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Social interactions, such as an aggressive encounter between two conspecific males or a mating encounter between a male and

a female, typically progress from an initial appetitive or motivational phase, to a final consummatory phase. This progression

involves both changes in the intensity of the animals’ internal state of arousal or motivation and sequential changes in their

behavior. How are these internal states, and their escalating intensity, encoded in the brain? Does this escalation drive the

progression from the appetitive/motivational to the consummatory phase of a social interaction and, if so, how are appropriate

behaviors chosen during this progression? Recent work on social behaviors in flies and mice suggests possible ways in which

changes in internal state intensity during a social encounter may be encoded and coupled to appropriate behavioral decisions at

appropriate phases of the interaction. These studies may have relevance to understanding how emotion states influence

cognitive behavioral decisions at higher levels of brain function.

Survival and reproduction are mediated by innate,

goal-directed activities (LeDoux 2012; Sternson 2013),

such as feeding, drinking, mating, fighting, and escape

from a predator. Each such activity is characterized by its

own complex collection of actions,6 modulated by sen-

sory information from multiple modalities. Furthermore,

these actions are often organized in a characteristic se-

quence or progression, from an initial appetitive or mo-

tivational phase, to a more directed investigative phase, to

a final consummatory phase (Fig. 1A; Berridge 2004).

For example, in the case of an agonistic encounter be-

tween conspecific males, the appetitive phase includes

investigation to determine the sex and assess the relative

size or strength of the opponent; this is often followed by

threat displays and then finally overt attack or retreat

(Miczek et al. 2007). This progression is also accompa-

nied by an increasing risk of injury, illness, or death;

therefore, such behavioral transitions involve cost–ben-

efit decisions (Gillette et al. 2000; Hirayama et al. 2012).

Progression through these different phases of an ag-

gressive or sexual encounter is typically associated with

an escalating internal state of motivation, arousal, or drive

(for concepts and definitions, see Berridge 2004; LeDoux

2012). The concept of drive has proven useful to behav-

ioral neuroscience and fits with our intuitive experience

of behavior—not as a sequence of independent motor

acts, but as a continuous escalation of a single state

(e.g., from annoyance to anger to rage). But it is difficult

to determine through observation alone whether drives

are a component of neural computation, playing a causal

role in the control of behavioral decisions, or simply epi-

phenomena. Konrad Lorenz formulated a “hydraulic”

metaphor to explain how different behavioral actions

might be successively released under the control of an

escalating internal drive (or motivational) state, with dif-

ferent drives for different behaviors (Fig. 1B; Lorenz and

Leyhausen 1973; Berridge 2004). Although this model

invoked a causal role for the level of drive states in con-

trolling transitions or “decisions” between different be-

haviors, it made no predictions as to how such a role

might be implemented in neural hardware.

In a view complementary to Lorenz’s Tinbergen pro-

posed that behavioral decisions are made in a hierarchical

manner: More generic choices between competing or

“opponent” activities (e.g., to engage in fighting or mat-

ing) are made before more specific selections of a partic-

ular action (e.g., between a threat display and a bite) (Fig.

1C; Tinbergen 1950). He further suggested that each de-

cision stage could be mediated by a group of mutually

inhibitory “centers” in the brain, with successive decision

stages connected in a feed-forward manner to form a

behavioral decision tree (Tinbergen 1950, 1951).

Although Tinbergen’s model is useful as a heuristic, it

leaves open a number of important theoretical issues.

First, it does not explain why different actions controlled

by “third-level” command centers progress through a

characteristic sequence during an escalating encounter

nor suggest how such progressions might be controlled.

Second, it does not distinguish whether the higher-order

(“second-level”) centers that control different activities

(mating, fighting) exert some control over decisions be-

6The word “activity” is used here operationally to describe an ongoing
behavior, such as “aggression”; “action” is used to describe a specific
motor program executed during that activity, such as biting (Anderson
and Perona 2014).
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tween actions dictated by third-level command centers, or

rather simply act as a switch or gate, that permits such

activities to occur. Finally, it does not integrate this

hierarchical view of behavioral decision-making with

any sort of internal drive or arousal states during a social

interaction or consider whether and how such states might

contribute to the control of such progressive decisions.

The question of how escalating internal states influence

decisions between competing behaviors or actions, while

fascinating, has not been widely investigated at the level of

neural mechanism. To approach this subject, a number

of basic questions need to be addressed. How are behav-

ioral states, such as arousal or motivation, encoded or in-

stantiated in the brain (Berridge 2004; Pfaff et al. 2005)?

How is the escalation of these states implemented? Are

these states behavior-specific, or generic (Devidze et al.

2006)? At what node(s) in a decision hierarchy or network

do such states exert their influence on behavioral deci-

sions? How are these influences exerted mechanistically?

And is the level or intensity of such escalating states im-

portant in the actual control of behavioral decisions?

Here, we summarize our efforts to begin to approach

these questions, in the context of innate behaviors, with a

focus on aggression. We have pursued parallel studies in

the mouse and in the vinegar fly Drosophila mela-

nogaster in an effort to identify underlying evolutionarily

conserved principles of neural circuit function across spe-

cies. Our hope is that these studies may also prove rele-

vant to understanding the link between internal states and

decision-making in higher organisms, such as the integra-

tion of emotion and cognition in humans (Salzman and

Fusi 2010).

STATE-DEPENDENT CONTROL OF SOCIAL

BEHAVIORS IN DROSOPHILA

A Neuron and a Neuropeptide That Control

Aggressive Arousal

Evidence from many systems suggests that neuromodu-

lators, such as biogenic amines or neuropeptides, are im-

portant regulators of internal states and behavior (Insel

and Young 2000; Nassel and Winther 2010; Bargmann

2012; Marder 2012; Taghert and Nitabach 2012). As a

first step toward understanding the neural coding of a state

of aggressiveness, we carried out a screen for neuropep-

tide-secreting neurons that control agonistic behavior in

Drosophila (Asahina et al. 2014). This screen identified a

small cluster (three to five cells) of male-specific, fruitless

(FruM)-expressing neurons (Fig. 2A–C) that contain the

neuropeptide Drosophila tachykinin (DTK, Fig. 2A, in-

set) and that profoundly influence levels of aggres-

siveness. Thermogenetic activation of these neurons

increased aggression (Fig. 2D), whereas inhibition of

these neurons strongly reduced fighting (Fig. 2E; Asahina

et al. 2014). Overexpression of the DTK peptide in DTK-

expressing neurons potentiated the aggression-promoting

effect of activating these cells, whereas deletions in the

DTK gene reduced it (Fig. 2F). Importantly, activation of

these neurons had no effect on courtship or mating behav-

ior. Together, these data identified a cell type and a gene

that play a major role in controlling inter-male aggression

in flies. Interestingly, homologs of DTK such as Sub-

stance P have been implicated in aggression in mammals

Figure 1. (A) Progression from investigative to consummatory
phases of social behavior. (B) Lorenz’s “hydraulic” metaphor
for the control of behavior by internal drive states. (C ) Tinber-
gen’s hierarchical model for behavioral decisions (Tinbergen
1950). (B, Reprinted from Berridge 2004, with permission
from Elsevier; C, modified from Anderson 2012.).
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(including humans), by genetic and pharmacological

studies (Shaikh et al. 1993; Katsouni et al. 2009; Coccaro

et al. 2012).

Do DTKFruM neurons simply direct a motor program of

aggression or do they regulate an internal aggression-pro-

moting state, such as motivation or arousal? Arousal often

involves an increased sensitivity to sensory cues, such

that the threshold for release of a stimulus-driven behav-

ior is reduced (Van Swinderen and Andretic 2003, 2011;

Devidze et al. 2006). Interestingly, artificial activation of

DTKFruM neurons could evoke aggression even in the

absence of sensory cues that are normally required for

aggression, such as male-specific pheromones (Fig.

2G,H; de la Paz Fernandez et al. 2010; Wang and Ander-

son 2010; Wang et al. 2011). In some cases, activation of

DTKFruM neurons supplemented with excess DTK pep-

tide could even promote attack toward a moving fly-sized

inanimate object (Asahina et al. 2014). These data sug-

gest that DTKFruM neurons promote a state of arousal or

motivation that is apparently aggression-specific. Our

previous work has provided evidence of other behavior-

specific forms of arousal in Drosophila (Lebestky et al.

2009).

We have recently suggested that emotions are internal

states that are characterized by certain general properties,

or emotion primitives, common to different emotions in a

single species and that apply to emotions across species

(Anderson and Adolphs 2014). These properties include

persistence, scalability, valence, stimulus degeneracy, and

generalization (trans-situationality). Neuropeptides have

properties that could contribute to encoding some of these

emotion state features (Flavell et al. 2013; for review,

see Insel and Young 2000; Berridge 2004; Nassel and

Winther 2010; Bargmann 2012). For example, the concen-

tration of DTK could encode the scalability (intensity) of

an aggressive state, whereas slowly decaying levels of the

peptide, determined by its rate of degradation, could un-

derlie a persistent state of aggressiveness. The relationship

between DTK gene dosage and the aggression-promoting

activity of TKFruM neuron activation suggests that levels of

DTK might control the intensity of aggression, but wheth-

er these neurons can induce a persistent state of aggres-

Figure 2. (A,B) Identification of a population of aggression-promoting, sexually dimorphic neurons in male flies that express the
neuropeptide Drosophila tachykinin (DTK) (A, inset). Yellow arrowheads (A) indicate cell bodies. (C ) TK-GAL4 neurons express the
male-specific sex-determination factor FruM (inset). (D,E) Activation of TK-GAL4FruM neurons increases aggression (D), whereas
inhibition of these neurons decreases aggression (E). (F) The aggression-promoting function of TK-GAL4FruM neurons is enhanced by
release of DTK peptides. (G) TK-GAL4FruM neurons are proposed to integrate the effects of multiple classes of sensory stimuli over
time (s1(t), s2(t), etc.). (H ) Artificial enhancement of TK-GAL4FruM neuronal activity can bypass the requirement for some of these
sensory stimuli. (D,E, Cartoons modified from Borst 2009, with permission from Elsevier; F, reproduced from Asahina et al. 2014.)
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siveness is not yet clear. Work from Kravitz and others

indicates that biogenic amines, such as octopamine, dop-

amine, and serotonin, also influence levels of aggressive-

ness in Drosophila (Dierick and Greenspan 2007; Zhou

et al. 2008; Mundiyanapurath et al. 2009; Alekseyenko

et al. 2010, 2013; Certel et al. 2010; Andrews et al.

2014), as well as in other arthropod species (Stevenson

et al. 2005; for review, see Kravitz and Huber 2003), and

likely contribute to aggressive state control as well.

Neurons That Control Persistent Social

Behavior States in Drosophila

The ability to identify neurons that control persistent

behavioral states requires a means of activating such neu-

rons in freely moving animals, with millisecond time

resolution. This requirement is, of course, afforded by

optogenetics; however, the use of optogenetics in Droso-

phila has been limited by the inability of blue light to

penetrate the flies’ cuticle. Recently, this obstacle has

been overcome by the development and application of

red-shifted opsins such as ReaChR (Fig. 3A) and Chrim-

son (Lin et al. 2013; Inagaki et al. 2014; Klapoetke et al.

2014).

In a proof-of-principle application of this technology,

we performed optogenetic stimulation of different popu-

lations of interneurons that control wing extension, which

mediates male courtship song (Kohatsu et al. 2011; von

Philipsborn et al. 2011); (Fig. 3B,C; for review, see Ya-

mamoto et al. 2014). Strikingly, activation of P1 inter-

neurons in single male flies evoked probabilistic and

persistent wing extension that lasted for many minutes

following stimulus termination (Fig. 3D; Inagaki et al.

2014). In contrast, activation of a descending interneuron,

pIP10 (Fig. 3B; von Philipsborn et al. 2011), evoked wing

extension in a deterministic manner time-locked to the

onset and offset of photostimulation (Fig. 3E). Similar

observations were made independently using IR laser-

based transient thermogenetic activation of P1 and

pIP10 (Bath et al. 2014). Interestingly, transient activa-

tion of P1 neurons in pairs of male flies evoked persistent

aggression (Fig. 3F; E Hoopfer and DJ Anderson,

unpubl.). These results indicate that P1 neurons can reg-

ulate aggression as well as courtship (Fig. 3G), although

whether their influence on aggression is direct or indirect

remains to be determined.

The persistent effect of P1 neuron activation on court-

ship raised the question of whether these neurons might

be involved in internal states of arousal or motivation

associated with such reproductive behaviors. Social iso-

lation is known to increase both courtship and aggression

in flies (Wang et al. 2008; Liu et al. 2011), as well as in

many other animal species (Koike et al. 2009; Toth et al.

2011). Strikingly, social isolation potentiated the effect

of optogenetic activation of P1, but not of pIP10 neurons,

to promote wing extension (Inagaki et al. 2014). More-

over, this effect was associated with an increased excit-

ability of P1 neurons, as determined by combined

optogenetic stimulation and calcium imaging experi-

ments. These data suggest that P1 neurons could form

part of the neural substrate for an internal state change

that reflects social experience and that affects multiple

social behaviors (Wang et al. 2008; Liu et al. 2011). The

persistent behavioral effects of P1 activation might then

serve to perpetuate the influence of past environmental

conditions on behavior.

NEURAL CONTROL OF AGGRESSION

IN MICE

Classic experiments by Hess in the late 1920s demon-

strated that electrical stimulation of the hypothalamus

could elicit aggressive displays in cats (Hess 1928),

such as the “affecktiven Abwehr-reaktion” (“affective

defensive reaction”), in which the animal exhibited hiss-

ing, baring of teeth, and laid-back ears characteristic of a

state of “rage” (Hess and Brügger 1943). This transfor-

mative experiment suggested that artificial stimulation of

a specific brain region could evoke an emotion state and

its associated behavioral expression.

Figure 3. (A) Schematic illustrating the red-shifted opsin
ReaChR (Lin et al. 2013; Inagaki et al. 2014). (B,D) Cartoon
illustrating two classes of interneurons that control wing exten-
sion (C ) in male Drosophila. (D,E) Optogenetic activation of P1
and pIP10 neurons evokes persistent and time-locked wing ex-
tension in single Drosophila males, respectively. (F) Schematic
illustrating dual effect of P1 activation by ReaChR to evoke
courtship behavior (1-wing extension) in single males (left),
and aggressive behavior in pairs of males (right) (E Hoopfer
et al. in prep.) (G ) Schematic illustrating possible circuit rela-
tionship between P1 neurons and TK-GAL4FruM neurons. (B–C,
Modified from von Philipsborn et al. 2011; D,E, modified from
Inagaki et al. 2014.)
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Hess’s findings raised three major questions: (1) What

neurons are sufficient to evoke aggression when artificial-

ly stimulated? (2) Are those same neurons required for

normal aggressive behavior? (3) Are those neurons nor-

mally active during aggressive behavior? (Kruk 2014).

Despite almost a century of follow-up research (for re-

view, see Kruk 1991; Siegel et al. 1999; Siegel 2004;

Adams 2006; Miczek et al. 2007; Nelson and Trainor

2007; Anderson 2012; Falkner and Lin 2014; Yang and

Shah 2014), until recently, these questions have remained

unanswered.7 They could potentially be addressed by

bringing to bear powerful genetic tools for neural circuit

manipulations available in mice. Surprisingly, however,

in the 70 yr since Hess’s initial paper, there was no report

of brain-stimulated aggression in mice,8 despite the fact

that such manipulations are routine in other rodent species

such as rats and hamsters (Kruk 2014).

Identification of an Aggression Locus

in the Mouse Hypothalamus

To identify neurons activated during aggression, we car-

ried out multi-electrode, single-unit recordings from the

ventrolateral subdivision of the ventromedial hypothala-

mus (VMHvl), in freely behaving male mice (Lin et al.

2011). We chose VMHvl because it overlaps the so-called

hypothalamic attack area (HAA) identified by microsti-

mulation experiments in rats (Kruk et al. 1988; Hra-

bovszky et al. 2005) and because it is labeled strongly by

c-fos following aggression (Newman 1999; Veening et al.

2005; Lin et al. 2011). Extracellular recording in VMHvl

revealed that it contains neurons with dynamic and hetero-

geneous responses during social encounters, with some

units activated during male–male (Fig. 4A) or male–fe-

male (Fig. 4B) interactions, or both (Fig. 4C; Lin et al.

2011); a small number of units were active exclusively

during attack or mounting (Fig. 4D). Thus, VMHvl con-

tains a mixture of neurons active during different phases

and different types of social encounters (Fig. 4E).

To investigate a causal role for VMHvl neurons in

aggression, we optogenetically activated these cells, us-

ing channelrhodopsin-2 (ChR2), in an anatomically re-

stricted (but not cell-type-specific) manner (Lin et al.

2011). Photostimulation elicited time-locked attack to-

ward males, females, and inanimate objects, with a laten-

cy of a few seconds. Chemogenetic inhibition using an

ivermectin-gated chloride channel (Slimko et al. 2002;

Lerchner et al. 2007) reversibly reduced agonistic behav-

ior (Lin et al. 2011). However, the temporal resolution of

this method was insufficient to determine whether these

neurons were required during attack per se. Surprisingly,

Figure 4. (A–C ) Average firing rates (in 5-sec bins) for three
individual units recorded in the VMHvl of a male mouse during
the indicated social behavior epochs (established by manual
annotation of videos at 30 Hz) (Lin et al. 2011). (D) Raster
plot of an individual unit in VMHvl during mounting. Each
row illustrates a separate trial. Shading indicates periods where
mounting occurred. (E) Schematic illustrating mixed population
of neurons in VMHvl that are responsive during male social
behavior. (Modified from Anderson 2012.)

7The main reasons for this are that (1) the electrical stimulation tech-
niques used did not have sufficient resolution to distinguish relevant
neurons from fibers-of-passage; (2) lesion experiments in relevant hy-
pothalamic regions yielded conflicting results; and (3) methods for re-
cording the activity of single units in freely moving animals were not
available.

8We now know that this is because the experiment does not work.
Because the mouse brain is much smaller than the rat brain, electrical
current delivered to sites containing attack neurons spreads to adjacent
sites that promote defensive behaviors, which are dominant to social
behaviors such as fighting and mating (at least when artificially stimu-
lated). The advantage of optogenetic activation is that it allows restriction
of activation to cell bodies, by combining focal injection of viruses with
localized photostimulation.
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neither manipulation caused any change in male–female

mating behavior, despite the presence of female-respon-

sive units in VMHvl (Lin et al. 2011).

Genetic Identification of Hypothalamic

Aggression Neurons

The foregoing experiments indicated that VMHvl con-

tains neurons involved in attack, but they did not identify

these cells. They also did not account for the function of

VMHvl neurons activated by females; in principle, such

neurons could promote mating, inhibit aggression, or

both (Anderson 2012). To address these issues, we sought

to identify molecular markers for these neurons. We

found that VMHvl contains a subset (�40%) of neurons

that express the type 1 estrogen receptor (Esr1; Fig. 5A),

�30% of which are activated during attack as determined

by double-labeling for c-fos (Fig. 5H; Lee et al. 2014). To

manipulate the function of these neurons, we generated

gene-targeted mice expressing Cre recombinase in Esr1þ

Figure 5. (A) Expression of Esr1 in VMHvl. (B) Expression of eYFP in Esr1þ neurons in an Esr1-Cre mouse injected in VMHvl with a
Cre-dependent AAV encoding ChR2-eYFP. (C ) Nissl staining of the same section as in B. ARH, arcuate nucleus. (D,E) Optogenetic
activation of VMHvl Esr1þ neurons promotes attack. (F,G) Optogenetic inhibition of VMHvl Esr1þ neurons inhibits attack compared
to control (mCherry). (H) Induction of c-FOS in Esr1þ neurons following different social interactions. CI, close investigation. (From
Lee et al. 2014.) (I,J) An Esr1þ neuron expressing ChR2 in VMHvl, identified by optogenetic phototagging using a chronically
implanted optrode array, is active during attacks (J ). (I ) Plot illustrating overlap in principal component space between waveforms of
optogenetically (blue) and behaviorally (red) evoked spikes from Esr1þ neurons in VMHvl. PC, principal component.
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neurons, allowing cell-type-specific expression of opto-

genetic effectors in VMHvl (Fig. 5B,C).

Optogenetic activation of Esr1þ neurons in VMHvl

indicated that they were sufficient to promote attack

(Fig. 5D,E), whereas activation of Esr12 neurons was

not (Lee et al. 2014). Time-resolved optogenetic inhibi-

tion of Esr1þ neurons interrupted ongoing attack (Fig.

5F,G), indicating that their activity is required during

this consummatory phase of an aggressive encounter,

confirming and extending earlier loss-of-function studies

(Lin et al. 2011; Sano et al. 2013; Yang et al. 2013).9

Finally, preliminary experiments using optogenetic pho-

totagging (Lima et al. 2009) to identify Esr1þ neurons in

multi-electrode recordings indicate that these cells exhib-

it increased spiking rates during attack (Fig. 5I–J; R

Remedios and DJ Anderson, unpubl.). Together, these

data indicate that Esr1þ neurons in VMHvl fulfill the

three major criteria necessary to identify them as attack

neurons (Kruk 2014): they are sufficient to elicit attack

when artificially stimulated; they are necessary for natu-

rally occurring attack; and they are active during normal

aggressive behavior.

Scalable Control of Social Behavior by VMHvl

Esr11 Neurons

Systematic variation of optogenetic stimulation param-

eters revealed, unexpectedly, that although high levels of

stimulation evoked attack, lower levels10 evoked nona-

gonistic social behaviors, including sniffing or close in-

vestigation (CI) and attempted mounting (Figs. 6A, 7A;

Lee et al. 2014). Mounting was evoked toward normal

and castrated males as well as females, with equal effi-

cacy. Remarkably, in some cases, the social behaviors

evoked within a single stimulation session could be shift-

ed, simply by increasing the light intensity used for pho-

tostimulation, from mounting to attack (Fig. 6A,B). The

threshold for mounting and CI was similar, and approx-

imately six- to sevenfold lower than that required to evoke

attack (Fig. 6C).

Together, these data suggest that optogenetic activation

of VMHvl Esr1þ neurons evokes different social behav-

iors in a scalable manner (Lee et al. 2014): Low-intensity

stimulation evokes appetitive and sexual behavior—so-

cial investigation and mounting—whereas higher intensi-

ties evoke attack (Figs. 6B, 7A). Interestingly, we have

recently observed similar results following optogenetic

stimulation of GABAergic neurons in the medial amyg-

dala (Hong et al. 2014), a structure that projects indirectly

to VMHvl (Canteras et al. 1992, 1995; Swanson 2000).

We have also observed scalable control of different defen-

sive behaviors—avoidance, freezing, and flight—follow-

ing stimulation of a different subpopulation of VMH

neurons located in its dorsomedial subdivision (Kunwar

et al. 2015). These observations suggest that scalable con-

trol may be a general feature of hypothalamic cell popu-

lations controlling innate motivated behaviors. Although

such stimulation intensity-dependent changes in evoked

behavior have been previously observed using electrical

methods (von Holst and von Saint Paul 1960, 1962), the

use of optogenetic tools to restrict activation to genetically

identified neuronal cell bodies rules out the possibility

that such behavioral switches simply reflect current

spread to neighboring brain regions, a possibility that

could not be excluded in early studies.

Role of Esr11 Neurons in Male–Male

Social Interactions

Several lines of evidence suggest that the relationship

between increasing optogenetic stimulation of VMHvl

Esr1þ neurons, and the change in evoked behavior from

investigation to attack, reflects a control mechanism that

operates during naturally occurring male–male social

encounters. First, the fraction of Esr1þ neurons that are

activated (c-fosþ) following attack is approximately five-

to sixfold higher than after close investigation without

attack (Fig. 5H; Lee et al. 2014). Second, electrophysio-

logical recordings in VMHvl indicate that the average

spiking rate ramps up quickly during the progression

from CI to attack and that investigation is more likely to

be followed by attack when the spiking rate is high (Fig.

6E; Lin et al. 2011; Falkner et al. 2014). Finally, and most

importantly, time-resolved optogenetic inhibition deliv-

ered during the initial phase of a social encounter inter-

rupts close investigation (Fig. 6D; Lee et al. 2014). Thus,

inhibition of Esr1þ neurons can interrupt either close

investigation or ongoing attack (Fig. 7B), depending on

when photostimulation is delivered. Together, these data

are consistent with the idea that the behavioral progres-

sion during a male–male aggressive encounter is con-

trolled in a scalable, threshold-dependent manner,

according to the level of activity among VMHvl Esr1þ

neurons (Fig. 6B).

Role of Esr11 Neurons in Male–Female

Social Interactions

A role for VMHvl in male sexual behavior is unexpect-

ed, as this function has traditionally been assigned to the

MPO (Simerly 2002; Yang and Shah 2014). Optogenetic

stimulation experiments should be interpreted with cau-

tion, because artificial patterns of activation could pro-

duce abnormal behaviors. Male mounting has been

suggested to be a “default” social behavior (Stowers

9Previous studies indicated that killing progesterone receptor (PR)-
expressing neurons in VMHvl (which overlap Esr1þ neurons by 90%)
partially reduced aggression (Yang et al. 2013), as did RNAi-mediated
knockdown of Esr1 in VMHvl (Sano et al. 2013). However, because of
the long delay between the manipulation and behavioral testing (2–3
wk), these studies could not distinguish a permissive requirement for
VMHvl, e.g., in the detection of chemosensory cues essential for
male–male recognition, from a requirement during attack per se.

10“Lower levels” were achieved by (1) injecting fewer ChR2-express-
ing viral particles; (2) incubating the animals for a shorter period of time
following viral injection (which results in lower levels of ChR2 expres-
sion); (3) reducing the light intensity used in photostimulation; and (4)
reducing the frequency of photostimulation (although reduced frequency
was less effective than reduced light intensity). These data suggest that it
is the number of activated cells, and the level of activity per cell, which is
responsible for the observed behavioral differences.
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et al. 2002); thus, low-intensity stimulation of VMHvl

Esr1þ neurons could lead to mounting by default. Never-

theless, genetic ablation of progesterone receptor (PR)-

expressing VMHvl neurons (Yang et al. 2013) (which

highly overlap Esr1þ neurons) or knockdown of Esr1

mRNA in VMHvl (Sano et al. 2013) both significantly

reduced male mounting toward females. These data are

consistent with the idea that VMHvl does play a role in

normal male sexual behavior. However, acute optogenetic

inactivation of Esr1þ neurons did not interrupt normal

male–female mounting in media res (Fig. 7B; Lee et al.

2014).11 Interestingly, the average spiking rate in VMHvl

decreased dramatically as male–female sexual encoun-

ters progressed from investigation and mounting to intro-

mission and ejaculation (Lin et al. 2011). It is possible,

therefore, that the role of Esr1þ neurons in male sexual

behavior is limited to the detection of chemosensory cues

required for recognition of females, rather than for male

copulatory behavior per se.

Our finding that mounting was evoked by weaker opto-

genetic stimulation of VMHvl Esr1þ neurons than was

required to trigger attack was also unexpected. However,

it is consistent with the observation that fewer of these

neurons are c-fosþ following an encounter with a female,

than with a male (Lin et al. 2011; Lee et al. 2014; Fig.

5H). Does this mean that the decision of whether to fight

or mate is controlled simply by the level of population

activity among VMHvl Esr1þ neurons? It is possible that

a low level of output from VMHvl activates low-thresh-

old neurons in a downstream target structure that medi-

ates CI or mounting, whereas a higher level of output

Figure 6. (A,B) Social behavior evoked by optogenetic stimulation of VMHvl Esr1þ neurons switches from close investigation (CI)
and mounting at low light intensity, to attack at high intensity. (C ) Threshold intensities required to elicit CI versus attack. (D)
Interruption of naturally occurring close investigative behavior (CI) by optogenetic inhibition of Esr1þ neurons delivered during
sniffing (vs. mCherry control). (E) Average spiking activity during the last 400 msec of sniffing preceding attack (red) or nonsocial
behavior (blue). A higher level of spiking during the sniffing period predicts subsequent attack. (F,G) Alternative models to explain
intensity dependence of optogenetically evoked behaviors from Esr1þ neurons. (F) The level of activity among a common population
of VMHvl Esr1þ neurons activates behavior-specific downstream centers with low versus thresholds for activation. Thickness of
arrows indicates relative level of activity in VMHvl output required to produce behavior. (G) Distinct and mutually inhibitory subsets
of VMHvl Esr1þ neurons controlling mounting (green) or attack (red) have low versus high thresholds for activation, respectively;
output from the dominant population (red vs. green arrows) determines behavioral outcome. (A–D, Modified from Lee et al. 2014; E,
modified from Falkner et al. 2014, with permission from the Society for Neuroscience.)

11Negative results must also be interpreted with caution, however, es-
pecially in the case of loss-of-function manipulations. The inability to
arrest mounting by optogenetic inhibition of Esr1þ neurons could reflect
a redundant role for other structures (e.g., MPO), or incomplete inhibition
of activity. Genetic ablation (Yang et al. 2013), although it lacks temporal
resolution, completely eliminates the activity of a given population of
neurons.
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activates high-threshold neurons in a different target that

mediates attack; the latter could then inhibit the former

(Fig. 6F). Alternatively, the intensity-dependent effects

of optogenetic stimulation might reflect the existence of

different, sex-specific subpopulations of Esr1þ neurons,

with female-specific neurons activated at a lower thresh-

old than male-specific neurons (Lee et al. 2014).12 If so,

then asymmetric and reciprocal inhibition between these

Esr1þ neuronal subpopulations could determine whether

output from these neurons promotes mating or fighting

(Fig. 6G).

Whether the optogenetic results (Fig. 7A) reflect inten-

sity coding or cellular heterogeneity, our electrophysio-

logical recordings suggest a dynamic and time-evolving

role for VMHvl neurons during a natural social encounter

(Fig. 7C). Most of the neurons activated during both

male–female and male–male encounters are most active

at the initial phases of a social encounter (Lin et al. 2011).

Perhaps these neurons promote approach and close (ano-

genital) investigation of a conspecific to identify intruder

gender, which requires detection of short-range, sex-spe-

cific pheromonal cues (Fig. 7C, “close invest”; Brennan

and Zufall 2006; Dulac and Wagner 2006). The recogni-

tion of a male would promote further social investigation,

ramping up the activity of VMHvl neurons in a positive-

feedback manner, until the threshold for attack was

reached (Fig. 7C, red arrow). The recognition of a female

would promote initial attempts at mounting, with further

interactions driving a reduction of activity in VMHvl and

initiating the engagement of other structures, such as the

MPO, that may promote the consummatory phase of a

sexual encounter (Fig. 7C, blue arrow). This speculative

scenario incorporates both sex-specific subpopulations

and dynamic changes in population activity among

VMHvl Esr1þ neurons during social encounters.

SOCIAL BEHAVIOR CONTROL CENTERS:

RHEOSTATS OR SWITCHES?

The foregoing data indicate that artificial activation of

VMHvl (and MeApd) neurons at different intensities can

evoke different types of social behavior at different

thresholds (Hong et al. 2014; Lee et al. 2014) and that

the average spiking rate among VMHvl neurons increases

as animals progress from investigative to attack behavior

(Lin et al. 2011; Falkner et al. 2014). Together, these

findings raise the intriguing possibility that VMHvl en-

codes the intensity of an escalating state of arousal, mo-

tivation, or drive, in a graded manner according to its

level of activity (Fig. 8A, “social behavior control cen-

ter”). This increasing level of activity may reflect changes

in sensory input as a social encounter evolves over time

(e.g., via an increase in the concentration of olfactory

cues during close investigation) (Fig. 8A, “sensory in-

puts”). Such escalation could, in turn, be used to control

transitions between different behaviors by activating low-

er-level command centers controlling these behaviors

(Fig. 8A; B1, B2, etc.) at different thresholds, perhaps

according to the level of tonic inhibition imposed on

such centers (Fig. 8A, “action selection”). Such a model

is analogous to the size principle proposed by Henneman

to explain the progressive recruitment of larger motor

units during muscle engagement (Henneman 1985). In

this way, VMHvl could both encode the intensity of an

internal state and couple the intensity of that state to

behavioral decisions. Such a model integrates the Loren-

zian view of behavioral control by drive state intensity

(Fig. 1B) with the Tinbergian view of hierarchical control

of behavioral decision-making (Fig. 1C).

Alternatively, VMHvl could act simply as a permissive

switch, or gate, for social behavior, whereas action selec-

tion would be controlled by sensory inputs that act

directly on the lower-level command centers (Fig. 8B).

In this scenario, the level of motivation or arousal would

have to be encoded elsewhere in the brain and might be a

consequence, rather than a cause, of escalating behavior.

The essential difference between these models is that in

one case, the control center simply determines whether or

not aggression or mating will occur (Fig. 8B), whereas in

Figure 7. (A,B) Summary of gain-of-function (A, GOF) and
loss-of-function (B, LOF) phenotypes obtained by optogenetic
manipulation of VMHvl Esr1þ neurons. Blue bars in B indicate
behaviors interrupted by optogenetic inhibition. (C ) Schematic
illustrating a hypothetical view of the function of Esr1þ neurons
in VMHvl during a normal male–male or male–female social
encounter. Thickness of arrows denotes relative level of output
(spiking rate and/or number of active output neurons required to
produce behavior). Blue versus red shading in VMHvl indicates
gradual decrease (blue) or increase (red) in average spiking rate
during an evolving male–female (blue) or male–male (red)
social encounter. Colored arrows indicate behavioral feedback.
See text for details.

12Note, however, that optogenetic stimulation of Esr1þ neurons in
VMHvl slices, together with calcium imaging using GCaMP6s, did
not induce a different pattern of neuronal activity at low versus high
stimulation intensities, but rather simply increased the number of active
neurons and the average level of activity per cell (Lee et al. 2014).
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the other case, it also controls the type of lower-level

behavioral action that is selected (Fig. 8A). Distinguish-

ing between these alternatives will require new methods

for imaging neural population activity in freely behaving

animals (Ghosh et al. 2011; Ziv et al. 2013; Jennings et al.

2015), more specific tools for identifying and function-

ally manipulating neuronal subtypes and their connectiv-

ity (Zeng and Madisen 2012; Oh et al. 2014), as well as

the application of modeling and theory. The combination

of such approaches should yield new mechanistic insights

into the neural control of animal behavior and may shed

light on the interaction between emotion states and deci-

sion-making in humans.
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