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Abstract—This paper studies new bounds and constructions was on binary alphabets and the types of errors studied |n [10
that are applicable to the combinatorial granular channel model  will be referred in this work ason-overlapping grain-errors.
previously introduced by Sharov and Roth. We derive new In [15], Sharov and Roth generalized the model and considere

bounds on the maximum cardinality of a grain-error-correcting bi lohabet I lanDi .
code and propose constructions of codes that correct graigrrors. non-binary aiphabets as well awerfapping grain-errors.

We demonstrate that a permutation of the classical group coels Qverlapping grain-errors permit the occurrence of two msro
(e.g., Constantin-Rao codes) can correct a single graind@r. In  in consecutive positions whereas non-overlapping greiore

many cases of interest, our results improve upon the currefy  cannot be adjacent. Note that there is no distinction betvaee
best knoyvn bounds and constructions. Some of the approachesnon_ove”apping single grain-error and an overlappinglsin
adopted in the context of grain-errors may have applicationto . . . .
other channel models. grain-error. In this work, we restrict our attention onlytte
overlapping grain-error model. We say that a codetisygain-
error-correcting code if it can correct up tot overlapping
l. INTRODUCTION grain-errors. In both[[10] and [15], bounds and construnstio
Granular media is a promising magnetic recording technolere given. Recently, in([8] some of the techniques from
ogy that currently presents formidable challenges to aaiie [9] were adopted to obtain improved upper bounds on the
capacity. One of the main issues with granular media is theaximum cardinalities of non-overlapping grain-error esd
uncertainty of the locations of the grains in the underlying The main contribution of this paper is to construct codes
recording medium. Typically, this medium is organized intthat correct grain-errors. We show that the class of grodieso
grains whose locations and sizes are random. Informationfiiem [2] is a special case of our general code construction. |
stored by controlling the magnetization of the individuadigs addition, and similar to[8], we provide non-asymptotic app
so that each grain can store a single bit of data [18], [19]. bounds on the cardinalities afgrain-error-correcting codes,
The read and write processes are typically unaware of thth an explicit expression for the cases where- 1,2, 3.
locations of the grains. As a result, the medium is dividedle show that in many cases our bounds and constructions
into evenly spaced bit cells and the information is writtetoi improve upon the state of the art results from![10] &nd [15].
these bit cells[[10]. In the traditional setup, the bit call i Section[I] formally defines the channel model and intro-
usually larger than a single-grain. When the size of the lfitices the notation and tools used for the remainder of the
cells is reduced enough, the effects of the random positbnspaper. Sectiofi Il improves upon the existing upper bounds
the grains become pronounced. In particular,[inl [19] a onffem [15]. Section TV contains constructions for codes that
dimensional channel model was studied that illustrated tkherrect grain-errors and a related type of error which werref
effects of having grains with randomly selected lengthd ,of to as mineral-errors. Lower bounds on the cardinalities for
2, or 3 bits. When grains span more than a single bit ceome of these codes are then derived in Se€fion V. Sdction VI
the polarity of a grain is set by the last bit written into itad revisits the general approach to correcting grain/mirerairs
errors manifest themselves as overwritesstoears) where the from Sectior IV-B, and identifies additional codes for cirta
last bit in the grain overwrites the preceding bit in the grai code lengths. Section VIl concludes the paper. Preliminary
In this work, the focus is on grains of length one or two bitsesults of this work are presented i [4].
A grain-error is an error where the information from one bit
overwrites the information stored in the preceding bit ie th Il. PRELIMINARIES
grain. Without loss of generality, and as {n_[10], our model In this section, we describe in detail the structure of grain
assumes that the first bit smears the following adjacennbiteérrors. Afterwards, we introduce some key notation. Sec-
the grain. tion[[[-Alintroduces the errors of interest. Sectfon 1I-Biewvs
In [15], Sharov and Roth presented combinatorial bountise tools which will be used for computing upper bounds. Sec-
and code constructions for granular media. [Ih [7], lyengaion[I=C] briefly introduces some graph notation. Secfioill|
Siegel, and Wolf studied a related model from an informatiomeviews some distance metrics and group codes that will be
theoretic perspective. I [10], Mazumdar, Barg, and Kaphyaseful for constructing grain-error-correcting codesaafly,
introduced a channel model and studied coding methods foSaction[II-E includes some Fourier analysis tools useful fo
one-dimensional granular magnetic medium[In [10], theioc computing lower bounds for grain-error codes.
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A. Grain-errors and mineral-errors {(0,0,0,1,0),(0,0,0,1,1),(0,0,0,0,0), (0,0,0,0,1)}

In this subsection, we formally introduce the notation an@lnd bys(x) = 4.
the errors of interest that will be studied in this work. We We note that the last vecto((,0,0,0,1), enumerated in
consider the case where each grain contains either one or 840 (x) for Example[l was an overlapping grain-error in the
bits of data. A grain-error causes the two bits in the same tweense that the grain-errors were adjacent so that the bit in
bit grain to either both b@ or both bel; the error operation position4 is both smeared and smearing.
can be interpreted assmearing. Following the setup of [10], We introduce a new type of error that will be useful in
we assume that the first bit smears the second. The problembsequent analysis.
of interest is how to correct grain-errors when the locatio
and lengths of the grains are unknown to both the encoder %@f
decoder.

Before continuing, we provide a formal definition ofta
grain-error. For a vectoxr € GF(2)", wt(x) refers to the
Hamming weight ofr and supp(x) denotes the set of indices
of  with non-zero values.

inition 2. Let¢ > 1 be an integer. Suppose a vectere
(2)™ was stored. Leke, = (e1,...,e,) € GF(2)" and
suppose the vectay = x + e, was received. Then, we say
that e, is a t-mineral-error for « if the following holds:

1) wt(ez) < t,
) For 2 <i <n, if € 7§ 0, thenIi }é Ti—1-

Definition 1. Let¢ > 1 be an integer. Suppose a vectere ~ Similar to the grain-error setup, we say thaf is a t-
GF(2)" was stored. Lek, = (e; en) € GF(2)", and mineral-error if the vectorr is clear from the context. A
. xr ) n

’ tcode that can correct artymineral-error will be referred to as
a t-mineral-error-correcting code. Single-mineral codes and
mineral codes are defined analogously as grain codes.

1) wi(ez) <t ande; =0, For a given vectorr € GF(2)", let B, y(x) denote the
2) Forz<i<mn, ife; #0, thenz; # a1 error-ball forz given that anyt-mineral-error may occur in
Note thate, depends on the input vecter For shorthand, - That is, we define

we say thate, is at-grain-error if the vector is clear from

the context. Notice in Definitiohl 1 that an error at position

where2 < i < n can be interpreted as a smearing where theA useful consequence of Definitionl 2 is stated in the
value ofz at positioni — 1 smears the value a in position following claim.

7.

suppose the vectay = x + e, was read. Then, we say tha
e, is a t-grain-error for « if the following holds:

Biv(x) = {x + ez| ex is at-mineral-errof.

, , Claim 1. Suppos€ is a t-grain-error-correcting code. Then,
A code that can correct angrain-error will be referred ¢, any two distinct codewordss = (z Tn)y =
- AR nj)s -

to as at-grain-error-correcting code. For shorthand, a code (Y1s- .., yn) € C, either
that can correct a single grain-error will also be referred t 1) xl'# yi, or
as asingle-grain code. More generally, codes that correct a 2) B (x’ ) O By aa ) =0
prescribed number of grain-errors are calfgdin codes. The 6MAE2s oo En) HISEMAY2 - o Yn '
maximum size of a-grain-error-correcting-code of length Supposer € GF(2)" and B, r denotes the error-ball for
will be referred to asV/ (n, t). t random-errors (wheret random-errors are defined as any
Definition [ coincides with theoverlapping grain-error  binary vector of lengthn with weight at mostt). Then, for
model discussed in[15]. We briefly note that since the oaiginany vectorz € GF(2)", |By.p(z)| = Zt-f n
model of non-overlapping grain-errors [10] is a special case ) ’ ANEA )
of the more general overlapping grain-error model, the codeThe foIIOW|_ng lemma follows from the definitions of grain-
constructions in this paper apply to both models. We compfﬁ'gors and mineral-errors.
the upper bounds derived in Sect[on Ill against existingtosu Claim 2. For any vectore € GF(2)", Bi.c(x) C By u(z) C
for the overlapping grain-error model([15]). For the rentir B: r(z).
of the paper, the term grain-error refers to an overlapping
grain-error as stated in Definitidd 1.
Suppose a vectar € GF(2)" is stored. LetB; ¢(x) be
the set of all possible vectors received (#reor-ball) given
that any¢-grain-error may occur ire. That is, we define

We now present some simple results that follow from the
structure of grain-errors. Lemmas[1, 2, ddd 4 will be useful
in Section[II] for obtaining upper bounds on the cardinality
of grain codes and Lemnid 3 and Cldiin 3 will be useful for
constructing grain codes in Sectibnl IV.

Bic(x) = {x + es| e, is at-grain-errot, A run is a maximal substring of one or more consecutive
' identical symbols. We denote the number of runs in a vector
andbyn(z) = |Br,c(x)|- x asr(z) wherex € GF(2)".
Example 1. Supposer = (0,0,0,1,0) was stored. Then, Lemma 1. For any vector =z, b,(x) =
BLG(‘,D) = {(030703170)3 (070307131)7(030703030)} min{t,r(x)—1} r(:v) -1

and by 5(x) = 3. Notice also that Byg(z) = 2j=0 < J )



Proof: Suppose a vectat was stored and that it consists [ |
of k = r(x) runs. By Definition 1, a grain-error can occur only The following lemma follows from the structure of grain-
at the boundaries between runs. If there are exdctlyt+1  errors.

runs, there aré — 1 transitions between runs and thereforﬁ 3. Fo or @) H
ot k—1 . emma 3. For any two vectorse, u € 2)™, suppose that
ben(T) =250 ( J . If there aref or fewer runs (i.e., 5. <ome1 <i<n-—1,

k < t), thenb, ,,(z) = Zf;é ( K J_ 1 ) [ 1) (x5, 2i41) = (0,0), (us, uig1) = (1,1) or

2
The following lemma is a consequence of the smearir]lgi1 )
effect of a grain-error. Let the map : GF(2)* — GF(2)5~! en,

be defined so that(z) = 2’ = (z,.. "ngl). where Proof: Let y, =  + e, andy, = u + e,. Sincex and
2zl = (2; + zi41) mod 2 (for 1 < ¢ < s — 1). Notice that

SN . ) ; L u differ at position: + 1 then in order fory, = y,, an error
¥(z) is a linear map and it has Rin position if and only st ccur at position + 1 in either  or « but not both.

if 2; # 2:41. Recall thatsupp(z) refers to the set of non-zero,ever, a grain-error can never change the information at
indices inz andw(z) refers to the Hamming weight of. positioni + 1 in eitherx or uw since bothx andw store the

Lemma 2. For any two vectorsz,y € GF(2)" if y e Same information in positionsand: + 1 by the conditions in

Bi.c(x), thenr(y) < r(z) and by, (y) < byn(x). the statement of the lemma. [ |
We now prove the final lemma for this subsection.
Proof: For the result to hold, we need to show that for

any two vectorse,y € GF(2)" wherey € B, o(x), r(y) < Lemma 4. Suppos€ is a t-grain-error-correcting code of
r(zx). If r(y) < r(x), then from Lemm&llh; ,,(y) < b;.. (). lengthn with the maximum possible cardinality. Thed] is

Equivalently, we will show thatvt(¥(y)) < wt(¥(x)). Since an even number.

y € Bio(x) we can writey = x + e, wheree,, is a t-
grain-error. Lete’ = ¥(x),e’ = ¥(es),y’ = ¥(y). By the
linearity of the map¥, we can writey’ = =’ + €’ and so
wt(y') = wt(x') + wt(e’) — 2|supp(x’) N supp(e’)|]. In the
following, we showwt(y") < wt(x’) by proving|supp(x’) N

supp(e’)| > wie) The proof will follow by induction on the

Proof: Assume, on the contrary, thétis a¢-grain-error-
correcting code of length with an odd humber of codewords
and C has maximum possible cardinality. Now consider the
code Cy which consists of all the codewords & that start
with a 0 and the cod&; which consists of all the codewords

2 . of C that start with al. Notice that sinc&’; is a subcode of
number of runs ols in e;. C, Co is at-grain-error-correcting code. [€] = [Co| + |C4] is
We first prove that for any-grain-errore,, of lengthn, if 34 odd number, thelCo| # |C1| and so assume, without loss

e, has a single run ofs, thenr(y) < r(x). Suppose then of generality, thatC; | < |Co| (the case wheré;| > |Co| can
thate; = (e1,...,en) is at-grain-error and thae, contains pe treated analogously).

a single run ofls. Thenl < wt(e’) < 2 sincee; = 0.
Suppose further thae’ = (¢f,...,e],_;) has its firstl at

positioni wherel < i < n — 1. Sincei is the location of
the first1 in €', thene; # ¢;41 and soe; = 0,¢e,01 = 1

Let C{ be the set of vectors that is the result of flip-
ping the first bit of every codeword ify. Notice from
Claim [1 that sinceC, is a t-grain-error-correcting code for

) 7 any x = (z1,...,20),y = (Y1,...,yn) € Co where
(sincee; = 0). However, ife;1; = 1, thenz; # x4, and so # y, Beai(za, ... x0) O B (yas ... yn) # 0 and so
bothz; = e; = 1. Sincewt(e’) < 2, we have just shown that ¢ any v w € C where v ’# w, By (vz ) N

. 9 0 ’ N yrccy Un
|supp(z’) N supp(e’)] > 1, and so the base case is complet%t wi(ws, ... wy) # 0. Thus, for anyw,w € C}, we have

We now assume that for any lengthe, if e hask runs g, ()0 B, ¢ (w) # 0.
of 1s, thenr(y) < r(x) wherel < k < [%]. Consider the - ’
case where,, hask+ 1 runs ofls. Suppose thé-th run of1s
in e, has its finall in positionj where2 < j < n—2. Thus,
ej+1 = 0. For shorthand denote; = (e1,...,ej11), ea =

Then,Cy U C|, is at-grain-error-correcting code since each
codeword inC, differs from every codeword i@/, in the first
bit. Furthermore, sinc&}| = |Co|.

(€j+1 en), r, = (,CCl 1’j+1), o = (,CCj+1 LCn), C /
Jr U A UCy| = 2|Col > |C Ci|=1C
e} = Uler), ey = W(es), ) = W(zy), andxh = ¥(xzy). 1Co U Col = 2{Col > [Col + ] = [C]
Notice that the vectore’ andz’ can be written as the concate- . -
X , ;o , PR we arrive at a contradiction. [ |
nation of two vectors where’ = (e}, e}) andx’ = (z}, x)) ; i ) )
wheree, is at-grain-error forz,; with & runs of1s andes is The next claim will be used later in SectignllV for con-

a t-grain-error forz, with a single run ofls. By the inductive Structing grain codes.

assumptioanuppgm’l)ﬂsupp(e’l)| 2 % and|supp(x5)N  Claim 3. Suppose’y; is a t-mineral-error-correcting code.
supp(eh)| > % Combining these two statements giveketC be the code that is the result of prepending an arbitrary
the desired result thdsupp(x’) N supp(e’)| > % and so bit to the beginning of every codeword é,. Then,C is a
the proof is complete. t-grain-error-correcting code of size|Cyy|.



B. Tools for computing upper bounds be a simple graph; that is, it has undirected edges with no

In this subsection, we briefly review some of the tools usétprallel edges and no self-loops. A vertex< V' is adjacent
in Section[Tll for computing a non-asymptotic upper bountp another vertex, € v/ |f_there exists an ec_ige bgtween them.
on the cardinality of grain-error-correcting codes. We ibegThe degree of a vertex is the number of its adjacent vertices
by revisiting some of the notation and results frdm [9]. and the maximum degree of a vertexgnis denotedA(G).

o , , , A k-coloring is a mapping® : V' — {0,1,...,k — 1} of
Definition 3. A hypergraph # is a pair (X, &), wheret'is @ mpers to each vertex such that the same number is never
finite set and< is a collection of nonempty subsetsXfsuch assigned to adjacent vertices. Theromatic number of a
thatUgce F = X. The elements of are calledhyperedges graph, denoted by(G), is the smallestc for which a k-

Definition 4. A matching of a hypergraph#t = (X,€) coloring exists. Aclique is a set of vertices irg that are
is a collection of disjoint hyperedges,, ..., E; € £. The all adjacent. The size of the largest clique in a grapls
matching number of #, denotedv(#), is the largestj for ~denoteds(G). It is known that for a grapty, x(9) is such
which such a matching exists. thatc(G) < x(G) < A(G)+1 [L7]. Each collection of vertices
that share the same number (under some fix@bloring) is

As will be described shortly, the following can be interiaferred to as @olor class.

preted as the dual of the matching of a hypergraph.

Definition 5. A transversal of a hypergraph{ = (X, &) is _ _
a subset]’ C X that intersects every hyperedge éh The D. Distance metrics and group codes
transversal number of 7, denoted byr(#), is the smallest

) In this subsection, we introduce some distance metrics that
size of a transversal.

are used in Sectiof 1V to construct grain-error-correcting

Let # be a hypergraph with vertices , . .., z,, and hyper- codes. In addition, we define group codes that will serve
edgesFE,, ..., E,,. The relationships contained withi§ can as the foundation of the single grain-error-correctingesod
be interpreted through a matrit € {0, 1}"*™, where introduced in Sectiof TV-A.

Definition 6. Supposex,y € GF(2)". Their Hamming

1 ifx; € E; . .
A(i, j) = ! 7 distanceis denoted! = {i:x; £yt
(4, 7) {0 otherwise (@ y) = [{i:z; # yi}|

. - . Definition 7. Supposer = o Tn)s Y = Y1y -y Yn

for 1 <i <n,1 < j < m. Cast in this light, the matching GF(2)". For 1 <p2!0< n N(Slg’/) :7|:C{z')- g >(;1}| yn) €
number and the transversal number can be derived using linea ' - ’ Cor o
optimization techniques. Definition 8. (cf. [2]) Supposex,y are two vectors in

aﬁF(Q)". Their asymmetric distanceis denotedd(z,y) =
max{N(z,y), N(y,z)}.

T . We say that a cod€ has minimum Hamming distance

v(H) = max{172|Az < 1,2 € {0, 1}, 1 < j < m}, anci du(C) if du(C) is the smallest Hamming distance between
(1) any two distinct codewords i€. Similarly, we say that a

7(H) = min{1%u|ATu > 1,u; € {0,1},1 <i<n}, (2) codeC hasminimum asymmetric distance d(C) if d4(C)

is the smallest asymmetric distance between any two distinc

codewords irC.

Lemma 5. (cf. [Q]) The matching number and the transvers
number are the solutions of the integer linear programs:

wherel denotes a column vector of als of the appropriate

dimension. ) - )

_ N ) SupposeA is an additive Abelian group of order+ 1 and

.Relaxmg the condition t_hat the solutions to the progranduppose(q:, ..., j,) is a sequence consisting of the distinct

ming .problem are comprised dfs and 1s, we have the non-zero elements ofl. For everya € A, we define agroup
following problems: code G4 to be

v*(H) = max{1Tz|Az <1,z >0}, and 3) n

7 (H) = min{1Tu|ATu > 1,4 > 0}. (4) CA={zcGF(?2)" Zxkg}k =a}.

k=1

Clearly v(H) < v*(H) and 7(H) > 7*(H). Since [3) and

(@) are linear programs, they satisfy strong duality [1] and Without loss of generality, we assume the Abelian groups

v*(H) = 7*(H). Thus, combining these inequalities leads uwe deal with in this paper are additive, and that the group

tov(H) < 7*(H) [9]. operation is denoted as addition. Such a construction was
shown in [2] to havedy (C2) > da(CA) > 2. We include

C. Graph notation the following example for clarity.

In this subsection, we describe graph notation from [17] thExample 2. Let A be the additive Abelian grou; so that
will be used in Sectioh IV-B and SectibnVIl. Lét= (V. E) (g1,32) = (1,2). Then, the groupA partitions the space



GF(2)? into 3 group codes. In this graph, the vertices represent candidate codewards a
s £(0,0),(1,1)} the_hyperedges represent vectors thet result whenfewer
5 grain-errors occur in any of the candidate codewords.
% VATl f th didat d d
Cr* ={(1,0)}, As in [9], v*(H:.,) is an upper bound o (n, t) and will
6223 ={(0,1)}. be derived by considering the dual problem defined 4

) ) o ) The problem is to find a functiom : GF(2)" — R* such
An elementary Abelian group is a finite Abelian group ihat

where every non-identity element in the group has onder
where p is a prime. For shorthand, the elementary Abelian 7 (Hyn) = min{ Z w(y)}
group of sizep” (for a primep and a positive integer) is " w

. yeGF(2)"
referred to as aelementary Abelian p-group [14]. i
subject to
E. Discrete Fourier analysis
In this subsection, we briefly review some of the tools that > wy)>1,Vz e GF(2)" (5)
will be used in SectiolV to derive lower bounds on the yeBia(z)
cardinalities of code constructions. The notation adopsed andw(xz) > 0, Ve € GF(2)".
similar to the notation used in [11]. We are now ready to state the main result of the section.

Let p be a prime number and suppogg denotes the S
complex primitivep-th root of unity and suppose is some Theorem 1. For positive integers:, ¢ wheret < n,

positive integer. LetA refer to the additive Abelian group o 1
(Z,)" = Z,x---xZ, The operator<g,h> takes two M(n,t) < 2Z< i > o [ F
—_——— — min{t,k
T times e Zj:o ( j )
elementsg = (¢1,...,9-),h = (h1,...,h,) € A and maps
them into a complex number as follows Proof: In order to prove the result, we must assign values
- for w(y) such that the constraint inl(5) is satisfied. Léty) =
h. r . T, 1 . f
<g,h> = H(Cp)g“h* _ (Cp)zizlgmhm = ()¢ h - whereb; ,(y) is computed as in Lemnid 1. Note that
1=1 1
Let f(g) be any function that maps elements .dfinto the Z wly) = Z ben(y)
complex plane. Thé&ourier transform f of f is defined as yEB () yEBg (=)
YN From LemmdR, for any € B, ¢(x), bin(y) < byn(x), SO
f(R) =) <h.—g>f(g) we have
94 1 1 1
and theinverse Fourier transform is defined as Z bon(®) > Z b (@) = bt,n(m)b—(m) =1
) ) yEBy o(@) t,n\Y yEBL () t,n t,n
flg) = p" Z <h.g>f(h). The theorem statement now follows from the bound on
hed >_year(2y w(y): Since the number of length-vectors with
I1l. UPPERBOUNDS ONGRAIN-ERROR CODES Erunsis2( T 1 andb,, = Zmin{tykfl} ( k=1 )
_ m j=0 .
In this section, we use linear programming methods Wom Lemma]f wle ave ! J

produce a closed-form upper bound on the cardinality of a
t-grain-error-correcting code. The approach is analogous t M(n,t) < 22”: n—1 1
that found in [9] where upper bounds were computed for T Pt k-1 Zmin{t’kil} ( E—1 )’
Jj=0 i
J

the deletion channel and inl[8] where upper bounds were
derived for the non-overlapping grain-error model. Reaar . which, after reindexing the parametgr is the statement in
HHe theorem. [ |

objective is to compute upper bounds for the overlappi
grain-error model. : -

The approach is the following. First, the vector space from Theorenil gives an exphcn upper _bc_)undM(n,_t) for _aII

. ; . n,and ¢t. However, providing an explicit expression (without
which codewords are chosen, is projected onto a hypergragh. . S . .
Then, an approximate solution to a matching problem ISummatlons) is still net easy to derive. In the following, we

' present non-asymptotic bounds for= 1,2,3. The bounds

will then be compared against the existing bounds[in [15]
for ¢t = 1. Note that the overlapping and non-overlapping
grain-error models coincide for the case where- 1. The
following corollary was also derived in_|[8] in the context

Hin = (GF2)", {Bia(x)|lz € GF(2)"}). of the non-overlapping grain-error model. It is the resdlt o

derived. Recall that the maximum size of tegrain-error-
correcting-code of length will be referred to as\/ (n, t).

Let ., denote the hypergraph for a-grain-error-
correcting code. More formally, let



combining Theorerl1 for the case where 1 with Lemmd4. Fort = 3, the upper bound is stated as a lemma. The details
Recall, M (n, t) refers to the maximum size oftagrain-error- can be found in AppendiXJA.

correcting code. Lemma 7. For n > 24,

Corollary 1. Forn > 1, M(n,1) < 2 2”“ 2|, 44,1
y (n,1) I ] 842 41
n(

n (n 2)
In general, it is difficult to compare our bounds to]\/[(”’?’)gq?"2 n_l)(n_g_LJr 222)>J‘
those in [I5] since the bounds in_]15] require finding n=T " (=2
a parameterp where p is the largest integer satisfying IV. GRAIN-ERROR CODE CONSTRUCTIONS

n—1 min(t,k k n— . .
he1 E—1 Zj:()( () <2771 The bounds for In the previous section, the focus was on upper bounds for

t =1 and smalln were explicitly derived using the formulagrain-error-correcting codes. In this section, we turn ¢dee
in [A5] and for all values of. < 20 the bound in Corollarff]1 constructions. We will compare the codes proposed in this
was tighter (as can be seen in TaBle I). The bounds in tifigction to the upper bounds derived in the previous section.
section have the advantage of being explicit. This section is divided into three subsections. In Sec-
For the case of = 2, we make use of the following claimstion [V-A] we consider a group-theoretic construction for
which can be proven using induction. The details are inalud&ingle-grain codes. In Sectidn T\-B, we generalize the con-
in AppendixA. struction fromTV=A. Using this generalization, Sectibn-B/
identifies better codes that correct single grain-errons fo
certain code lengths. Sectibn 1V¥-C considers construstfon

Claim 4. For n > 2,

2": 1 < n ) _ 1 <2n+1 _g_ 3n n_2> codes that can correct multiple grain-errors.
kE+1 n+1 2 2 )
A. Single-grain codes
Claim 5. Forn > 14, >/ | 1 < Z ) < ﬁ We begin by proving some sufficient conditions for a code

_ _ _ to correct a single grain-error. Then, we provide a group-
We now derive the bound fa¥/(n, 2), the maximum size of theoretic code construction that satisfies these conditibhe
a 2-grain-error-correcting code, which is non-asymptotid arncodes presented in this section provide the largest known

explicit. cardinalities for all code lengths greater thkh
272 (24 -2 Combining Lemmal3 with Definitionl 1, the following claim
Lemma 6. For n > 14, M(n,2) < 2{ 2n(n—3) J can be verified. Recall thaty andd 4 refer to the Hamming
Proof: From Theoreni]l we have distance and the asymmetric distance, respectively.

Claim 6. A codeC is a single-grain code if for every pair of

9) =2 n -1 1 o .
(n,2) = Z _me{Q k) < L ) distinct codewordse, y € C one of the following holds:
j=0

J 1) dH(cc,y)zland:rl;éyl.
n-1 n 2) du(x,y) =2 and for somel < i <n —1,
:2+n—1+2z e = (0.0 g =(1.1
P 1+k+( ) a) (I“IlJrl)_( P )a(ylvyZJrl)_( 5 )Or
n—1 1 1 b) (Iiv IiJrl) = (17 1)a (yivyiJrl) = (Oa O)
n—
§n—|—1+4z< f )( k+1) 3) du(z,y) > 3.
el We are now ready to state our code construction. For any
—n+1 +4Z < n—1 ) 1_ 42 < n ; 1 ) L. Abelian group referred to in the subsequent discussion, the
k k=2 k+1 identity element will be denoted @sand will be referred to
From CIa|m5|]4 an@l5 we have as the zero element.
2" Construction A. Let A represent an additive Abelian group
M(n,2) <n+1+4 <n - 1) of sizen. Suppose the sequense= (g1, gs, .. ., gn), Which
4 . 3n—1)  (n—1)? contains the elements of, is ordered as follows:
n 2 2 1) g1 =0,
gn-+2 gnt2 4 2) for any 1 < i < n, the elementg; and g; ' (if g; "
== " + 7+ -~ exists) are adjacent.
n—=6
n For any element , let
<_2 +2(2+n 6) y €A
- n(n —3
=9 . ={z e GF(2 fokgk = a}. (6)
From Lemmal M (n,2) must be an even integer and so

2n+2(

=) .
M(n,2) <2 {W,g)e’J u The following example |Ilustrates Construction A.




Example 3. Let A denote the additive Abelian grou;. then the cod€ created using the previous construction has
Suppose Construction] A is used to create a code whex€:| codewords. Then, sinc&?| < [Cg'| ([2], Theorem
S = (91,92,93) = (0,1,2). Then, the group4 partitions 9), |CA| < |Cg'|. Furthermore, from [[11], Corollary 2)

the spaceF'(2)* into 3 single-grain codes. C < =45 (2 +w'27'/2) with equality if and only if A
¢ = {(0,0,0),(1,0,0), (0,1,1), (1,1,1)}, is~ an elennjentary Abeliafi-group. From ([11], Corollary 1),
% — {(0,1,0), (1,1,0)} ICsY| = n2’+1 if and only if n’ +1 is a power of2. Multiplying
) G IC#'| by 2 and replacing: = n’ 4+ 1 then gives the result in
3
Cy* ={(0,0,1),(1,0,1)}. the corollary. ]
The correctness of Constructibi A is proven next. In [15], a single-grain code construction was given that

M ) ) _ produced codes of length = 2™ — 1 with f—"l + 27z
T_heorem 2. A codeC;' created with Construction]A is a codewords wheren is a positive integer. In[[ﬂO], a single-
single-grain code. grain code construction was enumerated that resulted iascod

Proof: We will show thatCA is a single-grain code by Of lengthn wheren = 2" (wherer is a positive integer), that
demonstrating that the conditions listed in Cldlin 6 hold fgfontained- codewords.
any pair of distinct codewords, y € C2. LetCA be the group ~ Our construction extends for any (via the setA = Z,).
code created by using the same group and elemastincA When n is a power of2, ConstructionL A produces codes
so thatCA has lengthn — 1, andCA is obtained by shortening With the same  cardinality a$ _[10]. Furthermore, for codes
the codewords ofA on the first bit (i.e., by removing;;, ©f lengthn wheren is not a power of2, ConstructiorCA

which multipliesg; = 0). Recall from Sectiof II=D that since Provides codebooks with cardinalities strictly greateml%;

CA is a group codedy (CA) > da(C2) > 2. by Corollary(3.

Supposely (x,y) = 1. Then, sincely (CA) > 2, it follows ~ Since, for largen,
that if dy(x,y) = 1, thenx andy differ only in the first bit 2n 2m n—t
and so condition 1) from Clairfnl 6 holds. o n+1 +t27,

_ i 5A
_Supposely (z,y) = 2. Sincedy (C7") > 2, x andy do NOt - ono4rictio A improves upon the state of the art wheis
differ in the first position, and there are two distinct ireii¢, j | ; 5 power of2 andn > 15

(2 <i,j < n) wherex; # y; anda; # y;. Suppose, without | “the next subsection, we provide a generalization of

loss of generality, thatV(z, y) =2 and soz; = z; = 1. congtructiofA. We then derive constructions for singlaigr
Therefore,g; +g; = 0, or g; = g;/ . However, by condition a5 that have larger cardinaliies and extend the ideas to

2) in Constructiof A, we havgj —i| = 1 and so condition 2) ¢,qes capable of correcting more than a single grain-error.
from Claim[8 holds.

If dg(x,y) is not equal tol or 2 thendy(x,y) > 3 and

so condition 3) of Claini6 holds. - B. Improved grain codes using mappings | |
The following corollary follows from the proof of Theo- In [5], the authors make the observation that a single-
rem[2 and Clainf]1. asymmetric error-correcting code (and in particular a grou

) ) . code) can be constructed by defining a code over pairs of
Corollary 2. LetCA be a single-grain code created accordmgbinary elements. Consider the map: {0,1}2 — GF(3)
to Constructior A\ Le€:* be the group code that is the result,nich is defined as follows: ’ ’

of shortening the codewords & on the first bit. TherCA

is a single-mineral code. (0,0) —» 0,(0,1) —» 1,(1,0) —» 2,(1,1) — 0. @)
The following corollary provides upper and lower bounddlote that the map is not one-to-one since b@tt0) and(1,1)
on [CA. map to0. If the mapI' is applied to a binary vector of even

. . . length then it is simply applied to each pair of consecutive

Corollary 3. Supposed is an Abelian group of size anda € ele?nents atlal timle piyerpg Il 0.0) — Fpoll (0.0 Hiv
Then, for a cod€* created according to Constructidd A - (i (-’ Y -) = ([(0,1), 10, 0)). .
A. ! a 'Furthermore, if thel' map is applied to a set of vectors it

C:| < [C3'|. Furthermore, returns a set of ternary vectors that are the result of apglyi
n " 2 (n— 1).2n/3 the map to each vector in the set. Using this map, codes
r <|Cgl < r L — that correct asymmetric errors were proposed[in [5]. In the
following, we illustrate how to generalize the ideas frdnh [5
(by using different mappings) to correct grain-errors.
LetG; ., = (V, E) denote a simple graph (see SecfionllI-C)
where V. = GF(2)™. That is, the vertices of; ,, are the
Proof: Since Constructiol JA concatenates an arbitrathe vectors fromGF(2)™. For anyz,y € V, (z,y) € FE if
bit with a group code, it follows that if the underlyingB; rs(x) N B (y) # 0. Recall from Sectiof II-=C, a mapping
group code of lengthn’ = n — 1 has cardinality|CA|, ®;.,, : GF(2)™ — {0,1,...,p—1} is ap-coloring if it assigns

n

Equality holds on the left if and only jf4| is a power of two.
Equality holds on the right if and only ifl is an elementary
Abelian 3-group.



different numbers to adjacent vertices. If the inputg,, isa implies thatv; andv, are not adjacent i@, ,,,. By definition,
vector of lengthmn, then the map is applied to each collectioiif v,,v2 are not adjacent iG; ,,,, B, p(v1) N By ar(ve) = 0.
of m consecutive bits at a time. For examplepif= 3, then Thus, for anyt¢-mineral-errors (of lengthn) e,,,e,,, we
®,5(0,0,0,1,0,1) = (®£,3(0,0,0) ®;3(1,0,1)). have v, + e,, # w2 + ey,. Then, there do not exist any
t-mineral-errorse, e, such thatx + e, = y + ey. Thus,
Bt7M(£E) n Bt7M(y) = .

Suppose now that®,.,,(x) # P.n(y). Then,
since @, (), P:m(y) € C;, there exists a set of

Construction B. Supposep is a prime number andp; ,, :
GF(2)™ — {0,1,...,p— 1} is ap-coloring onG; ,,. LetC,
be at-random-error-correcting code ove®F(p) of lengthn.

Then, 7 A
en at least 2t + 1 indices from {1,2,...,n}, denoted as
C={x e GF2)"" : &y () € C,}. (8) Z, such thatVj € Z, @ m(x-1yms1r--->Tjm) #
@t (YG—1)m41s - -+ Yjm)- Since

Remark 1. If C is a code created according to Construct[oh B (s Y £ ey -
then the mapb, ,,, can be interpreted as mapping the color, *™ x@‘”’”“’ o ’I_Jm) (e tm y(ﬂ‘l)_m;)l’ " '>’y3m1’
classes of a-coloring onto the symbols of a non-binary codef:oh; TG—Lmtls - -5 Tgm )y \Y(G—1)mA1s - - - > Yjm =

o . . . . every j € 7 and sody(z,y) > 2t + 1. Thus,
C;. This interpretation will be useful in Sectign] VI. By n(x) N Bir(y) — 0 where B, » denotes the error-ball

We now provide an example of a code created with Cofer ¢ random-errors (as discussed in Sectlon1lI-A). From
struction[B. Claim[2, thenB; yr(x) N B (y) = 0 as well and the proof
is complete. |

According to Theoreni]3, the code from Example 4 is
a t-mineral-error-correcting code. Corollafy 4 follows from

Example 4. Let the mapIl' be as defined in{7). Note, from
LemmdB, that the map is actually a coloring org; » where
the set of vector&7F'(2)? are partitioned into color classes

as follows: Claim3.
1) {(00),(1 1)}, Corollary 4. LetC’ be at-mineral-error-correcting code of
2) {(10)}, lengthmn created according to Constructidd B. Then,
3) {(0 D}

_ mn—+1 ., /
Let C; be at-random-error-correcting code ovef F(3) of C={zeGFQ) (@2, Tmns) €C')

lengthn. Then the set of vectors

C={xeGF2)™ :T(x) € C} ©) Although Constructioi B provides a method to construct
is a code created according to Constructioh B. t-mineral-error-correcting codes, it is not straightford/ido
compute the sizes of the resulting codes because the color
classes of the mag@,,, are not always of the same size.
A% a starting point, in this subsection we only consider
single-mineral codes created using Construcfion B with the
map I as described in Examplg 4. Even with the simple

The following theorem shows that the codecreated in map I', computing the cardinalities of the resulting codes
Example[4 is a-mineral-error-correcting code. from Constructioi.B is not straightforward. In the followin
subsection, we analyze the codes from Examble 4 for arpitrar

is a t-grain-error-correcting code.

Remark 2. We note that whe@; is a single-random-error-
correcting code, a code constructed according to Exarhple
coincides with the ternary construction from| [5] proposed i
the context of asymmetric errors.

Theorem 3. Let C; be a t-random-error-correcting code.
SupposeC is a code created according to Constructibh Bt
with C; as the constituent code. Theh,s a t-mineral-error-
correcting code.

Recall that from Remarkl2, the single asymmetric error-
correcting codes proposed inl [5] (using the ternary constru
tion) are a special case of Constructioch B. Therefore, the
Proof: The result will be proven by showing that for anycodes from (Table Il, column 4][5]) are single-mineral cede
codewordsz,y € C wherex # vy, B, m(x) N By,m(y) = Therefore, we can obtain new single-grain codes by appgndin
(). Consider two codewords,y € C such thatz # y and an information bit to these codes. The cardinalities dispda
Dy () = pn(y). There are two cases to consider: eithén the column titled ‘Current Lower Bound’ (second column)
1) @y () = Py (y) OF 2) Dy () # Dy (y). Recall that, of Table[l (shown below) for9 < n < 15 are the result

by construction®; ,,,(z), ®;,.(y) € C,. of this operation. Note that the codes enumerated from [5]
Suppose®; ,,(x) = P..,(y). Then, sincex # y, were the result of a computerized search and to limit the
there exists an indexx where 1 < ¢ < n such search space, the search was only carried out on codes of
that ®; o (T(i—1)yms1s -+ Tim) = Pem(Yi—1)m+1,---»¥im) length at most 15. Fon > 16 the cardinalities in the second
but (z¢—1ym41s---Tim)  #  (Yi—1)ym+1,--->Yim). FOr column of Tablell (marked in bold) can be obtained from
shorthand, letvy = (2(—1)m+1,---»Tim) and vy = ConstructiorCA using the group codes found in Table 1 in
(Y(i—1ym+15 -+ > Yim). SINCE D 1 (V1) = Py 1 (v2), the vec- [2]. The first column in Tablél | shows the cardinalities of the

tors v1,v2 map to the same color class undgy,,, which largest possible codebooks using constructions fiom [hd] a



TABLE | . . D
UPPER ANDL OWER BOUNDS FOR SINGLE GRAINERRORCORRECTING  (OF €ntries) delimited by a/*. Since for1 < ¢ < n there

CODES are no existing grain-error-correcting codebooks to campa

Length Previous Current | Upper Bound with, we naively constructed &grain-error-correcting code

. '-OWff Bound '-O‘i‘l’er Bound . by prepending an additional information bit to the start of a

2 6 6 % 6 t-random-error-correcting code.

5 8 [15] 8 (18] 8 [15] The first entry (from each triplet) in Tablg Il is the cardinal

? %g ] %g ] %g ] ity of the largest lineat-random-error-correcting binary code

8 4451] 2 } a4 5} found in_ [E]_of lengthn — 1 prepended by an_adt_jitional

9 44 [15] 64 112 information bit. The second entry is the cardinality of a

i(l) f248] ;ig 5(73‘21 code created from Exampld 4. This number was computed

12 256 % 360 682 f_rom the known weight enumerators of the largest k.n.own

13 512 [10] 702 1260 linear ternary codes froni [16] prepended by an additional

i;‘r ;(1332 ] ;2188 iggg information bit. The third entry is the non-asymptotic uppe

16 1096 } 1096 8190 bound from Th_eorerﬁll anql Lem@ 4._

17 4096 [10] 7712 15420 In the following, we provide a variation of the codes from

ig f61§§41 ;‘;ggé ggigg Example % in order to provide an explicit lower bound on the

20 32768 % 50432 104856 si_ze of codgs c_reated as in E)Faniﬁle_4 wlens linear. This

will be studied in more detail in Sectidnl V.

Construction C. Letr, ¢ be positive integers where< /. Let
[15]. The third column in the table is the upper bound fromy’ — (R, ..., h}) be anrx ¢ parity check matrix of a ternary
Corollary[1 (Sectiofll), which can also be found [ [8].  codec’ of length/ that can correct up ta random-errors

(where eachh! represents théth column inH’, 1 < i < /).

C. Multiple grain-error codes using thE coloring Let H be anr x 2( ternary matrix,

In this subsection, multiple grain-error-correcting codee H = (hy,...,hy) = (2h,’17 h’b 2h’2, h’2, el zhi,, hﬁz)-
studied. In particular, we consider an alternative intetgition
of the codes from Examplé 4. Using this interpretation,
derive a lower bound on the size of a mineral code c_reated Co={x€GF(2)?*:Hx =a}, (10)
according to Exampl€l4 for the case where the c6deés
linear.

Notice that if the Hamming weight enumerator for thé*F'(3)".
constituent codé€, in Example[4 is given, then the size of the The following lemma will be useful in proving the correct-
codeC can be expressed as a function of the Hamming weighéss of ConstructionC.
enumerator fo€;. We denote the Hamming weight enumerator o
of a codeC asWe(z, z) = Zv_io Wi iz'a" whereW,,_; Lemma 9. Let r, ¢ be positive integers where < ¢ and let
represents the number of codewordsCGnwhose Hamming the matricggsH’,H be as in Constructiof IC. Then for any
weight isi. The following lemma is similar to Theorem 9 inZ € GF(2), H -x = H'-I'(z).

[5] and so the proof is omitted. Proof: For anyz = (z1,...,22) € GF(2)* we have

20 - .
Lemma 8. Let C; be a ternary code of length used in @ = >_;_; hi - z; whereh; € GF(3)". Consider the

wEt a be an arbitrary element itz /'(3)". Then,

where the vector operations are performed in the vector spac

Examplel¥ with Hamming weight enumerator quantity

n 20

Wct (ZC, Z) - Z Wiﬂl*izixnii- H-x= Z hz " Ti

1=0 =1
Then, the resulting mineral-error-correcting codehas cardi- - . (hishior) - (25,2541)
nality |C| = We, (1,2). Prepending an additional information - 41 TG T
bit to every codeword i@ results in a grain-error-correcting ]’2 7 10
code with cardinality2|C|. —

y2(Cl = (2hl(%]a I(%j) ) (Ija Ij+1)T- (11)

Remark 3. Note that in general the weight enumerator for any j=1,j odd
t-random-error-correcting ternary codé; is not necessarily Thare are thel possibilities for(z;,z;1):

known. 1

) ( )
Using LemmalB, the cardinalities of grain codes created2) (z;,z;41) =
according to Examplgl4 with odd lengths betwedenand 29 3) ( )
are displayed in TablE]ll. Each entry consists3ohumbers — 4) ( )
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TABLE Il
CARDINALITIES OF GRAIN-ERROR CORRECTINGCODES

Length t=2 t=23 t=14 t=5
11 16/68/84 - - -
13 32/132/238 - - -
15 128/312/704 32/260/400
17 512/836/2152 64/516/1066 -
19 1024/2636/6780 256/1028/2946 16/1028/1928
21 4096/9376/21902 1024/2144/8490 64/2052/4940 -
23 16384/35648/72190 4096/4688/24786 128/4100/13050 80/9370
25 32768/49024/241978 8192/8896/74902 256/8320/35510 166/23382
27 131072/190912/822696  16384/20808/231538  1024/17238(09 256/16388/59814
29 524288/747520/2831212  32768/41616/729924  2048/348562D  512/32772/156924

If any of conditionsl) —4) hold, then it can be verified that Recall for the following corollary thatl denotes an Abelian

when; is odd, we have (wherE is as defined in[{7)) group.
Corollary 5. Let C’ be at-random-error-correcting ternary
(2h’m, ’m) (wjzi41) = h’m T(xj,zj41)- code of lengtY = 3 (wheren is even) with a parity check
: ? : matrix H' of dimensionr. Then there exists aa € A, such
Then, continuing from[{11), that the code,, created according to Constructi¢d C of length
n with the constituent codé’ satisfies|Cq| > 22
ow— MX:l @R, R, ) (2, 2500)" _ Proof: Notice that each of thQ” vectors fromGF(2).25
P EANEY will map to exactly one codé, as in [I0). Thus, the matrik
001 partitions the spac& F(2)%* into |.A| non-overlapping codes
_ Z K., (5, 2541) cal,caz,c_ag,...,cw \_/vh(_ere eachn; € A for_l << 3. _
=17 odd 21 By the plgeonholeﬂprlnclple, there must exist a code with
’ cardinality at Ieasfw =2 ]
= Z h, - T(zon_1,zor) In the next section, we use Fourier analysis to improve the
—1 lower bound orC, from Constructiod .
=H'-T'(x).

V. AN IMPROVEMENT ON THE LOWER BOUNDS ON THE

CARDINALITY OF GRAIN AND MINERAL CODES WHEN ¢ > 2
We now prove the correctness of Construcfidn C. =

In this section, we improve the lower bound from the previ-
ous section for the cardinality of @amineral-error-correcting
code created according to Constructidn C. The approach will

Proof: Let H' be a parity check matrix of dimension be similar to [11], where the cardinalities of the Constanti
(wherer < /¢) for the codeC’ of length?. For anya € A, Rao codes[[2] were derived using discrete Fourier analysis.
let C!, = {x € GF(3)* : H' - = = a}. Notice that for any  Let .A be the additive Abelian group ofF(3)". Let C,

a € A, Cl is a ternaryt-random-error-correcting code. Recaldenote a code created using Construcfidon C where as before
from Constructio C tha€, = {x € GF(2)* : Hx = a} a is an element fromA used in the construction. Suppose
where H = (2h7, h,2h5, hy, ... 2hg, hy) = (h1,...,hy) further thatC’ is a ternary code of lengthwith a parity check
(and eachh;, h; denotes a column i/ or H’, respectively matrix H' that can correct up to random-errors wheré’ is

for1 <i<2fandl <j <) the constituent code used in Constructidn C. Fot ; < /,

From Lemma[®, for any vector € GF(2)", H - = recall from the construction that, refers to theith column of
H'-T'(x). Therefore, it follows that{ -« = a ifand only if H'-  H’ and that forl < j < 2¢, h; refers to thejth column of H
I'(z) = a. Then, we can writ€, = {z € GF(2)" : T'(x) € whereH = (hy,...,hy) = (2h, R}, 2R}, hy, ..., 2h), hy).

Theorem 4. SupposeC, is a code created according to
Constructior €. Ther(, is at-mineral-error-correcting code.

C.}. SinceC! is at-random-error-correcting codé,, is at- Forxz = (x1,...,m2) € GF(2)%, consider the mapping
mineral-error-correcting code by Examjjle 4 and Theorém 3.: GF(2)% — A defined as
|

Using the interpretation of the codes from Example 4 2 ‘ .

! I
provided by Constructiofi]C, we now state a simple lower V(@) =H z= ijhj - Z@ihi + Z2I2k*1hk'
bound on the size of a code created as in Exafiple 4. Recall =1 = =t (12)
from Theorenf ¥, Constructidnl C is a special case of the codes
from Example[#. The lower bound in Corollafy 5 will beln order to computéC,|, we count the number of times each
improved in the next section. elementa € A is covered by some vectar € GF(2)*
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through~. Let f : A — N where where~ is as defined in[(12).

fla) = |{z e GF(2)2€ (@)= H -2 —a)|. (13) We are now ready for the main result of this secti;)(n.)
. . . Theorem 5. For any b € A, =5 <b,a>4°\%),
We state the following claim for clarity. Recall\/(n,t) y J(b) = 5 Xaca <ba

refers to the maximum size oftagrain-error-correcting code Proof: Considerc € A. As in [11], we proceed by
of lengthn. computing the Fourier transforrfi(c) (as defined as in Sec-

tion [[I=E). First note that from[(15), we can writé(a) =

Claim 7. Letn, ¢ be positive integers such that= 2¢+1. Let > (o I(z,a) wherea € A. We have
xcGF(2 ) '

C, be a code of length/ created according to Constructigd C

wherea € A. Then,|Cs| = f(a) and M(n,t) > 2|Cq| = fle)= Z <e,—a>f(a)
2f(a). acA

We are now ready to derive lower bounds on the sizes of = Z <—c,a>f(a)
codes created from Constructich C using Fourier analysis. T acA
following lemma will be used in the proof of Theorem 5. = Z <—ca> Z I(z,a)
Recall from Sectiofi II-E, fom, b € A, acA TEGF(2)2*

- . = <—c,a>I(z,
<a.b> = J](G)" = (G T = (¢o)* 2. 2 <-earl@a)

acAxcGF(2)2¢

Z Z <—c,a>1(x,a).

=1
where (s is a third root of unity. In the remainder, for some

positive integerk, (¢3)* will be written as¢y. T€GF(2)* acA
In the next lemma, we make use of the following function\ote that for a fixeds € GF(2)%, Yaeu<—c a>I(w,a) =
Let F': A x A — C where fora € A,b € A, < —¢,7(z)>. Then,
F(a,b) =1+<—-a,b>+<—a,2b>+<—-a,b><—a,2b>. fle) = Z < — ey (z)>
Lemma 10. For anya,b € A, xEGF(2)2¢
4 ifa” -b=37_,a;b;=0 mod3, and = > <-cwmhi+taaha>
F(a,b) = . =1 ’ zEGF(2)2¢
1 otherwise.

= Z < —c,x1h1> - <—c,xo0hoy>,
Proof: First consider the case whet® -b =0 mod 3. TEGF(2)2
Notice that ifa” - b = 0 mod 3, then <a,b> = 1. Since
a”-b=0 mod 3 we have—a” -b=—-a”-2b=0 mod 3
and so the quantity in the Lemma is equalto
Consider the case now whet¢ -b # 0 mod 3. Recall(s
is a cubic root of unity and note that—a, 2b> = <—a, b>2.

where the last equality follows from the property that for

ai,az,a3 €A <—ai,axtaz>=<—a,a><—ap,as>.
Notice that eachr; is equal to eithe or 1 (wherel <

1 < 20). If z; =0, then clearly< — ¢, z;h;>=1. If ; = 1,

<—c,z;h;> = <—c, h;>. Thus, by suitably collecting terms

Then, (and by induction orY), we can write
<—-a,b>+<—-a,2b>+<—-a,b><—a,2b> 20
=<—ab>+<—ab>?+<—a,b>’ fler=]]a+<-chi>).
=G+G+a . . o .
—0, Let ;7 be an integer such that< j < ¢. Then from the defini-

tion of H (see also[(12)) we can wrifd + < — ¢, ho;>)(1+
and soF(a,b) = 1. B <—chy 1>)=(1+<-ch;>)(1+<—c2h}>). Thus,
Given an inputc € A, let 8 : A — {0,...,¢} be defined we can rewritef(c) in terms of theh!, terms so that
as follows p
=[[0+<-chi>+<—c2n>+
Ble)=|{1<i<l:c"-h,=0 mod3} (14) i=

[

< —c,hi><—e¢,2h;>)
whereh, refers to thei-th column of H'.
The following function will be used in the proof of Theo-
rem[B. Let] : GF(2)* x A — {0,1} denote the indicator
function where forz € GF(2)?* anda € A,

F(e, h;)

Il
.
= ~
= =

c)'

I(z,a) = 1 if y(x) = a, (15) The equality follows from Lemmd10. Recall, from Sec-
’ 0 otherwise tion [[-E] that the inverse Fourier transform ¢fis f(b) =
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TABLE Il
COMPARISON OF SIZES OF GRAINERROR CORRECTING CODES WITH THE LOWER BOUND FRONCOROLLARY[7]

Length t=2 t=23 t=14
11 68/32 - -
13 132/44 -
15 312/146 260/62
17 836/550 516/84 -
19 2636/2168 1028/114 1028/114
21 9376/8640 2144/354 2052/154]
23 35648/34532 4688/1312 4100/208
25 49024/46044 8896/1752 8320/634
27 190912/184128  20808/6866  17216/2338
29 747520/736464  41616/27324  34096/31R0

F T <ab>(a). Thus, sincef(a) = 47, we have ITel4‘+ J- Ti2) T4 Finally,
at 1or an eleme c A,

f6) = 5 3 <ab>fla) F(0) > [Tl + — §|T-|4H
3" = = 3r 0 3r = J
) -
= — <a,b>4°@) r—1
3" Z ’ > i4£ 1 J _ gi—lyyr—i
ach > = +3T;<3 37
m o _
L 24 3\’
Corollary 6. For anyb € A, f(b) < f(0). =3t T r 2 1
Proof: As in [11], this is because for ang,b € A, 1 AN\ 4
|<a,b>| < 1. Thus, f(b) = &>, ,<b,a>4%@ < = 3—T4’3 +2 (§> —2-3,
3% acA 4h(@) = f(O) [ |
Thus, choosingz = 0 in Constructior_C maximizes the .
cardinality of the resulting code. The following lemma i€nd therefore the proof is complete. =
another consequence of Theorgn 5. We summarize the result from Lemind 11 with the following
corollary.

Lemma 11. For positive integers-, ¢ wherer < ¢, f(0) >
U T .
= +2(3) -2-4 Corollary 7. Let C’ be at-random-error-correcting ternary

code of lengthd = & (wheren is an even integer) with a

Proof: From Theoreml, we have thaf(0) = parity check matrixH’ of dimension. For a € A, let C, be

L B(a) = =

5 ‘ZGA4 - Clearly, 5(0) [ and so f(0) a code created according to Constructioh C of lengthwith
3 (4 + 2acAazro 4[5(“))- We define the setsTy = the constituent codé’. Then for anya € A, |C,| < |Co| and
{0}, A% = {0}, and A7} = {0}. Col = 2o 2 (4) - 5.

In the following we define the setd/;, ], and 7; recur- _ )
sively (starting atj = 1) wherej is an integer such that Proof: From ClaimLT,|C.| = f(a). Using Corollary(8,

1 < j < r— 1. Consider the sub-matri¥l; consisting We have that for anyi € A, |Ca| = f(a) < f(0) = |Col.
of the first » — j columns of H' where H' is the parity Combining Clainly and Lemnialll gives thés| = f(0) =
check matrix forC’ with columnsh] and1 < i < /. Let 37 T2 (3) —2-3%. L
N;={geA:gT: H} = 0}. Notice that sincef; has Thus, the previous corollary improved upon Corollaly 5
rank at mostr — j, |[N;| > 37. Let N; C N; be such that where it was shown that for somee A, |Cq| > %—z For the
\Wj| = 37. We briefly note that the elements ik can be case oft = 2,3,4, we compared our lower bound with the
chosen arbitrarily fromV;. Let T; = NJ’ \N;,l. Under this cardinality of thet-grain-error-correcting codes from Taljlé II.
setup, for any) < k < j, 7, N T = 0. Now, for any7;, we Each entry in Tabl¢_ DI contains two numbers delimited by
have a 'l'. The first number is the cardinality of &grain-error-
correcting code created according to Construcfion B (from
T3] = IV = [N, | = 30 _3i-1, Table[l) and the second number is the lower bound from
/ / Corollary[7. It can be seen in Tablellll that the difference
Notice that for anyu € 7;, B(u) = [{1 < i < £ : u” - between the b_ound from Corolldry 7 and the size of the codes
h! = 0}| > r — j. Then since the set%, 71,...,7,_1 are from Table[dl is small for the = 2 case.
non-overlapping (they have no common elements), we can usén the next section, we return to the problem of constructing

Theorenh withb = 0 to obtain f(0) = + >, 4@ > single mineral codes.
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V1. GENERAL SINGLE-GRAIN AND SINGLE-MINERAL Ieast%. Motivated by this observation, in Sections VI-B
CODES FROMCONSTRUCTIONBI andIEZ& we consider using different coloring schemes,(i.e

In this Section, we consider single-mineral codes derivé{'€r® ®1,» 7 I) in conjunction with a perfect single-
from more general colorings according to Construcion B. [igndom-error correcting code. We first begin by reviewing
Section[ VI8, we investigate a sufficient condition for cedeSOMe notation that was used in Secion IV-B. ,
created with Construction]B to produce large single-mihera As in Section[V"B, letG,,, = (V,E) denote a simple
codes. In SectioR VIIB, we consider the cardinalities ofesod 9/aPh wherel” = GF(2)™, and for anyz,y < V' (where
created according to Constructioh B given a coloring based § 7 y) (®,y) € Eif Byu(x) N Ba(y) # 0. Recall that
the group codeg [2]. In Sectid VI-C, we describe a coloringt:m : GF'(2)™ — GF(p) is ap-coloring if it assigns differ-
that was found using a computerized search, and for cotidl lements ofiF"(p) to adjacent vertices. From Section 1I-C,
lengths48 and342 this coloring produces new codes with Iargéf(gtvm) IS th? smallesp for Wh'c,h apjcolormg IS possible.
cardinalities (larger than using the alternative groupesoth ecall, the size of the largest clique in a grapfis denoted
construct single mineral-codes). <(9). . . . .

Recall from Constructiofl]B in SectidiT#B that the con- The following claim will be used in the proof of Lemrhal12.
struction for at-mineral-error-correcting code relied on two  Claim 8. For anym > 2, ¢(Gy.n) > m + 1.

key mgredlen.ts: ¢ . lor cl h Proof: Let S = {x € GF(2)™ : wt(x) < 1}. Since for
1) amappingb;, from GF'(2)™ top color classes (where 5, By ..(z) contains the all-zeros vector, it follows

p is a prime), and . that S is a clique inG; ,,. Since|S| = m + 1, the result
2) at-random-error-correcting codg over GF(p). follows -

The basic idea behind Constructioh B was to dsg,, to
map the color classes ofiacoloring onto the symbols of the
non-binary code,.

Thus far, we have considered code constructions for mineral Proof: We first show thak (G1.m) < m+1. Supposed is
codes using Constructi¢n B with the mép,,, = I', whereT' an Abelian group. Let. € A and consider a single-grain code
is given by [7). Therefore, if Constructi¢d B is used to ceea A of length |A| = m + 1 created using Constructidnl A.
mineral codes, there are two possible directions to ingatdi | et 634 be the group code of lengtm that is the result

1) discover new mapping®; ,, for m > 2, and of shortening the codewords iG;* on the first bit. From

2) investigate codes fag, that, when used in conjunctionCorollary [2, CA is a single-mineral code. Assign to every

with some®, ,,,, result in codes with large cardinalities.x € CA the same number frorf0, 1,...,m}. Repeating this

In this section, we focus on the first direction for the cag@focess for every value afc A (and using a different number
wheret = 1, where the code; is a single random-error- for different values ofa), results in an(m + 1)-coloring on
correcting code that is a Hamming code. The second itdhe 9raphx(Gi,) since there arA| = m +1 choices fora.
highlights a potential area of future work which we will Recall from Sectiod TI-C that((G1m) > <(Gr.m) Where

Lemma 12. Let m be a positive integer. Theng(Gi ) =
m+1

discuss briefly in the next section. §(91,m) is the maximum size of any clique in the gragh,,..
In the first subsection, we show thatd,,, hasp = m +1 From Claimi8, we have/(Gi,m) > <(G1,m) = m + 1 and so
color classes whergis a prime, then it is possible to construct(91,m) =m + 1. u

single-mineral codes that have at least as many codewordd he following theorem is similar to Corollafy 5.

as perfect single random-error-correcting binary codethef Theorem 6. Let p be a prime number and a positive integer

same length. In the second subsection, single-mineralsco§gere n — PT:11 and m = p — 1. Then there exists a
created using a coloring scheme based upon the group Cogﬁﬁle-mineral code of lengthmn where|C| > 27" from
are considered. Motivated by the insights from the first twe o nsiryctior B. mntl

subsections, we derive new codes of lengthigind342 in the _ _
third subsection. These new codes are larger than any codes Proof: Let C; be the constituent non-binary code from

of the same length produced according to Construdfibn A. Constructiori B of lengtm with a parity check matrixi” of
dimension and suppose that is perfect andd = GF(p)".

Fora € A, letC, = {«’ € GF(p)" : H - 2’ = a}. Notice

that sincec; is a perfect single random-error-correcting code

thenC,, is also a perfect single random-error-correcting code.
Suppose that a single-mineral codeof length mn is Thus, we can apply Constructibn B to obtain a single-mineral

created according to Constructigd B. Suppose that the code(C, where

coloring @, ,,, is such thatp = m + 1 wherep is an odd mn ,

prime and(C; is a perfect non-binary single random-error- Ca ={x € GF2)"™" : P1m(x) € Ca}-

correcting code ove&'F'(p) of lengthn. We show that there Since ®,,, maps every element iIGF(2)"" to exactly

exists a mineral codé€ of lengthmn whose cardinality is at one non-binary vector of length, it follows that every

A. A sufficient condition for Constructidd B to produce larg
codes
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x € GF(2)™" belongs to exactly oné,, and so the codes We make use of the following known claim][6] [13] in

Ca,,Cay,---,Ca,. partition the spac&F(2)™" into p” non- Theorem[¥, which can be proven using the MacWilliams
overlapping sets. By the pigeonhole principle, there exist Theorem (see Appendix B). Recd)| is a p-th root of unity
be A where|Cy| > - = 2. m andp is a prime. For an integei; ¢!, denotes the-th power

We now consider using the coloring scheme discussed dfi(,.

the proof of Lemm&12 to produce single-mineral codes.. Moaaim 9. (c.f. [BI[I3]) SupposeC is a linear code of length
precisely, lety, : GF(2)™ — GF(m + 1) be the mapping n with symbols overGF(p). Then, the complete weight

o fetoravedom T enumeratoriWe (2o, . . ., 2,—1) can be written in terms of the
S codewords in the dual co of ) as follows
Um(x) = E tx; mod m+ 1. W ! u de" (of C) W
i=1 1 n ( 1.c; (r—1)-c;
20+ 2 Cl—f—___—f—z_ p Cz).
Then, letd; = {y € GF(2)™ : Ym(y) = j}. We refer to  |C| e Zc )ecul:{ 0+ 216, p—1G}
the vector(Ag, Ai, ..., Ay,) as thegroup-code partition. Let et

I1,, be the set of permutations of the symbeJs, . . ., m. For The next claim will also be useful in the proof of Theorlem 7.
example, the permutatiof1, 0, 2) is an element ifl. Then, Cjaim 10. Let j*, ¢ be integers such that < j* < p — 1 and
for any permutatiorn = (ao,...,a,) € II,,, we define a . £0. Then,Z’.’Zé e (e = —¢ite,
coloring @, : GF(2)™ — GF(m + 1) as follows JERIEE
We make use of the following notation in the statement of
Pa(T) = ay,, (@) the next claim. For anyr € II,, (recall II,, is the set of
We provide an example illustrating this mapping. permutations of the symbols 1,...,m) and any integetk

where0 < k < m let a(k) denote the index ira of the
Example5.Leta = (1,0,2) so thatm = 2. Letx; = (1,1) SO numberk.

that ®,(x1) = ay,(z,) = ao = 1. Similarly for x5 = (0,1),
we ha?,g(bj(@)lf(a;i(m):@:z 0.1 Claim 11. Let m + 1 be an odd prime. Suppose
) i _ - We,(20,-..,2m) is the complete weight enumerator for a
Suppose the single-mineral cod@eas constructed according non-binary (m + 1)-ary codeC;. Then for anya € II,,,
to ConstructionCB with®, and the single random-error-|c(q, ;)| = We,(|Aa@], - -+ [ Aaim)])-

correcting non-binary cod@, with symbols ovelGF (m+1). i ) )
For shorthand, we refer 16 asC(a, Cy). We are now ready to state the main result of this subsection.

In the next subsection, we determine which choiceaof Thegrem 7. Supposer; is a linear code ovelGF(m + 1)
maximizes the cardinalitiC(a,C,)| whenC, is a linear code. \yherem + 1 is an odd prime. For any € II,,,, |C(a,C1)| is
In Section[VI-C a different mapP, ¢ is derived using a maximized when, = 0. Furthermore for any € II,,, where
computerized search over the spaGé'(2)® and using this by =0, |C(a,Cy1)| = |C(b,Cy)|.
map better single-mineral codes are found for certain code

lengths. Proof: Letp =m+1 anda = (ao, . ..,a,). Under the
groyp-code partition, the largest color clags has cardinality
p— _ . p—1__
B. Single-mineral codes created using the group-code parf—2— and the other color classes have cardinafi,—
tion ([2). We prove the theorem by considering the cardinality o

Ctge code created according to Construcfidn B when the color
classes from the group-code partition are mapped to differe
symbols in GF(p). From Claim[IlL, the cardinality of the
mineral codeC(a,C;) created according to Constructiéd B
can be derived fromiVe, (%o, ...,2p—1) by substituting for
eachz;, the size of the color class that is mapped to symbol

For shorthand, let — (0,1,2,...,m). We show that the ¢ (as a result of the permutatian). Supposecf represents
cardinality ofC(¢,Cy) is exactly the same as the cardinality o%he dual code Otli Then, frorrl Claimg 19 anf[11, che can
a code created according to the Constantin-Rao construct € [€(a:COI = o7 Yoceey ITimi (1ao)| + [Aaq) 6 +
(for codes of the same length) [2]. cot IAa(pfl)Ig()p*l ).

For a non-binary cod€ with symbols fromGF(p) where In particular, we consider the term

p is an odd prime, letW;, ., , denote the number of - e

codewords inC that have eoxactply‘lo symbols of valued, i, AMa,c;) = (|Aa(0)| + |Aa(1)|<; et |A0(P)|<1(7p Y )

In this section, we consider the problem of which choi
of a € II,,, maximizes|C(a,C1)| when(; is a linear code.
We show that anya = (ag,...,an) € I, whereag = 0
maximizes the cardinality of the resulting single-minexadle.
Since the largest color class undgy, is Ay (cf. [2]), one
such choice fora is the identity (i.e..a = (0,1,2...,m)).

symbols of valud, and so on. We denote tlremplete weight (16)
enumerator of C as for certain choices of andc; € GF(p). Note that under this
We (20,5 2p-1) = Wig,...,z'p,lzéo X 'Z;,’ff. setup|C(a,C1)| = ﬁ ZceclL [Ti2; Ala, c).

80,5150 eyip—1 We consider two cases:



1) ap =0, or
2) aO#O.
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Corollary 8. Letm + 1 be a prime integer. Lef be a single-
mineral code created according to Constructioh B where the

In the remainder of the proof we refer to the setup in itef@foup-code partition is used and thien + 1)-ary constituent
1) above as Case 1) and the setup in item 2) above @$l€C: is a non- blnarx/Hammmg code of length Then

Case 2). Notice that under either Case 1) or Case 2), W&

have A(a,0) = 30~ [Aa| = 2771, In the following two
cases, we therefore only consider the quantity, ¢) where
¢ € GF(p) andc # 0.

Case 1:Supposea is such thatay = 0. Then A(a,¢;)
(wherec; # 0, ¢; € GF(p)) can be written as

Z G

Applying Claim[10, we get thah(a, ¢;) = 1 wheng; # 0.

Case 2:Supposea is such thatay # 0. In particular, we
assumen;- = 0 for j* # 0. Then, we can write\(a, ¢;) as
(wherec; # 0,¢; € GF(p))

2 lip-1 2

p

A(a, Ci) =

-1
olip—1 . o l_1 & -
Mase) = ZE2 g > g
J=0,j#5*
2Pt 4 p—1

N |
S (-4)

Cj*q
PR

Notice that|§j*ci < 1 for any integerj* # 0.

Summary: Using the ideas from above, we now show
that C(a,C;) is maximized whenay, = 0. Consider any
b = (bo,bl,.. .,bm),d = (do,dl,. ,dm) e 1II,, where
bo = 0 # dy. From the previous analysis, for anye GF(p)
we have|A(d, ¢;)| < A(b, ¢;) and so

ZHAch

ceci =1

)< ——

ZHAbq

CGCL 1=1

ICLI
and
|C(da Cl)l < |C(b7 Cl)'

Let g = (90,91,---,9m) € I, where gy = 0 but
g # b. We have left to show that for any such,
|C(gacl)| =
vious paragraph. From the previous analysis, for any
GF(p) we haveA(d,c¢;) = A(b,¢;) and so|C(d,Cq)| =
ﬁ Zcecf [T= Ald, i) = ﬁ Zcecf [TiZ, A(b i)
IC(b,Ch)l.

From Theoreni]7, to maximize the size of a mineral code
C created according to Constructiod B with a group-code
partition, the largest color clasd, should be mapped to

the symbol zero in the constituent codg. Suppose the
Hamming weight enumerator of a codecan be written as
We(z,2) =Y i Win—iz'a™ " whereW, ,,_, represents the
number of codewords i@ whose Hamming weight is. The

following result follows from Theorerl7.

|IC(b,Cq)| where b is as defined in the pre-

mn2(m(n=15)/(m+1)

gmn
< mn+1

— mn+1

Proof: For the non-binary Hamming codg of length
n defined overGF(m + 1), we have thatWe, (z, z)

+

1_’_1 ((x + mz)” + mn(x _ Z)(anrl)/(erl) (n— )/(m+1))
([L3], Chapter 4). Substituting = 2+ and » = Z-]

then gives the maximum number of codewords in the addde
according to Theoref] 7. [ |

In the following remark, recallll,, refers to the set of
permutations of the symbol, 1,...,m}.

Remark 4. For a prime p, a positive integer, and the

Abelian group A = GF(p)", it was shown in[[2], Theo-

rem 14, that the length” — 1 code Cj' satisfies|Cg!| =
r_ - pr—1_

2 W eta = (0,1,...,p— 1) € T,y

and suppos€; is a perfect code of Iengt@;;l1 over GF(p)

so thatC(a,C;) has lengthp” — 1. Then from CorollanfB,
C(a,Cr)| = IC3'l-

As noted in the previous remark, if Constructigh B is used to
create a single-mineral code afidis a perfect and linear non-
binary code, then (for a fixed length) Construcfidn B does not
result in codes that are any larger than the group codeseln th
next section, we consider using perfect and linear nonrpina
smgle -random-error-correcting codes with differentacinlg
schemes to construct larger codes.

C. A new coloring scheme

In this section, we report on the results of using Construc-
tion[B with a new map that was located using a computerized
search. As before, we denote the color classesA@sAi,

., Ay for the k-coloring @, ,,, on G, ,,,. By this setup, we
assume

1) Vj €{0,...,k—1}, A; CGF@2)™,

2) for anyi,j € {0,...,k—1} wherei #j A;NA; =10,

3) Aol > [A1] > ... > |Ag—a].

In this subsection, we make use of the following notation.
Suppose a cod@ is at-mineral-error-correcting code created
according to ConstructidnlB given by

1) a set ofp color classed) = {4y, Ay, ...,
p-coloring ong, ,,, wherep is a prime,

2) the mapping®; ,, which maps vectors frondF'(2)™
into the symbols(0,1,...,p — 1},

3) C; where(C, is a t-random-error-correcting code over
GF(p).

Ap_1} fora

We denote the mineral codeasC(D, @, ,,,C;). Under this

setup, the mapb, ,, always maps elements from the same
color class to the same symbol.

In the following, we describe the color classes from
a 7-coloring on G; ¢ that was located with the aid of a
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computer search. The vectors fra@¥'(2)™ are enumerated There is clearly a strong connection between codes capable
by their decimal representation. For example, the vectof correcting bursts of unidirectional errors and codes cor
x = (x1,29,23,24,75,26) = (1,0,1,1,0,0) corresponds to recting grain-errors (where the length of the grain is lange
the numben3 sincer:1 2¢=1z, = 13 in this representation. than two). Constructing grain codes that are larger than the

The color classes are the following: unidirectional codes from[12] could be of future research
interest.

1) Color classAy: {0,3,12,15,21,24,36,43,49,54,61} Finally, we note that Construction] B may be applicable
2) Color classA;: {2,5,14,27,42,48,55,60} to the construction of new asymmetric error-correctingesod
3) Color classA,: {1,6,13,18,25,30, 37,40, 59} for the Z-channel. In fact, whe®,,, = I' and C; (from
4) Color classAs: {4,7,9,19,31,34,46,52,57} Construction[B) is a single random-error-correcting teyna
5) Color classA4: {8,11,20,23,33,38,45,50,62} code, Constructiol]B is identical to the single asymmetric
6) Color classAs: {10,16,22,28,35,41,47,53, 58} error-correcting code (from the ternary construction)cdiégd
7) Color classAg: {17,26,29,32,39,44,51,56,63}. in [5]. Given new colorings (i.e., where; ,,, # I') and new

ternary codes fo€,, it may be possible to construct new codes
Notice that|Ag| = 11, |A;| = 8,|42| =9, |A3] =9, |A4] = with large cardinalities for the Z-channel.
9,]A5| = 9, and |4g] = 9. Recall that if the group-code
partition was used then the sizes of the color classes are ACKNOWLEDGEMENTS
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APPENDIXA 3 1 ( n+1 ) 2 _
PROOFS OFCLAIMS AND LEMMAS FROM SECTION[II] =k k T n-
A. Details forM(n,2) u

For the bound or (n, 2) stated in LemmA&l6, the following B. Details for M (n, 3)

two claims were used. Our next step is to derive similar results faf(n, 3). We

Claim @l For n > 2 apply a slightly different approach in our calculation ttirse.
- First, we note to the following identity
n 2
3 1 ny__1 (2n+1_2_3_”_"_) Claim 12. For n > 1, S0  L(7) = a0, 2L,
= k+1 k n+1 2 27

Proof: We will prove this claim by induction as well.
Proof: This identity follows from the following deriva- Forn = 1 both terms are equal to 1 and thus the equality

tions: holds. Let us assume that the equation holds for semel
' and we will prove it holds forn + 1, that is, we will show
G| n ] n that 050 L(mHY) = St 22 2°~1 Similarly to the proof of
k+1\ k)~ E+1\ k) 1-n/2 Claim[8, we have that
k=2 =
" n+1 n n+1
1 na 1 on+1 _ q 1(”"'1)_ 1(71) ontl
= o —1-n/2=———-1-—n/2 - + )
]gn—l—l(/{—kl) / n+1 / ;k k ,;k k n+1
1 (2 o In n2) and according to the induction assumption we get
—n—i—l 2 27" %1 nitl 7i2k_1+2n+1 §2k_1
m k k N k n+1
k=1 k=1
Claim Bl For n > 14, ]
Note that according to Claifd 5 and Claiml 12 we can deduce
n _ n+1 .
Zl < ) ontl that >°7_, 2 L < nflf —. However, we will have to use
= k n—1-— n%s a slightly better upper bound here, which is proved next.

. >
Proof: This claim is proved by induction. We first verify Lemma 13 F:r n2 17,

that this claim holds for = 14. The left hand side is equal Z 2k —1 - 2t
2562.01, while the right hand side is equal 2564.45, and so ko "n-1-2+4+25%
this inequality holds fom = 14. ] _ o
Assume that this inequality holds for some> 14 and we Proof: For n o 17, the value on the left han.d s!de IS
will prove it holds forn -+ 1 as well. That is, we will show €dual 16552.47, while the value of the right hand side is kqua

" 16552.85. Now, assume the inequality holds for same 17,
thatZ}jj%(”Jrl >< 2" Note that S

k=1

k R and we will show its validity forn + 1. Hence, we need to
show that
n+1 n+1 1
1 n-+1 1 n n nt ok _ 1 gn+2
>4 -3 ((3)+
()2 () 2) I
= n n+1 = n n+1 k=1 k " m + (n+1)2
= Lin)y S Lfn )5 1fn) 3 _L [+ 1)according to the induction assumption, it is enough to show
k\k k\k—1 k\k n+1 k h
k=1 k=1 k=1 k=1 that
n 1 2n+1 1 2n+1 2n+1 -1 2n+2
2% <Z> T 2 T+ 1 < 2 T
= n+ n—1-2Zp+52 n+ n— 353+ mEne
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or By Claim[12,

1 1 2
-+ < n—1 n—1 .k
3 1 = 2 1 ) —1\1 2% —1 — 2
n—l—m+n—2 n+1 n—m‘f‘m Z(n )E Z _n+Z’
which holds forn > 17. [ ] k=3 k=1
The next claim will be useful in the derivation of the boundand by Clain{#,
on M(n, 3).
- 2
Lemma 14. For n > 2, Z("—1> _1<2n_2_3(n—1)_(n—1))
k+1 n 2 2
1 (n 2k e
R = —on 1. n?—3n+2
S () =n X E e SRS )
k=2 k=1
Proof: For n > 1, we denoted(n) = >, 75 (}),  All together we get that
where A(1) = 0, andB(n) = 22:1 %(Z) We note that
n®+n+6
n 1 1 1 M(n,3) £ —————
k—1 k —1 k—1 n=2 ok 2
T . +6<(n—1)22k1—2”1—7" 2”+2>
— 1 -1\ —1({n-1 -
‘Zﬁ(nk: >+ZE<nk >_A("_1)+B(”_1)' o
k=2 k=1 _12<22 I n"+n-2
Therefore, according to Clailm112 we get =k 4
- n—1 i n=1 i g 1 (0 3(n—1) (n—1)2> n? —3n+2>
2" -1 +6(=(2"-2- - -
- So-E51() - E8 e N
i=1 i=1 k=1 i=1 k=1 377,2 73n 31 6 n—2 Qk 1
n—1 . — n—1 —__ " - _ == _ = _ — _3.9"
ok _q lok _q = + +6(n—1) 3.2
= . (n—k):n 2" -1 4 4 2 n =k
e . - ok o1 6.2n
1ok i —12)°
=n (@2 —n—1) k=1 "
e 30 T3n 31 6 2ok
[ | 7—7 T—g——+6(n—3)k:1 % —3-2
Lemma 15. For n > 24, - on—1 _ 1 . 6. on
8+ 2+l I B
M(n,3)§2[3-2"< n7 _n G-2)7 J o, ) )
n — n
Proof: From Theorenfi]l we have k=1
L 62"
”3*22 n—l S :6(n—3)2—k -3.2 D
. k: k=1
k=0 Z;ﬁ‘;?iﬂ( v )
J where the inequality holds fat > 24. Finally, according to
-1 1 LemmalIB we finally get
= 2+”—1+ 2 Z Eo) T e
k= 1 + k + (2) + (3) 27L71 G- 27L
W 406 n1 ) M(n,3) < 6(n —3) 2 — =320 — ———
k=3 (2) + (3) _ 2n 3n—9 3 6
n+n+6+12n71 n—1 12 1, 1/2 B n-3- %+ o5 n(n—1)
4 k k—1 k k+1 6 6
k=3 _ on n—7 (n—2)2 - 6
:n2+n+6+6n71 n—1 1 <n—3—i+ﬁ n(n—l))
4 k k—1 44 1 2
k=3 n n—"7 + m
= 62 .
— 1 — n—1 1 <n(n—1)( —3__7+( 22)2)>
—12Z< >E+GZ< ) >—k+1.
k=3 k=3
According to Lemmd_14, From Lemmd},M (n,2) must be an even integer and so
8+ttt -2y
S fn-1) 1 k1 . n?-5n+2 M(n,3)§2l3-2" e T AT B R J
- = ( — 1) —92 - - @ @ @- ( )( "*7+(n—2)2)
2\ ke T AT 2



APPENDIXB
PROOF OFCLAIM

In this section, prove the correctness of Cldilh 9. The
approach used will be the same as that [d ([6], Chapter 9)
and ([13], Chapter 4), and the material is included here for
completeness.

Recall from Section[VI:B, we write the complete
weight enumerator of a cod€ as We(zo,...,2,-1) =
Siosivsiy s Wior a2 mr where Wi i, de-
notes the number of codewords in a cafiéhat have exactly
19 symbols of value), i; symbols of valuel, and so on.

Suppose, is ap-th root of unity. Then the complete weight
enumerator of a codé of lengthn defined overGF(p) can
be expressed in terms of the codewords in the dual ¢ddas
follows. For shorthand, 1eWe (2o, ... zp—1) = We(z). First,
note that forv € GF(p)™,

e |ICH ifuec,
> G "= {'O e (17)
= otherwise.

Let Ic : GF(p)" — {0,1} denote the indicator function
where fore € GF(p)"

1 ifxel
1, = ’ 18
c(@) {0 otherwise. (18)
Then,
We(z)= Y Ie(0)Wihy(2)
vEGF(p)n
1 ’UT'Q':
= Z @ Z Cp W{,,}(z)
vEGF(p)™ xzeClL

1 T
X 2 G Tm()

zeClt veGF(p)n

1 R
:WZ > T Wi (z)

zeCt veGF(p)n i=1

1 = .
= W Z H Z C;I ZW{vi}(z)
)

zeCli=1v,€GF(p

wect i=1
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