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SUTURED KHOVANOV HOMOLOGY DISTINGUISHES BRAIDS

FROM OTHER TANGLES

J. Elisenda Grigsby and Yi Ni

Abstract. We show that the sutured Khovanov homology of a balanced tangle in the

product sutured manifold D×I has rank 1 if and only if the tangle is isotopic to a braid.

1. Introduction

In [11], Khovanov constructed a categorification of the Jones polynomial that as-
signs a bigraded abelian group to each link in S3. Sutured Khovanov homology is a
variant of Khovanov’s construction that assigns

• to each link L in the product sutured manifold A×I (see Section 2.1) a triply-
graded vector space SKh(L) over F := Z/2Z [1, 19], where A = S1 × [0, 1]
and I = [0, 1], and
• to each balanced, admissible tangle T in the product sutured manifold D× I

(see Section 2.2) a bigraded vector space SKh(T ) over F [13, 6], whereD = D2.

Khovanov homology detects the unknot [14] and unlinks [8, 3], and the sutured
annular Khovanov homology of braid closures detects the trivial braid [2]. In this
note, we prove that the sutured Khovanov homology of balanced tangles distinguishes
braids from other tangles.

Theorem 1.1. Let T ⊂ D × I be a balanced, admissible tangle. (See Subsection 2.2
for the definition.) Then SKh(T ) ∼= F if and only if T is isotopic to a braid in D× I.

Theorem 1.1 is one of many results about the connection between Floer homology
and Khovanov homology, starting with the work of Ozsváth and Szabó [18]. This the-
orem is an analogue of the fact that sutured Floer homology detects product sutured
manifolds [17, 10], which is also an ingredient in our proof. Other ingredients include
a spectral sequence relating sutured Khovanov homology and sutured Floer homol-
ogy [6], Meeks–Scott’s theorem on finite group actions on product manifolds [15], and
Kronheimer–Mrowka’s theorem that Khovanov homology is an unknot detector [14].

Given a link L ⊂ A × I, the wrapping number of L is the minimal geometric
intersection number of all links isotopic to L with the meridional disk of A × I.
Theorem 1.1 combined with the observations in [5] (see Proposition 2.4) imply:

Corollary 1.2. Let L ⊂ A× I be a link with wrapping number ω, then the group

SKh(L;ω) =
⊕
i,j

SKhi(L; j, ω)

is isomorphic to F if and only if L is isotopic to a closed braid in A× I.

This corollary is an analogue of the fact that knot Floer homology detects fibered
knots.
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2. Preliminaries

In this section, we will review the basics about sutured manifolds [4] and sutured
Khovanov homology [1, 19, 6, 5].

Definition 2.1. A sutured manifold (M,γ) is a compact, oriented 3–manifold M , a
set γ ⊂ ∂M , and a choice of orientation on each component of R(γ) = ∂M \ int(γ)
such that:
• γ consists of pairwise disjoint annuli A(γ) and tori T (γ),
• if we define R+(γ) (resp., R−(γ)) to be the union of those components of R(γ)
whose normal vectors point out of (resp., into) M , then each component of A(γ) is
adjacent to a component of R+(γ) and a component of R−(γ).

As an example, let S be a compact oriented surface, M = S × I, γ = (∂S) × I,
R−(γ) = S × {0}, R+(γ) = S × {1}, then (M,γ) is a sutured manifold. In this case
we say that (M,γ) is a product sutured manifold.

Definition 2.2. [9, Definition 2.2] A balanced sutured manifold is a sutured manifold
(M,γ) satisfying
(1) M has no closed components.
(2) T (γ) = ∅.
(3) Every component of ∂M intersects γ nontrivially.
(4) χ(R+(γ)) = χ(R−(γ)).

If (M,γ) is a balanced, sutured manifold, then SFH(M,γ) will denote its sutured
Floer homology, as defined by Juhász in [9]. Whenever γ is implicit (e.g., when M is
a product), we shall omit it from the notation.

We will be interested in Khovanov-type invariants for certain links and tangles in
product sutured manifolds.

2.1. Sutured Khovanov homology of links in A×I. Sutured annular Khovanov
homology, originally defined in [1], [19] (see also [5]) associates to an oriented link L
in the product sutured manifold A× I a triply-graded vector space

SKh(L) =
⊕
i,j,k

SKhi(L; j, k),

which is an invariant of the oriented isotopy class of L ⊂ A× I.
To define it, one chooses a diagram DL of L on A×

{
1
2

}
. By filling in one boundary

component of A× { 12} with a disk marked with a basepoint X at its center and the
other boundary component with a disk marked with a basepoint at its center, one
obtains a diagram on S2 − {X,O}. Ignoring the X basepoint yields a diagram on
R2 = S2 − {O} from which the ordinary bigraded Khovanov chain complex

CKh(DL) :=
⊕
i,j

CKhi(DL; j)

can be constructed from a cube of resolutions. Here, i and j are the homological
and quantum gradings, respectively. The basepoint X gives rise to a filtration on
CKh(DL), and SKh(L) is the homology of the associated graded object.

To define this filtration, choose an oriented arc from X to O missing all crossings
of DL. As described in [7, Sec. 4.2], the generators of CKh(DL) are in one-to-one
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correspondence with oriented resolutions, where the counterclockwise orientation on
each circle corresponds to the generator v+. The “k” grading of an oriented resolution
is defined to be the algebraic intersection number of this resolution with our oriented
arc. Roberts proves ([19, Lem. 1]) that the Khovanov differential does not increase
this extra grading.

One therefore obtains a bounded filtration,

0 ⊆ . . . ⊆ Fn−1(DL) ⊆ Fn(DL) ⊆ Fn+1(DL) ⊆ . . . ⊆ CKh(DL),

where Fn(DL) is the subcomplex of CKh(DL) generated by oriented resolutions with
k grading at most n. Let

Fn(DL; j) = Fn(DL) ∩
⊕
i

CKhi(DL; j).

The sutured annular Khovanov homology groups of L are defined to be

SKhi(L; j, k) := Hi

(
Fk(DL; j)

Fk−1(DL; j)

)
.

It is an immediate consequence of the definitions that if L has wrapping number
ω, then SKhi(L; j, k) ∼= 0 for k 6∈ {−ω,−(ω − 2), . . . , ω − 2, ω}.

We shall denote by Σ(A× I,L) the sutured manifold obtained as the double cover
of A× I branched along L (cf. [5, Rmk. 2.6]), where γ is the cover of (∂A)× I, and
R+ (resp., R−) is the cover of A× {1} (resp., A× {0}).

2.2. Sutured Khovanov homology of balanced tangles in D × I. A tangle T
in the product sutured manifold (D× I, γ) is said to be admissible if ∂T ∩ γ = ∅, and
balanced if |T ∩ (D × {0})| = |T ∩ (D × {1})|. To make sense of tangle composition
(stacking), we will fix an identification of D with the standard unit disk in C and
assume that ∂T intersects both D × {0} and D × {1} along the real axis.

The sutured Khovanov homology of an admissible, balanced tangle in D × I was
defined by Khovanov in [13, Sec. 5] in the course of constructing a categorification of
the reduced n–colored Jones polynomial. An elaboration of Khovanov’s construction
is given in [6, Sec. 5], where it is also related to sutured Floer homology. We briefly
recall the main points of the construction here.

Let T ⊂ D× I be a balanced, admissible tangle and choose a diagram DT of T on
[−1, 1] × I. Then the sutured Khovanov homology of T , SKh(T ) =

⊕
i,j SKhi(T ; j),

is obtained as the homology of the complex,

CKh(DT ) :=
⊕
i,j

CKhi(DT ; j)

obtained as follows.
Number the c crossings, and construct a Khovanov-type cube of resolutions whose

vertices are in one-to-one correspondence with elements of {0, 1}c. Associated to each
such I ∈ {0, 1}c is a complete resolution RI with aI closed components (circles)
T1, . . . , TaI and bI non-closed components (arcs) TaI+1, . . . , TaI+bI . We say that RI
backtracks if the boundary of at least one of its non-closed components is contained
in [−1, 1]×{1}. We now assign to the corresponding vertex in the cube of resolutions
the vector space
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V (RI) :=

{
0 if RI backtracks

Λ∗(Z(RI)) otherwise,

where

Z(RI) :=
SpanF{[T1], . . . , [TaI+bI ]}

SpanF([TaI+1], . . . , [TaI+bI ])

is the vector space formally generated by the closed components of RI , which for
convenience we realize as a quotient space of the vector space formally generated by
all components of RI .

As in ordinary Khovanov homology, if I ′ is an immediate successor of I in the
language of [18, Sec. 4] and [6, Sec. 4], then one obtains RI′ from RI by either
merging two components Ti and Tj of RI to form a component T ′ of R′I or splitting
a single component T of RI into two components T ′i and T ′j of RI′ , and in both cases
leaving all other components unchanged.

With the above understood, we now associate a map

FRI→RI′ : V (RI)→ V (RI′)

to every pair of immediate successors as follows.
If at least one of RI , RI′ backtracks, we define FRI→RI′ := 0.
Otherwise, RI → RI′ is either a merge or split cobordism involving either two

closed components or one closed component and one non-backtracking arc.
If RI → RI′ is a merge, we define FRI→RI′ to be the composition

V (RI)
π // V (RI)

[Ti]∼[Tj ]

α // V (R′I) ,

where α is the isomorphism on exterior algebras induced by the isomorphism

Z(RI)

[Ti] ∼ [Tj ]
∼= Z(RI′)

identifying [Ti] = [Tj ] with [T ′].
If RI → RI′ is a split, we define FRI→RI′ to be the composition

V (RI)
α−1
// V (RI)
[T ′i ]∼[T ′j ]

ϕ // V (RI′) ,

where ϕ(a) := ([T ′i ] + [T ′j ]) ∧ ã, and ã is any lift of a in π−1(a).

The image of θ ∈ V (RI) under the boundary map ∂ on the complex is now defined
to be

∂(θ) :=
∑
RI′

FRI→RI′ (θ),

where the sum is taken over all immediate successors I ′ to I. Extend linearly.

Remark 2.3. If T is an admissible (n, n) tangle in D × I and DT is a diagram of
T , then we can alternatively associate to T a left Hn–module, F(DT ), as in [12],
by viewing T as a tangle with 2n upper endpoints (cf. [6, Rmk. 5.9]). The chain
complex CKh(DT ) may then be identified with ~v−⊗Hn F(DT ), where ~v− is the right
Hn module constructed as follows. Let b denote the fully-nested crossingless match on
2n points; then ~v− is the two-sided ideal of the Hn module F(W (b)b) corresponding to
the generator whose strands are all labeled with a v−. Via the correspondence between
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oriented resolutions and Khovanov generators described in the previous section (cf.
[7, Sec. 4.2]), we may then identify CKh(DT ) as the quotient complex obtained

from the ordinary Khovanov complex of the closure, D̂T , of DT by the subcomplex
generated by all generators with Roberts’ “k”–grading less than n. This has the effect
of setting to 0 any vertex associated to a backtracking resolution and treating the non-
backtracking non-closed components of a resolution just as basepointed strands are
treated in Khovanov’s reduced theory.

Comparing the above description with the description of the sutured annular Kho-
vanov invariant in the previous section, we have:

Proposition 2.4. [5, Thm. 3.1] If L ⊂ A × I is an oriented annular link with
wrapping number ω, and Tθ is the oriented, admissible balanced tangle obtained by
decomposing A× I along a meridional disk Dθ for which |L ∩Dθ| = ω,

SKhi(L; j, ω) ∼= SKhi(Tθ; j).

Since all but one resolution of a braid backtracks, we have:

Proposition 2.5. If T ⊂ D × I is isotopic to a braid, then SKh(T ) ∼= F.

3. Proof of the main theorem

Definition 3.1. A tangle T ⊂ D× I is a string link if it consists of proper arcs, each
of which has one end on D × {0} and the other end on D × {1}.

As a consequence, a string link T contains no closed components, and T does not
backtrack.

Lemma 3.2. Let T ⊂ D × I be a balanced, admissible tangle, then dimF SKh(T ) is
odd if and only if T is a string link.

Proof. We observe that if two tangles T+, T− differ by a crossing change, then the cor-
responding chain complexes CKh(T+) and CKh(T−) have the same set of generators,
thus the parities of the total dimensions of their homology are the same.

If a tangle T has closed components, after crossing changes we can transform T
to a tangle T ′ with a diagram D′ containing a trivial loop. This loop persists in any
complete resolution of D′, so it follows from the construction that the dimension of
CKh(D′) is even, hence dimF SKh(T ) is even.

If T backtracks, after crossing changes we can transform T to a tangle T ′ with an
arc which can be isotoped rel boundary into D × {0} or D × {1} without crossing
other components. We can find a diagram D′ of T ′ such that any complete resolution
of D′ backtracks. So CKh(D′) = 0, and dimF SKh(T ) is even.

If T is a string link, after crossing changes we can transform T to a braid B. By
Proposition 2.5, SKh(B) ∼= F, so dimF SKh(T ) is odd. �

Definition 3.3. A tangle T ⊂ D× I is split, if there exists a 3–ball B ⊂ D× I, such
that L2 = T ∩ B is a link and L2 6= T . In this case, let T1 = T − L2, then we write
T = T1 t L2. We say T is nonsplit if it is not split.

A tangle T ⊂ D × I is nonprime, if there exists a 3–ball B ⊂ D × I, such that
T2 = T ∩ B is a (1, 1)–tangle in B, and T2 does not cobound a disk with any arc in
∂B. In this case, Let T1 ⊂ D× I be the tangle obtained by replacing T2 with a trivial
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*

T1

2L

Figure 1. The tangle T = T1#L2, realized as a composition of T1
and L∗,n2 .

arc in B, and let L2 be the link obtained from T2 by connecting the two ends of T2
by an arc in ∂B. We denote T = T1#L2. We say T is prime if there does not exist
such a B.

Lemma 3.4. Let (M,γ) be the sutured manifold which is the double branched cover
of D2 × I branched along T . Then M is irreducible if and only if T is nonsplit and
prime.

Proof. The conclusion follows from the Equivariant Sphere Theorem [16] by the same
argument as in [8, Proposition 5.1]. �

Lemma 3.5. If T = T1#L2 is a nonprime string link, then

SKh(T ) ∼= SKh(T1)⊗Khr(L2).

In the above, Khr(L2) denotes the reduced Khovanov homology of L2.

Proof. We choose a diagram DT of T realized as the composition of diagrams DT1 of
T1 and DL∗,n2

L∗,n2 , where L∗,n2 is an (n, n) tangle obtained from L2 by removing a
neighborhood of a point near the connected sum region and adjoining n − 1 trivial
strands as pictured in Figure 3.

Now we claim that

CKh(DT ) ∼= CKh(DT1
)⊗F CKh(DL∗,n2

).

Since CKh(DL∗,n2
) is canonically chain isomorphic to CKh(DL∗,12

), and the homology

of the latter complex is the reduced Khovanov homology of L2 with F coefficients, the
lemma will then follow from the Künneth theorem.

To see the claim, note first that each resolution R of DT is obtained by stacking a
resolution R1 of DT1

and R2 of DL∗,n2
.

Moreover:
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• R backtracks iff at least one of R1, R2 backtracks, and
• If R does not backtrack, then the number of closed components of R is the

sum of the number of closed components of R1 and R2.

Hence, the F–vector space underlying the chain complex CKh(DT ) is canonically
isomorphic to CKh(DT1

)⊗F CKh(DL∗,n2
).

To verify that the boundary map ∂T on CKh(DT ) agrees with the induced boundary
map on the tensor product, i.e.:

∂T = ∂T1
⊗ Id + Id⊗ ∂L∗,n2

,

it is sufficient to verify that the two maps agree on any decomposable generator
θ = θ1 ⊗ θ2 of CKh(DT ) associated to a resolution R = (R1, R2). We may further
assume, without loss of generality, that R does not backtrack.

By definition

∂T (θ) =
∑

R′=(R′1,R
′
2)

FR→R′(θ)

where the sum above is taken over all immediate successors R′ to R.

But if R′ = (R′1, R
′
2) is an immediate successor of R, then either R′1 is an immediate

successor of R1 and R′2 = R2, or vice versa. Assume for definiteness that it is the
former, the latter case being analogous.

If R′ backtracks, then so does R′1, so:

FR→R′(θ) =
(
FR1→R′1 ⊗ Id

)
(θ1 ⊗ θ2) = 0.

If R′ does not backtrack, then the saddle cobordism connecting R1 to R′1 is a merge
(resp., split) connecting either

• two closed components of R1 (resp., of R′1), or
• one closed and one vertical component of R1 (resp., of R′1).

In either case, we see that

FR→R′(θ) =
[
FR1→R′1 ⊗ Id

]
(θ1 ⊗ θ2).

We conclude that

∂T (θ) =

 ∑
R′=(R′1,R

′
2)

FR→R′

 (θ)

=

∑
R′1

FR1→R′1

⊗ Id + Id⊗

∑
R′2

FR2→R′2

 (θ1 ⊗ θ2)

=
[
∂T1
⊗ Id + Id⊗ ∂L∗,n2

]
(θ1 ⊗ θ2),

as desired. �

Proposition 3.6. Suppose that T ⊂ D2 × I is a balanced, admissible tangle. If the
double branched cover of D2× I branched along T is a product sutured manifold, then
T is isotopic to a braid.
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Proof. Let π : F × I → D2 × I be the double branched covering map, then the
nontrivial deck transformation ρ is an involution on F × I that preserves F × ∂I
setwise. By Meeks–Scott [15, Theorem 8.1], ρ is conjugate to a map preserving
the product structure.1 In particular, π−1(T ), being the set of fixed points of ρ, is
homeomorphic to P × I ⊂ F × I for some finite set P ⊂ F , via a homeomorphism of
F × I which preserves F × ∂I. It follows that T is isotopic to a braid. �

Proposition 3.7. A knot K ⊂ S3 is the unknot if and only if Khr(K) ∼= F.

Proof. This result is essentially a theorem of Kronheimer and Mrowka [14]. The
original theorem of Kronheimer and Mrowka states that K is the unknot if and only
if Khr(K;Z) ∼= Z, where the coefficients ring is Z while ours is F. However, the
version with F coefficients easily follows from Kronheimer and Mrowka’s argument.
As shown in [14, Corollary 1.3],

rankKhr(K;Z) ≥ rank I\(K).

Kronheimer and Mrowka proved that rank I\(K) > 1 when K is nontrivial. (See the
paragraph after [14, Corollary 1.3].) So rankKhr(K;Z) > 1 when K is nontrivial. It
follows from the universal coefficients theorem that dimFKhr(K;F) > 1 when K is
nontrivial. �

Proof of Theorem 1.1. By Lemma 3.2, if SKh(T ) ∼= F, then T is a string link. In
particular, T has no closed components, hence T must be nonsplit.

Since T has no closed components, if T is nonprime it must be the connected sum
of a tangle with a knot (rather than a link). Suppose that T = T1#K2, where K2 is
a knot. Then it follows from Lemma 3.5 that Khr(K2) ∼= F. Using Proposition 3.7,
we conclude that K2 is the unknot. Hence T is prime.

Since T is nonsplit and prime, Lemma 3.4 implies that Σ(D × I, T ) is irreducible.
Suppose that SKh(T ) ∼= F. By [6, Proposition 5.20], there is a spectral sequence
whose E2 term is SKh(T ) and whose E∞ term is the sutured Floer homology group
SFH(Σ(D × I, T )). Hence SFH(Σ(D × I, T )) ∼= F. In [17, 10], it is shown that an
irreducible balanced sutured manifold (M,γ) is a product sutured manifold if and only
if SFH(M,γ) ∼= F. Hence Σ(D×I, T ) is a product sutured manifold. Proposition 3.6
then implies that T is isotopic to a braid. �
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