SUTURED KHOVANOV HOMOLOGY DISTINGUISHES BRAIDS FROM OTHER TANGLES

J. Elisenda Grigsby and Yi Ni

Abstract

We show that the sutured Khovanov homology of a balanced tangle in the product sutured manifold $D \times I$ has rank 1 if and only if the tangle is isotopic to a braid.

1. Introduction

In [11, Khovanov constructed a categorification of the Jones polynomial that assigns a bigraded abelian group to each link in S^{3}. Sutured Khovanov homology is a variant of Khovanov's construction that assigns

- to each link \mathbb{L} in the product sutured manifold $A \times I$ (see Section 2.1) a triplygraded vector space $\operatorname{SKh}(\mathbb{L})$ over $\mathbb{F}:=\mathbb{Z} / 2 \mathbb{Z}\left[1,19\right.$, where $A=S^{1} \times[0,1]$ and $I=[0,1]$, and
- to each balanced, admissible tangle T in the product sutured manifold $D \times I$ (see Section 2.2) a bigraded vector space $\operatorname{SKh}(T)$ over \mathbb{F} [13, 6], where $D=D^{2}$.
Khovanov homology detects the unknot [14] and unlinks [8, 3, and the sutured annular Khovanov homology of braid closures detects the trivial braid [2]. In this note, we prove that the sutured Khovanov homology of balanced tangles distinguishes braids from other tangles.

Theorem 1.1. Let $T \subset D \times I$ be a balanced, admissible tangle. (See Subsection 2.2 for the definition.) Then $\operatorname{SKh}(T) \cong \mathbb{F}$ if and only if T is isotopic to a braid in $D \times I$.

Theorem 1.1 is one of many results about the connection between Floer homology and Khovanov homology, starting with the work of Ozsváth and Szabó 18. This theorem is an analogue of the fact that sutured Floer homology detects product sutured manifolds [17, 10], which is also an ingredient in our proof. Other ingredients include a spectral sequence relating sutured Khovanov homology and sutured Floer homology [6], Meeks-Scott's theorem on finite group actions on product manifolds [15], and Kronheimer-Mrowka's theorem that Khovanov homology is an unknot detector [14].

Given a link $\mathbb{L} \subset A \times I$, the wrapping number of \mathbb{L} is the minimal geometric intersection number of all links isotopic to \mathbb{L} with the meridional disk of $A \times I$. Theorem 1.1 combined with the observations in [5] (see Proposition 2.4) imply:
Corollary 1.2. Let $\mathbb{L} \subset A \times I$ be a link with wrapping number ω, then the group

$$
S K h(\mathbb{L} ; \omega)=\bigoplus_{i, j} S K h^{i}(\mathbb{L} ; j, \omega)
$$

is isomorphic to \mathbb{F} if and only if \mathbb{L} is isotopic to a closed braid in $A \times I$.
This corollary is an analogue of the fact that knot Floer homology detects fibered knots.

2. Preliminaries

In this section, we will review the basics about sutured manifolds [4] and sutured Khovanov homology [1, 19, 6, 5].

Definition 2.1. A sutured manifold (M, γ) is a compact, oriented 3-manifold M, a set $\gamma \subset \partial M$, and a choice of orientation on each component of $R(\gamma)=\partial M \backslash \operatorname{int}(\gamma)$ such that:

- γ consists of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$,
- if we define $R_{+}(\gamma)$ (resp., $\left.R_{-}(\gamma)\right)$ to be the union of those components of $R(\gamma)$ whose normal vectors point out of (resp., into) M, then each component of $A(\gamma)$ is adjacent to a component of $R_{+}(\gamma)$ and a component of $R_{-}(\gamma)$.

As an example, let S be a compact oriented surface, $M=S \times I, \gamma=(\partial S) \times I$, $R_{-}(\gamma)=S \times\{0\}, R_{+}(\gamma)=S \times\{1\}$, then (M, γ) is a sutured manifold. In this case we say that (M, γ) is a product sutured manifold.

Definition 2.2. [9, Definition 2.2] A balanced sutured manifold is a sutured manifold (M, γ) satisfying
(1) M has no closed components.
(2) $T(\gamma)=\emptyset$.
(3) Every component of ∂M intersects γ nontrivially.
(4) $\chi\left(R_{+}(\gamma)\right)=\chi\left(R_{-}(\gamma)\right)$.

If (M, γ) is a balanced, sutured manifold, then $\operatorname{SFH}(M, \gamma)$ will denote its sutured Floer homology, as defined by Juhász in [9]. Whenever γ is implicit (e.g., when M is a product), we shall omit it from the notation.

We will be interested in Khovanov-type invariants for certain links and tangles in product sutured manifolds.
2.1. Sutured Khovanov homology of links in $A \times I$. Sutured annular Khovanov homology, originally defined in [1], 19] (see also [5]) associates to an oriented link \mathbb{L} in the product sutured manifold $A \times I$ a triply-graded vector space

$$
\operatorname{SKh}(\mathbb{L})=\bigoplus_{i, j, k} \operatorname{SKh}^{i}(\mathbb{L} ; j, k)
$$

which is an invariant of the oriented isotopy class of $\mathbb{L} \subset A \times I$.
To define it, one chooses a diagram $\mathcal{D}_{\mathbb{L}}$ of \mathbb{L} on $A \times\left\{\frac{1}{2}\right\}$. By filling in one boundary component of $A \times\left\{\frac{1}{2}\right\}$ with a disk marked with a basepoint X at its center and the other boundary component with a disk marked with a basepoint at its center, one obtains a diagram on $S^{2}-\{X, O\}$. Ignoring the X basepoint yields a diagram on $\mathbb{R}^{2}=S^{2}-\{O\}$ from which the ordinary bigraded Khovanov chain complex

$$
\operatorname{CKh}\left(\mathcal{D}_{\mathbb{L}}\right):=\bigoplus_{i, j} \operatorname{CKh}^{i}\left(\mathcal{D}_{\mathbb{L}} ; j\right)
$$

can be constructed from a cube of resolutions. Here, i and j are the homological and quantum gradings, respectively. The basepoint X gives rise to a filtration on $\operatorname{CKh}\left(\mathcal{D}_{\mathbb{L}}\right)$, and $\operatorname{SKh}(\mathbb{L})$ is the homology of the associated graded object.

To define this filtration, choose an oriented arc from X to O missing all crossings of $\mathcal{D}_{\mathbb{L}}$. As described in [7, Sec. 4.2], the generators of $\operatorname{CKh}\left(\mathcal{D}_{\mathbb{L}}\right)$ are in one-to-one
correspondence with oriented resolutions, where the counterclockwise orientation on each circle corresponds to the generator v_{+}. The " k " grading of an oriented resolution is defined to be the algebraic intersection number of this resolution with our oriented arc. Roberts proves ([19, Lem. 1]) that the Khovanov differential does not increase this extra grading.

One therefore obtains a bounded filtration,

$$
0 \subseteq \ldots \subseteq \mathcal{F}_{n-1}\left(\mathcal{D}_{\mathbb{L}}\right) \subseteq \mathcal{F}_{n}\left(\mathcal{D}_{\mathbb{L}}\right) \subseteq \mathcal{F}_{n+1}\left(\mathcal{D}_{\mathbb{L}}\right) \subseteq \ldots \subseteq \operatorname{CKh}\left(\mathcal{D}_{\mathbb{L}}\right)
$$

where $\mathcal{F}_{n}\left(\mathcal{D}_{\mathbb{L}}\right)$ is the subcomplex of $\operatorname{CKh}\left(\mathcal{D}_{\mathbb{L}}\right)$ generated by oriented resolutions with k grading at most n. Let

$$
\mathcal{F}_{n}\left(\mathcal{D}_{\mathbb{L}} ; j\right)=\mathcal{F}_{n}\left(\mathcal{D}_{\mathbb{L}}\right) \cap \bigoplus_{i} \operatorname{CKh}^{i}\left(\mathcal{D}_{\mathbb{L}} ; j\right)
$$

The sutured annular Khovanov homology groups of \mathbb{L} are defined to be

$$
\operatorname{SKh}^{i}(\mathbb{L} ; j, k):=H^{i}\left(\frac{\mathcal{F}_{k}\left(\mathcal{D}_{\mathbb{L}} ; j\right)}{\mathcal{F}_{k-1}\left(\mathcal{D}_{\mathbb{L}} ; j\right)}\right)
$$

It is an immediate consequence of the definitions that if \mathbb{L} has wrapping number ω, then $\operatorname{SKh}^{i}(\mathbb{L} ; j, k) \cong 0$ for $k \notin\{-\omega,-(\omega-2), \ldots, \omega-2, \omega\}$.

We shall denote by $\Sigma(A \times I, \mathbb{L})$ the sutured manifold obtained as the double cover of $A \times I$ branched along \mathbb{L} (cf. [5, Rmk. 2.6]), where γ is the cover of $(\partial A) \times I$, and R_{+}(resp., R_{-}) is the cover of $A \times\{1\}$ (resp., $A \times\{0\}$).
2.2. Sutured Khovanov homology of balanced tangles in $D \times I$. A tangle T in the product sutured manifold $(D \times I, \gamma)$ is said to be admissible if $\partial T \cap \gamma=\emptyset$, and balanced if $|T \cap(D \times\{0\})|=|T \cap(D \times\{1\})|$. To make sense of tangle composition (stacking), we will fix an identification of D with the standard unit disk in \mathbb{C} and assume that ∂T intersects both $D \times\{0\}$ and $D \times\{1\}$ along the real axis.

The sutured Khovanov homology of an admissible, balanced tangle in $D \times I$ was defined by Khovanov in [13, Sec. 5] in the course of constructing a categorification of the reduced n-colored Jones polynomial. An elaboration of Khovanov's construction is given in [6, Sec. 5], where it is also related to sutured Floer homology. We briefly recall the main points of the construction here.

Let $T \subset D \times I$ be a balanced, admissible tangle and choose a diagram \mathcal{D}_{T} of T on $[-1,1] \times I$. Then the sutured Khovanov homology of $T, \operatorname{SKh}(T)=\bigoplus_{i, j} \operatorname{SKh}^{i}(T ; j)$, is obtained as the homology of the complex,

$$
\operatorname{CKh}\left(\mathcal{D}_{T}\right):=\bigoplus_{i, j} \operatorname{CKh}^{i}\left(\mathcal{D}_{T} ; j\right)
$$

obtained as follows.
Number the crossings, and construct a Khovanov-type cube of resolutions whose vertices are in one-to-one correspondence with elements of $\{0,1\}^{c}$. Associated to each such $\mathcal{I} \in\{0,1\}^{c}$ is a complete resolution $R_{\mathcal{I}}$ with $a_{\mathcal{I}}$ closed components (circles) $T_{1}, \ldots, T_{a_{\mathcal{I}}}$ and $b_{\mathcal{I}}$ non-closed components (arcs) $T_{a_{\mathcal{I}}+1}, \ldots, T_{a_{\mathcal{I}}+b_{\mathcal{I}}}$. We say that $R_{\mathcal{I}}$ backtracks if the boundary of at least one of its non-closed components is contained in $[-1,1] \times\{1\}$. We now assign to the corresponding vertex in the cube of resolutions the vector space

$$
V\left(R_{\mathcal{I}}\right):=\left\{\begin{array}{cl}
0 & \text { if } R_{\mathcal{I}} \text { backtracks } \\
\Lambda^{*}\left(Z\left(R_{\mathcal{I}}\right)\right) & \text { otherwise }
\end{array}\right.
$$

where

$$
Z\left(R_{\mathcal{I}}\right):=\frac{\operatorname{Span}_{\mathbb{F}}\left\{\left[T_{1}\right], \ldots,\left[T_{a_{\mathcal{I}}+b_{\mathcal{I}}}\right]\right\}}{\operatorname{Span}_{\mathbb{F}}\left(\left[T_{a_{\mathcal{I}}+1}\right], \ldots,\left[T_{a_{\mathcal{I}}+b_{\mathcal{I}}}\right]\right)}
$$

is the vector space formally generated by the closed components of $R_{\mathcal{I}}$, which for convenience we realize as a quotient space of the vector space formally generated by all components of $R_{\mathcal{I}}$.

As in ordinary Khovanov homology, if \mathcal{I}^{\prime} is an immediate successor of \mathcal{I} in the language of [18, Sec. 4] and [6, Sec. 4], then one obtains $R_{\mathcal{I}^{\prime}}$ from $R_{\mathcal{I}}$ by either merging two components T_{i} and T_{j} of $R_{\mathcal{I}}$ to form a component T^{\prime} of $R_{\mathcal{I}}^{\prime}$ or splitting a single component T of $R_{\mathcal{I}}$ into two components T_{i}^{\prime} and T_{j}^{\prime} of $R_{\mathcal{I}^{\prime}}$, and in both cases leaving all other components unchanged.

With the above understood, we now associate a map

$$
F_{R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}}: V\left(R_{\mathcal{I}}\right) \rightarrow V\left(R_{\mathcal{I}^{\prime}}\right)
$$

to every pair of immediate successors as follows.
If at least one of $R_{\mathcal{I}}, R_{\mathcal{I}^{\prime}}$ backtracks, we define $F_{R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}}:=0$.
Otherwise, $R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}$ is either a merge or split cobordism involving either two closed components or one closed component and one non-backtracking arc.

If $R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}$ is a merge, we define $F_{R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}}$ to be the composition

$$
V\left(R_{\mathcal{I}}\right) \xrightarrow{\pi} \frac{V\left(R_{\mathcal{I}}\right)}{\left.\left[T_{i}\right] \sim \sim T_{T_{j}}\right]} \xrightarrow{\alpha} V\left(R_{\mathcal{I}}^{\prime}\right),
$$

where α is the isomorphism on exterior algebras induced by the isomorphism

$$
\frac{Z\left(R_{\mathcal{I}}\right)}{\left[T_{i}\right] \sim\left[T_{j}\right]} \cong Z\left(R_{\mathcal{I}^{\prime}}\right)
$$

identifying $\left[T_{i}\right]=\left[T_{j}\right]$ with $\left[T^{\prime}\right]$.
If $R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}$ is a split, we define $F_{R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}}$ to be the composition

$$
V\left(R_{\mathcal{I}}\right) \xrightarrow{\alpha^{-1}} \frac{V\left(R_{\mathcal{I}}\right)}{\left.\left[T_{i}^{\prime}\right] \sim T_{T^{\prime}}\right]} \xrightarrow{\varphi} V\left(R_{\mathcal{I}^{\prime}}\right),
$$

where $\varphi(a):=\left(\left[T_{i}^{\prime}\right]+\left[T_{j}^{\prime}\right]\right) \wedge \widetilde{a}$, and \widetilde{a} is any lift of a in $\pi^{-1}(a)$.
The image of $\theta \in V\left(R_{\mathcal{I}}\right)$ under the boundary map ∂ on the complex is now defined to be

$$
\partial(\theta):=\sum_{R_{\mathcal{I}^{\prime}}} F_{R_{\mathcal{I}} \rightarrow R_{\mathcal{I}^{\prime}}}(\theta),
$$

where the sum is taken over all immediate successors \mathcal{I}^{\prime} to \mathcal{I}. Extend linearly.
Remark 2.3. If T is an admissible (n, n) tangle in $D \times I$ and \mathcal{D}_{T} is a diagram of T, then we can alternatively associate to T a left H^{n}-module, $\mathcal{F}\left(\mathcal{D}_{T}\right)$, as in 12], by viewing T as a tangle with $2 n$ upper endpoints (cf. [6, Rmk. 5.9]). The chain complex $\operatorname{CKh}\left(\mathcal{D}_{T}\right)$ may then be identified with $\overrightarrow{\mathbf{v}}_{-} \otimes_{H^{n}} \mathcal{F}\left(\mathcal{D}_{T}\right)$, where $\overrightarrow{\mathbf{v}}_{-}$is the right H^{n} module constructed as follows. Let b denote the fully-nested crossingless match on $2 n$ points; then $\overrightarrow{\mathbf{v}}_{-}$is the two-sided ideal of the H^{n} module $\mathcal{F}(W(b) b)$ corresponding to the generator whose strands are all labeled with a v_{-}. Via the correspondence between
oriented resolutions and Khovanov generators described in the previous section (cf. [7. Sec. 4.2]), we may then identify $\operatorname{CKh}\left(\mathcal{D}_{T}\right)$ as the quotient complex obtained from the ordinary Khovanov complex of the closure, $\widehat{\mathcal{D}}_{T}$, of \mathcal{D}_{T} by the subcomplex generated by all generators with Roberts' "k"-grading less than n. This has the effect of setting to 0 any vertex associated to a backtracking resolution and treating the nonbacktracking non-closed components of a resolution just as basepointed strands are treated in Khovanov's reduced theory.

Comparing the above description with the description of the sutured annular Khovanov invariant in the previous section, we have:

Proposition 2.4. [5, Thm. 3.1] If $\mathbb{L} \subset A \times I$ is an oriented annular link with wrapping number ω, and T_{θ} is the oriented, admissible balanced tangle obtained by decomposing $A \times I$ along a meridional disk D_{θ} for which $\left|\mathbb{L} \cap D_{\theta}\right|=\omega$,

$$
S K h^{i}(\mathbb{L} ; j, \omega) \cong S K h^{i}\left(T_{\theta} ; j\right)
$$

Since all but one resolution of a braid backtracks, we have:
Proposition 2.5. If $T \subset D \times I$ is isotopic to a braid, then $\operatorname{SKh}(T) \cong \mathbb{F}$.

3. Proof of the main theorem

Definition 3.1. A tangle $T \subset D \times I$ is a string link if it consists of proper arcs, each of which has one end on $D \times\{0\}$ and the other end on $D \times\{1\}$.

As a consequence, a string link T contains no closed components, and T does not backtrack.

Lemma 3.2. Let $T \subset D \times I$ be a balanced, admissible tangle, then $\operatorname{dim}_{\mathbb{F}} \operatorname{SKh}(T)$ is odd if and only if T is a string link.
Proof. We observe that if two tangles T_{+}, T_{-}differ by a crossing change, then the corresponding chain complexes $\operatorname{CKh}\left(T_{+}\right)$and $\operatorname{CKh}\left(T_{-}\right)$have the same set of generators, thus the parities of the total dimensions of their homology are the same.

If a tangle T has closed components, after crossing changes we can transform T to a tangle T^{\prime} with a diagram \mathcal{D}^{\prime} containing a trivial loop. This loop persists in any complete resolution of \mathcal{D}^{\prime}, so it follows from the construction that the dimension of $\operatorname{CKh}\left(\mathcal{D}^{\prime}\right)$ is even, hence $\operatorname{dim}_{\mathbb{F}} \operatorname{SKh}(T)$ is even.

If T backtracks, after crossing changes we can transform T to a tangle T^{\prime} with an arc which can be isotoped rel boundary into $D \times\{0\}$ or $D \times\{1\}$ without crossing other components. We can find a diagram \mathcal{D}^{\prime} of T^{\prime} such that any complete resolution of \mathcal{D}^{\prime} backtracks. So $\operatorname{CKh}\left(\mathcal{D}^{\prime}\right)=0$, and $\operatorname{dim}_{\mathbb{F}} \operatorname{SKh}(T)$ is even.

If T is a string link, after crossing changes we can transform T to a braid B. By Proposition 2.5, $\operatorname{SKh}(B) \cong \mathbb{F}$, so $\operatorname{dim}_{\mathbb{F}} \operatorname{SKh}(T)$ is odd.

Definition 3.3. A tangle $T \subset D \times I$ is split, if there exists a 3-ball $B \subset D \times I$, such that $L_{2}=T \cap B$ is a link and $L_{2} \neq T$. In this case, let $T_{1}=T-L_{2}$, then we write $T=T_{1} \sqcup L_{2}$. We say T is nonsplit if it is not split.

A tangle $T \subset D \times I$ is nonprime, if there exists a 3 -ball $B \subset D \times I$, such that $T_{2}=T \cap B$ is a $(1,1)$-tangle in B, and T_{2} does not cobound a disk with any arc in ∂B. In this case, Let $T_{1} \subset D \times I$ be the tangle obtained by replacing T_{2} with a trivial

Figure 1. The tangle $T=T_{1} \# L_{2}$, realized as a composition of T_{1} and $L_{2}^{*, n}$.
arc in B, and let L_{2} be the link obtained from T_{2} by connecting the two ends of T_{2} by an arc in ∂B. We denote $T=T_{1} \# L_{2}$. We say T is prime if there does not exist such a B.

Lemma 3.4. Let (M, γ) be the sutured manifold which is the double branched cover of $D^{2} \times I$ branched along T. Then M is irreducible if and only if T is nonsplit and prime.

Proof. The conclusion follows from the Equivariant Sphere Theorem [16] by the same argument as in [8, Proposition 5.1].

Lemma 3.5. If $T=T_{1} \# L_{2}$ is a nonprime string link, then

$$
S K h(T) \cong S K h\left(T_{1}\right) \otimes K h_{r}\left(L_{2}\right)
$$

In the above, $K h_{r}\left(L_{2}\right)$ denotes the reduced Khovanov homology of L_{2}.
Proof. We choose a diagram \mathcal{D}_{T} of T realized as the composition of diagrams $\mathcal{D}_{T_{1}}$ of T_{1} and $\mathcal{D}_{L_{2}^{*, n}} L_{2}^{*, n}$, where $L_{2}^{*, n}$ is an (n, n) tangle obtained from L_{2} by removing a neighborhood of a point near the connected sum region and adjoining $n-1$ trivial strands as pictured in Figure 3 .

Now we claim that

$$
\operatorname{CKh}\left(\mathcal{D}_{T}\right) \cong \operatorname{CKh}\left(\mathcal{D}_{T_{1}}\right) \otimes_{\mathbb{F}} \operatorname{CKh}\left(\mathcal{D}_{L_{2}^{*, n}}\right)
$$

Since $\operatorname{CKh}\left(\mathcal{D}_{L_{2}^{*, n}}\right)$ is canonically chain isomorphic to $\operatorname{CKh}\left(\mathcal{D}_{L_{2}^{*, 1}}\right)$, and the homology of the latter complex is the reduced Khovanov homology of L_{2} with \mathbb{F} coefficients, the lemma will then follow from the Künneth theorem.

To see the claim, note first that each resolution R of \mathcal{D}_{T} is obtained by stacking a resolution R_{1} of $\mathcal{D}_{T_{1}}$ and R_{2} of $\mathcal{D}_{L_{2}^{*, n}}$.

Moreover:

- R backtracks iff at least one of R_{1}, R_{2} backtracks, and
- If R does not backtrack, then the number of closed components of R is the sum of the number of closed components of R_{1} and R_{2}.
Hence, the \mathbb{F}-vector space underlying the chain complex $\operatorname{CKh}\left(\mathcal{D}_{T}\right)$ is canonically isomorphic to $\operatorname{CKh}\left(\mathcal{D}_{T_{1}}\right) \otimes_{\mathbb{F}} \operatorname{CKh}\left(\mathcal{D}_{L_{2}^{*, n}}\right)$.

To verify that the boundary map ∂_{T} on $\operatorname{CKh}\left(\mathcal{D}_{T}\right)$ agrees with the induced boundary map on the tensor product, i.e.:

$$
\partial_{T}=\partial_{T_{1}} \otimes \mathrm{Id}+\mathrm{Id} \otimes \partial_{L_{2}^{*, n}}
$$

it is sufficient to verify that the two maps agree on any decomposable generator $\theta=\theta_{1} \otimes \theta_{2}$ of $\operatorname{CKh}\left(\mathcal{D}_{T}\right)$ associated to a resolution $R=\left(R_{1}, R_{2}\right)$. We may further assume, without loss of generality, that R does not backtrack.

By definition

$$
\partial_{T}(\theta)=\sum_{R^{\prime}=\left(R_{1}^{\prime}, R_{2}^{\prime}\right)} F_{R \rightarrow R^{\prime}}(\theta)
$$

where the sum above is taken over all immediate successors R^{\prime} to R.
But if $R^{\prime}=\left(R_{1}^{\prime}, R_{2}^{\prime}\right)$ is an immediate successor of R, then either R_{1}^{\prime} is an immediate successor of R_{1} and $R_{2}^{\prime}=R_{2}$, or vice versa. Assume for definiteness that it is the former, the latter case being analogous.

If R^{\prime} backtracks, then so does R_{1}^{\prime}, so:

$$
F_{R \rightarrow R^{\prime}}(\theta)=\left(F_{R_{1} \rightarrow R_{1}^{\prime}} \otimes \mathrm{Id}\right)\left(\theta_{1} \otimes \theta_{2}\right)=0
$$

If R^{\prime} does not backtrack, then the saddle cobordism connecting R_{1} to R_{1}^{\prime} is a merge (resp., split) connecting either

- two closed components of R_{1} (resp., of R_{1}^{\prime}), or
- one closed and one vertical component of R_{1} (resp., of R_{1}^{\prime}).

In either case, we see that

$$
F_{R \rightarrow R^{\prime}}(\theta)=\left[F_{R_{1} \rightarrow R_{1}^{\prime}} \otimes \mathrm{Id}\right]\left(\theta_{1} \otimes \theta_{2}\right)
$$

We conclude that

$$
\begin{aligned}
\partial_{T}(\theta) & =\left[\sum_{R^{\prime}=\left(R_{1}^{\prime}, R_{2}^{\prime}\right)} F_{R \rightarrow R^{\prime}}\right](\theta) \\
& =\left[\left(\sum_{R_{1}^{\prime}} F_{R_{1} \rightarrow R_{1}^{\prime}}\right) \otimes \mathrm{Id}+\mathrm{Id} \otimes\left(\sum_{R_{2}^{\prime}} F_{R_{2} \rightarrow R_{2}^{\prime}}\right)\right]\left(\theta_{1} \otimes \theta_{2}\right) \\
& =\left[\partial_{T_{1}} \otimes \mathrm{Id}+\mathrm{Id} \otimes \partial_{L_{2}^{*, n}}\right]\left(\theta_{1} \otimes \theta_{2}\right)
\end{aligned}
$$

as desired.
Proposition 3.6. Suppose that $T \subset D^{2} \times I$ is a balanced, admissible tangle. If the double branched cover of $D^{2} \times I$ branched along T is a product sutured manifold, then T is isotopic to a braid.

Proof. Let $\pi: F \times I \rightarrow D^{2} \times I$ be the double branched covering map, then the nontrivial deck transformation ρ is an involution on $F \times I$ that preserves $F \times \partial I$ setwise. By Meeks-Scott [15, Theorem 8.1], ρ is conjugate to a map preserving the product structure ${ }^{1}$ In particular, $\pi^{-1}(T)$, being the set of fixed points of ρ, is homeomorphic to $P \times I \subset F \times I$ for some finite set $P \subset F$, via a homeomorphism of $F \times I$ which preserves $F \times \partial I$. It follows that T is isotopic to a braid.

Proposition 3.7. A knot $K \subset S^{3}$ is the unknot if and only if $K h_{r}(K) \cong \mathbb{F}$.
Proof. This result is essentially a theorem of Kronheimer and Mrowka 14. The original theorem of Kronheimer and Mrowka states that K is the unknot if and only if $K h_{r}(K ; \mathbb{Z}) \cong \mathbb{Z}$, where the coefficients ring is \mathbb{Z} while ours is \mathbb{F}. However, the version with \mathbb{F} coefficients easily follows from Kronheimer and Mrowka's argument. As shown in [14, Corollary 1.3],

$$
\operatorname{rank} K h_{r}(K ; \mathbb{Z}) \geq \operatorname{rank} I^{\natural}(K)
$$

Kronheimer and Mrowka proved that $\operatorname{rank} I^{\natural}(K)>1$ when K is nontrivial. (See the paragraph after [14, Corollary 1.3].) So rank $K h_{r}(K ; \mathbb{Z})>1$ when K is nontrivial. It follows from the universal coefficients theorem that $\operatorname{dim}_{\mathbb{F}} K h_{r}(K ; \mathbb{F})>1$ when K is nontrivial.

Proof of Theorem 1.1. By Lemma 3.2, if $\operatorname{SKh}(T) \cong \mathbb{F}$, then T is a string link. In particular, T has no closed components, hence T must be nonsplit.

Since T has no closed components, if T is nonprime it must be the connected sum of a tangle with a knot (rather than a link). Suppose that $T=T_{1} \# K_{2}$, where K_{2} is a knot. Then it follows from Lemma 3.5 that $K h_{r}\left(K_{2}\right) \cong \mathbb{F}$. Using Proposition 3.7, we conclude that K_{2} is the unknot. Hence T is prime.

Since T is nonsplit and prime, Lemma 3.4 implies that $\Sigma(D \times I, T)$ is irreducible. Suppose that $\operatorname{SKh}(T) \cong \mathbb{F}$. By [6, Proposition 5.20], there is a spectral sequence whose E^{2} term is $S K h(T)$ and whose E^{∞} term is the sutured Floer homology group $S F H(\Sigma(D \times I, T))$. Hence $S F H(\Sigma(D \times I, T)) \cong \mathbb{F}$. In [17, 10], it is shown that an irreducible balanced sutured manifold (M, γ) is a product sutured manifold if and only if $S F H(M, \gamma) \cong \mathbb{F}$. Hence $\Sigma(D \times I, T)$ is a product sutured manifold. Proposition 3.6 then implies that T is isotopic to a braid.

Acknowledgements

The first author was partially supported by NSF grant numbers DMS-0905848 and CAREER DMS-1151671. The second author was partially supported by NSF grant number DMS-1103976 and an Alfred P. Sloan Research Fellowship. We thank the anonymous referee for a number of valuable suggestions.

References

[1] M. Asaeda, J. Przytycki, and A. Sikora, Categorification of the Kauffman bracket skein module of I-bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177-1210.
[2] J. Baldwin and J. Grigsby, Categorified invariants and the braid group (2012). To appear in Proc. Amer. Math. Soc., available at arXiv:math.GT/1212.2222

[^0][3] J. Batson and C. Seed, A link splitting spectral sequence in Khovanov homology (2013). Available at arXiv:math.GT/1303.6240
[4] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), no. 3, 445-503.
[5] J. Grigsby and S. Wehrli, Khovanov homology, sutured Floer homology, and annular links, Algebr. Geom. Topol. 10 (2010), no. 4, 2009-2039.
[6] - On the colored Jones polynomial, sutured Floer homology, and knot Floer homology, Adv. Math. 223 (2010), no. 6, 2114-2165.
[7] —— On gradings in Khovanov homology and sutured Floer homology, in Topology and geometry in dimension three, Vol. 560 of Contemporary Mathematics, 111-128, Amer. Math. Soc., Providence, RI (2011).
[8] M. Hedden and Y. Ni, Manifolds with small Heegaard Floer ranks, Geom. Topol. 14 (2010), no. 3, 1479-1501.
[9] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429-1457.
[10] —, Floer homology and surface decompositions, Geom. Topol. 12 (2008), no. 1, 299-350.
[11] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359-426.
[12] —, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665-741.
[13] —, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005), no. 1, 111-130.
[14] P. Kronheimer and T. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011), no. 1, 97-208.
[15] W. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86 (1986), no. 2, 287-346.
[16] W. Meeks, L. Simon, and S. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621-659.
[17] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577-608.
[18] P. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1-33.
[19] L. Roberts, On knot Floer homology in double branched covers (2007). Available at arXiv:math.GT/0706.0741

Department of Mathematics, Boston College, Carney Hall, Chestnut Hill, MA 02467
E-mail address: grigsbyj@bc.edu
Department of Mathematics, Caltech, MC 253-37, 1200 E California Blvd, Pasadena, CA 91125

E-mail address: yini@caltech.edu

[^0]: ${ }^{1} \mathrm{~A}$ homeomorphism of $X \times Y$ preserves the product structure if it is the product of homeomorphisms of X and Y.

