Math. Res. Lett. 18 (2011), no. 00, 10001–100NN

© International Press 2011

SUTURED KHOVANOV HOMOLOGY DISTINGUISHES BRAIDS FROM OTHER TANGLES

J. ELISENDA GRIGSBY AND YI NI

ABSTRACT. We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold $D \times I$ has rank 1 if and only if the tangle is isotopic to a braid.

1. Introduction

In [11], Khovanov constructed a categorification of the Jones polynomial that assigns a bigraded abelian group to each link in S^3 . Sutured Khovanov homology is a variant of Khovanov's construction that assigns

- to each link \mathbb{L} in the product sutured manifold $A \times I$ (see Section 2.1) a triplygraded vector space SKh(\mathbb{L}) over $\mathbb{F} := \mathbb{Z}/2\mathbb{Z}$ [1, 19], where $A = S^1 \times [0, 1]$ and I = [0, 1], and
- to each balanced, admissible tangle T in the product sutured manifold $D \times I$ (see Section 2.2) a bigraded vector space SKh(T) over $\mathbb{F}[13, 6]$, where $D = D^2$.

Khovanov homology detects the unknot [14] and unlinks [8, 3], and the sutured annular Khovanov homology of braid closures detects the trivial braid [2]. In this note, we prove that the sutured Khovanov homology of balanced tangles distinguishes braids from other tangles.

Theorem 1.1. Let $T \subset D \times I$ be a balanced, admissible tangle. (See Subsection 2.2 for the definition.) Then $SKh(T) \cong \mathbb{F}$ if and only if T is isotopic to a braid in $D \times I$.

Theorem 1.1 is one of many results about the connection between Floer homology and Khovanov homology, starting with the work of Ozsváth and Szabó [18]. This theorem is an analogue of the fact that sutured Floer homology detects product sutured manifolds [17, 10], which is also an ingredient in our proof. Other ingredients include a spectral sequence relating sutured Khovanov homology and sutured Floer homology [6], Meeks–Scott's theorem on finite group actions on product manifolds [15], and Kronheimer–Mrowka's theorem that Khovanov homology is an unknot detector [14].

Given a link $\mathbb{L} \subset A \times I$, the *wrapping number* of \mathbb{L} is the minimal geometric intersection number of all links isotopic to \mathbb{L} with the meridional disk of $A \times I$. Theorem 1.1 combined with the observations in [5] (see Proposition 2.4) imply:

Corollary 1.2. Let $\mathbb{L} \subset A \times I$ be a link with wrapping number ω , then the group

$$SKh(\mathbb{L};\omega) = \bigoplus_{i,j} SKh^i(\mathbb{L};j,\omega)$$

is isomorphic to \mathbb{F} if and only if \mathbb{L} is isotopic to a closed braid in $A \times I$.

This corollary is an analogue of the fact that knot Floer homology detects fibered knots.

2. Preliminaries

In this section, we will review the basics about sutured manifolds [4] and sutured Khovanov homology [1, 19, 6, 5].

Definition 2.1. A sutured manifold (M, γ) is a compact, oriented 3-manifold M, a set $\gamma \subset \partial M$, and a choice of orientation on each component of $R(\gamma) = \partial M \setminus \operatorname{int}(\gamma)$ such that:

• γ consists of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$,

• if we define $R_+(\gamma)$ (resp., $R_-(\gamma)$) to be the union of those components of $R(\gamma)$ whose normal vectors point out of (resp., into) M, then each component of $A(\gamma)$ is adjacent to a component of $R_+(\gamma)$ and a component of $R_-(\gamma)$.

As an example, let S be a compact oriented surface, $M = S \times I$, $\gamma = (\partial S) \times I$, $R_{-}(\gamma) = S \times \{0\}, R_{+}(\gamma) = S \times \{1\}$, then (M, γ) is a sutured manifold. In this case we say that (M, γ) is a product sutured manifold.

Definition 2.2. [9, Definition 2.2] A balanced sutured manifold is a sutured manifold (M, γ) satisfying

- (1) M has no closed components.
- (2) $T(\gamma) = \emptyset$.
- (3) Every component of ∂M intersects γ nontrivially.

(4) $\chi(R_+(\gamma)) = \chi(R_-(\gamma)).$

If (M, γ) is a balanced, sutured manifold, then $SFH(M, \gamma)$ will denote its sutured Floer homology, as defined by Juhász in [9]. Whenever γ is implicit (e.g., when M is a product), we shall omit it from the notation.

We will be interested in Khovanov-type invariants for certain links and tangles in product sutured manifolds.

2.1. Sutured Khovanov homology of links in $A \times I$ **.** Sutured annular Khovanov homology, originally defined in [1], [19] (see also [5]) associates to an oriented link \mathbb{L} in the product sutured manifold $A \times I$ a triply-graded vector space

$$\operatorname{SKh}(\mathbb{L}) = \bigoplus_{i,j,k} \operatorname{SKh}^{i}(\mathbb{L}; j, k),$$

which is an invariant of the oriented isotopy class of $\mathbb{L} \subset A \times I$.

To define it, one chooses a diagram $\mathcal{D}_{\mathbb{L}}$ of \mathbb{L} on $A \times \{\frac{1}{2}\}$. By filling in one boundary component of $A \times \{\frac{1}{2}\}$ with a disk marked with a basepoint X at its center and the other boundary component with a disk marked with a basepoint at its center, one obtains a diagram on $S^2 - \{X, O\}$. Ignoring the X basepoint yields a diagram on $\mathbb{R}^2 = S^2 - \{O\}$ from which the ordinary bigraded Khovanov chain complex

$$\operatorname{CKh}(\mathcal{D}_{\mathbb{L}}) := \bigoplus_{i,j} \operatorname{CKh}^{i}(\mathcal{D}_{\mathbb{L}};j)$$

can be constructed from a cube of resolutions. Here, i and j are the homological and quantum gradings, respectively. The basepoint X gives rise to a filtration on $\operatorname{CKh}(\mathcal{D}_{\mathbb{L}})$, and $\operatorname{SKh}(\mathbb{L})$ is the homology of the associated graded object.

To define this filtration, choose an oriented arc from X to O missing all crossings of $\mathcal{D}_{\mathbb{L}}$. As described in [7, Sec. 4.2], the generators of $\text{CKh}(\mathcal{D}_{\mathbb{L}})$ are in one-to-one correspondence with *oriented* resolutions, where the counterclockwise orientation on each circle corresponds to the generator v_+ . The "k" grading of an oriented resolution is defined to be the algebraic intersection number of this resolution with our oriented arc. Roberts proves ([19, Lem. 1]) that the Khovanov differential does not increase this extra grading.

One therefore obtains a bounded filtration,

$$0 \subseteq \ldots \subseteq \mathcal{F}_{n-1}(\mathcal{D}_{\mathbb{L}}) \subseteq \mathcal{F}_n(\mathcal{D}_{\mathbb{L}}) \subseteq \mathcal{F}_{n+1}(\mathcal{D}_{\mathbb{L}}) \subseteq \ldots \subseteq \operatorname{CKh}(\mathcal{D}_{\mathbb{L}}),$$

where $\mathcal{F}_n(\mathcal{D}_{\mathbb{L}})$ is the subcomplex of $\operatorname{CKh}(\mathcal{D}_{\mathbb{L}})$ generated by oriented resolutions with k grading at most n. Let

$$\mathcal{F}_n(\mathcal{D}_{\mathbb{L}};j) = \mathcal{F}_n(\mathcal{D}_{\mathbb{L}}) \cap \bigoplus_i \operatorname{CKh}^i(\mathcal{D}_{\mathbb{L}};j).$$

The sutured annular Khovanov homology groups of \mathbb{L} are defined to be

$$\operatorname{SKh}^{i}(\mathbb{L}; j, k) := H^{i}\left(\frac{\mathcal{F}_{k}(\mathcal{D}_{\mathbb{L}}; j)}{\mathcal{F}_{k-1}(\mathcal{D}_{\mathbb{L}}; j)}\right).$$

It is an immediate consequence of the definitions that if \mathbb{L} has wrapping number ω , then SKhⁱ($\mathbb{L}; j, k$) $\cong 0$ for $k \notin \{-\omega, -(\omega - 2), \dots, \omega - 2, \omega\}$.

We shall denote by $\Sigma(A \times I, \mathbb{L})$ the sutured manifold obtained as the double cover of $A \times I$ branched along \mathbb{L} (cf. [5, Rmk. 2.6]), where γ is the cover of $(\partial A) \times I$, and R_+ (resp., R_-) is the cover of $A \times \{1\}$ (resp., $A \times \{0\}$).

2.2. Sutured Khovanov homology of balanced tangles in $D \times I$. A tangle T in the product sutured manifold $(D \times I, \gamma)$ is said to be *admissible* if $\partial T \cap \gamma = \emptyset$, and *balanced* if $|T \cap (D \times \{0\})| = |T \cap (D \times \{1\})|$. To make sense of tangle composition (stacking), we will fix an identification of D with the standard unit disk in \mathbb{C} and assume that ∂T intersects both $D \times \{0\}$ and $D \times \{1\}$ along the real axis.

The sutured Khovanov homology of an admissible, balanced tangle in $D \times I$ was defined by Khovanov in [13, Sec. 5] in the course of constructing a categorification of the reduced *n*-colored Jones polynomial. An elaboration of Khovanov's construction is given in [6, Sec. 5], where it is also related to sutured Floer homology. We briefly recall the main points of the construction here.

Let $T \subset D \times I$ be a balanced, admissible tangle and choose a diagram \mathcal{D}_T of T on $[-1,1] \times I$. Then the sutured Khovanov homology of T, $\mathrm{SKh}(T) = \bigoplus_{i,j} \mathrm{SKh}^i(T;j)$, is obtained as the homology of the complex,

$$\operatorname{CKh}(\mathcal{D}_T) := \bigoplus_{i,j} \operatorname{CKh}^i(\mathcal{D}_T; j)$$

obtained as follows.

Number the c crossings, and construct a Khovanov-type cube of resolutions whose vertices are in one-to-one correspondence with elements of $\{0, 1\}^c$. Associated to each such $\mathcal{I} \in \{0, 1\}^c$ is a complete resolution $R_{\mathcal{I}}$ with $a_{\mathcal{I}}$ closed components (circles) $T_1, \ldots, T_{a_{\mathcal{I}}}$ and $b_{\mathcal{I}}$ non-closed components (arcs) $T_{a_{\mathcal{I}}+1}, \ldots, T_{a_{\mathcal{I}}+b_{\mathcal{I}}}$. We say that $R_{\mathcal{I}}$ backtracks if the boundary of at least one of its non-closed components is contained in $[-1, 1] \times \{1\}$. We now assign to the corresponding vertex in the cube of resolutions the vector space

$$V(R_{\mathcal{I}}) := \begin{cases} 0 & \text{if } R_{\mathcal{I}} \text{ backtracks} \\ \Lambda^*(Z(R_{\mathcal{I}})) & \text{otherwise,} \end{cases}$$

where

$$Z(R_{\mathcal{I}}) := \frac{\operatorname{Span}_{\mathbb{F}}\{[T_1], \dots, [T_{a_{\mathcal{I}}+b_{\mathcal{I}}}]\}}{\operatorname{Span}_{\mathbb{F}}([T_{a_{\mathcal{I}}+1}], \dots, [T_{a_{\mathcal{I}}+b_{\mathcal{I}}}])}$$

is the vector space formally generated by the closed components of $R_{\mathcal{I}}$, which for convenience we realize as a quotient space of the vector space formally generated by *all* components of $R_{\mathcal{I}}$.

As in ordinary Khovanov homology, if \mathcal{I}' is an *immediate successor* of \mathcal{I} in the language of [18, Sec. 4] and [6, Sec. 4], then one obtains $R_{\mathcal{I}'}$ from $R_{\mathcal{I}}$ by either merging two components T_i and T_j of $R_{\mathcal{I}}$ to form a component T' of $R'_{\mathcal{I}}$ or splitting a single component T of $R_{\mathcal{I}}$ into two components T'_i and T'_j of $R_{\mathcal{I}'}$, and in both cases leaving all other components unchanged.

With the above understood, we now associate a map

$$F_{R_{\mathcal{I}} \to R_{\mathcal{I}'}} : V(R_{\mathcal{I}}) \to V(R_{\mathcal{I}'})$$

to every pair of immediate successors as follows.

If at least one of $R_{\mathcal{I}}$, $R_{\mathcal{I}'}$ backtracks, we define $F_{R_{\mathcal{I}} \to R_{\mathcal{I}'}} := 0$.

Otherwise, $R_{\mathcal{I}} \to R_{\mathcal{I}'}$ is either a merge or split cobordism involving either two closed components or one closed component and one non-backtracking arc.

If $R_{\mathcal{I}} \to R_{\mathcal{I}'}$ is a merge, we define $F_{R_{\mathcal{I}} \to R_{\mathcal{I}'}}$ to be the composition

$$V(R_{\mathcal{I}}) \xrightarrow{\pi} \frac{V(R_{\mathcal{I}})}{[T_i] \sim [T_j]} \xrightarrow{\alpha} V(R'_{\mathcal{I}}) ,$$

where α is the isomorphism on exterior algebras induced by the isomorphism

$$\frac{Z(R_{\mathcal{I}})}{[T_i] \sim [T_j]} \cong Z(R_{\mathcal{I}'})$$

identifying $[T_i] = [T_j]$ with [T'].

If $R_{\mathcal{I}} \to R_{\mathcal{I}'}$ is a split, we define $F_{R_{\mathcal{I}} \to R_{\mathcal{I}'}}$ to be the composition

$$V(R_{\mathcal{I}}) \xrightarrow{\alpha^{-1}} \frac{V(R_{\mathcal{I}})}{[T'_i] \sim [T'_j]} \xrightarrow{\varphi} V(R_{\mathcal{I}'})$$

where $\varphi(a) := ([T'_i] + [T'_i]) \wedge \tilde{a}$, and \tilde{a} is any lift of a in $\pi^{-1}(a)$.

The image of $\theta \in V(\mathring{R}_{\mathcal{I}})$ under the boundary map ∂ on the complex is now defined to be

$$\partial(\theta) := \sum_{R_{\mathcal{T}'}} F_{R_{\mathcal{I}} \to R_{\mathcal{I}'}}(\theta),$$

where the sum is taken over all immediate successors \mathcal{I}' to \mathcal{I} . Extend linearly.

Remark 2.3. If T is an admissible (n, n) tangle in $D \times I$ and \mathcal{D}_T is a diagram of T, then we can alternatively associate to T a left H^n -module, $\mathcal{F}(\mathcal{D}_T)$, as in [12], by viewing T as a tangle with 2n upper endpoints (cf. [6, Rmk. 5.9]). The chain complex $\operatorname{CKh}(\mathcal{D}_T)$ may then be identified with $\vec{\mathbf{v}}_- \otimes_{H^n} \mathcal{F}(\mathcal{D}_T)$, where $\vec{\mathbf{v}}_-$ is the right H^n module constructed as follows. Let b denote the fully-nested crossingless match on 2n points; then $\vec{\mathbf{v}}_-$ is the two-sided ideal of the H^n module $\mathcal{F}(W(b)b)$ corresponding to the generator whose strands are all labeled with a v_- . Via the correspondence between

10004

oriented resolutions and Khovanov generators described in the previous section (cf. [7, Sec. 4.2]), we may then identify $CKh(\mathcal{D}_T)$ as the quotient complex obtained from the ordinary Khovanov complex of the closure, $\hat{\mathcal{D}}_T$, of \mathcal{D}_T by the subcomplex generated by all generators with Roberts' "k"–grading less than n. This has the effect of setting to 0 any vertex associated to a backtracking resolution and treating the non-backtracking non-closed components of a resolution just as basepointed strands are treated in Khovanov's *reduced* theory.

Comparing the above description with the description of the sutured annular Khovanov invariant in the previous section, we have:

Proposition 2.4. [5, Thm. 3.1] If $\mathbb{L} \subset A \times I$ is an oriented annular link with wrapping number ω , and T_{θ} is the oriented, admissible balanced tangle obtained by decomposing $A \times I$ along a meridional disk D_{θ} for which $|\mathbb{L} \cap D_{\theta}| = \omega$,

 $SKh^i(\mathbb{L}; j, \omega) \cong SKh^i(T_\theta; j).$

Since all but one resolution of a braid backtracks, we have:

Proposition 2.5. If $T \subset D \times I$ is isotopic to a braid, then $SKh(T) \cong \mathbb{F}$.

3. Proof of the main theorem

Definition 3.1. A tangle $T \subset D \times I$ is a *string link* if it consists of proper arcs, each of which has one end on $D \times \{0\}$ and the other end on $D \times \{1\}$.

As a consequence, a string link T contains no closed components, and T does not backtrack.

Lemma 3.2. Let $T \subset D \times I$ be a balanced, admissible tangle, then $\dim_{\mathbb{F}} SKh(T)$ is odd if and only if T is a string link.

Proof. We observe that if two tangles T_+, T_- differ by a crossing change, then the corresponding chain complexes $\text{CKh}(T_+)$ and $\text{CKh}(T_-)$ have the same set of generators, thus the parities of the total dimensions of their homology are the same.

If a tangle T has closed components, after crossing changes we can transform T to a tangle T' with a diagram \mathcal{D}' containing a trivial loop. This loop persists in any complete resolution of \mathcal{D}' , so it follows from the construction that the dimension of $\operatorname{CKh}(\mathcal{D}')$ is even, hence $\dim_{\mathbb{F}} \operatorname{SKh}(T)$ is even.

If T backtracks, after crossing changes we can transform T to a tangle T' with an arc which can be isotoped rel boundary into $D \times \{0\}$ or $D \times \{1\}$ without crossing other components. We can find a diagram \mathcal{D}' of T' such that any complete resolution of \mathcal{D}' backtracks. So $\operatorname{CKh}(\mathcal{D}') = 0$, and $\dim_{\mathbb{F}} \operatorname{SKh}(T)$ is even.

If T is a string link, after crossing changes we can transform T to a braid B. By Proposition 2.5, $SKh(B) \cong \mathbb{F}$, so dim_F SKh(T) is odd.

Definition 3.3. A tangle $T \subset D \times I$ is *split*, if there exists a 3-ball $B \subset D \times I$, such that $L_2 = T \cap B$ is a link and $L_2 \neq T$. In this case, let $T_1 = T - L_2$, then we write $T = T_1 \sqcup L_2$. We say T is *nonsplit* if it is not split.

A tangle $T \subset D \times I$ is *nonprime*, if there exists a 3-ball $B \subset D \times I$, such that $T_2 = T \cap B$ is a (1,1)-tangle in B, and T_2 does not cobound a disk with any arc in ∂B . In this case, Let $T_1 \subset D \times I$ be the tangle obtained by replacing T_2 with a trivial

FIGURE 1. The tangle $T = T_1 \# L_2$, realized as a composition of T_1 and $L_2^{*,n}$.

arc in B, and let L_2 be the link obtained from T_2 by connecting the two ends of T_2 by an arc in ∂B . We denote $T = T_1 \# L_2$. We say T is *prime* if there does not exist such a B.

Lemma 3.4. Let (M, γ) be the sutured manifold which is the double branched cover of $D^2 \times I$ branched along T. Then M is irreducible if and only if T is nonsplit and prime.

Proof. The conclusion follows from the Equivariant Sphere Theorem [16] by the same argument as in [8, Proposition 5.1]. \Box

Lemma 3.5. If $T = T_1 \# L_2$ is a nonprime string link, then

$$SKh(T) \cong SKh(T_1) \otimes Kh_r(L_2).$$

In the above, $Kh_r(L_2)$ denotes the reduced Khovanov homology of L_2 .

Proof. We choose a diagram \mathcal{D}_T of T realized as the composition of diagrams \mathcal{D}_{T_1} of T_1 and $\mathcal{D}_{L_2^{*,n}} L_2^{*,n}$, where $L_2^{*,n}$ is an (n,n) tangle obtained from L_2 by removing a neighborhood of a point near the connected sum region and adjoining n-1 trivial strands as pictured in Figure 3.

Now we claim that

$$\operatorname{CKh}(\mathcal{D}_T) \cong \operatorname{CKh}(\mathcal{D}_{T_1}) \otimes_{\mathbb{F}} \operatorname{CKh}(\mathcal{D}_{L^{*,n}}).$$

Since $\operatorname{CKh}(\mathcal{D}_{L_{2}^{*,n}})$ is canonically chain isomorphic to $\operatorname{CKh}(\mathcal{D}_{L_{2}^{*,1}})$, and the homology of the latter complex is the reduced Khovanov homology of L_{2} with \mathbb{F} coefficients, the lemma will then follow from the Künneth theorem.

To see the claim, note first that each resolution R of \mathcal{D}_T is obtained by stacking a resolution R_1 of \mathcal{D}_{T_1} and R_2 of $\mathcal{D}_{L_2^{*,n}}$.

Moreover:

- R backtracks iff at least one of R_1 , R_2 backtracks, and
- If R does not backtrack, then the number of closed components of R is the sum of the number of closed components of R_1 and R_2 .

Hence, the \mathbb{F} -vector space underlying the chain complex $\operatorname{CKh}(\mathcal{D}_T)$ is canonically isomorphic to $\operatorname{CKh}(\mathcal{D}_{T_1}) \otimes_{\mathbb{F}} \operatorname{CKh}(\mathcal{D}_{L_0^{*,n}})$.

To verify that the boundary map ∂_T on $CKh(\mathcal{D}_T)$ agrees with the induced boundary map on the tensor product, i.e.:

$$\partial_T = \partial_{T_1} \otimes \mathrm{Id} + \mathrm{Id} \otimes \partial_{L_2^{*,n}},$$

it is sufficient to verify that the two maps agree on any decomposable generator $\theta = \theta_1 \otimes \theta_2$ of $\text{CKh}(\mathcal{D}_T)$ associated to a resolution $R = (R_1, R_2)$. We may further assume, without loss of generality, that R does not backtrack.

By definition

$$\partial_T(\theta) = \sum_{R' = (R'_1, R'_2)} F_{R \to R'}(\theta)$$

where the sum above is taken over all *immediate successors* R' to R.

But if $R' = (R'_1, R'_2)$ is an immediate successor of R, then either R'_1 is an immediate successor of R_1 and $R'_2 = R_2$, or vice versa. Assume for definiteness that it is the former, the latter case being analogous.

If R' backtracks, then so does R'_1 , so:

$$F_{R \to R'}(\theta) = (F_{R_1 \to R'_1} \otimes \mathrm{Id}) (\theta_1 \otimes \theta_2) = 0.$$

If R' does not backtrack, then the saddle cobordism connecting R_1 to R'_1 is a merge (resp., split) connecting either

- two closed components of R_1 (resp., of R'_1), or
- one closed and one vertical component of R_1 (resp., of R'_1).

In either case, we see that

$$F_{R \to R'}(\theta) = |F_{R_1 \to R'_1} \otimes \mathrm{Id}| \ (\theta_1 \otimes \theta_2).$$

We conclude that

$$\partial_{T}(\theta) = \left[\sum_{R'=(R'_{1},R'_{2})} F_{R \to R'}\right](\theta)$$

=
$$\left[\left(\sum_{R'_{1}} F_{R_{1} \to R'_{1}}\right) \otimes \operatorname{Id} + \operatorname{Id} \otimes \left(\sum_{R'_{2}} F_{R_{2} \to R'_{2}}\right)\right](\theta_{1} \otimes \theta_{2})$$

=
$$\left[\partial_{T_{1}} \otimes \operatorname{Id} + \operatorname{Id} \otimes \partial_{L^{*,n}_{2}}\right](\theta_{1} \otimes \theta_{2}),$$

as desired.

Proposition 3.6. Suppose that $T \subset D^2 \times I$ is a balanced, admissible tangle. If the double branched cover of $D^2 \times I$ branched along T is a product sutured manifold, then T is isotopic to a braid.

Proof. Let $\pi: F \times I \to D^2 \times I$ be the double branched covering map, then the nontrivial deck transformation ρ is an involution on $F \times I$ that preserves $F \times \partial I$ setwise. By Meeks–Scott [15, Theorem 8.1], ρ is conjugate to a map preserving the product structure.¹ In particular, $\pi^{-1}(T)$, being the set of fixed points of ρ , is homeomorphic to $P \times I \subset F \times I$ for some finite set $P \subset F$, via a homeomorphism of $F \times I$ which preserves $F \times \partial I$. It follows that T is isotopic to a braid.

Proposition 3.7. A knot $K \subset S^3$ is the unknot if and only if $Kh_r(K) \cong \mathbb{F}$.

Proof. This result is essentially a theorem of Kronheimer and Mrowka [14]. The original theorem of Kronheimer and Mrowka states that K is the unknot if and only if $Kh_r(K;\mathbb{Z}) \cong \mathbb{Z}$, where the coefficients ring is \mathbb{Z} while ours is \mathbb{F} . However, the version with \mathbb{F} coefficients easily follows from Kronheimer and Mrowka's argument. As shown in [14, Corollary 1.3],

$$\operatorname{rank} Kh_r(K; \mathbb{Z}) \ge \operatorname{rank} I^{\natural}(K).$$

Kronheimer and Mrowka proved that rank $I^{\natural}(K) > 1$ when K is nontrivial. (See the paragraph after [14, Corollary 1.3].) So rank $Kh_r(K;\mathbb{Z}) > 1$ when K is nontrivial. It follows from the universal coefficients theorem that $\dim_{\mathbb{F}} Kh_r(K;\mathbb{F}) > 1$ when K is nontrivial.

Proof of Theorem 1.1. By Lemma 3.2, if $SKh(T) \cong \mathbb{F}$, then T is a string link. In particular, T has no closed components, hence T must be nonsplit.

Since T has no closed components, if T is nonprime it must be the connected sum of a tangle with a knot (rather than a link). Suppose that $T = T_1 \# K_2$, where K_2 is a knot. Then it follows from Lemma 3.5 that $Kh_r(K_2) \cong \mathbb{F}$. Using Proposition 3.7, we conclude that K_2 is the unknot. Hence T is prime.

Since T is nonsplit and prime, Lemma 3.4 implies that $\Sigma(D \times I, T)$ is irreducible. Suppose that $SKh(T) \cong \mathbb{F}$. By [6, Proposition 5.20], there is a spectral sequence whose E^2 term is SKh(T) and whose E^{∞} term is the sutured Floer homology group $SFH(\Sigma(D \times I, T))$. Hence $SFH(\Sigma(D \times I, T)) \cong \mathbb{F}$. In [17, 10], it is shown that an irreducible balanced sutured manifold (M, γ) is a product sutured manifold if and only if $SFH(M, \gamma) \cong \mathbb{F}$. Hence $\Sigma(D \times I, T)$ is a product sutured manifold. Proposition 3.6 then implies that T is isotopic to a braid. \Box

Acknowledgements

The first author was partially supported by NSF grant numbers DMS-0905848 and CAREER DMS-1151671. The second author was partially supported by NSF grant number DMS-1103976 and an Alfred P. Sloan Research Fellowship. We thank the anonymous referee for a number of valuable suggestions.

References

- M. Asaeda, J. Przytycki, and A. Sikora, Categorification of the Kauffman bracket skein module of I-bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177–1210.
- [2] J. Baldwin and J. Grigsby, Categorified invariants and the braid group (2012). To appear in Proc. Amer. Math. Soc., available at arXiv:math.GT/1212.2222.

¹A homeomorphism of $X \times Y$ preserves the product structure if it is the product of homeomorphisms of X and Y.

- [3] J. Batson and C. Seed, A link splitting spectral sequence in Khovanov homology (2013). Available at arXiv:math.GT/1303.6240.
- [4] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503.
- [5] J. Grigsby and S. Wehrli, Khovanov homology, sutured Floer homology, and annular links, Algebr. Geom. Topol. 10 (2010), no. 4, 2009–2039.
- [6] —, On the colored Jones polynomial, sutured Floer homology, and knot Floer homology, Adv. Math. 223 (2010), no. 6, 2114–2165.
- [7] ——, On gradings in Khovanov homology and sutured Floer homology, in Topology and geometry in dimension three, Vol. 560 of Contemporary Mathematics, 111–128, Amer. Math. Soc., Providence, RI (2011).
- [8] M. Hedden and Y. Ni, Manifolds with small Heegaard Floer ranks, Geom. Topol. 14 (2010), no. 3, 1479–1501.
- [9] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429–1457.
- [10] ——, Floer homology and surface decompositions, Geom. Topol. 12 (2008), no. 1, 299–350.
- [11] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. **101** (2000), no. 3, 359–426.
- [12] —, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665–741.
- [13] —, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005), no. 1, 111–130.
- [14] P. Kronheimer and T. Mrowka, *Khovanov homology is an unknot-detector*, Publ. Math. Inst. Hautes Études Sci. **113** (2011), no. 1, 97–208.
- [15] W. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86 (1986), no. 2, 287–346.
- [16] W. Meeks, L. Simon, and S. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621–659.
- [17] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577–608.
- [18] P. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33.
- [19] L. Roberts, On knot Floer homology in double branched covers (2007). Available at arXiv:math.GT/0706.0741.

DEPARTMENT OF MATHEMATICS, BOSTON COLLEGE, CARNEY HALL, CHESTNUT HILL, MA 02467 *E-mail address*: grigsbyj@bc.edu

Department of Mathematics, Caltech, MC 253-37, 1200 E California Blvd, Pasadena, CA 91125

 $E\text{-}mail\ address:\ yini@caltech.edu$