 

(9) 

where y is the velocity of the fluid, R. is the position vector of the 
-1 



center of the 
.th . 
1 vortex r1ng, p . 

..,-..1 

ring, as if it is single, and V! 
1 

ring in the direction of ..Ei. 

5 

f h 
.th 

is the momentum o t e 1 vor.tex 

the average velocity of the vortex 

1 
The last term of (9) will yield a term like 

2 
MVz, where M is 

the total mass of the fluid and yz is the average of yz over the boundary. 

This term will ordinarily not contribute to the internal energy of the 
"\' dp . 

system. The term ,0 .Et d; may be interpreted as that due to collision-

1 

al interactions, which we shall neglect also as a first approximation. Then, 

taking rotons to behave like these vortex rings, we have 

E(r) ="" Zp . (v . +w. ) L J J J 
j 

where v. is the velocity of the j th rotan as if it is single, and w. 
J J 

the average velocity in the direction of v. induced by all the rest of the 
J 

rotons. We may rewrite the last equation as 

(r) .l 
n. [Ap.Z +Zp.u.] 

1 1 1 1 

where n .(r) is the number of rotons with momentum 
1 

average of w's over these n. (r) rotons. 
1 

and u. 
1 

( 1 0) 

is the 

From (1 0), we see that the energy of a state will not only depend 

on the distribution in numbers of rotons with various momenta, 

but also on the arrangements and orientations, {P}, of the rotons. We 

may thus write the energy of a state as 

E{n. (p) n . (r) P} =E + "\' 
1 , J , o L 

p . 
1 

n. (p)cp. + "\' 
1 1 L 

p. 
J 

p. 
J 

(r) l ·' Zn . p .u.P1 
J J J 

( 11) 
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The partition function Q is thus 

Q = "\ exp[ -E{n.(p)' n.(r)' P}/kT] (12) L 1 J 

{n. (p), n. (r ~P} 
1 J 

Let us denote 

q =) exp [-2 L 2n/r)pjuj(P)/kT] 

{P} p. 
J 

( 13) 

In general, q will depend on {n. (r )} . But it is conceivable that q may 
J 

not depend on {n. (r )} sensitively. Rather it may only depend on the total 
J 

number of rotons present, which is related directly to the density and 

temperature of the system. If that is the case, then q may be factored 

out, and ( 12) becomes 

-E /kT I 

Q = q e 
0 

• T( -cp. /kT 
Pi 1 -e 1 

1 
1 

-Ap.2 /kT 
1-e J 

( 14) 

The range of p. and p. in (14) can be determined by arguments 
1 J 

like those in De bye 1 s theory of solids. Let N be the number of atoms 

in the system, then we have 

( 15) 

where E is the maximum cut-off energy and p is the minimum cut-
m o 

off momentum for rotons, since the radius of the rotons are bounded be-

low by the atomic dimension. This minimum cut-off momentum or energy 

is to be interpreted as the energy gap which Landau proposed for rotons. 

Denote 
E 

e= m 
1< as the cut-off temperature' then e is related to 
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particle density through the equation (15 ). When the system is fully 

excited, it turns out that roton modes are dominant; thus it is a good ap-

proximation that 

- ( _1!:! ll/6 e - 41TV 

The parameter A can now in principle be determined from thermo-

dynamic data through e. 

III. The Nature of A -transision 

Despite all the advancement of the understanding of the superfluid 

helium, the nature of the A -transiti?n is still largely an unsolved prob-

1em. Landau 1 s theory starts from the absolute zero and is not good as 

the A -point is approached. The Einstein condensation of Bose gases 

leads to a discontinuity of slope on the specific heat curve at the A -point, 

while observations (S) indicate a logarithmic singularity in the neighbor-

hood of A -point. These are the indications that we really only have a 

partial knowledge about liquid helium so far. The present theory, with 

all its unsatisfactory features, nevertheless attempts to construct a 

complete picture of liquid helium. The term q in equation (14) plays a 

vital role in the understanding of the nature of the A -transition. 

Qualitatively, the term q shows the existence of an order-disorder 

transition quite analogous to that of the Ising problem (9 ). For the two-

dimensional Ising problem with nearest neighbor interaction only, it is 

well known that the transition is marked by a logarithmic singularity on 

the specific heat curve. The same kind of singularity at the A -transition 

in liquid helium is also due to similar mechanisms as we can see from 

the expression for q. At the present stage, it seems futile to attempt 
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quantitative correlations. The computation of q is vastly more complex 

than the two-dimensional Ising problem. It is a three-dimensional prob-

lem. The interactions are not limited to nearest neighbors. Moreover, 

the rotons with varying strength, are not fixed in space and their orienta-

tions are not necessarily quantized. However, it is still possible to see 

what should be the configuration that has the lowest energy. This is the 

configuration in which the rotons will have the greatest possible induced 

velocity opposite to its natural velocity; and most de sir ably, all of them, 

After trying a few, we can convince ourselves that the lowest energy 

configuration is the case that all rotons are aligned in the same direction. 

If indeed they are all lined up, a flow will appear in that direction. The 

bulk of the fluid can be stationary because the fluid region is divided in-

to many domains, and rotons in different domains are lined up in di£-

ferent directions, just like the case of ferromagnetic materials. When 

different domains line up in the same direction, then there is a flow of 

rotons or normal component of the fluid. 

We can obtain the thermodynamic quantities from (14). With neglect 

of the minimum cut-of£ momentum, the free energy of the system is 

given by: 

F = E 0 - kTlnq + NkT[3.tn(l-e-B/T)- Z(~+T) D
6 
(~)- l:T D3(~)] 

( 1 7) 

where 

D (x) = 
n 

and 
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which is small in comparison with unity. 

The information contained in (17) is very limited, since we do not 

yet know how to compute q. However, the comparison with experimental 

thermodynamic data for T far from TX., the region where the con

tribution from q is relatively not very important can give us a rough 

estimate of e. The value of e turns out to be of the order of 4 or 5 

times TX.. If we take e:::: 4TX., the number of rotons at temperature 

T, is given by the following equation: 

N 
r = v lpr(•m) 

Po 

4np2dp 
1 

Ap2 /kT 

which will be about 
1 

fO 

e -1 

of N at T X.. 

the mass of the roton by the relation 

we obtain roughly 

m :::: 
r 

m 
r 

= p 
v 

On the other hand, if we define 

Thus m is about 10 times the mass of helium, if R is taken to be 
r 

about interatomic dimension. 

Therefore the X. -transition reveals two aspects: TX. is the lowest 

temperature at which all the helium atoms partake in excitation, i.e. 

when Also since for further increase of temperature, no new 

excitation could be created due to the using up of all the unexcited helium 

atoms, the general destruction of order, i.e. the general randomization 

of the orientation of the rotons, will commence. 
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IV. Further Thoughts and Discussion 

It would be most desirable to be able to calculate q; then the 

validity of this model could be decided at once. For the time being, we 

shall be content with exploring other aspects of the present theory. 

We mentioned that when different domains of ordered rotons line 

up 1n the same direction. there will be a flow of normal component, or 

heat flow. To cut off the heat flow means the disruption of the align-

ments of the domains. So there is a natural tendency to maintain the 

heat flow, once it is set up. In a torus, then, a persistance of heat 

flux can be expected. It would be interesting to explore in this direct-

ion experimentally. 

The collisional interaction between rotons as well as the collision-

al interaction between the rotons and the macroscopic quantized vortices 

can now be cast in a more definite version. Some rough classical cal-

culations yield results quite consistent with the existing experimental 

data. For instance, we may take the collision time between rotons 

t = r 
1 

N v 1T(? 
r r 

where v is the average roton velocity, and 1T a z. is the collision cross 
r 

section. The result agrees very well with the established expression by 

(10) - -7 
Landau and Khalatnikov , if we take a "" 10 em. This value is 

reasonable, since each roton consists of about 10 atoms and its radius 

of influence is presumably somewhat larger. 

The same value of the collision diameter applies well also for the 

derivation of the mutual friction coefficient in the theory of Hall and 
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V
. (11),(12) 
1nen . The nature of the collision is essentially similar to the 

change of the state of motion of a material particle in the flow field of a 

vortex line. Then it is also easy to see that the collision diameter for 

momentum exchange perpendicular to the relative velocity, a .1.' is very 

small, since the net transfer of the transverse momentum is negligible 

after the rotan has traver sed through the entire region of influence of 

the vortex line. In our model, the rotons are actually identified with 

material particles, so its interaction with macroscopic vortex lines can 

be visualized quite clearly, and the extrapolation from the classical 

hydrodynamics also presents not too much difficulty. We may not be so 

at ease with phonons or like excitations. 

There is tension in the vortex element. The tension in the rotan is 

(r) 
E 

2TIR 
oK2 -8 ::::: h ---10 dyne. 

The existence of tension can be attributed to the tendency to transfer the 

kinetic energy of the neighboring rotating atoms to the core atoms. We 

may note that the Van der Waals force between the atoms in liquid helium 

is also of the order of 10-8 
dyne(l

3
). So the molecular force is just 

about enough to prevent the splitting of the core. In this connection, we 

may mention the still unsolved problem regarding the nuclei of ultra-

. . . . 1. . d h 1. (14), (15) son1c cav1tat1on 1n 1qu1 e 1um . Based on the present model, 

then we can interpret the tensile strength not as the force needed to over-

come the Van der Waals force. but the force which together with the vortex 

tension will overcome the Vander Waals force. This force could be much 

smaller than the Vander Waals force, and this could explain the low tensil~ 

strength which is observed. 

In He I, the energies of the prevailing rotons become larger. The 
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energy could be increased either by increasing the radius or by increas

ing the circulation. Since all the atoms have partaken in the formation 

of rotons. the increase in size of one roton has to do it at the expense of 

other rotons. Therefore, when the temperature gets higher the increase 

of energy will preferably be achieved through the increase of circulations; 

and more and more rotons with more than one quantum of circulation 

will appear. Now as the temperature increases, the interatomic 

distance also increases, hence the Van der Waals force weakens. On 

the other hand, the tension of the rotons increases with the units of 

circulation they carry. Eventually the Vander Waals force can no long

er hold the tensions in the majority of the rotons, and then vaporization 

starts . 

If this picture applies to He I, it may also apply to ordinary simple 

liquids. It is indeed very intriging to ask whether the rotons are the 

primary excitations even in the ordinary liquid. If we can by any means find 

that the result of interactions among the rotons are not very important, 

then it will enhance greatly our under standing of the liquid state. 
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