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Abstract—This paper studies new bounds and constructions
that are applicable to the combinatorial granular channel model
previously introduced by Sharov and Roth. We derive new
bounds on the maximum cardinality of a grain-error-correcting
code and propose constructions of codes that correct grain-errors.
We demonstrate that a permutation of the classical group codes
(e.g., Constantin-Rao codes) can correct a single grain-error. In
many cases of interest, our results improve upon the currently
best known bounds and constructions. Some of the approaches
adopted in the context of grain-errors may have applicationto
other channel models.

I. I NTRODUCTION

Granular media is a promising magnetic recording technol-
ogy that currently presents formidable challenges to achieving
capacity. One of the main issues with granular media is the
uncertainty of the locations of the grains in the underlying
recording medium. Typically, this medium is organized into
grains whose locations and sizes are random. Information is
stored by controlling the magnetization of the individual grains
so that each grain can store a single bit of data [18], [19].

The read and write processes are typically unaware of the
locations of the grains. As a result, the medium is divided
into evenly spaced bit cells and the information is written into
these bit cells [10]. In the traditional setup, the bit cell is
usually larger than a single-grain. When the size of the bit
cells is reduced enough, the effects of the random positionsof
the grains become pronounced. In particular, in [19] a one-
dimensional channel model was studied that illustrated the
effects of having grains with randomly selected lengths of1,
2, or 3 bits. When grains span more than a single bit cell,
the polarity of a grain is set by the last bit written into it. The
errors manifest themselves as overwrites (orsmears) where the
last bit in the grain overwrites the preceding bit in the grain.
In this work, the focus is on grains of length one or two bits.
A grain-error is an error where the information from one bit
overwrites the information stored in the preceding bit in the
grain. Without loss of generality, and as in [10], our model
assumes that the first bit smears the following adjacent bit in
the grain.

In [15], Sharov and Roth presented combinatorial bounds
and code constructions for granular media. In [7], Iyengar,
Siegel, and Wolf studied a related model from an information-
theoretic perspective. In [10], Mazumdar, Barg, and Kashyap
introduced a channel model and studied coding methods for a
one-dimensional granular magnetic medium. In [10], the focus

was on binary alphabets and the types of errors studied in [10]
will be referred in this work asnon-overlapping grain-errors.
In [15], Sharov and Roth generalized the model and considered
non-binary alphabets as well asoverlapping grain-errors.
Overlapping grain-errors permit the occurrence of two errors
in consecutive positions whereas non-overlapping grain-errors
cannot be adjacent. Note that there is no distinction between a
non-overlapping single grain-error and an overlapping single
grain-error. In this work, we restrict our attention only tothe
overlapping grain-error model. We say that a code is at-grain-
error-correcting code if it can correct up tot overlapping
grain-errors. In both [10] and [15], bounds and constructions
were given. Recently, in [8] some of the techniques from
[9] were adopted to obtain improved upper bounds on the
maximum cardinalities of non-overlapping grain-error codes.

The main contribution of this paper is to construct codes
that correct grain-errors. We show that the class of group codes
from [2] is a special case of our general code construction. In
addition, and similar to [8], we provide non-asymptotic upper
bounds on the cardinalities oft-grain-error-correcting codes,
with an explicit expression for the cases wheret = 1, 2, 3.
We show that in many cases our bounds and constructions
improve upon the state of the art results from [10] and [15].

Section II formally defines the channel model and intro-
duces the notation and tools used for the remainder of the
paper. Section III improves upon the existing upper bounds
from [15]. Section IV contains constructions for codes that
correct grain-errors and a related type of error which we refer
to as mineral-errors. Lower bounds on the cardinalities for
some of these codes are then derived in Section V. Section VI
revisits the general approach to correcting grain/mineral-errors
from Section IV-B, and identifies additional codes for certain
code lengths. Section VII concludes the paper. Preliminary
results of this work are presented in [4].

II. PRELIMINARIES

In this section, we describe in detail the structure of grain-
errors. Afterwards, we introduce some key notation. Sec-
tion II-A introduces the errors of interest. Section II-B reviews
the tools which will be used for computing upper bounds. Sec-
tion II-C briefly introduces some graph notation. Section II-D
reviews some distance metrics and group codes that will be
useful for constructing grain-error-correcting codes. Finally,
Section II-E includes some Fourier analysis tools useful for
computing lower bounds for grain-error codes.
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A. Grain-errors and mineral-errors

In this subsection, we formally introduce the notation and
the errors of interest that will be studied in this work. We
consider the case where each grain contains either one or two
bits of data. A grain-error causes the two bits in the same two-
bit grain to either both be0 or both be1; the error operation
can be interpreted as asmearing. Following the setup of [10],
we assume that the first bit smears the second. The problem
of interest is how to correct grain-errors when the locations
and lengths of the grains are unknown to both the encoder and
decoder.

Before continuing, we provide a formal definition of at-
grain-error. For a vectorx ∈ GF (2)n, wt(x) refers to the
Hamming weight ofx andsupp(x) denotes the set of indices
of x with non-zero values.

Definition 1. Let t ≥ 1 be an integer. Suppose a vectorx ∈
GF (2)n was stored. Letex = (e1, . . . , en) ∈ GF (2)n, and
suppose the vectory = x+ ex was read. Then, we say that
ex is a t-grain-error for x if the following holds:

1) wt(ex) ≤ t and e1 = 0,
2) For 2 ≤ i ≤ n, if ei 6= 0, thenxi 6= xi−1.

Note thatex depends on the input vectorx. For shorthand,
we say thatex is a t-grain-error if the vectorx is clear from
the context. Notice in Definition 1 that an error at positioni
where2 ≤ i ≤ n can be interpreted as a smearing where the
value ofx at positioni− 1 smears the value ofx in position
i.

A code that can correct anyt-grain-error will be referred
to as at-grain-error-correcting code. For shorthand, a code
that can correct a single grain-error will also be referred to
as asingle-grain code. More generally, codes that correct a
prescribed number of grain-errors are calledgrain codes. The
maximum size of at-grain-error-correcting-code of lengthn
will be referred to asM(n, t).

Definition 1 coincides with theoverlapping grain-error
model discussed in [15]. We briefly note that since the original
model ofnon-overlapping grain-errors [10] is a special case
of the more general overlapping grain-error model, the code
constructions in this paper apply to both models. We compare
the upper bounds derived in Section III against existing bounds
for the overlapping grain-error model ([15]). For the remainder
of the paper, the term grain-error refers to an overlapping
grain-error as stated in Definition 1.

Suppose a vectorx ∈ GF (2)n is stored. LetBt,G(x) be
the set of all possible vectors received (theerror-ball) given
that anyt-grain-error may occur inx. That is, we define

Bt,G(x) = {x+ ex| ex is a t-grain-error},

andbt,n(x) = |Bt,G(x)|.

Example 1. Supposex = (0, 0, 0, 1, 0) was stored. Then,
B1,G(x) = {(0, 0, 0, 1, 0), (0, 0, 0, 1, 1), (0, 0, 0, 0, 0)}
and b1,5(x) = 3. Notice also that B2,G(x) =

{(0, 0, 0, 1, 0), (0, 0, 0, 1, 1), (0, 0, 0, 0, 0), (0, 0, 0, 0, 1)}
and b2,5(x) = 4.

We note that the last vector,(0, 0, 0, 0, 1), enumerated in
B2,G(x) for Example 1 was an overlapping grain-error in the
sense that the grain-errors were adjacent so that the bit in
position4 is both smeared and smearing.

We introduce a new type of error that will be useful in
subsequent analysis.

Definition 2. Let t ≥ 1 be an integer. Suppose a vectorx ∈
GF (2)n was stored. Letex = (e1, . . . , en) ∈ GF (2)n and
suppose the vectory = x + ex was received. Then, we say
that ex is a t-mineral-error for x if the following holds:

1) wt(ex) ≤ t,
2) For 2 ≤ i ≤ n, if ei 6= 0, thenxi 6= xi−1.

Similar to the grain-error setup, we say thatex is a t-
mineral-error if the vectorx is clear from the context. A
code that can correct anyt-mineral-error will be referred to as
a t-mineral-error-correcting code. Single-mineral codes and
mineral codes are defined analogously as grain codes.

For a given vectorx ∈ GF (2)n, let Bt,M (x) denote the
error-ball forx given that anyt-mineral-error may occur in
x. That is, we define

Bt,M (x) = {x+ ex| ex is a t-mineral-error}.

A useful consequence of Definition 2 is stated in the
following claim.

Claim 1. SupposeC is a t-grain-error-correcting code. Then,
for any two distinct codewordsx = (x1, . . . , xn),y =
(y1, . . . , yn) ∈ C, either

1) x1 6= y1, or
2) Bt,M (x2, . . . , xn) ∩ Bt,M (y2, . . . , yn) = ∅.

Supposex ∈ GF (2)n andBt,R denotes the error-ball for
t random-errors (where t random-errors are defined as any
binary vector of lengthn with weight at mostt). Then, for

any vectorx ∈ GF (2)n, |Bt,R(x)| =
∑t

i=0

(
n
i

)

.

The following lemma follows from the definitions of grain-
errors and mineral-errors.

Claim 2. For any vectorx ∈ GF (2)n, Bt,G(x) ⊆ Bt,M (x) ⊆
Bt,R(x).

We now present some simple results that follow from the
structure of grain-errors. Lemmas 1, 2, and 4 will be useful
in Section III for obtaining upper bounds on the cardinality
of grain codes and Lemma 3 and Claim 3 will be useful for
constructing grain codes in Section IV.

A run is a maximal substring of one or more consecutive
identical symbols. We denote the number of runs in a vector
x asr(x) wherex ∈ GF (2)n.

Lemma 1. For any vector x, bt,n(x) =
∑min{t,r(x)−1}
j=0

(
r(x)− 1

j

)

.
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Proof: Suppose a vectorx was stored and that it consists
of k = r(x) runs. By Definition 1, a grain-error can occur only
at the boundaries between runs. If there are exactlyk ≥ t+1
runs, there arek − 1 transitions between runs and therefore

bt,n(x) =
∑t
j=0

(
k − 1
j

)

. If there aret or fewer runs (i.e.,

k ≤ t), thenbt,n(x) =
∑k−1
j=0

(
k − 1
j

)

.

The following lemma is a consequence of the smearing
effect of a grain-error. Let the mapΨ : GF (2)s → GF (2)s−1

be defined so thatΨ(z) = z′ = (z′1, . . . , z
′
s−1) where

z′i = (zi + zi+1) mod 2 (for 1 ≤ i ≤ s − 1). Notice that
Ψ(z) is a linear map and it has a1 in position i if and only
if zi 6= zi+1. Recall thatsupp(z) refers to the set of non-zero
indices inz andwt(z) refers to the Hamming weight ofz.

Lemma 2. For any two vectorsx,y ∈ GF (2)n if y ∈
Bt,G(x), thenr(y) ≤ r(x) and bt,n(y) ≤ bt,n(x).

Proof: For the result to hold, we need to show that for
any two vectorsx,y ∈ GF (2)n wherey ∈ Bt,G(x), r(y) ≤
r(x). If r(y) ≤ r(x), then from Lemma 1,bt,n(y) ≤ bt,n(x).
Equivalently, we will show thatwt(Ψ(y)) ≤ wt(Ψ(x)). Since
y ∈ Bt,G(x) we can writey = x + ex where ex is a t-
grain-error. Letx′ = Ψ(x), e′ = Ψ(ex),y

′ = Ψ(y). By the
linearity of the mapΨ, we can writey′ = x′ + e′ and so
wt(y′) = wt(x′) + wt(e′) − 2|supp(x′) ∩ supp(e′)|. In the
following, we showwt(y′) ≤ wt(x′) by proving|supp(x′)∩

supp(e′)| ≥ wt(e′)
2 . The proof will follow by induction on the

number of runs of1s in ex.
We first prove that for anyt-grain-errorex of lengthn, if

ex has a single run of1s, thenr(y) ≤ r(x). Suppose then
that ex = (e1, . . . , en) is a t-grain-error and thatex contains
a single run of1s. Then1 ≤ wt(e′) ≤ 2 since e1 = 0.
Suppose further thate′ = (e′1, . . . , e

′
n−1) has its first1 at

position i where1 ≤ i ≤ n − 1. Since i is the location of
the first 1 in e′, then ei 6= ei+1 and soei = 0, ei+1 = 1
(sincee1 = 0). However, ifei+1 = 1, thenxi 6= xi+1 and so
bothx′i = e′i = 1. Sincewt(e′) ≤ 2, we have just shown that
|supp(x′) ∩ supp(e′)| ≥ 1, and so the base case is complete.

We now assume that for any length-n ex, if ex hask runs
of 1s, thenr(y) ≤ r(x) where1 ≤ k ≤ ⌊n2 ⌋. Consider the
case whereex hask+1 runs of1s. Suppose thek-th run of1s
in ex has its final1 in positionj where2 ≤ j ≤ n− 2. Thus,
ej+1 = 0. For shorthand denotee1 = (e1, . . . , ej+1), e2 =
(ej+1, . . . , en), x1 = (x1, . . . , xj+1), x2 = (xj+1, . . . , xn),
e′1 = Ψ(e1), e′2 = Ψ(e2), x′

1 = Ψ(x1), andx′
2 = Ψ(x2).

Notice that the vectorse′ andx′ can be written as the concate-
nation of two vectors wheree′ = (e′1, e

′
2) andx′ = (x′

1,x
′
2)

wheree1 is a t-grain-error forx1 with k runs of1s ande2 is
a t-grain-error forx2 with a single run of1s. By the inductive
assumption,|supp(x′

1)∩supp(e
′
1)| ≥

wt(e′

1)
2 and|supp(x′

2)∩

supp(e′2)| ≥
wt(e′

2)
2 . Combining these two statements gives

the desired result that|supp(x′) ∩ supp(e′)| ≥ wt(e′)
2 and so

the proof is complete.

The following lemma follows from the structure of grain-
errors.

Lemma 3. For any two vectorsx,u ∈ GF (2)n, suppose that
for some1 ≤ i ≤ n− 1,

1) (xi, xi+1) = (0, 0), (ui, ui+1) = (1, 1) or
2) (xi, xi+1) = (1, 1), (ui, ui+1) = (0, 0).

Then,Bt,G(x) ∩ Bt,G(u) = ∅.

Proof: Let y1 = x+ ex andy2 = u+ eu. Sincex and
u differ at positioni+ 1 then in order fory1 = y2, an error
must occur at positioni + 1 in either x or u but not both.
However, a grain-error can never change the information at
position i + 1 in eitherx or u since bothx andu store the
same information in positionsi andi+1 by the conditions in
the statement of the lemma.

We now prove the final lemma for this subsection.

Lemma 4. SupposeC is a t-grain-error-correcting code of
lengthn with the maximum possible cardinality. Then,|C| is
an even number.

Proof: Assume, on the contrary, thatC is a t-grain-error-
correcting code of lengthn with an odd number of codewords
and C has maximum possible cardinality. Now consider the
codeC0 which consists of all the codewords inC that start
with a 0 and the codeC1 which consists of all the codewords
of C that start with a1. Notice that sinceC0 is a subcode of
C, C0 is a t-grain-error-correcting code. If|C| = |C0|+ |C1| is
an odd number, then|C0| 6= |C1| and so assume, without loss
of generality, that|C1| < |C0| (the case where|C1| > |C0| can
be treated analogously).

Let C′
0 be the set of vectors that is the result of flip-

ping the first bit of every codeword inC0. Notice from
Claim 1 that sinceC0 is a t-grain-error-correcting code for
any x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ C0 where
x 6= y, Bt,M (x2, . . . , xn) ∩ Bt,M (y2, . . . , yn) 6= ∅ and so
for any v,w ∈ C′

0 where v 6= w, Bt,M (v2, . . . , vn) ∩
Bt,M (w2, . . . , wn) 6= ∅. Thus, for anyv,w ∈ C′

0, we have
Bt,G(v) ∩ Bt,G(w) 6= ∅.

Then,C0 ∪ C′
0 is a t-grain-error-correcting code since each

codeword inC0 differs from every codeword inC′
0 in the first

bit. Furthermore, since|C′
0| = |C0|,

|C0 ∪ C′
0| = 2|C0| > |C0|+ |C1| = |C|

we arrive at a contradiction.
The next claim will be used later in Section IV for con-

structing grain codes.

Claim 3. SupposeCM is a t-mineral-error-correcting code.
Let C be the code that is the result of prepending an arbitrary
bit to the beginning of every codeword inCM . Then,C is a
t-grain-error-correcting code of size2|CM |.
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B. Tools for computing upper bounds

In this subsection, we briefly review some of the tools used
in Section III for computing a non-asymptotic upper bound
on the cardinality of grain-error-correcting codes. We begin
by revisiting some of the notation and results from [9].

Definition 3. A hypergraph H is a pair (X , E), whereX is a
finite set andE is a collection of nonempty subsets ofX such
that ∪E∈EE = X . The elements ofE are calledhyperedges.

Definition 4. A matching of a hypergraphH = (X , E)
is a collection of disjoint hyperedgesE1, . . . , Ej ∈ E . The
matching number of H, denotedν(H), is the largestj for
which such a matching exists.

As will be described shortly, the following can be inter-
preted as the dual of the matching of a hypergraph.

Definition 5. A transversal of a hypergraphH = (X , E) is
a subsetT ⊆ X that intersects every hyperedge inE . The
transversal number of H, denoted byτ(H), is the smallest
size of a transversal.

Let H be a hypergraph with verticesx1, . . . , xn and hyper-
edgesE1, . . . , Em. The relationships contained withinH can
be interpreted through a matrixA ∈ {0, 1}n×m, where

A(i, j) =

{

1 if xi ∈ Ej ,

0 otherwise,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Cast in this light, the matching
number and the transversal number can be derived using linear
optimization techniques.

Lemma 5. (cf. [9]) The matching number and the transversal
number are the solutions of the integer linear programs:

ν(H) = max{1Tz|Az ≤ 1, zj ∈ {0, 1}, 1 ≤ j ≤ m}, and
(1)

τ(H) = min{1Tu|ATu ≥ 1, ui ∈ {0, 1}, 1 ≤ i ≤ n}, (2)

where1 denotes a column vector of all1s of the appropriate
dimension.

Relaxing the condition that the solutions to the program-
ming problem are comprised of0s and 1s, we have the
following problems:

ν∗(H) = max{1Tz|Az ≤ 1, z ≥ 0}, and (3)

τ∗(H) = min{1Tu|ATu ≥ 1,u ≥ 0}. (4)

Clearly ν(H) ≤ ν∗(H) and τ(H) ≥ τ∗(H). Since (3) and
(4) are linear programs, they satisfy strong duality [1] and
ν∗(H) = τ∗(H). Thus, combining these inequalities leads us
to ν(H) ≤ τ∗(H) [9].

C. Graph notation

In this subsection, we describe graph notation from [17] that
will be used in Section IV-B and Section VI. LetG = (V,E)

be a simple graph; that is, it has undirected edges with no
parallel edges and no self-loops. A vertexv1 ∈ V is adjacent
to another vertexv2 ∈ V if there exists an edge between them.
The degree of a vertex is the number of its adjacent vertices
and the maximum degree of a vertex inG is denoted∆(G).

A k-coloring is a mappingΦ : V → {0, 1, . . . , k − 1} of
numbers to each vertex such that the same number is never
assigned to adjacent vertices. Thechromatic number of a
graph, denoted byχ(G), is the smallestk for which a k-
coloring exists. Aclique is a set of vertices inG that are
all adjacent. The size of the largest clique in a graphG is
denotedς(G). It is known that for a graphG, χ(G) is such
thatς(G) ≤ χ(G) ≤ ∆(G)+1 [17]. Each collection of vertices
that share the same number (under some fixedk-coloring) is
referred to as acolor class.

D. Distance metrics and group codes

In this subsection, we introduce some distance metrics that
are used in Section IV to construct grain-error-correcting
codes. In addition, we define group codes that will serve
as the foundation of the single grain-error-correcting codes
introduced in Section IV-A.

Definition 6. Supposex,y ∈ GF (2)n. Their Hamming
distance is denoteddH(x,y) = |{i : xi 6= yi}|.

Definition 7. Supposex = (x1, . . . , xn),y = (y1, . . . , yn) ∈
GF (2)n. For 1 ≤ i ≤ n, N(x,y) = |{i : xi > yi}|.

Definition 8. (cf. [2]) Supposex,y are two vectors in
GF (2)n. Their asymmetric distanceis denoteddA(x,y) =
max{N(x,y), N(y,x)}.

We say that a codeC has minimum Hamming distance
dH(C) if dH(C) is the smallest Hamming distance between
any two distinct codewords inC. Similarly, we say that a
codeC has minimum asymmetric distance dA(C) if dA(C)
is the smallest asymmetric distance between any two distinct
codewords inC.

SupposeA is an additive Abelian group of ordern+1 and
suppose(g̃1, . . . , g̃n) is a sequence consisting of the distinct
non-zero elements ofA. For everya ∈ A, we define agroup
code C̃A

a to be

C̃A
a = {x ∈ GF (2)n|

n∑

k=1

xkg̃k = a}.

Without loss of generality, we assume the Abelian groups
we deal with in this paper are additive, and that the group
operation is denoted as addition. Such a construction was
shown in [2] to havedH(C̃A

a ) ≥ dA(C̃A
a ) ≥ 2. We include

the following example for clarity.

Example 2. Let A be the additive Abelian groupZ3 so that
(g̃1, g̃2) = (1, 2). Then, the groupA partitions the space
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GF (2)2 into 3 group codes.

C̃Z3
0 = {(0, 0), (1, 1)},

C̃Z3
1 = {(1, 0)},

C̃Z3
2 = {(0, 1)}.

An elementary Abelian group is a finite Abelian group
where every non-identity element in the group has orderp,
where p is a prime. For shorthand, the elementary Abelian
group of sizepr (for a primep and a positive integerr) is
referred to as anelementary Abelian p-group [14].

E. Discrete Fourier analysis

In this subsection, we briefly review some of the tools that
will be used in Section V to derive lower bounds on the
cardinalities of code constructions. The notation adoptedis
similar to the notation used in [11].

Let p be a prime number and supposeζp denotes the
complex primitivep-th root of unity and supposer is some
positive integer. LetA refer to the additive Abelian group
(Zp)

r = Zp × · · · × Zp
︸ ︷︷ ︸

r times

. The operator<g,h> takes two

elementsg = (g1, . . . , gr),h = (h1, . . . , hr) ∈ A and maps
them into a complex number as follows

<g,h> =

r∏

i=1

(ζp)
gihi = (ζp)

∑r
i=1 gihi = (ζp)

gT ·h.

Let f(g) be any function that maps elements ofA into the
complex plane. TheFourier transform f̂ of f is defined as

f̂(h) =
∑

g∈A

<h,−g>f(g)

and theinverse Fourier transform is defined as

f(g) =
1

pr

∑

h∈A

<h, g>f̂(h).

III. U PPERBOUNDS ONGRAIN-ERROR CODES

In this section, we use linear programming methods to
produce a closed-form upper bound on the cardinality of a
t-grain-error-correcting code. The approach is analogous to
that found in [9] where upper bounds were computed for
the deletion channel and in [8] where upper bounds were
derived for the non-overlapping grain-error model. Recall, our
objective is to compute upper bounds for the overlapping
grain-error model.

The approach is the following. First, the vector space from
which codewords are chosen, is projected onto a hypergraph.
Then, an approximate solution to a matching problem is
derived. Recall that the maximum size of at-grain-error-
correcting-code of lengthn will be referred to asM(n, t).

Let Ht,n denote the hypergraph for at-grain-error-
correcting code. More formally, let

Ht,n = (GF (2)n, {Bt,G(x)|x ∈ GF (2)n}).

In this graph, the vertices represent candidate codewords and
the hyperedges represent vectors that result whent or fewer
grain-errors occur in any of the candidate codewords.

As in [9], ν∗(Ht,n) is an upper bound onM(n, t) and will
be derived by considering the dual problem defined in(4).
The problem is to find a functionw : GF (2)n → R+ such
that

τ∗(Ht,n) = min
w

{
∑

y∈GF (2)n

w(y)}

subject to

∑

y∈Bt,G(x)

w(y) ≥ 1, ∀x ∈ GF (2)n (5)

andw(x) ≥ 0, ∀x ∈ GF (2)n.
We are now ready to state the main result of the section.

Theorem 1. For positive integersn, t wheret < n,

M(n, t) ≤ 2
n−1∑

k=0

(
n− 1
k

)
1

∑min{t,k}
j=0

(
k
j

) .

Proof: In order to prove the result, we must assign values
for w(y) such that the constraint in (5) is satisfied. Letw(y) =

1
bt,n(y)

wherebt,n(y) is computed as in Lemma 1. Note that

∑

y∈Bt,G(x)

w(y) =
∑

y∈Bt,G(x)

1

bt,n(y)
.

From Lemma 2, for anyy ∈ Bt,G(x), bt,n(y) ≤ bt,n(x), so
we have
∑

y∈Bt,G(x)

1

bt,n(y)
≥

∑

y∈Bt,G(x)

1

bt,n(x)
= bt,n(x)

1

bt,n(x)
= 1.

The theorem statement now follows from the bound on
∑

y∈GF (2)n w(y): Since the number of length-n vectors with

k runs is2

(
n− 1
k − 1

)

and bt,n =
∑min{t,k−1}
j=0

(
k − 1
j

)

from Lemma 1, we have

M(n, t) ≤ 2

n∑

k=1

(
n− 1
k − 1

)
1

∑min{t,k−1}
j=0

(
k − 1
j

) ,

which, after reindexing the parameterk, is the statement in
the theorem.

Theorem 1 gives an explicit upper bound onM(n, t) for all
n and t. However, providing an explicit expression (without
summations) is still not easy to derive. In the following, we
present non-asymptotic bounds fort = 1, 2, 3. The bounds
will then be compared against the existing bounds in [15]
for t = 1. Note that the overlapping and non-overlapping
grain-error models coincide for the case wheret = 1. The
following corollary was also derived in [8] in the context
of the non-overlapping grain-error model. It is the result of
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combining Theorem 1 for the case wheret = 1 with Lemma 4.
Recall,M(n, t) refers to the maximum size of at-grain-error-
correcting code.

Corollary 1. For n ≥ 1, M(n, 1) ≤ 2⌊ 2n+1−2
2n ⌋.

In general, it is difficult to compare our bounds to
those in [15] since the bounds in [15] require finding
a parameterρ where ρ is the largest integer satisfying
∑ρ

k=1

(
n− 1
k − 1

)
∑min(t,k)

j=0

(
k
j

)

≤ 2n−1. The bounds for

t = 1 and smalln were explicitly derived using the formula
in [15] and for all values ofn ≤ 20 the bound in Corollary 1
was tighter (as can be seen in Table I). The bounds in this
section have the advantage of being explicit.

For the case oft = 2, we make use of the following claims
which can be proven using induction. The details are included
in Appendix A.

Claim 4. For n ≥ 2,
n∑

k=2

1

k + 1

(
n
k

)

=
1

n+ 1

(

2n+1 − 2−
3n

2
−
n2

2

)

.

Claim 5. For n ≥ 14,
∑n

k=1
1
k

(
n
k

)

≤ 2n+1

n−1− 2
n−5

.

We now derive the bound forM(n, 2), the maximum size of
a 2-grain-error-correcting code, which is non-asymptotic and
explicit.

Lemma 6. For n ≥ 14, M(n, 2) ≤ 2
⌊
2n+2(2+ 2

n−6 )

2n(n−3)

⌋

.

Proof: From Theorem 1 we have

M(n, 2) = 2

n−1
∑

k=0

(

n− 1
k

)

1
∑min{2,k}

j=0

(

k
j

)

= 2 + n− 1 + 2

n−1
∑

k=2

(

n− 1
k

)

1

1 + k +
(

k

2

)

≤ n+ 1 + 4

n−1
∑

k=2

(

n− 1
k

)(

1

k
−

1

k + 1

)

= n+ 1 + 4

n−1
∑

k=2

(

n− 1
k

)

1

k
− 4

n−1
∑

k=2

(

n− 1
k

)

1

k + 1
.

From Claims 4 and 5 we have

M(n, 2) ≤ n+ 1 + 4

(

2n

n− 2− 2
n−6

− n+ 1

)

−
4

n

(

2n − 2−
3(n− 1)

2
−

(n− 1)2

2

)

=
2n+2

n− 2− 2
n−6

−
2n+2

n
− n+ 7 +

4

n

≤
2n+2(2 + 2

n−6
)

n(n− 3)
.

From Lemma 4M(n, 2) must be an even integer and so

M(n, 2) ≤ 2
⌊
2n+2(2+ 2

n−6 )

2n(n−3)

⌋

.

For t = 3, the upper bound is stated as a lemma. The details
can be found in Appendix A.

Lemma 7. For n ≥ 24,

M(n, 3) ≤ 2
⌊

3 · 2n

(
8 + 44

n−7 + 1
n − 2

(n−2)2

n(n− 1)(n− 3− 2
n−7 + 2

(n−2)2 )

)
⌋

.

IV. GRAIN-ERROR CODE CONSTRUCTIONS

In the previous section, the focus was on upper bounds for
grain-error-correcting codes. In this section, we turn to code
constructions. We will compare the codes proposed in this
section to the upper bounds derived in the previous section.

This section is divided into three subsections. In Sec-
tion IV-A, we consider a group-theoretic construction for
single-grain codes. In Section IV-B, we generalize the con-
struction from IV-A. Using this generalization, Section IV-B
identifies better codes that correct single grain-errors for
certain code lengths. Section IV-C considers constructions for
codes that can correct multiple grain-errors.

A. Single-grain codes

We begin by proving some sufficient conditions for a code
to correct a single grain-error. Then, we provide a group-
theoretic code construction that satisfies these conditions. The
codes presented in this section provide the largest known
cardinalities for all code lengths greater than16.

Combining Lemma 3 with Definition 1, the following claim
can be verified. Recall thatdH anddA refer to the Hamming
distance and the asymmetric distance, respectively.

Claim 6. A codeC is a single-grain code if for every pair of
distinct codewordsx,y ∈ C one of the following holds:

1) dH(x,y) = 1 and x1 6= y1.
2) dH(x,y) = 2 and for some1 < i ≤ n− 1,

a) (xi, xi+1) = (0, 0), (yi, yi+1) = (1, 1) or
b) (xi, xi+1) = (1, 1), (yi, yi+1) = (0, 0).

3) dH(x,y) ≥ 3.

We are now ready to state our code construction. For any
Abelian group referred to in the subsequent discussion, the
identity element will be denoted as0 and will be referred to
as the zero element.

Construction A. Let A represent an additive Abelian group
of sizen. Suppose the sequenceS = (g1, g2, . . . , gn), which
contains the elements ofA, is ordered as follows:

1) g1 = 0,
2) for any 1 < i ≤ n, the elementsgi and g−1

i (if g−1
i

exists) are adjacent.

For any elementa ∈ A, let

CA
a = {x ∈ GF (2)n :

n∑

k=1

xkgk = a}. (6)

The following example illustrates Construction A.
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Example 3. Let A denote the additive Abelian groupZ3.
Suppose Construction A is used to create a code where
S = (g1, g2, g3) = (0, 1, 2). Then, the groupA partitions
the spaceGF (2)3 into 3 single-grain codes.

CZ3
0 = {(0, 0, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1)},

CZ3
1 = {(0, 1, 0), (1, 1, 0)},

CZ3
2 = {(0, 0, 1), (1, 0, 1)}.

The correctness of Construction A is proven next.

Theorem 2. A codeCA
a created with Construction A is a

single-grain code.

Proof: We will show thatCA
a is a single-grain code by

demonstrating that the conditions listed in Claim 6 hold for
any pair of distinct codewordsx,y ∈ CA

a . Let C̃A
a be the group

code created by using the same group and elementa as inCA
a

so thatC̃A
a has lengthn−1, andC̃A

a is obtained by shortening
the codewords ofCA

a on the first bit (i.e., by removingx1,
which multipliesg1 = 0). Recall from Section II-D that since
C̃A
a is a group code,dH(C̃A

a ) ≥ dA(C̃A
a ) ≥ 2.

SupposedH(x,y) = 1. Then, sincedH(C̃A
a ) ≥ 2, it follows

that if dH(x,y) = 1, thenx andy differ only in the first bit
and so condition 1) from Claim 6 holds.

SupposedH(x,y) = 2. SincedH(C̃A
a ) ≥ 2, x andy do not

differ in the first position, and there are two distinct indicesi, j
(2 ≤ i, j ≤ n) wherexi 6= yi andxj 6= yj. Suppose, without
loss of generality, thatN(x,y) = 2 and soxi = xj = 1.
Therefore,gi + gj = 0, or gj = g−1

i . However, by condition
2) in Construction A, we have|j− i| = 1 and so condition 2)
from Claim 6 holds.

If dH(x,y) is not equal to1 or 2 thendH(x,y) ≥ 3 and
so condition 3) of Claim 6 holds.

The following corollary follows from the proof of Theo-
rem 2 and Claim 1.

Corollary 2. LetCA
a be a single-grain code created according

to Construction A. Let̃CA
a be the group code that is the result

of shortening the codewords inCA
a on the first bit. ThenC̃A

a

is a single-mineral code.

The following corollary provides upper and lower bounds
on |CA

a |.

Corollary 3. SupposeA is an Abelian group of sizen anda ∈
A. Then, for a codeCA

a created according to Construction A,
|CA
a | ≤ |CA

0 |. Furthermore,

2n

n
≤ |CA

0 | ≤
2n

n
+

(n− 1) · 2n/3

n
.

Equality holds on the left if and only if|A| is a power of two.
Equality holds on the right if and only ifA is an elementary
Abelian3-group.

Proof: Since Construction A concatenates an arbitrary
bit with a group code, it follows that if the underlying
group code of lengthn′ = n − 1 has cardinality|C̃A

a |,

then the codeCA
a created using the previous construction has

2|C̃A
a | codewords. Then, since|C̃A

a | ≤ |C̃A
0 | ([2], Theorem

9), |CA
a | ≤ |CA

0 |. Furthermore, from ([11], Corollary 2)

|C̃A
0 | ≤ 1

n′+1

(

2n
′

+ n′2n
′/3
)

with equality if and only ifA
is an elementary Abelian3-group. From ([11], Corollary 1),

|C̃A
0 | = 2n

′

n′+1 if and only if n′+1 is a power of2. Multiplying
|C̃A

0 | by 2 and replacingn = n′ + 1 then gives the result in
the corollary.

In [15], a single-grain code construction was given that
produced codes of lengthn = 2m − 1 with 2n

n+1 + 2
(n−1)

2

codewords wherem is a positive integer. In [10], a single-
grain code construction was enumerated that resulted in codes
of lengthn wheren = 2r (wherer is a positive integer), that
contained2n

n codewords.
Our construction extends for anyn (via the setA = Zn).

When n is a power of2, Construction A produces codes
with the same cardinality as [10]. Furthermore, for codes
of length n where n is not a power of2, Construction A
provides codebooks with cardinalities strictly greater than 2n

n
by Corollary 3.

Since, for largen,

2n

n
>

2n

n+ 1
+ 2

n−1
2 ,

Construction A improves upon the state of the art whenn is
not a power of2 andn ≥ 15.

In the next subsection, we provide a generalization of
Construction A. We then derive constructions for single-grain
codes that have larger cardinalities and extend the ideas to
codes capable of correcting more than a single grain-error.

B. Improved grain codes using mappings

In [5], the authors make the observation that a single-
asymmetric error-correcting code (and in particular a group
code) can be constructed by defining a code over pairs of
binary elements. Consider the mapΓ : {0, 1}2 → GF (3),
which is defined as follows:

(0, 0) → 0, (0, 1) → 1, (1, 0) → 2, (1, 1) → 0. (7)

Note that the map is not one-to-one since both(0, 0) and(1, 1)
map to0. If the mapΓ is applied to a binary vector of even
length then it is simply applied to each pair of consecutive
elements at a time (i.e.,Γ(0, 1, 0, 0) = (Γ(0, 1),Γ(0, 0))).
Furthermore, if theΓ map is applied to a set of vectors it
returns a set of ternary vectors that are the result of applying
the map to each vector in the set. Using this map, codes
that correct asymmetric errors were proposed in [5]. In the
following, we illustrate how to generalize the ideas from [5]
(by using different mappings) to correct grain-errors.

Let Gt,m = (V,E) denote a simple graph (see Section II-C)
whereV = GF (2)m. That is, the vertices ofGt,m are the
the vectors fromGF (2)m. For anyx,y ∈ V , (x,y) ∈ E if
Bt,M (x)∩Bt,M (y) 6= ∅. Recall from Section II-C, a mapping
Φt,m : GF (2)m → {0, 1, . . . , p−1} is ap-coloring if it assigns
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different numbers to adjacent vertices. If the input toΦt,m is a
vector of lengthmn, then the map is applied to each collection
of m consecutive bits at a time. For example, ifm = 3, then
Φt,3(0, 0, 0, 1, 0, 1) = (Φt,3(0, 0, 0) Φt,3(1, 0, 1)).

Construction B. Supposep is a prime number andΦt,m :
GF (2)m → {0, 1, . . . , p− 1} is a p-coloring onGt,m. Let Ct
be at-random-error-correcting code overGF (p) of lengthn.
Then,

C = {x ∈ GF (2)mn : Φt,m(x) ∈ Ct}. (8)

Remark1. If C is a code created according to Construction B,
then the mapΦt,m can be interpreted as mapping the color
classes of ap-coloring onto the symbols of a non-binary code
Ct. This interpretation will be useful in Section VI.

We now provide an example of a code created with Con-
struction B.

Example 4. Let the mapΓ be as defined in (7). Note, from
Lemma 3, that the mapΓ is actually a coloring onGt,2 where
the set of vectorsGF (2)2 are partitioned into color classes
as follows:

1) {(0 0), (1 1)},
2) {(1 0)},
3) {(0 1)}.

Let Ct be a t-random-error-correcting code overGF (3) of
lengthn. Then the set of vectors

C = {x ∈ GF (2)2n : Γ(x) ∈ Ct} (9)

is a code created according to Construction B.

Remark 2. We note that whenCt is a single-random-error-
correcting code, a code constructed according to Example 4
coincides with the ternary construction from [5] proposed in
the context of asymmetric errors.

The following theorem shows that the codeC created in
Example 4 is at-mineral-error-correcting code.

Theorem 3. Let Ct be a t-random-error-correcting code.
SupposeC is a code created according to Construction B
with Ct as the constituent code. Then,C is a t-mineral-error-
correcting code.

Proof: The result will be proven by showing that for any
codewordsx,y ∈ C wherex 6= y, Bt,M (x) ∩ Bt,M (y) =
∅. Consider two codewordsx,y ∈ C such thatx 6= y and
Φt,m(x) = Φt,m(y). There are two cases to consider: either
1) Φt,m(x) = Φt,m(y) or 2)Φt,m(x) 6= Φt,m(y). Recall that,
by construction,Φt,m(x),Φt,m(y) ∈ Ct.

SupposeΦt,m(x) = Φt,m(y). Then, sincex 6= y,
there exists an indexi where 1 ≤ i ≤ n such
that Φt,m(x(i−1)m+1, . . . , xim) = Φt,m(y(i−1)m+1, . . . , yim)
but (x(i−1)m+1, . . . , xim) 6= (y(i−1)m+1, . . . , yim). For
shorthand, letv1 = (x(i−1)m+1, . . . , xim) and v2 =
(y(i−1)m+1, . . . , yim). SinceΦt,m(v1) = Φt,m(v2), the vec-
tors v1,v2 map to the same color class underΦt,m, which

implies thatv1 andv2 are not adjacent inGt,m. By definition,
if v1,v2 are not adjacent inGt,m, Bt,M (v1)∩Bt,M (v2) = ∅.
Thus, for anyt-mineral-errors (of lengthm) ev1 , ev2 , we
have v1 + ev1

6= v2 + ev2
. Then, there do not exist any

t-mineral-errorsex, ey such thatx + ex = y + ey. Thus,
Bt,M (x) ∩ Bt,M (y) = ∅.

Suppose now that Φt,m(x) 6= Φt,m(y). Then,
since Φt,m(x),Φt,m(y) ∈ Ct, there exists a set of
at least 2t + 1 indices from {1, 2, . . . , n}, denoted as
I, such that ∀j ∈ I, Φt,m(x(j−1)m+1, . . . , xjm) 6=
Φt,m(y(j−1)m+1, . . . , yjm). Since
Φt,m(x(j−1)m+1, . . . , xjm) 6= Φt,m(y(j−1)m+1, . . . , yjm),
dH((x(j−1)m+1, . . . , xjm), (y(j−1)m+1, . . . , yjm)) ≥ 1
for every j ∈ I and so dH(x,y) ≥ 2t + 1. Thus,
Bt,R(x) ∩ Bt,R(y) = ∅ where Bt,R denotes the error-ball
for t random-errors (as discussed in Section II-A). From
Claim 2, thenBt,M (x) ∩ Bt,M (y) = ∅ as well and the proof
is complete.

According to Theorem 3, the code from Example 4 is
a t-mineral-error-correcting code. Corollary 4 follows from
Claim 3.

Corollary 4. Let C′ be a t-mineral-error-correcting code of
lengthmn created according to Construction B. Then,

C = {x ∈ GF (2)mn+1 : (x2, . . . , xmn+1) ∈ C′}

is a t-grain-error-correcting code.

Although Construction B provides a method to construct
t-mineral-error-correcting codes, it is not straightforward to
compute the sizes of the resulting codes because the color
classes of the mapΦt,m are not always of the same size.
As a starting point, in this subsection we only consider
single-mineral codes created using Construction B with the
map Γ as described in Example 4. Even with the simple
map Γ, computing the cardinalities of the resulting codes
from Construction B is not straightforward. In the following
subsection, we analyze the codes from Example 4 for arbitrary
t.

Recall that from Remark 2, the single asymmetric error-
correcting codes proposed in [5] (using the ternary construc-
tion) are a special case of Construction B. Therefore, the
codes from (Table II, column 4, [5]) are single-mineral codes.
Therefore, we can obtain new single-grain codes by appending
an information bit to these codes. The cardinalities displayed
in the column titled ‘Current Lower Bound’ (second column)
of Table I (shown below) for9 ≤ n ≤ 15 are the result
of this operation. Note that the codes enumerated from [5]
were the result of a computerized search and to limit the
search space, the search was only carried out on codes of
length at most 15. Forn ≥ 16 the cardinalities in the second
column of Table I (marked in bold) can be obtained from
Construction A using the group codes found in Table 1 in
[2]. The first column in Table I shows the cardinalities of the
largest possible codebooks using constructions from [10] and
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TABLE I
UPPER ANDLOWER BOUNDS FOR SINGLE GRAIN-ERROR-CORRECTING

CODES

Length Previous Current Upper Bound
Lower Bound Lower Bound

3 4 [15] 4 [15] 4 [15]
4 6 [15] 6 [15] 6 [15]
5 8 [15] 8 [15] 8 [15]
6 16 [15] 16 [15] 16 [15]
7 26 [15] 26 [15] 26 [15]
8 44[15] 44 [15] 44 [15]
9 44 [15] 64 112
10 64 [10] 110 204
11 128 [10] 210 372
12 256 [10] 360 682
13 512 [10] 702 1260
14 1024 [10] 1200 2340
15 2176 [15] 2400 4368
16 4096 [10] 4096 8190
17 4096 [10] 7712 15420
18 8192 [10] 14592 29126
19 16384 [10] 27596 55188
20 32768 [10] 52432 104856

[15]. The third column in the table is the upper bound from
Corollary 1 (Section III), which can also be found in [8].

C. Multiple grain-error codes using theΓ coloring

In this subsection, multiple grain-error-correcting codes are
studied. In particular, we consider an alternative interpretation
of the codes from Example 4. Using this interpretation, we
derive a lower bound on the size of a mineral code created
according to Example 4 for the case where the codeCt is
linear.

Notice that if the Hamming weight enumerator for the
constituent codeCt in Example 4 is given, then the size of the
codeC can be expressed as a function of the Hamming weight
enumerator forCt. We denote the Hamming weight enumerator
of a codeC asWC(x, z) =

∑n
i=0Wi,n−iz

ixn−i whereWi,n−i

represents the number of codewords inC whose Hamming
weight is i. The following lemma is similar to Theorem 9 in
[5] and so the proof is omitted.

Lemma 8. Let Ct be a ternary code of lengthn used in
Example 4 with Hamming weight enumerator

WCt(x, z) =
n∑

i=0

Wi,n−iz
ixn−i.

Then, the resulting mineral-error-correcting codeC has cardi-
nality |C| =WCt(1, 2). Prepending an additional information
bit to every codeword inC results in a grain-error-correcting
code with cardinality2|C|.

Remark3. Note that in general the weight enumerator for any
t-random-error-correcting ternary codeCt is not necessarily
known.

Using Lemma 8, the cardinalities of grain codes created
according to Example 4 with odd lengths between11 and29
are displayed in Table II. Each entry consists of3 numbers

(or entries) delimited by a ‘/’. Since for 1 < t < n there
are no existing grain-error-correcting codebooks to compare
with, we naively constructed at-grain-error-correcting code
by prepending an additional information bit to the start of a
t-random-error-correcting code.

The first entry (from each triplet) in Table II is the cardinal-
ity of the largest lineart-random-error-correcting binary code
found in [16] of lengthn − 1 prepended by an additional
information bit. The second entry is the cardinality of a
code created from Example 4. This number was computed
from the known weight enumerators of the largest known
linear ternary codes from [16] prepended by an additional
information bit. The third entry is the non-asymptotic upper
bound from Theorem 1 and Lemma 4.

In the following, we provide a variation of the codes from
Example 4 in order to provide an explicit lower bound on the
size of codes created as in Example 4 whenCt is linear. This
will be studied in more detail in Section V.

Construction C. Let r, ℓ be positive integers wherer < ℓ. Let
H ′ = (h′

1, . . . ,h
′
ℓ) be anr×ℓ parity check matrix of a ternary

codeC′ of length ℓ that can correct up tot random-errors
(where eachh′

i represents theith column inH ′, 1 ≤ i ≤ ℓ).
Let H be anr × 2ℓ ternary matrix,

H = (h1, . . . ,h2ℓ) = (2h′
1,h

′
1, 2h

′
2,h

′
2, . . . , 2h

′
ℓ,h

′
ℓ).

Let a be an arbitrary element inGF (3)r. Then,

Ca = {x ∈ GF (2)2ℓ : Hx = a}, (10)

where the vector operations are performed in the vector space
GF (3)r.

The following lemma will be useful in proving the correct-
ness of Construction C.

Lemma 9. Let r, ℓ be positive integers wherer < ℓ and let
the matricesH ′, H be as in Construction C. Then for any
x ∈ GF (2)2ℓ, H · x = H ′ · Γ(x).

Proof: For anyx = (x1, . . . , x2ℓ) ∈ GF (2)2ℓ we have
H · x =

∑2ℓ
i=1 hi · xi wherehi ∈ GF (3)r. Consider the

quantity

H · x =

2ℓ∑

i=1

hi · xi

=

2ℓ−1∑

j=1,j odd

(hj ,hj+1) · (xj , xj+1)
T

=

2ℓ−1∑

j=1,j odd

(2h′
⌈ j
2 ⌉
,h′

⌈ j
2 ⌉
) · (xj , xj+1)

T . (11)

There are the4 possibilities for(xj , xj+1):
1) (xj , xj+1) = (0, 0),
2) (xj , xj+1) = (0, 1),
3) (xj , xj+1) = (1, 0),
4) (xj , xj+1) = (1, 1).
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TABLE II
CARDINALITIES OF GRAIN-ERROR-CORRECTINGCODES

Length t = 2 t = 3 t = 4 t = 5

11 16/68/84 - - -
13 32/132/238 - - -
15 128/312/704 32/260/400 - -
17 512/836/2152 64/516/1066 - -
19 1024/2636/6780 256/1028/2946 16/1028/1928 -
21 4096/9376/21902 1024/2144/8490 64/2052/4940 -
23 16384/35648/72190 4096/4688/24786 128/4100/13050 32/4100/9370
25 32768/49024/241978 8192/8896/74902 256/8320/35510 64/8196/23382
27 131072/190912/822696 16384/20808/231538 1024/17216/99330 256/16388/59814
29 524288/747520/2831212 32768/41616/729924 2048/34096/285020 512/32772/156924

If any of conditions1)−4) hold, then it can be verified that
whenj is odd, we have (whereΓ is as defined in (7))

(2h′
⌈ j
2 ⌉
,h′

⌈ j
2 ⌉
) · (xj , xj+1)

T = h′
⌈ j
2 ⌉

· Γ(xj , xj+1).

Then, continuing from (11),

H · x =

2ℓ−1∑

j=1,j odd

(2h′
⌈ j
2 ⌉
,h′

⌈ j
2 ⌉
) · (xj , xj+1)

T

=

2ℓ−1∑

j=1,j odd

h′
⌈ j
2 ⌉

· Γ(xj , xj+1)

=
ℓ∑

k=1

h′
k · Γ(x2k−1, x2k)

= H ′ · Γ(x).

We now prove the correctness of Construction C.

Theorem 4. SupposeCa is a code created according to
Construction C. Then,Ca is a t-mineral-error-correcting code.

Proof: Let H ′ be a parity check matrix of dimensionr
(wherer ≤ ℓ) for the codeC′ of length ℓ. For anya ∈ A,
let C′

a = {x ∈ GF (3)ℓ : H ′ · x = a}. Notice that for any
a ∈ A, C′

a is a ternaryt-random-error-correcting code. Recall
from Construction C thatCa = {x ∈ GF (2)2ℓ : Hx = a}
whereH = (2h′

1,h
′
1, 2h

′
2,h

′
2, . . . , 2hℓ,h

′
ℓ) = (h1, . . . ,h2ℓ)

(and eachhi,h
′
j denotes a column inH or H ′, respectively

for 1 ≤ i ≤ 2ℓ and1 ≤ j ≤ ℓ).
From Lemma 9, for any vectorx ∈ GF (2)n, H · x =

H ′·Γ(x). Therefore, it follows thatH ·x = a if and only ifH ′·
Γ(x) = a. Then, we can writeCa = {x ∈ GF (2)n : Γ(x) ∈
C′
a}. SinceC′

a is a t-random-error-correcting code,Ca is a t-
mineral-error-correcting code by Example 4 and Theorem 3.

Using the interpretation of the codes from Example 4
provided by Construction C, we now state a simple lower
bound on the size of a code created as in Example 4. Recall
from Theorem 4, Construction C is a special case of the codes
from Example 4. The lower bound in Corollary 5 will be
improved in the next section.

Recall for the following corollary thatA denotes an Abelian
group.

Corollary 5. Let C′ be a t-random-error-correcting ternary
code of lengthℓ = n

2 (wheren is even) with a parity check
matrix H ′ of dimensionr. Then there exists ana ∈ A, such
that the codeCa created according to Construction C of length
n with the constituent codeC′ satisfies|Ca| ≥ 2n

3r .

Proof: Notice that each of the22ℓ vectors fromGF (2)2ℓ

will map to exactly one codeCa as in (10). Thus, the matrixH
partitions the spaceGF (2)2ℓ into |A| non-overlapping codes
Ca1 , Ca2 , Ca3 , . . . , Ca3r

where eachai ∈ A for 1 ≤ i ≤ 3r.
By the pigeonhole principle, there must exist a code with
cardinality at least2

2ℓ

|A| =
2n

3r .
In the next section, we use Fourier analysis to improve the

lower bound onCa from Construction C.

V. A N IMPROVEMENT ON THE LOWER BOUNDS ON THE

CARDINALITY OF GRAIN AND MINERAL CODES WHEN t ≥ 2

In this section, we improve the lower bound from the previ-
ous section for the cardinality of at-mineral-error-correcting
code created according to Construction C. The approach will
be similar to [11], where the cardinalities of the Constantin-
Rao codes [2] were derived using discrete Fourier analysis.

Let A be the additive Abelian group ofGF (3)r. Let Ca
denote a code created using Construction C where as before
a is an element fromA used in the construction. Suppose
further thatC′ is a ternary code of lengthℓ with a parity check
matrixH ′ that can correct up tot random-errors whereC′ is
the constituent code used in Construction C. For1 ≤ i ≤ ℓ,
recall from the construction thath′

i refers to theith column of
H ′ and that for1 ≤ j ≤ 2ℓ, hj refers to thejth column ofH
whereH = (h1, . . . ,h2ℓ) = (2h′

1,h
′
1, 2h

′
2,h

′
2, . . . , 2h

′
ℓ,h

′
ℓ).

For x = (x1, . . . , x2ℓ) ∈ GF (2)2ℓ, consider the mapping
γ : GF (2)2ℓ → A defined as

γ(x) = H · x =

2ℓ∑

j=1

xjhj =

ℓ∑

i=1

x2ih
′
i +

ℓ∑

k=1

2x2k−1h
′
k.

(12)

In order to compute|Ca|, we count the number of times each
elementa ∈ A is covered by some vectorx ∈ GF (2)2ℓ
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throughγ. Let f : A → N where

f(a) = |{x ∈ GF (2)2ℓ : γ(x) = H · x = a}|. (13)

We state the following claim for clarity. Recall,M(n, t)
refers to the maximum size of at-grain-error-correcting code
of lengthn.

Claim 7. Letn, ℓ be positive integers such thatn = 2ℓ+1. Let
Ca be a code of length2ℓ created according to Construction C
wherea ∈ A. Then, |Ca| = f(a) and M(n, t) ≥ 2|Ca| =
2f(a).

We are now ready to derive lower bounds on the sizes of
codes created from Construction C using Fourier analysis. The
following lemma will be used in the proof of Theorem 5.
Recall from Section II-E, fora, b ∈ A,

<a, b> =

r∏

i=1

(ζ3)
aibi = (ζ3)

∑r
i=1 aibi = (ζ3)

aT ·b

whereζ3 is a third root of unity. In the remainder, for some
positive integerk, (ζ3)k will be written asζk3 .

In the next lemma, we make use of the following function.
Let F : A×A → C where fora ∈ A, b ∈ A,

F (a, b) = 1+<−a, b>+<−a, 2b>+<−a, b><−a, 2b>.

Lemma 10. For anya, b ∈ A,

F (a, b) =

{

4 if aT · b =
∑r

i=1 aibi ≡ 0 mod 3, and

1 otherwise.

Proof: First consider the case whereaT · b ≡ 0 mod 3.
Notice that if aT · b ≡ 0 mod 3, then<a, b> = 1. Since
aT · b ≡ 0 mod 3 we have−aT · b = −aT · 2b ≡ 0 mod 3
and so the quantity in the Lemma is equal to4.

Consider the case now whereaT · b 6≡ 0 mod 3. Recallζ3
is a cubic root of unity and note that<−a, 2b> = <−a, b>2.
Then,

< − a, b>+<− a, 2b>+<− a, b><− a, 2b>

= <− a, b>+<− a, b>2 +<− a, b>3

= ζ3 + ζ23 + ζ33

= 0,

and soF (a, b) = 1.
Given an inputc ∈ A, let β : A → {0, . . . , ℓ} be defined

as follows

β(c) = |{1 ≤ i ≤ ℓ : cT · h′
i ≡ 0 mod 3}| (14)

whereh′
i refers to thei-th column ofH ′.

The following function will be used in the proof of Theo-
rem 5. LetI : GF (2)2ℓ × A → {0, 1} denote the indicator
function where forx ∈ GF (2)2ℓ anda ∈ A,

I(x,a) =

{

1 if γ(x) = a,

0 otherwise
(15)

whereγ is as defined in (12).
We are now ready for the main result of this section.

Theorem 5. For any b ∈ A, f(b) = 1
3r

∑

a∈A<b,a>4
β(a).

Proof: Considerc ∈ A. As in [11], we proceed by
computing the Fourier transform̂f(c) (as defined as in Sec-
tion II-E). First note that from (15), we can writef(a) =
∑

x∈GF (2)2ℓ I(x,a) wherea ∈ A. We have

f̂(c) =
∑

a∈A

<c,−a>f(a)

=
∑

a∈A

<− c,a>f(a)

=
∑

a∈A

<− c,a>
∑

x∈GF (2)2ℓ

I(x,a)

=
∑

a∈A

∑

x∈GF (2)2ℓ

<− c,a>I(x,a)

=
∑

x∈GF (2)2ℓ

∑

a∈A

<− c,a>I(x,a).

Note that for a fixedx ∈ GF (2)2ℓ,
∑

a∈A<−c,a>I(x,a) =
<− c, γ(x)>. Then,

f̂(c) =
∑

x∈GF (2)2ℓ

<− c, γ(x)>

=
∑

x∈GF (2)2ℓ

<− c, x1h1 + · · ·+ x2ℓh2ℓ>

=
∑

x∈GF (2)2ℓ

<− c, x1h1> · · ·<− c, x2ℓh2ℓ>,

where the last equality follows from the property that for
a1,a2,a3 ∈ A,<−a1,a2+a3> = <−a1,a2><−a1,a3>.

Notice that eachxi is equal to either0 or 1 (where1 ≤
i ≤ 2ℓ). If xi = 0, then clearly< − c, xihi> = 1. If xi = 1,
<−c, xihi> = <−c,hi>. Thus, by suitably collecting terms
(and by induction onℓ), we can write

f̂(c) =

2ℓ∏

i=1

(1 +<− c,hi>).

Let j be an integer such that1 ≤ j ≤ ℓ. Then from the defini-
tion of H (see also (12)) we can write(1+<− c,h2j>)(1+
<−c,h2j−1>) = (1+<−c,h′

j>)(1+<−c, 2h′
j>). Thus,

we can rewritef̂(c) in terms of theh′
i terms so that

f̂(c) =

ℓ∏

i=1

(1 +<− c,h′
i>+<− c, 2h′

i>+

<− c,h′
i><− c, 2h′

i>)

=

ℓ∏

i=1

F (c,h′
i)

= 4β(c).

The equality follows from Lemma 10. Recall, from Sec-
tion II-E that the inverse Fourier transform of̂f is f(b) =
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TABLE III
COMPARISON OF SIZES OF GRAIN-ERROR-CORRECTING CODES WITH THE LOWER BOUND FROMCOROLLARY 7

Length t = 2 t = 3 t = 4

11 68/32 - -
13 132/44 - -
15 312/146 260/62 -
17 836/550 516/84 -
19 2636/2168 1028/114 1028/114
21 9376/8640 2144/354 2052/154
23 35648/34532 4688/1312 4100/208
25 49024/46044 8896/1752 8320/634
27 190912/184128 20808/6866 17216/2338
29 747520/736464 41616/27324 34096/3120

1
3r

∑

a∈A<a, b>f̂(a). Thus, sincef̂(a) = 4β(a), we have
that for an elementb ∈ A,

f(b) =
1

3r

∑

a∈A

<a, b>f̂(a)

=
1

3r

∑

a∈A

<a, b>4β(a).

Corollary 6. For any b ∈ A, f(b) ≤ f(0).

Proof: As in [11], this is because for anya, b ∈ A,
|<a, b>| ≤ 1. Thus, f(b) = 1

3r

∑

a∈A<b,a>4
β(a) ≤

1
3r

∑

a∈A 4β(a) = f(0).

Thus, choosinga = 0 in Construction C maximizes the
cardinality of the resulting code. The following lemma is
another consequence of Theorem 5.

Lemma 11. For positive integersr, ℓ wherer < ℓ, f(0) ≥
4ℓ

3r + 2
(
4
3

)r
− 2 · 4

3 .

Proof: From Theorem 5, we have thatf(0) =
1
3r

∑

a∈A 4β(a). Clearly, β(0) = ℓ and so f(0) =
1
3r

(

4ℓ +
∑

a∈A,a 6=0
4β(a)

)

. We define the setsT0 =

{0},N0 = {0}, andN ′
0 = {0}.

In the following we define the setsNj ,N ′
j , and Tj recur-

sively (starting atj = 1) where j is an integer such that
1 ≤ j ≤ r − 1. Consider the sub-matrixH ′

j consisting
of the first r − j columns ofH ′ where H ′ is the parity
check matrix forC′ with columnsh′i and 1 ≤ i ≤ ℓ. Let
Nj = {g ∈ A : gT · H ′

j = 0}. Notice that sinceH ′
j has

rank at mostr − j, |Nj | ≥ 3j. Let N ′
j ⊆ Nj be such that

|N ′
j | = 3j . We briefly note that the elements inN ′

j can be
chosen arbitrarily fromNj . Let Tj = N ′

j \ N
′
j−1. Under this

setup, for any0 ≤ k < j, Tj ∩ Tk = ∅. Now, for anyTj , we
have

|Tj | = |N ′
j | − |N ′

j−1| = 3j − 3j−1.

Notice that for anyu ∈ Tj , β(u) = |{1 ≤ i ≤ ℓ : uT ·
h′
i = 0}| ≥ r − j. Then since the setsT0, T1, . . . , Tr−1 are

non-overlapping (they have no common elements), we can use
Theorem 5 withb = 0 to obtainf(0) = 1

3r

∑

a∈A 4β(a) ≥

1
3r |T0|4

ℓ + 1
3r

∑r−1
j=1 |Tj |4

r−j. Finally,

f(0) ≥
1

3r
|T0|4

ℓ +
1

3r

r−1∑

j=1

|Tj |4
r−j

≥
1

3r
4ℓ +

1

3r

r−1∑

j=1

(3j − 3j−1)4r−j

=
1

3r
4ℓ +

2 · 4r−1

3r

r−2∑

j=0

(
3

4

)j

=
1

3r
4ℓ + 2

(
4

3

)r

− 2 ·
4

3
,

and therefore the proof is complete.

We summarize the result from Lemma 11 with the following
corollary.

Corollary 7. Let C′ be a t-random-error-correcting ternary
code of lengthℓ = n

2 (wheren is an even integer) with a
parity check matrixH ′ of dimensionr. For a ∈ A, let Ca be
a code created according to Construction C of lengthn with
the constituent codeC′. Then for anya ∈ A, |Ca| ≤ |C0| and
|C0| ≥

2n

3r + 2
(
4
3

)r
− 8

3 .

Proof: From Claim 7,|Ca| = f(a). Using Corollary 6,
we have that for anya ∈ A, |Ca| = f(a) ≤ f(0) = |C0|.
Combining Claim 7 and Lemma 11 gives that|C0| = f(0) ≥
4ℓ

3r + 2
(
4
3

)r
− 2 · 4

3 .

Thus, the previous corollary improved upon Corollary 5
where it was shown that for somea ∈ A, |Ca| ≥ 2n

3r . For the
case oft = 2, 3, 4, we compared our lower bound with the
cardinality of thet-grain-error-correcting codes from Table II.
Each entry in Table III contains two numbers delimited by
a ’/’. The first number is the cardinality of at-grain-error-
correcting code created according to Construction B (from
Table II) and the second number is the lower bound from
Corollary 7. It can be seen in Table III that the difference
between the bound from Corollary 7 and the size of the codes
from Table II is small for thet = 2 case.

In the next section, we return to the problem of constructing
single mineral codes.
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VI. GENERAL SINGLE-GRAIN AND SINGLE-M INERAL

CODES FROMCONSTRUCTIONB

In this Section, we consider single-mineral codes derived
from more general colorings according to Construction B. In
Section VI-A, we investigate a sufficient condition for codes
created with Construction B to produce large single-mineral
codes. In Section VI-B, we consider the cardinalities of codes
created according to Construction B given a coloring based on
the group codes [2]. In Section VI-C, we describe a coloring
that was found using a computerized search, and for code
lengths48 and342 this coloring produces new codes with large
cardinalities (larger than using the alternative group codes to
construct single mineral-codes).

Recall from Construction B in Section IV-B that the con-
struction for at-mineral-error-correcting codeC relied on two
key ingredients:

1) a mappingΦt,m fromGF (2)m to p color classes (where
p is a prime), and

2) a t-random-error-correcting codeCt overGF (p).

The basic idea behind Construction B was to useΦt,m to
map the color classes of ap-coloring onto the symbols of the
non-binary codeCt.

Thus far, we have considered code constructions for mineral
codes using Construction B with the mapΦt,m = Γ, whereΓ
is given by (7). Therefore, if Construction B is used to create
mineral codes, there are two possible directions to investigate:

1) discover new mappingsΦt,m for m ≥ 2, and
2) investigate codes forCt that, when used in conjunction

with someΦt,m, result in codes with large cardinalities.

In this section, we focus on the first direction for the case
where t = 1, where the codeC1 is a single random-error-
correcting code that is a Hamming code. The second item
highlights a potential area of future work which we will
discuss briefly in the next section.

In the first subsection, we show that ifΦt,m hasp = m+1
color classes wherep is a prime, then it is possible to construct
single-mineral codes that have at least as many codewords
as perfect single random-error-correcting binary codes ofthe
same length. In the second subsection, single-mineral codes
created using a coloring scheme based upon the group codes
are considered. Motivated by the insights from the first two
subsections, we derive new codes of lengths48 and342 in the
third subsection. These new codes are larger than any codes
of the same length produced according to Construction A.

A. A sufficient condition for Construction B to produce large
codes

Suppose that a single-mineral codeC of length mn is
created according to Construction B. Suppose that thep-
coloring Φ1,m is such thatp = m + 1 where p is an odd
prime andC1 is a perfect non-binary single random-error-
correcting code overGF (p) of lengthn. We show that there
exists a mineral codeC of lengthmn whose cardinality is at

least 2mn

mn+1 . Motivated by this observation, in Sections VI-B
and VI-C, we consider using different coloring schemes (i.e.,
where Φ1,m 6= Γ) in conjunction with a perfect single-
random-error correcting code. We first begin by reviewing
some notation that was used in Section IV-B.

As in Section IV-B, letGt,m = (V,E) denote a simple
graph whereV = GF (2)m, and for anyx,y ∈ V (where
x 6= y) (x,y) ∈ E if Bt,M (x) ∩ Bt,M (y) 6= ∅. Recall that
Φt,m : GF (2)m → GF (p) is a p-coloring if it assigns differ-
ent elements ofGF (p) to adjacent vertices. From Section II-C,
χ(Gt,m) is the smallestp for which ap-coloring is possible.
Recall, the size of the largest clique in a graphG is denoted
ς(G).

The following claim will be used in the proof of Lemma 12.

Claim 8. For anym ≥ 2, ς(G1,m) ≥ m+ 1.

Proof: Let S = {x ∈ GF (2)m : wt(x) ≤ 1}. Since for
any x ∈ S, B1,m(x) contains the all-zeros vector, it follows
that S is a clique inG1,m. Since |S| = m + 1, the result
follows.

Lemma 12. Let m be a positive integer. Then,χ(G1,m) =
m+ 1.

Proof: We first show thatχ(G1,m) ≤ m+1. SupposeA is
an Abelian group. Leta ∈ A and consider a single-grain code
CA
a of length |A| = m + 1 created using Construction A.

Let C̃A
a be the group code of lengthm that is the result

of shortening the codewords inCA
a on the first bit. From

Corollary 2, C̃A
a is a single-mineral code. Assign to every

x ∈ C̃A
a the same number from{0, 1, . . . ,m}. Repeating this

process for every value ofa ∈ A (and using a different number
for different values ofa), results in an(m + 1)-coloring on
the graphχ(G1,m) since there are|A| = m+1 choices fora.

Recall from Section II-C thatχ(G1,m) ≥ ς(G1.m) where
ς(G1,m) is the maximum size of any clique in the graphG1,m.
From Claim 8, we haveχ(G1,m) ≥ ς(G1,m) ≥ m+ 1 and so
χ(G1,m) = m+ 1.

The following theorem is similar to Corollary 5.

Theorem 6. Let p be a prime number andr a positive integer
where n = pr−1

p−1 and m = p − 1. Then there exists a

single-mineral codeC of lengthmn where |C| ≥ 2mn

mn+1 from
Construction B.

Proof: Let C1 be the constituent non-binary code from
Construction B of lengthn with a parity check matrixH ′ of
dimensionr and suppose thatC1 is perfect andA = GF (p)r.
For a ∈ A, let C′

a = {x′ ∈ GF (p)n : H ′ · x′ = a}. Notice
that sinceC1 is a perfect single random-error-correcting code
thenC′

a is also a perfect single random-error-correcting code.
Thus, we can apply Construction B to obtain a single-mineral
codeCa where

Ca = {x ∈ GF (2)mn : Φ1,m(x) ∈ C′
a}.

Since Φ1,m maps every element inGF (2)mn to exactly
one non-binary vector of lengthn, it follows that every
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x ∈ GF (2)mn belongs to exactly oneCa, and so the codes
Ca1

, Ca2
, . . . , Capr

partition the spaceGF (2)mn into pr non-
overlapping sets. By the pigeonhole principle, there exists a
b ∈ A, where|Cb| ≥ 2mn

pr = 2mn

mn+1 .
We now consider using the coloring scheme discussed in

the proof of Lemma 12 to produce single-mineral codes. More
precisely, letψm : GF (2)m → GF (m + 1) be the mapping
so that for a vectorx ∈ GF (2)m,

ψm(x) =
m∑

i=1

ixi mod m+ 1.

Then, letAj = {y ∈ GF (2)m : ψm(y) = j}. We refer to
the vector(A0, A1, . . . , Am) as thegroup-code partition. Let
Πm be the set of permutations of the symbols0, 1, . . . ,m. For
example, the permutation(1, 0, 2) is an element inΠ2. Then,
for any permutationa = (a0, . . . , am) ∈ Πm, we define a
coloringΦa : GF (2)m → GF (m+ 1) as follows

Φa(x) = aψm(x).

We provide an example illustrating this mapping.

Example5.Leta = (1, 0, 2) so thatm = 2. Letx1 = (1, 1) so
that Φa(x1) = aψ2(x1) = a0 = 1. Similarly for x2 = (0, 1),
we haveΦa(x2) = aψ2(x2) = a2 = 2.

Suppose the single-mineral codeC is constructed according
to Construction B withΦa and the single random-error-
correcting non-binary codeC1 with symbols overGF (m+1).
For shorthand, we refer toC asC(a, C1).

In the next subsection, we determine which choice ofa

maximizes the cardinality|C(a, C1)| whenC1 is a linear code.
In Section VI-C a different mapΦ1,6 is derived using a
computerized search over the spaceGF (2)6 and using this
map better single-mineral codes are found for certain code
lengths.

B. Single-mineral codes created using the group-code parti-
tion

In this section, we consider the problem of which choice
of a ∈ Πm maximizes|C(a, C1)| when C1 is a linear code.
We show that anya = (a0, . . . , am) ∈ Πm wherea0 = 0
maximizes the cardinality of the resulting single-mineralcode.
Since the largest color class underψm is A0 (cf. [2]), one
such choice fora is the identity (i.e.,a = (0, 1, 2 . . . ,m)).
For shorthand, leti = (0, 1, 2, . . . ,m). We show that the
cardinality ofC(i, C1) is exactly the same as the cardinality of
a code created according to the Constantin-Rao construction
(for codes of the same length) [2].

For a non-binary codeC with symbols fromGF (p) where
p is an odd prime, letWi0,...,ip−1 denote the number of
codewords inC that have exactlyi0 symbols of value0, i1
symbols of value1, and so on. We denote thecomplete weight
enumerator of C as

WC(z0, . . . , zp−1) =
∑

i0,i1,...,ip−1

Wi0,...,ip−1z
i0
0 · · · z

ip−1

p−1 .

We make use of the following known claim [6] [13] in
Theorem 7, which can be proven using the MacWilliams
Theorem (see Appendix B). Recallζp is a p-th root of unity
andp is a prime. For an integeri, ζip denotes thei-th power
of ζp.

Claim 9. (c.f. [6],[13]) SupposeC is a linear code of length
n with symbols overGF (p). Then, the complete weight
enumeratorWC(z0, . . . , zp−1) can be written in terms of the
codewords in the dual codeC⊥ (of C) as follows

1

|C⊥|

∑

c=(c1,...,cn)∈C⊥

n∏

i=1

(

z0 + z1ζ
1·ci
p + . . .+ zp−1ζ

(p−1)·ci
p

)

.

The next claim will also be useful in the proof of Theorem 7.

Claim 10. Let j∗, c be integers such that0 ≤ j∗ ≤ p− 1 and
c 6= 0. Then,

∑p−1
j=0,j 6=j∗ ζ

j·c
p = −ζj

∗·c
p .

We make use of the following notation in the statement of
the next claim. For anya ∈ Πm (recall Πm is the set of
permutations of the symbols0, 1, . . . ,m) and any integerk
where 0 ≤ k ≤ m let a(k) denote the index ina of the
numberk.

Claim 11. Let m + 1 be an odd prime. Suppose
WC1(z0, . . . , zm) is the complete weight enumerator for a
non-binary (m + 1)-ary code C1. Then for anya ∈ Πm,
|C(a, C1)| =WC1(|Aa(0)|, . . . , |Aa(m)|).

We are now ready to state the main result of this subsection.

Theorem 7. SupposeC1 is a linear code overGF (m + 1)
wherem+ 1 is an odd prime. For anya ∈ Πm, |C(a, C1)| is
maximized whena0 = 0. Furthermore for anyb ∈ Πm where
b0 = 0, |C(a, C1)| = |C(b, C1)|.

Proof: Let p = m+ 1 anda = (a0, . . . , am). Under the
group-code partition, the largest color classA0 has cardinality
2p−1+p−1

p and the other color classes have cardinality2p−1−1
p

([2]). We prove the theorem by considering the cardinality of
the code created according to Construction B when the color
classes from the group-code partition are mapped to different
symbols inGF (p). From Claim 11, the cardinality of the
mineral codeC(a, C1) created according to Construction B
can be derived fromWC1(z0, . . . , zp−1) by substituting for
eachzi, the size of the color class that is mapped to symbol
i (as a result of the permutationa). SupposeC⊥

1 represents
the dual code ofC1. Then, from Claims 9 and 11, we can
write |C(a, C1)| =

1
|C⊥

1 |

∑

c∈C⊥

1

∏n
i=1(|Aa(0)|+ |Aa(1)|ζ

1·ci
p +

. . .+ |Aa(p−1)|ζ
(p−1)·ci
p ).

In particular, we consider the term

Λ(a, ci) =
(

|Aa(0)|+ |Aa(1)|ζ
1·ci
p + . . .+ |Aa(p)|ζ

(p−1)·ci
p

)

(16)

for certain choices ofa andci ∈ GF (p). Note that under this
setup|C(a, C1)| = 1

|C⊥

1 |

∑

c∈C⊥

1

∏n
i=1 Λ(a, ci).

We consider two cases:
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1) a0 = 0, or
2) a0 6= 0.

In the remainder of the proof we refer to the setup in item
1) above as Case 1) and the setup in item 2) above as
Case 2). Notice that under either Case 1) or Case 2), we
haveΛ(a, 0) =

∑p−1
k=0 |Aa(k)| = 2p−1. In the following two

cases, we therefore only consider the quantityΛ(a, c) where
c ∈ GF (p) andc 6= 0.

Case 1:Supposea is such thata0 = 0. Then Λ(a, ci)
(whereci 6= 0, ci ∈ GF (p)) can be written as

Λ(a, ci) =
2p−1 + p− 1

p
+

2p−1 − 1

p

p−1
∑

k=1

ζk·cip .

Applying Claim 10, we get thatΛ(a, ci) = 1 whenci 6= 0.
Case 2:Supposea is such thata0 6= 0. In particular, we

assumeaj∗ = 0 for j∗ 6= 0. Then, we can writeΛ(a, ci) as
(whereci 6= 0, ci ∈ GF (p))

Λ(a, ci) =
2p−1 + p− 1

p
ζj

∗ci
p +

2p−1 − 1

p

p−1
∑

j=0,j 6=j∗

ζjcip

=
2p−1 + p− 1

p
ζj

∗ci
p +

2p−1 − 1

p

(

−ζj
∗ci
p

)

= ζj
∗ci
p .

Notice that|ζj
∗ci
p | ≤ 1 for any integerj∗ 6= 0.

Summary: Using the ideas from above, we now show
that C(a, C1) is maximized whena0 = 0. Consider any
b = (b0, b1, . . . , bm),d = (d0, d1, . . . , dm) ∈ Πm where
b0 = 0 6= d0. From the previous analysis, for anyci ∈ GF (p)
we have|Λ(d, ci)| ≤ Λ(b, ci) and so

1

|C⊥
1 |

∑

c∈C⊥

1

n∏

i=1

Λ(d, ci) ≤
1

|C⊥
1 |

∑

c∈C⊥

1

n∏

i=1

Λ(b, ci),

and

|C(d, C1)| ≤ |C(b, C1)|.

Let g = (g0, g1, . . . , gm) ∈ Πm where g0 = 0 but
g 6= b. We have left to show that for any suchg,
|C(g, C1)| = |C(b, C1)| where b is as defined in the pre-
vious paragraph. From the previous analysis, for anyci ∈
GF (p) we haveΛ(d, ci) = Λ(b, ci) and so |C(d, C1)| =
1

|C⊥

1 |

∑

c∈C⊥

1

∏n
i=1 Λ(d, ci) = 1

|C⊥

1 |

∑

c∈C⊥

1

∏n
i=1 Λ(b, ci) =

|C(b, C1)|.
From Theorem 7, to maximize the size of a mineral code

C created according to Construction B with a group-code
partition, the largest color classA0 should be mapped to
the symbol zero in the constituent codeC1. Suppose the
Hamming weight enumerator of a codeC can be written as
WC(x, z) =

∑n
i=0Wi,n−iz

ixn−i whereWi,n−i represents the
number of codewords inC whose Hamming weight isi. The
following result follows from Theorem 7.

Corollary 8. Letm+1 be a prime integer. LetC be a single-
mineral code created according to Construction B where the
group-code partition is used and the(m+ 1)-ary constituent
code C1 is a non-binary Hamming code of lengthn. Then
|C| ≤ 2mn

mn+1 + mn2(m(n−1))/(m+1)

mn+1 .

Proof: For the non-binary Hamming codeC1 of length
n defined overGF (m + 1), we have thatWC1(x, z) =

1
mn+1

(
(x+mz)n +mn(x− z)(mn+1)/(m+1)z(n−1)/(m+1)

)

([13], Chapter 4). Substitutingx = 2m+m
m+1 and z = 2m−1

m+1
then gives the maximum number of codewords in the codeC
according to Theorem 7.

In the following remark, recallΠm refers to the set of
permutations of the symbols{0, 1, . . . ,m}.

Remark 4. For a primep, a positive integerr, and the
Abelian groupA = GF (p)r , it was shown in [2], Theo-
rem 14, that the lengthpr − 1 code CA

0 satisfies|CA
0 | =

2p
r
−1

pr + (pr−1)2p
r−1

−1

pr . Let a = (0, 1, . . . , p − 1) ∈ Πp−1

and supposeC1 is a perfect code of lengthp
r−1
p−1 overGF (p)

so thatC(a, C1) has lengthpr − 1. Then from Corollary 8,
|C(a, C1)| = |CA

0 |.

As noted in the previous remark, if Construction B is used to
create a single-mineral code andC1 is a perfect and linear non-
binary code, then (for a fixed length) Construction B does not
result in codes that are any larger than the group codes. In the
next section, we consider using perfect and linear non-binary
single-random-error-correcting codes with different coloring
schemes to construct larger codes.

C. A new coloring scheme

In this section, we report on the results of using Construc-
tion B with a new map that was located using a computerized
search. As before, we denote the color classes asA0, A1,
. . . ,Ak−1 for thek-coloringΦt,m on Gt,m. By this setup, we
assume

1) ∀j ∈ {0, . . . , k − 1}, Aj ⊆ GF (2)m ,
2) for any i, j ∈ {0, . . . , k − 1} wherei 6= j Ai ∩Aj = ∅,
3) |A0| ≥ |A1| ≥ . . . ≥ |Ak−1|.

In this subsection, we make use of the following notation.
Suppose a codeC is a t-mineral-error-correcting code created
according to Construction B given by

1) a set ofp color classesD = {A0, A1, . . . , Ap−1} for a
p-coloring onGt,m wherep is a prime,

2) the mappingΦt,m which maps vectors fromGF (2)m

into the symbols{0, 1, . . . , p− 1},
3) Ct where Ct is a t-random-error-correcting code over

GF (p).

We denote the mineral codeC as C(D,Φt,m, Ct). Under this
setup, the mapΦt,m always maps elements from the same
color class to the same symbol.

In the following, we describe the color classes from
a 7-coloring on G1,6 that was located with the aid of a
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computer search. The vectors fromGF (2)m are enumerated
by their decimal representation. For example, the vector
x = (x1, x2, x3, x4, x5, x6) = (1, 0, 1, 1, 0, 0) corresponds to
the number13 since

∑6
i=1 2

i−1xi = 13 in this representation.
The color classes are the following:

1) Color classA0: {0, 3, 12, 15, 21, 24, 36, 43, 49, 54, 61}
2) Color classA1: {2, 5, 14, 27, 42, 48, 55, 60}
3) Color classA2: {1, 6, 13, 18, 25, 30, 37, 40, 59}
4) Color classA3: {4, 7, 9, 19, 31, 34, 46, 52, 57}
5) Color classA4: {8, 11, 20, 23, 33, 38, 45, 50, 62}
6) Color classA5: {10, 16, 22, 28, 35, 41, 47, 53, 58}
7) Color classA6: {17, 26, 29, 32, 39, 44, 51, 56, 63}.

Notice that|A0| = 11, |A1| = 8, |A2| = 9, |A3| = 9, |A4| =
9, |A5| = 9, and |A6| = 9. Recall that if the group-code
partition was used then the sizes of the color classes are
10, 9, 9, 9, 9, 9, 9 so that the size of the largest color class has
increased by1 given the new set of color classes.

Using a non-binary perfect code overGF (7) of length
8 with the coloring scheme mentioned in this section, the
resulting length-48 binary code has16192 more codewords
than a group code defined overZ7 × Z7. Using a non-binary
perfect code overGF (7) of length 57 with the coloring
scheme described in this section results in a binary code of
length 342 with approximately7.1401e34 more codewords
than a group code defined overZ7 × Z7 × Z7. The parity
check matrices for the single-random-error-correcting codes
of length 8 and of length57 over GF (7) were taken from
[16].

VII. C ONCLUSION AND FUTURE WORK

In this work, new bounds and constructions were derived
for grain-error-correcting codes where the lengths of the
grains were at most two. We considered a new approach
to constructing codes that correct grain-errors and using this
approach, we improved upon the constructions in [10] and
[15].

There are many directions for future work:

1) Development of new coloring schemes and codes to use
with Construction B.

2) Constructions of codes that correct multiple non-
overlapping grain-errors.

3) Constructions and bounds for codes capable of correct-
ing grain-errors where the length of the grain is greater
than two.

4) Constructions and bounds for codes that correct bursts
of grain-errors.

The largest single-grain codes for9 ≤ n ≤ 15 listed in
Table I were the result of using Construction B with non-linear
codes overGF (3). It seems promising that potentially larger
single-grain codes may be possible using non-linear codes
and coloring schemes in conjunction with Construction B for
longer code lengths.

There is clearly a strong connection between codes capable
of correcting bursts of unidirectional errors and codes cor-
recting grain-errors (where the length of the grain is longer
than two). Constructing grain codes that are larger than the
unidirectional codes from [12] could be of future research
interest.

Finally, we note that Construction B may be applicable
to the construction of new asymmetric error-correcting codes
for the Z-channel. In fact, whenΦt,m = Γ and C1 (from
Construction B) is a single random-error-correcting ternary
code, Construction B is identical to the single asymmetric
error-correcting code (from the ternary construction) described
in [5]. Given new colorings (i.e., whereΦ1,m 6= Γ) and new
ternary codes forC1, it may be possible to construct new codes
with large cardinalities for the Z-channel.
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APPENDIX A
PROOFS OFCLAIMS AND LEMMAS FROM SECTION III

A. Details forM(n, 2)

For the bound onM(n, 2) stated in Lemma 6, the following
two claims were used.

Claim 4. For n ≥ 2,

n∑

k=2

1

k + 1

(
n
k

)

=
1

n+ 1
(2n+1 − 2−

3n

2
−
n2

2
).

Proof: This identity follows from the following deriva-
tions:

n∑

k=2

1

k + 1

(
n
k

)

=

n∑

k=0

1

k + 1

(
n
k

)

− 1− n/2

=

n∑

k=0

1

n+ 1

(
n+ 1
k + 1

)

− 1− n/2 =
2n+1 − 1

n+ 1
− 1− n/2

=
1

n+ 1
(2n+1 − 2−

3n

2
−
n2

2
).

Claim 5. For n ≥ 14,

n∑

k=1

1

k

(
n
k

)

≤
2n+1

n− 1− 2
n−5

.

Proof: This claim is proved by induction. We first verify
that this claim holds forn = 14. The left hand side is equal
2562.01, while the right hand side is equal 2564.45, and so
this inequality holds forn = 14.

Assume that this inequality holds for somen ≥ 14 and we
will prove it holds forn + 1 as well. That is, we will show

that
∑n+1
k=1

1
k

(
n+ 1
k

)

≤ 2n+2

n− 2
n−4

. Note that

n+1
∑

k=1

1

k

(

n+ 1
k

)

=

n+1
∑

k=1

1

k

((

n

k

)

+

(

n

k − 1

))

=
n
∑

k=1

1

k

(

n

k

)

+

n+1
∑

k=1

1

k

(

n

k − 1

)

=
n
∑

k=1

1

k

(

n

k

)

+

n+1
∑

k=1

1

n+ 1

(

n+ 1

k

)

=
n
∑

k=1

1

k

(

n

k

)

+
2n+1

− 1

n+ 1
.

Now, according to the induction assumption we get that
n+1
∑

k=1

1

k

(

n+ 1
k

)

=
n
∑

k=1

1

k

(

n

k

)

+
2n+1

− 1

n+ 1

≤
2n+1

n− 1− 2
n−5

+
2n+1

n+ 1
= 2n+2

·
n−

1
n−5

(n− 1− 2
n−5

)(n+ 1)
.

Next, we note that forn ≥ 14,
n− 1

n−5

(n−1− 2
n−5 )(n+1)

≤ 1
n− 2

n−4

,

and therefore we conclude that
n+1∑

k=1

1

k

(
n+ 1
k

)

≤
2n+2

n− 2
n−4

.

B. Details forM(n, 3)

Our next step is to derive similar results forM(n, 3). We
apply a slightly different approach in our calculation thistime.
First, we note to the following identity

Claim 12. For n ≥ 1,
∑n
k=1

1
k

(
n
k

)
=
∑n
k=1

2k−1
k .

Proof: We will prove this claim by induction as well.
For n = 1 both terms are equal to 1 and thus the equality
holds. Let us assume that the equation holds for somen ≥ 1
and we will prove it holds forn + 1, that is, we will show
that

∑n+1
k=1

1
k

(
n+1
k

)
=
∑n+1

k=1
2k−1
k . Similarly to the proof of

Claim 5, we have that
n+1∑

k=1

1

k

(
n+ 1
k

)

=

n∑

k=1

1

k

(
n

k

)

+
2n+1 − 1

n+ 1
,

and according to the induction assumption we get
n+1∑

k=1

1

k

(
n+ 1
k

)

=
n∑

k=1

2k − 1

k
+

2n+1 − 1

n+ 1
=

n+1∑

k=1

2k − 1

k
.

Note that according to Claim 5 and Claim 12 we can deduce
that

∑n
k=1

2k−1
k ≤ 2n+1

n−1− 2
n−5

. However, we will have to use

a slightly better upper bound here, which is proved next.

Lemma 13. For n ≥ 17,
n∑

k=1

2k − 1

k
≤

2n+1

n− 1− 2
n−5 + 1

n2

.

Proof: For n = 17, the value on the left hand side is
equal 16552.47, while the value of the right hand side is equal
16552.85. Now, assume the inequality holds for somen ≥ 17,
and we will show its validity forn + 1. Hence, we need to
show that

n+1∑

k=1

2k − 1

k
≤

2n+2

n− 2
n−4 + 1

(n+1)2

.

According to the induction assumption, it is enough to show
that

2n+1

n− 1− 2
n−5 + 1

n2

+
2n+1 − 1

n+ 1
≤

2n+2

n− 2
n−4 + 1

(n+1)2

,
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or
1

n− 1− 2
n−5 + 1

n2

+
1

n+ 1
≤

2

n− 2
n−4 + 1

(n+1)2

,

which holds forn ≥ 17.
The next claim will be useful in the derivation of the bound

onM(n, 3).

Lemma 14. For n ≥ 2,
n∑

k=2

1

k − 1

(
n

k

)

= n

n−1∑

k=1

2k − 1

k
− 2n + n+ 1.

Proof: For n ≥ 1, we denoteA(n) =
∑n

k=2
1

k−1

(
n
k

)
,

whereA(1) = 0, andB(n) =
∑n

k=1
1
k

(
n
k

)
. We note that

A(n) =

n
∑

k=2

1

k − 1

(

n

k

)

=

n
∑

k=2

1

k − 1

((

n− 1

k

)

+

(

n− 1

k − 1

))

=

n−1
∑

k=2

1

k − 1

(

n− 1

k

)

+

n−1
∑

k=1

1

k

(

n− 1

k

)

= A(n− 1) +B(n− 1).

Therefore, according to Claim 12 we get

A(n) =

n−1
∑

i=1

B(i) =

n−1
∑

i=1

i
∑

k=1

1

k

(

i

k

)

=

n−1
∑

i=1

i
∑

k=1

2k − 1

k

=

n−1
∑

k=1

2k − 1

k
(n− k) = n

n−1
∑

k=1

2k − 1

k
−

n−1
∑

k=1

(2k − 1)

= n

n−1
∑

k=1

2k − 1

k
− (2n − n− 1) .

Lemma 15. For n ≥ 24,

M(n, 3) ≤ 2
⌊

3 · 2n

(
8 + 44

n−7 + 1
n − 2

(n−2)2

n(n− 1)(n− 3− 2
n−7 + 2

(n−2)2 )

)
⌋

.

Proof: From Theorem 1 we have

M(n, 3) = 2

n−1
∑

k=0

(

n− 1
k

)

1
∑min{3,k}

j=0

(

k
j

)

= 2 + n− 1 +
1

2
·

(

n− 1

2

)

+ 2

n−1
∑

k=3

(

n− 1
k

)

1

1 + k +
(

k

2

)

+
(

k

3

)

≤
n2 + n+ 6

4
+ 2

n−1
∑

k=3

(

n− 1
k

)

1
(

k

2

)

+
(

k

3

)

=
n2 + n+ 6

4
+ 12

n−1
∑

k=3

(

n− 1
k

)(

1/2

k − 1
−

1

k
+

1/2

k + 1

)

=
n2 + n+ 6

4
+ 6

n−1
∑

k=3

(

n− 1
k

)

1

k − 1

− 12
n−1
∑

k=3

(

n− 1
k

)

1

k
+ 6

n−1
∑

k=3

(

n− 1
k

)

1

k + 1
.

According to Lemma 14,
n−1
∑

k=3

(

n− 1

k

)

1

k − 1
= (n− 1)

n−2
∑

k=1

2k − 1

k
− 2n−1

−
n2

− 5n+ 2

2
.

By Claim 12,

n−1
∑

k=3

(

n− 1

k

)

1

k
=

n−1
∑

k=1

2k − 1

k
−

n2 + n− 2

4
,

and by Claim 4,

n−1
∑

k=3

(

n− 1

k

)

1

k + 1
=

1

n

(

2n − 2−
3(n− 1)

2
−

(n− 1)2

2

)

−
n2

− 3n+ 2

6
.

All together we get that

M(n, 3) ≤
n2 + n+ 6

4

+ 6

(

(n− 1)

n−2
∑

k=1

2k − 1

k
− 2n−1

−
n2

− 5n+ 2

2

)

− 12

(

n−1
∑

k=1

2k − 1

k
−

n2 + n− 2

4

)

+ 6

(

1

n

(

2n − 2−
3(n− 1)

2
−

(n− 1)2

2

)

−
n2

− 3n+ 2

6

)

= −
3n2

4
+

73n

4
−

31

2
−

6

n
+ 6(n− 1)

n−2
∑

k=1

2k − 1

k
− 3 · 2n

− 12
n−1
∑

k=1

2k − 1

k
+

6 · 2n

n

= −
3n2

4
+

73n

4
−

31

2
−

6

n
+ 6(n− 3)

n−2
∑

k=1

2k − 1

k
− 3 · 2n

− 12 ·
2n−1

− 1

n− 1
+

6 · 2n

n

≤ 6(n− 3)

n−2
∑

k=1

2k − 1

k
− 3 · 2n −

6 · 2n

n− 1
+

6 · 2n

n

= 6(n− 3)
n−2
∑

k=1

2k − 1

k
− 3 · 2n −

6 · 2n

n(n− 1)

where the inequality holds forn ≥ 24. Finally, according to
Lemma 13 we finally get

M(n, 3) ≤ 6(n− 3)
2n−1

n− 3− 2
n−7

+ 2
(n−2)2

− 3 · 2n −
6 · 2n

n(n− 1)

= 2n
(

3n− 9

n− 3− 2
n−7

+ 2
(n−2)2

− 3−
6

n(n− 1)

)

= 2n
(

6
n−7

−
6

(n−2)2

n− 3− 2
n−7

+ 2
(n−2)2

−
6

n(n− 1)

)

= 6 · 2n
(

8 + 44
n−7

+ 1
n
− 2

(n−2)2

n(n− 1)(n− 3− 2
n−7

+ 2
(n−2)2

)

)

.

From Lemma 4,M(n, 2) must be an even integer and so

M(n, 3) ≤ 2
⌊

3 · 2n
(

8+ 44
n−7+

1
n− 2

(n−2)2

n(n−1)(n−3− 2
n−7+

2
(n−2)2

)

)⌋

.
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APPENDIX B
PROOF OFCLAIM 9

In this section, prove the correctness of Claim 9. The
approach used will be the same as that in ([6], Chapter 9)
and ([13], Chapter 4), and the material is included here for
completeness.

Recall from Section VI-B, we write the complete
weight enumerator of a codeC as WC(z0, . . . , zp−1) =
∑

i0,i1,...,ip−1
Wi0,...,ip−1z

i0
0 · · · z

ip−1

p−1 where Wi0,...,ip−1 de-
notes the number of codewords in a codeC that have exactly
i0 symbols of value0, i1 symbols of value1, and so on.

Supposeζp is ap-th root of unity. Then the complete weight
enumerator of a codeC of lengthn defined overGF (p) can
be expressed in terms of the codewords in the dual codeC⊥ as
follows. For shorthand, letWC(z0, . . . zp−1) = WC(z). First,
note that forv ∈ GF (p)n,

∑

x∈C⊥

ζv
T ·x

p =

{

|C⊥| if v ∈ C,

0 otherwise.
(17)

Let IC : GF (p)n → {0, 1} denote the indicator function
where forx ∈ GF (p)n

IC(x) =

{

1 if x ∈ C,

0 otherwise.
(18)

Then,

WC(z) =
∑

v∈GF (p)n

IC(v)W{v}(z)

=
∑

v∈GF (p)n

1

|C⊥|




∑

x∈C⊥

ζv
T ·x

p



W{v}(z)

=
1

|C⊥|

∑

x∈C⊥

∑

v∈GF (p)n

ζv
T ·x

p W{v}(z)

=
1

|C⊥|

∑

x∈C⊥

∑

v∈GF (p)n

n∏

i=1

ζvixi
p W{vi}(z)

=
1

|C⊥|

∑

x∈C⊥

n∏

i=1

∑

vi∈GF (p)

ζvixi
p W{vi}(z)

=
1

|C⊥|

∑

x∈C⊥

n∏

i=1

(

z0 + ζ1·xi
p z1 + . . .+ ζ(p−1)·xi

p zp−1

)

.
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