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We describe a theoretical approach to molecular photoionization that includes first-order corrections to the
dipole approximation. The theoretical formalism is presented and applied to photoionization of H2 over the 20-
to 180-eV photon energy range. The angle-integrated cross section σ , the electric dipole anisotropy parameter
βe, the molecular alignment anisotropy parameter βm, and the first-order nondipole asymmetry parameters γ

and δ were calculated within the single-channel, static-exchange approximation. The calculated parameters are
compared with previous measurements of σ and βm and the present measurements of βe and γ + 3δ. The dipole
and nondipole angular distribution parameters were determined simultaneously using an efficient, multiangle
measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of
the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were
also measured in the course of this work.
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I. INTRODUCTION

Photoionization of H2 is of fundamental interest and is an
important process in astronomical environments [1,2]. H2 is a
two-electron system, like atomic He, but with the additional
complexities of nonspherical structure and nuclear degrees of
freedom. Several aspects of molecular photoionization have
been studied in H2, beginning with the total and dissociative
photoionization cross sections [2–4]. Other aspects include
ion-pair formation [5], double photoionization [6], vibrational
autoionization [7], rotational and vibrational structure in the
photoelectron spectrum [8,9], resonant photoionization involv-
ing doubly excited states [10–12], and the photoelectron [13]
and photoion [6,14] angular distributions. Other research
includes a study of competition between photodissociation and
photoionization [15], nonperturbative time-dependent calcu-
lations of ionization by femtosecond xuv laser pulses [16],
strong-field infrared laser ionization [17], and symmetry
breaking in dissociative photoionization [18]. Those processes
can be understood and treated within the dipole approximation
to the photon-electron interaction. Here we discuss another
aspect of H2 photoionization—nondipole asymmetries of
photoelectron angular distributions.

Nondipole interactions produce asymmetries in photoelec-
tron angular distributions that are neglected in the dipole
approximation. A measureable effect of these interactions is
to redistribute the differential photoionization cross section
asymmetrically in the forward and backward directions with
respect to the photon propagation vector. Early theories of
the photoeffect were geared toward x-ray photoionization
and large kinetic energies, and nondipole asymmetries were
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treated by retardation corrections in the point-Coulomb poten-
tial [19,20]. This model neglects screening and may be inaccu-
rate as the energy is lowered toward threshold [21–23]. Recent
theories adopt the “first retardation correction” to the dipole
approximation, which includes cross terms of electric dipole
(E1) photoionization amplitudes with electric quadrupole
(E2) and magnetic dipole (M1) amplitudes [21,22,24–26]. For
photoionization of randomly oriented atoms or molecules by a
linearly polarized photon beam, the differential cross section
can be expressed as [24]

dσ

d�
(θ,φ)

= σ

4π
{1 + βeP2(cos θ ) + (δ + γ cos2 θ ) sin θ cos φ}, (1)

where σ is the angle-integrated cross section, βe is the electric
dipole anisotropy parameter, P2(cos θ ) = (3 cos2 θ − 1)/2 is
the second Legendre polynomial, and δ and γ are the first-order
nondipole asymmetry parameters resulting from E1-E2 and
E1-M1 cross terms. The polar and azimuthal angles θ and φ

of the emitted photoelectrons are defined with respect to the
coordinate system shown in Fig. 1 with x axis along the photon
propagation vector k and z axis along the polarization vector
ε. The dipole and nondipole angular distribution parameters
can be determined from measurements of the photoelectron
intensities with respect to k and ε [23,27].

Screened wave functions have been used to accurately
calculate nondipole asymmetries of atoms over energy ranges
extending from near threshold to thousands of electron
volts [21–23]. Since nondipole asymmetries are generally
proportional to the photon momentum or energy, relatively
large asymmetries are observed for inner-shell electrons in the
x-ray regime [23,28]. However, nondipole asymmetries have
also been studied in valence-shell photoionization over the
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FIG. 1. (Color online) The coordinate system for calculations
and measurements of photoelectron angular distributions is defined
by the photon propagation vector k along the x axis and linear
polarization vector ε along the z axis. The arrows labeled 1–4
represent the angular positions of the four electron analyzers used in
the present work. The analyzers are positioned symmetrically around
the y axis and are rotatable about that axis. See text for details.

∼20- to 200-eV photon energy range. The accurate methods
that were developed for calculations of atomic photoionization
within the dipole approximation [29,30] have been extended
to calculations of nondipole asymmetries, including bound-
continuum and continuum-continuum interactions [25,26].
Nondipole asymmetries yield insight into photoionization
dynamics such as Cooper minima and interchannel cou-
pling [27,31,32].

Molecular photoionization theory is more challenging
due to the nonspherical molecular potential and nuclear
degrees of freedom. Only a few calculations of molecular
nondipole asymmetries have been reported [33–36]. Here we
describe a theory of molecular photoionization that includes
E1-E2 and E1-M1 cross terms for calculations of the
nondipole asymmetry parameters γ and δ in addition to
the dipole parameters σ and βe. The theory also provides
calculations of the molecular anisotropy parameter βm that de-
scribes alignment of the molecular axis in the photoionization
process [14].

The present theory was applied to calculations of valence-
shell nondipole asymmetries of N2 over the 20- to 200-eV
photon energy range that were compared with measurements
in Ref. [37]. The nondipole asymmetries of the 3σg , 1πu, and
2σu electrons of N2 display different spectral variations and
therefore are sensitive to the bound and continuum molecular
wave functions. Here we describe the theoretical formalism
in detail and apply it to calculations of H2 over the 20- to
180-eV photon energy range. The calculated parameters are
compared with existing measurements of σ and βm and with
the present measurements of βe and γ + 3δ. In comparison
with previous theoretical treatments of nondipole effects in
molecular photoionization, Refs. [33–36], the present work is
distinguished by being both very general in its development
and by employing well-tested frozen-core Hartree-Fock cal-
culational codes [38].

Section II of this paper describes the theoretical formalism
and calculational methods. Section III describes the photoelec-
tron spectrometer and measurements. Section IV compares
measured and calculated photoionization parameters. Conclu-
sions and suggestions for future research are given in Sec. V.

II. THEORY

A. Photon states of definite angular momentum and parity

One can find a number of multipole descriptions of
photons [39–41], so the description used in this article will
be brief. Starting from the Rayleigh expansion, the plane wave
describing a photon can be expanded using vector spherical
harmonics [42] and the transverse nature of the photon wave
(kp · ε = 0) into the multipole series [43]

ε exp(i kp · r) =
∑
LMx

Cx
LM (k̂p) ax

LM (r). (2)

ε is the electric vector of the photon and k̂p is the normalized
photon momentum. (Throughout the paper a hat over a vector
indicates that it is normalized.) L and M are the multipole
angular indices and x = 0,1 characterizes the parity of the
multipole; i.e., x = 0 refers to a magnetic and x = 1 to an
electric multipole. The radial dependence is defined using
vector spherical harmonics [42] as

a0
LM (r) = jL(kpr) YL

LM (r̂), (3)

a1
LM (r) =

√
L + 1

2L + 1
jL−1(kpr) YL−1

LM (r̂)

−
√

L

2L + 1
jL+1(kpr) YL+1

LM (r̂). (4)

jl(z) is a spherical Bessel function: jl(z) = √
π/(2z) Jl+1/2(z).

The polarization part is combined to

Cx
LM (k̂p) = 4π iL−x

(
ε · Y(x)∗

LM (k̂p)
)
. (5)

The density matrix ρp of the photon state is then

ρp =
∑
L M x
L′M ′x ′

∣∣Cx
LM (k̂p) ax

LM (r)
〉〈
Cx ′

L′M ′(k̂p) ax ′
L′M ′ (r)

∣∣. (6)

In the last equations vector spherical harmonics are used. They
are defined as [42]

YL
JM (r̂) =

∑
m,σ

(Lm,1σ |JM)YLm(r̂) eσ , (7)

where (..,..|..) are the Clebsch-Gordan coefficients and Ylm are
the normal spherical harmonics. The other widely used vector
spherical harmonics are defined as

Y(0)
JM (r̂) = YJ

JM (r̂), (8)

Y(1)
JM (r̂) =

√
J + 1

2J + 1
YJ−1

JM (r̂) +
√

J

2J + 1
YJ+1

JM (r̂). (9)

Following Ref. [44] we introduce a quantum number p defined
as p ≡ 1 − x. It is p = 0 for electric multipoles and p = 1
for magnetic multipoles. The parity � is � = (−1)L+p. This
notation is different than in work by Devons and Goldfarb [40]
and Ferguson [41], where p defines the parity.

The coordinate system shown in Fig. 1 and the differential
cross section expressed in Eq. (1) take the x axis along the
photon propagation direction and z axis along the linear
polarization direction. This geometry is commonly adopted
when the photons are highly linearly polarized as in the present
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experiment. However, a more general description of the photon
polarization employs the Stokes parameters [45]. The Stokes
parameters are defined in a reference frame in which the z

axis is parallel to the photon momentum. The complete basis
set to describe the photon polarization in this frame, due to
the transverse nature of the light, contains the left and right
circular states, |eλ=+1〉 and |eλ=−1〉, respectively. So it is natural
to transform the polarization part into that frame by

ρp =
∑
λ,λ′

∑
L M p
L′M ′p′

DL∗
λM (ω)

∣∣C1−p

Lλ (k̂p) a1−p

LM (r)
〉

×〈
C

1−p′
L′λ′ (k̂p) a1−p′

L′M ′(r)
∣∣DL′

λ′M ′(ω), (10)

with D as matrix elements of the Wigner rotation matrices and
ω as Euler angles. Using the properties of the vector spherical
harmonics [42] it can be shown that

ρp =
∑
�γ

∑
L M x
L′M ′x ′

(−)L−M �̂

(
L L′ �

M −M ′ −γ

)

×L(p L,p′L′)�γ

∣∣ a1−p

LM (r)
〉〈

a1−p′
L′M ′ (r)

∣∣ (11)

with (in the Stokes parameter reference frame)

L(p L,p′L′)�γ0 ≡ 2π iL+p−L′−p′
L̂ L̂′

×
∑
λλ′

δ(λ,±1)δ(λ′,±1)(−λ)p (−λ′)p
′

×(−1)L−λ �̂

(
L L′ �

λ −λ′ −γ0

)
ρs

λλ′ , (12)

which transform to an arbitrary reference frame, like the one
used in Eq. (11), like

L(p L,p′L′)�γ =
∑
γ0

L(p L,p′L′)�γ0D�∗
γ0γ

(ω). (13)

In Eqs. (11) and (12), Wigner 3J symbols have been used. The
ρs

λλ′ in Eq. (12) are the matrix elements of the polarization
matrix ρs

ρs =
(

ρs
+1,+1 ρs

+1,−1
ρs

−1,+1 ρs
−1,−1

)
= I

2

(
1 + p3 −p1 + ip2

−p1 − ip2 1 − p3

)
(14)

with the Stokes parameters I as total intensity and the
polarization components p1, p2, and p3 [45].

B. Molecular photoionization

First it is essential to derive a model to describe the aspects
of the photoionization process we are interested in. The whole
system can then be completely characterized by a density
matrix. We have to specify the quantum states of the photons
(see last section), the molecule, and the outgoing electron. We
assume that the electrostatic interactions within the molecule
are stronger than spin-orbit interactions and rotational inter-
actions; i.e., we assume that Hund’s coupling cases (a) and
(b) apply (see, for instance, Ref. [46]). We denote the ground
electronic state of the neutral molecule and the state of the
singly charged molecular core by |�0〉 and |�+〉, respectively.
In the following we sum over unresolved vibrational states.

We assume that the molecular orientation m does not change
during the process. The outgoing electron will be in a well-
defined state |k(−)

e 〉 [47] with well-defined spin se. The density
matrix after photoionization by a single photon is therefore

ρa = |m �+ k(−)
e se 〉〈 m �+ k(−)

e se|

= T

∣∣∣∣ m �0

(
−akp

c

)
ε exp(i kp · r)

〉

×
〈

m �0

(
−akp

c

)
ε exp(i kp · r)

∣∣∣∣ T +, (15)

where T is the transition operator from the initial state to the
final state. In this expression the state of a photon is not sim-
ply |ε exp(i kp · r)〉 but rather |−(akp

/c) ε exp(i kp · r)〉 with
akp

= c
√

2π/ωp. The differential cross section is then [30]

σ (m,ke,se,kp) = 2π

c
tr(ρa). (16)

The last equations are general, but one has to be more specific
to perform a calculation. The transition or interaction operator
has several forms, depending on the approximation chosen
(length, velocity, acceleration) [29,30,48]. Ideally, the results
of the calculation do not depend on the chosen form of the
transition operator, but in practice each form is sensitive
to particular regions of the molecular potential [29]. In the
velocity form the nonrelativistic transition operator for a
certain photon multipole is

T v
LMm

(p) = p · a1−p

LMm
(r), (17)

where p = −i ∇ is the momentum operator of the electron.
The operator in Eq. (17) is defined in the molecular body
frame. (Throughout the article quantum numbers in that frame
are denoted by an index m.) It is useful intuitively to calculate
the transition amplitudes in this frame due to the decreased
symmetry of molecular potentials compared to atoms. To
derive the length form of the transition operator, we use [48,49]

p = i [H,r]. (18)

If ψ and ψ ′ are eigenfunctions of H with eigenvalues E and
E′, respectively, the electronic transition amplitudes in length
and velocity forms are related by

〈ψ ′|p · a1
1Mm

(r)|ψ〉 = i ω〈ψ ′|r · a1
1Mm

(r)|ψ〉, (19)

〈ψ ′|p · a1
2Mm

(r)|ψ〉 = i
ω

2
〈ψ |r · a1

2Mm
(r)|ψ ′〉, (20)

with ω = E′ − E. Here ω = ωp, since the energy of the
system is changed by absorption of one photon. Since
Eqs. (19) and (20) are based on the assumption that ψ and
ψ ′ are eigenfunctions of H , they are sensitive to the quality
of the wave functions used in calculations. The nature of
the magnetic interaction is different from the electric one,
because in first order the angular momentum does not change.
In the magnetic dipole operator this is reflected by the cross
product L = r × p. The components of the operator are

TLMm
(1) = i kp

1√
24π

LMm
. (21)
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The magnetic dipole transition operator exists only in one
form. The transition operators seem to be different from their
dyadic forms [48,49]. This is due to the detachment of the
polarization in our notation. If the polarization is included the
operators again become identical to their dyadic forms

p ·
∑
M

C1
1M (k̂p) a1

1M (r) = p · ε, (22)

p ·
∑
M

C0
1M (k̂p) a0

1M (r) = i

2
((kp × ε)(r × p)), (23)

p ·
∑
M

C1
2M (k̂p) a1

2M (r) = i

2
((ε · p)(kp · r) + (ε · r)(kp · p)).

(24)

In the following we choose an ansatz in which partial
waves are employed. The electronic wave function |k(−)

e 〉 is
expanded into spherical harmonics [50]. However, due to the
nonspherical molecular potential, only the projection of the
angular momentum on the molecular axis is a good quantum
number, not the angular momentum itself. Dipole selection
rules therefore do not restrict the expansion of |k(−)

e 〉, as
they do in atoms. Nevertheless, convergence of the partial
wave expansion is reached quite rapidly. To a very good
approximation, a limited number of terms is sufficient, and
the expansion can be truncated at a certain lmax.

In the following we assume that the spin of the electron will
not be detected. (On how to incorporate the spin as well and
for more details in general, see Ref. [51]). Integration over the
electronic spin leads to

〈 m �+ k(−)
e |ρ| m �+ k(−)

e 〉

≡
√

2

4 π

∫
〈 m �+ k(−)

e se |ρa| m �+ k(−)
e se 〉 dse. (25)

After some extensive Racah algebra and considering Eq. (16),
one gets for the cross section

σ (m,ke,kp)

= 4π2

ωp c

∑
pp′

∑
LL′

∑
dL�

MdL�(p L,p′L′) FdL�(p L,p′L′). (26)

Two types of terms are introduced in Eq. (26), i.e., dynamical
or kinematical terms, M(p L,p′L′)dL� , and geometrical terms,
F (p L,p′L′)dL� , which contain all dependencies on the
dynamics and geometries, respectively, of the molecular single
photoionization process. In particular they are defined as

FdL�(p L,p′L′) =
∑

γ

L(p L,p′L′)�γ Y dL
�γ (m,k̂e), (27)

where Y dL
�γ are the bipolar spherical harmonics [42], and as

MdL�(p L,p′L′)

= d̂ L̂
∑

MmM ′
m

∑
lmm

l′m′
m

(−)L+Mm+m′
m+� l̂ l̂′

×
(

l l′ L
0 0 0

) (
l l′ L

−mm m′
m −αm

)

×
(

L L′ �

Mm −M ′
m αm

)(
d L �

0 αm −αm

)
×il−l′ exp (i(�l − �l′))〈�+ lmm|TLMm

(p)|�0〉
×〈�+ l′m′

m|TL′M ′
m
(p′)|�0〉∗. (28)

Here 〈�+ lmm|TLMm
(p)|�0〉 are the complex transition ampli-

tudes.
It is evident that a large number of dynamical coefficients

must be calculated to derive the angular distribution of
photoelectrons from fixed-in-space molecules. However, one
can deduce some useful dependencies and decrease the number
of nonredundant coefficients dramatically. From Eq. (28)
follows

MdL�(p L,p′L′) = (−)L+L′+d+L+� MdL�(p′L′,p L)∗. (29)

Furthermore, parity conservation restricts the values of L:
L and the sum (p + L + p′ + L′) are both either even or
odd. Additional restrictions arise from symmetries of the
molecular potential [52]: (a) if a molecule possesses a center
of symmetry then there exists a basis of energy eigenfunctions
with defined symmetry. (Obviously, heteronuclear molecules
do not have such a symmetry center.) Now if the initial and final
molecular states have a well-defined parity, then due to parity
conservation L just has even values. (b) The matrix elements
for molecules with cylindrical symmetry are invariant if the
signs of all projection quantum numbers on the cylinder axis
are changed.

Considering these restrictions one gets for the angle-
integrated cross section σ

σ =
∫ ∫ ∫

σ (m,ke,kp) dm dke dkp (30)

= 4π2

ωp c
4 π

∑
{pL}

L̂

2
M000(pL,pL). (31)

The cross section in dipole approximation is therefore

σ = 4π2

ωp c
4 π

√
3

2
M000(01,01). (32)

With the equations derived so far, a detailed analysis of
photoionization processes beyond the dipole approximation is
possible. Many possibilities arise. However, in the following
we focus on ongoing experiments. If one considers multipole
terms up to first order only, i.e., E1, M1, E2 terms, then the
differential cross section is given by Eq. (1), and the angular
distribution parameters are expressed

βe = −
√

10 M022(01,01)/M000(01,01), (33)

δ = [3
√

2(M011(01,11) − M011(01,02))

− 2
√

7M033(01,02)]/M000(01,01), (34)

γ = 10
√

7M033(01,02)/M000(01,01). (35)

In the last equations only electric dipole contributions and
interference terms of electric dipole and magnetic dipole–
electric quadrupole are considered. Those should still be much
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larger than terms of higher order than dipole alone. We also
obtain an expression for the molecular alignment anisotropy
parameter βm [14] by averaging the dipole photoelectron
angular distribution over the electronic orientation:

βm = −
√

10 M202(01,01)/M000(01,01). (36)

For the calculations, we used codes developed at the
California Institute of Technology (for an early reference, see
Ref. [38]). As a check for the quality of the wave functions
used, the transition amplitudes in both length and velocity form
were calculated. The velocity form results are compared with
measurements in Sec. IV.

III. EXPERIMENTAL METHODS

The experiments were done at the University of Wisconsin’s
Synchrotron Radiation Center using a tunable, linearly polar-
ized photon beam provided by an undulator and plane grating
monochromator [53]. The bandwidth varied from 0.005 to
0.130 eV over the 20- to 150-eV photon energy range. The
flux over that energy range was ∼109–1010 photons/(s mA),
and the stored electron current varied over 100–200 mA.
The undulator was stepped along with the monochromator
at each energy to maintain maximum flux and a degree of
linear polarization >0.99 [54]. Photoelectron intensities were
normalized to the photocurrents from nickel meshes located at
the front and back of the spectrometer chamber.

The electron spectrometer system and measurement meth-
ods have been described in Refs. [23,27]. As shown in Fig. 1,
the coordinate system is defined by the propagation vector k
along x and photon beam polarization vector ε along z. Four
45◦-parallel-plate electron analyzers (PPAs) [55] are mounted
on a rotation stage with its rotation axis along the y axis, i.e.,
perpendicular to both k and ε. The angular positions of the
PPAs are fixed at 125.3◦ with respect to the rotation axis. At
the positions shown in Fig. 1 and the top frame of Fig. 2, the
PPAs accept photoelectrons emitted at angles that are “magic”
with respect to all three coordinate axes, i.e., the direction
cosines are all ±1/

√
3. At these angles, P2(cos θ ) = 0, and the

dependence on βe vanishes in Eq. (1). By defining N1, N2, N3,
and N4 to be the photoelectron intensities at these “nondipole”
angles, the combined asymmetry parameter is given by

γ + 3δ =
√

27

(
N1 − N2 − N3 + N4

N1 + N2 + N3 + N4

)
. (37)

Note that the sum of the photoelectron intensities, N1 + N2 +
N3 + N4, is independent of βe, γ , and δ and is proportional
to the angle-integrated cross section σ . Equation (37) shows
that γ + 3δ is given by the forward-backward asymmetry of
photoelectron intensities with respect to k normalized to the
angle-integrated intensity.

Rotating the analyzers by 45◦ about y places them as shown
in the bottom frame of Fig. 2. At that position, the polar angles
of PPAs 1 and 3 are θ = 90◦ ± 54.7◦, where 54.7◦ is a magic
angle, and the polar angles of PPAs 2 and 4 are θ = 90◦.
P2(cos θ ) is nonzero at those angles, and the photoelectron
intensities depend on βe. Defining D1, D2, D3, and D4 to be
the photoelectron intensities at these “dipole” angles, the βe

FIG. 2. (Color online) The positions of the four electron analyz-
ers projected onto the ε-k plane. The top frame shows the positions
used to measure nondipole asymmetries γ + 3δ. The bottom frame
shows the positions used to measure dipole anisotropies βe.

parameter is given by either of the following two equations:

βe = 4

(
s0

s⊥

)(
D1 + D3

N1 + N2 + N3 + N4

)
− 2 (38)

and

βe = 2 − 4

(
s0

s‖

)(
D2 + D4

N1 + N2 + N3 + N4

)
. (39)

The parameters s0, s⊥, and s‖ in Eqs. (38) and (39) represent
the different fractions of the photoelectron source volume
observed by the PPAs at different angular positions. The source
volume has a cylindrical shape produced by the photon beam
passing through the gas jet. s0 represents the fraction of the
source volume observed by the PPAs at the nondipole angles
depicted in the top frame of Fig. 2. All PPAs observe the
same fraction, so s0 does not appear in Eq. (37). At the
dipole angles shown in the bottom frame of Fig. 2, PPAs 1
and 3 are perpendicular to the photon beam and observe a
source volume fraction s⊥, while PPAs 2 and 4 are parallel
to the photon beam and observe a source volume fraction s‖.
The ratios s0/s⊥ and s0/s‖ can be determined by inverting
Eqs. (38) and (39) and measuring photoelectron intensities
from transitions of known βe values. The He 1s βe = 2 at
photon energies below the doubly excited states near ∼60 eV,
and the Ne 2p βe vs energy is accurately known through
measurements and theory [56–61]. Measurements of He 1s and
Ne 2p photoelectrons were used to determine s0/s⊥ = 1.1–1.2
over the 5- to 130-eV kinetic energy range. βe values for H2

were then determined using Eq. (38). Equation (39) was not
used, because He and H2 both have large βe values for which
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the D2 and D4 intensities are weak. For each photon energy,
the rotation platform was positioned at eight angles in steps
of 45◦ so that each PPA recorded photoelectron intensities at
the eight positions indicated in Fig. 2, and the results from the
four analyzers were averaged.

Photoelectron spectra of H2 have been recorded that resolve
vibrational and rotational structure of the H2

+ ion [8,9]. The
goal of the present experiments was to accurately measure
vibrationally averaged angular distributions for comparison
with fixed-nuclei calculations. The PPAs were operated at fixed
pass energies of 100 eV, and the kinetic energy resolution
was measured to be 2.2 eV full width at half maximum
(FWHM). A constant ionic state (CIS) method was used
to record photoelectron intensities vs photon energy [27].
In this technique, the potentials on the PPAs are stepped
along with the photon energy and undulator energy to record
photoelectron intensities at fixed ionization energy of the
atom or molecule. Accounting for the 2.2-eV FWHM kinetic
energy resolution, the ionization energy band measured for
H2 was 16.4 ± 1.1 eV. Comparison with the high-resolution
spectrum [8] shows that the peak of the ionization energy
band was near the υ ′ = 4 vibrational level of H2

+ and the
band encompassed υ ′ = 0–10.

Contact potentials and stray electric and magnetic fields
should be minimized for accurate measurements of photoelec-
tron angular distributions, particularly for low kinetic energies.
Technical improvements were made since our previous exper-
iments [23,27,31,37] to further reduce spurious effects. The
vacuum chamber is shielded with two layers of high perme-
ability Mu-metal that reduce the magnetic field to <1 mG.
However, stray magnetic fields can be produced by steel
spectrometer parts, so those were replaced with parts made of
nonmagnetic materials. With the PPAs mounted on the rotation
platform, the magnetic field in the interaction region varied
within 0.35–0.75 mG as the platform was rotated by 360◦.
The gas nozzle was made of copper capillary tubing and was
positioned ∼1 mm above the photon beam. The gas nozzle
and PPA entrance snouts were coated with colloidal graphite
to reduce contact potentials.

Photoelectrons of kinetic energy Ek are emitted from the
interaction region, enter a PPA snout, and pass through a
grid that accelerates or decelerates them to the pass energy
Ep (100 eV for these experiments). The potential on this
grid is the same as the potential Vl on the lower plate
of the PPA. According to the electron-optical model of a
45◦ PPA [55], the upper plate should be at the potential
Vu = Vl + 0.6Ep, where 0.6 is referred to as the “spectrometer
factor.” By stepping the potentials Vl and Vu according to this
relation, the photoelectron spectrum can be recorded at a given
photon energy, or a CIS scan can be recorded by stepping
the potentials along with the photon energy. However, the
measured spectrometer factors are slightly different from 0.6
for each PPA. Consequently, since Vl and Vu for the four
PPAs are provided by the same two voltage sources, the
measured photoelectron spectra do not accurately match or
track with changes in photon energy. Five equally spaced field-
termination plates are mounted between the upper and lower
plates of each PPA, and an internal voltage divider determines
the potentials on the seven plates. To match the spectrometer
factors of the four PPAs, external trim resistors were added

between the Vu source and the voltage divider. To account for
individual contact potentials, externally adjustable offsets were
added to Vl for each PPA. Also, the gas nozzle was electrically
isolated and biased to −0.15 V to account for its contact
potential. These procedures resulted in photoelectron spectra
well matched to known ionization energies of the rare gases
and H2. The CIS method was tested at selected photon energies
by scanning the entire He 1s, Ne 2p, or H2 photoelectron
spectra at the eight positions of the rotation platform as
described earlier. Relative photoelectron intensities at the peak
maxima agree well with intensities summed over the entire
spectra for each PPA at the eight angular positions. With these
technical improvements, the βe and γ + 3δ parameters could
be measured to as low as ∼3 eV kinetic energy.

IV. RESULTS AND DISCUSSION

As discussed above, He 1s and Ne 2p photoelectrons
were used to determine relative source volumes observed
by the electron analyzers in measurements of βe parameters.
The nondipole asymmetries derived from those measurements
are plotted in Figs. 3 and 4. The He 1s measurements
agree well with earlier measurements and with calculated
asymmetries using the random phase approximation with
exchange (RPAE) [27]. The present measurements confirm
the RPAE calculations at lower kinetic energies. For Ne
2p, the RPAE calculations of Ref. [26] match the measured
asymmetries fairly well, although with small deviations at
lower kinetic energies.

Our primary results are shown in Fig. 5 where the cal-
culated photoionization parameters of H2 are compared with
measurements over the 20- to 180-eV photon energy range.
The calculated total cross section σ in Fig. 5(a) is in excellent
agreement with measurements [4]. The present measurements
of βe and γ + 3δ are compared with the calculated curves
in Figs. 5(b) and 5(c). Good overall agreement is observed
for the magnitudes and energy variations of these parameters.

0

0.04

0.08

0.12

0.16

20 30 40 50 60 70
photon energy (eV)

He 1s

FIG. 3. (Color online) Nondipole asymmetry parameter γ of He
1s photoelectrons. The present results (open circles) are compared
with previous measurements (closed circles) and RPAE calculations
from Ref. [27].
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FIG. 4. (Color online) Nondipole asymmetry parameter γ + 3δ

of Ne 2p photoelectrons. The present measurements (open circles)
are compared with RPAE calculations from Ref. [26].

The measured βe passes through a minimum near 30 eV.
Doubly excited states appear in this energy region [10–12],
and oscillations in the βe parameter are predicted when doubly
excited states are included in calculations [12]. The observed
feature does not appear in the present calculations that do not
treat doubly excited states. The deviation of the measured
γ + 3δ parameter from the calculated curve in the 20- to
30-eV range may also be due to the doubly excited states.

The measured βe and γ + 3δ parameters also deviate from the
calculated curves at energies above 100 eV. Our calculations
employ partial wave expansions which might not be fully
converged at higher energies. This could account for some
of the difference between measurements and calculations.
At lower energies our method provides converged solutions
for the photoelectron within the limitations of the assumed
static-exchange potential.

The molecular alignment anisotropy parameter βm is
sensitive to the relative strengths of the � → � and � → �

dipole transitions and can be determined from measurements
of the angular distributions of protons ejected in dissociative
photoionization [14]. Kossmann et al. [6] determined βm

parameters for double photoionization of H2 over 52–110 eV,
and their measurements are compared with the calculated
curve in Fig. 5(d). Although the calculations are not for the
double photoionization process, the calculated βm shows a
similar magnitude and energy variation as the measurements.
The βm parameter is negative due to the strength of the � → �

transition [14] and passes through a broad minimum as the rel-
ative strengths of the two dipole symmetries vary with energy.

V. CONCLUSION

We present a theory of molecular photoionization that
includes cross terms of electric dipole (E1) amplitudes with
electric quadrupole (E2) and magnetic dipole (M1) amplitudes
that give rise to nondipole asymmetries in photoelectron angu-
lar distributions. The photoionization cross section, dipole and

0.01
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1

10

H
2
 1

g

-1 (a)
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20 60 100 140 180
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2
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+3
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FIG. 5. (Color online) Calculated and measured photoionization parameters of molecular H2. (a) Total cross section σ compared
with measurements from Ref. [4]. (b) Electric dipole anisotropy parameter βe compared with present measurements. (c) Nondipole
asymmetry parameter γ + 3δ compared with present measurements. (d) Molecular alignment anisotropy parameter βm compared with double
photoionization measurements from Ref. [6].
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nondipole photoelectron angular distribution parameters, and
the molecular alignment parameter of H2 are calculated over
20–180 eV and compared with measurements. We describe
measurements of the dipole and nondipole photoelectron an-
gular distribution parameters. The calculations are in excellent
agreement with measured total cross sections [4] and compare
well overall with the magnitudes and energy variations of
the photoelectron angular distribution parameters. The mea-
sured parameters show features attributed to doubly excited
states [12].

The theory, calculations, and measurements presented here
for H2 and for N2 in Ref. [37] show that nondipole asymmetries
provide insight into low-energy photoionization that adds
to the numerous observations that can be treated within
the dipole approximation. Future work could include other
diatomic and polyatomic molecules, vibrationally resolved
results, and studies of double excitation and other interchannel

interactions. In related work, there is significant interest in
confinement resonances that arise in photoionization of atoms
contained in C60 molecular cages [62]. Strong nondipole
effects have been predicted in photoionization calculations on
confined atoms [63,64].
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K. Kreidi, M. Schöffler, L. Schmidt, T. Jahnke, O. Jagutzki
et al., Science 315, 629 (2007).

[19] J. Fischer, Ann. Phys. (Leipzig) 8, 821 (1931).
[20] A. Sommerfeld, Wave Mechanics, 2nd ed. (Methuen, London,

1930).
[21] A. Bechler and R. H. Pratt, Phys. Rev. A 39, 1774 (1989).

[22] A. Bechler and R. H. Pratt, Phys. Rev. A 42, 6400 (1990).
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