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SUTURED KHOVANOV HOMOLOGY DISTINGUISHES BRAIDS
FROM OTHER TANGLES

J. ELISENDA GRIGSBY AND Y1 NI

ABSTRACT. We show that the sutured Khovanov homology of a balanced tangle in the
product sutured manifold D x I has rank 1 if and only if the tangle is isotopic to a braid.

1. Introduction

In [I1], Khovanov constructed a categorification of the Jones polynomial that as-
signs a bigraded abelian group to each link in S3. Sutured Khovanov homology is a
variant of Khovanov’s construction that assigns

e to each link IL in the product sutured manifold A x I (see Section a triply-
graded vector space SKh(LL) over F := Z/27 [1l, 19], where A = S* x [0, 1]
and I = [0,1], and

e to each balanced, admissible tangle 7" in the product sutured manifold D x I
(see Section a bigraded vector space SKh(T') over FF [13}[6], where D = D2.

Khovanov homology detects the unknot [14] and unlinks [8] 3], and the sutured
annular Khovanov homology of braid closures detects the trivial braid [2]. In this
note, we prove that the sutured Khovanov homology of balanced tangles distinguishes
braids from other tangles.

Theorem 1.1. Let T C D x I be a balanced, admissible tangle. (See Subsection
for the definition.) Then SKhT) = F if and only if T is isotopic to a braid in D x I.

Theorem [I.1] is one of many results about the connection between Floer homology
and Khovanov homology, starting with the work of Ozsvéth and Szabé [I8]. This the-
orem is an analogue of the fact that sutured Floer homology detects product sutured
manifolds [I7], [T0], which is also an ingredient in our proof. Other ingredients include
a spectral sequence relating sutured Khovanov homology and sutured Floer homol-
ogy [6], Meeks—Scott’s theorem on finite group actions on product manifolds [I5], and
Kronheimer-Mrowka’s theorem that Khovanov homology is an unknot detector [I4].

Given a link I. € A x I, the wrapping number of L. is the minimal geometric
intersection number of all links isotopic to L with the meridional disk of A x I.
Theorem combined with the observations in [5] (see Proposition imply:

Corollary 1.2. Let L. C A x I be a link with wrapping number w, then the group
SKh(L; w) = @ SKh (L j,w)
0,J
is isomorphic to F if and only if L is isotopic to a closed braid in A x I.

This corollary is an analogue of the fact that knot Floer homology detects fibered
knots.
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2. Preliminaries

In this section, we will review the basics about sutured manifolds [4] and sutured
Khovanov homology [1J, 19} [6l 5]

Definition 2.1. A sutured manifold (M,~) is a compact, oriented 3—manifold M, a
set v C OM, and a choice of orientation on each component of R(y) = dM \ int(y)
such that:

e 7y consists of pairwise disjoint annuli A(v) and tori T'(7),

o if we define Ry () (resp., R_(7)) to be the union of those components of R(y)
whose normal vectors point out of (resp., into) M, then each component of A(vy) is
adjacent to a component of R, () and a component of R_ (7).

As an example, let S be a compact oriented surface, M = S x I, v = (95) x I,
R_(y) = S x {0}, Ry(y) = S x {1}, then (M,~) is a sutured manifold. In this case
we say that (M, ) is a product sutured manifold.

Definition 2.2. [9] Definition 2.2] A balanced sutured manifold is a sutured manifold
(M, ~) satistying
) M has no closed components.

2) T(v) =

(1

(2)

(3) Every component of OM intersects v nontrivially.
(4)

4) X(B+ (7)) = x(B-(7))-

If (M,~) is a balanced, sutured manifold, then SFH(M,~) will denote its sutured
Floer homology, as defined by Juhész in [9]. Whenever  is implicit (e.g., when M is
a product), we shall omit it from the notation.

We will be interested in Khovanov-type invariants for certain links and tangles in
product sutured manifolds.

2.1. Sutured Khovanov homology of links in A x I. Sutured annular Khovanov
homology, originally defined in [I], [I9] (see also [5]) associates to an oriented link L
in the product sutured manifold A x I a triply—graded vector space

SKh(L) = @) SKh'(L; j, k
1,5,k

which is an invariant of the oriented isotopy class of L. C A x I.

To define it, one chooses a diagram Dy, of L on A x {%} By filling in one boundary
component of A x {1} with a disk marked with a basepoint X at its center and the
other boundary component with a disk marked with a basepoint at its center, one
obtains a diagram on S? — {X,0}. Ignoring the X basepoint yields a diagram on
R? = $? — {O} from which the ordinary bigraded Khovanov chain complex

CKh(Dy) := €P CKh'(Dy; )
i,
can be constructed from a cube of resolutions. Here, ¢ and j are the homological
and quantum gradings, respectively. The basepoint X gives rise to a filtration on
CKh(DL), and SKh(L) is the homology of the associated graded object.
To define this filtration, choose an oriented arc from X to O missing all crossings
of Dp. As described in [7, Sec. 4.2], the generators of CKh(Dy) are in one-to-one
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correspondence with oriented resolutions, where the counterclockwise orientation on
each circle corresponds to the generator v4.. The “k” grading of an oriented resolution
is defined to be the algebraic intersection number of this resolution with our oriented
arc. Roberts proves ([I9, Lem. 1]) that the Khovanov differential does not increase
this extra grading.

One therefore obtains a bounded filtration,

0C...CF1(DL) C Fo(DL) € Frs1(DL) C ... € CKh(Dy),

where F,,(DL) is the subcomplex of CKh(Dy) generated by oriented resolutions with
k grading at most n. Let

Fu(D; ) = Fu(Dr) N € CKL(Dy; 5).

The sutured annular Khovanov homology groups of I are defined to be
Fi(Dw; j) )
Fr-1(Dr;j) )
It is an immediate consequence of the definitions that if I has wrapping number
w, then SKh'"(L;j,k) 20 for k ¢ {—w, —(w —2),...,w —2,w}.
We shall denote by (A x I, L) the sutured manifold obtained as the double cover

of A x I branched along L (cf. [B, Rmk. 2.6]), where v is the cover of (0A) x I, and
R (resp., R_) is the cover of A x {1} (resp., A x {0}).

SKh'(L; j, k) :== H' (

2.2. Sutured Khovanov homology of balanced tangles in D x I. A tangle T’
in the product sutured manifold (D x I,7) is said to be admissible if T N~ = (), and
balanced if |T N (D x {0})] = |T N (D x {1})]. To make sense of tangle composition
(stacking), we will fix an identification of D with the standard unit disk in C and
assume that 9T intersects both D x {0} and D x {1} along the real axis.

The sutured Khovanov homology of an admissible, balanced tangle in D x I was
defined by Khovanov in [I3] Sec. 5] in the course of constructing a categorification of
the reduced n—colored Jones polynomial. An elaboration of Khovanov’s construction
is given in [0, Sec. 5], where it is also related to sutured Floer homology. We briefly
recall the main points of the construction here.

Let T'C D x I be a balanced, admissible tangle and choose a diagram Dr of T" on
[-1,1] x I. Then the sutured Khovanov homology of T\, SKh(T') = @iu’ SKh' (T} j),
is obtained as the homology of the complex,

CKh(Dr) := @ CKh'(Dr; )
4,3
obtained as follows.

Number the ¢ crossings, and construct a Khovanov-type cube of resolutions whose
vertices are in one-to-one correspondence with elements of {0,1}¢. Associated to each
such Z € {0,1}¢ is a complete resolution Rz with az closed components (circles)
Ti,...,T,, and bz non-closed components (arcs) Ty, 41, -, Tar+by. We say that Rz
backtracks if the boundary of at least one of its non-closed components is contained
in [—1,1] x {1}. We now assign to the corresponding vertex in the cube of resolutions
the vector space
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. 0 if Rz backtracks
V(Bz) := { A*(Z(Rz)) otherwise,
where Spae{[Til... [Tar )
panF IR az+br
Z(R7) :=
U = S (Tam sl ]

is the vector space formally generated by the closed components of Rz, which for
convenience we realize as a quotient space of the vector space formally generated by
all components of Rz.

As in ordinary Khovanov homology, if Z' is an immediate successor of T in the
language of [I8, Sec. 4] and [6] Sec. 4], then one obtains Rz from Rz by either
merging two components T; and Tj of Rz to form a component 7" of R/ or splitting
a single component T of Rz into two components 7} and T]'- of Rz/, and in both cases
leaving all other components unchanged.

With the above understood, we now associate a map

Fry gy 1 V(Rz) = V(Rr)

to every pair of immediate successors as follows.

If at least one of Rz, Rz backtracks, we define Fr, ,r,, := 0.

Otherwise, Rz — Rgz: is either a merge or split cobordism involving either two
closed components or one closed component and one non-backtracking arc.

If Rz — Rz is a merge, we define Fg, ,g_, to be the composition

T V(R «
V(Rz) s V(RY)

where « is the isomorphism on exterior algebras induced by the isomorphism
Z(Rz)
(T3] ~ [T3]
identifying [T;] = [I};] with [T”].
If Rz — Rz is a split, we define F'r; .z, to be the composition

~ Z(Ryp)

a”!' V(R ®
V(Rz) [T;fN[IT’_;] V(Ry) ,
where ¢(a) := ([T{] 4 [T}]) A @, and @ is any lift of a in 77" (a).

The image of § € V(Rz) under the boundary map 9 on the complex is now defined

to be
8(0) = Z FRI—>RI/ (0)7

Ry
where the sum is taken over all immediate successors Z’' to Z. Extend linearly.

Remark 2.3. If T is an admissible (n,n) tangle in D x I and Dy is a diagram of
T, then we can alternatively associate to T a left H"—module, F(Dr), as in [12],
by viewing T as a tangle with 2n upper endpoints (cf. [6l Rmk. 5.9]). The chain
complex CKh(Dr) may then be identified with V_ @ g» F(Dr), where V_ is the right
H™ module constructed as follows. Let b denote the fully-nested crossingless match on
2n points; then V_ is the two-sided ideal of the H™ module F (W (b)b) corresponding to
the generator whose strands are all labeled with a v_. Via the correspondence between
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oriented resolutions and Khovanov generators described in the previous section (cf.
[7, Sec. 4.2]), we may then identify CKh(Dr) as the quotient complex obtained
from the ordinary Khovanov complex of the closure, YST, of Dr by the subcomplex
generated by all generators with Roberts’ “k” —grading less than n. This has the effect
of setting to 0 any vertex associated to a backtracking resolution and treating the non-
backtracking non-closed components of a resolution just as basepointed strands are
treated in Khovanov’s reduced theory.

Comparing the above description with the description of the sutured annular Kho-
vanov invariant in the previous section, we have:

Proposition 2.4. [5, Thm. 3.1] If L C A x I is an oriented annular link with
wrapping number w, and Ty is the oriented, admissible balanced tangle obtained by
decomposing A x I along a meridional disk Dy for which |IL.N Dy| = w,

SKh' (L; j,w) = SKh' (Ty; j).
Since all but one resolution of a braid backtracks, we have:

Proposition 2.5. If T C D x I is isotopic to a braid, then SKh(T) 2 F.

3. Proof of the main theorem

Definition 3.1. A tangle T C D x I is a string link if it consists of proper arcs, each
of which has one end on D x {0} and the other end on D x {1}.

As a consequence, a string link 7" contains no closed components, and T" does not
backtrack.

Lemma 3.2. Let T C D x I be a balanced, admissible tangle, then dimg SKh(T) is
odd if and only if T is a string link.

Proof. We observe that if two tangles 7'y , 7" differ by a crossing change, then the cor-
responding chain complexes CKh(T}) and CKh(T_) have the same set of generators,
thus the parities of the total dimensions of their homology are the same.

If a tangle T has closed components, after crossing changes we can transform T
to a tangle T” with a diagram D’ containing a trivial loop. This loop persists in any
complete resolution of D’, so it follows from the construction that the dimension of
CKh(D’) is even, hence dimp SKh(T') is even.

If T backtracks, after crossing changes we can transform 7T to a tangle T” with an
arc which can be isotoped rel boundary into D x {0} or D x {1} without crossing
other components. We can find a diagram D’ of T” such that any complete resolution
of D’ backtracks. So CKh(D’) = 0, and dimy SKh(T) is even.

If T is a string link, after crossing changes we can transform 7 to a braid B. By
Proposition SKh(B) 2 F, so dimp SKh(T) is odd. O

Definition 3.3. A tangle T' C D x [ is split, if there exists a 3—ball B C D x I, such
that Lo = TN B is a link and Ly # T'. In this case, let 71 = T — Lo, then we write
T =T, U Ly. We say T is nonsplit if it is not split.

A tangle T' C D x I is nonprime, if there exists a 3-ball B C D x I, such that
T, =TNBisa(1,1)-tangle in B, and T does not cobound a disk with any arc in
OB. In this case, Let T1 C D x I be the tangle obtained by replacing T, with a trivial
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Lo

I

FIGURE 1. The tangle T' = T1# Lo, realized as a composition of Tj
and Ly".

arc in B, and let Ly be the link obtained from 75 by connecting the two ends of Ts
by an arc in 9B. We denote T' = T1#Ly. We say T is prime if there does not exist
such a B.

Lemma 3.4. Let (M,~) be the sutured manifold which is the double branched cover
of D? x I branched along T. Then M is irreducible if and only if T is nonsplit and
prime.

Proof. The conclusion follows from the Equivariant Sphere Theorem [16] by the same
argument as in [8, Proposition 5.1]. O

Lemma 3.5. If T =T,#L> is a nonprime string link, then
SKWT) = SKh(T1) ® Kh,(L2).
In the above, Kh,(L2) denotes the reduced Khovanov homology of Ls.

Proof. We choose a diagram Dr of T realized as the composition of diagrams Dz, of
Ty and Dpzn Ly", where Ly™ is an (n,n) tangle obtained from L, by removing a
neighborhood of a point near the connected sum region and adjoining n — 1 trivial
strands as pictured in Figure

Now we claim that

CKh(Dr) & CKh(Dr, ) ©r CKh(D ).

Since CKh(Dp;.») is canonically chain isomorphic to CKh(DL;,l), and the homology
of the latter complex is the reduced Khovanov homology of Lo with F coefficients, the
lemma will then follow from the Kiinneth theorem.

To see the claim, note first that each resolution R of Dr is obtained by stacking a
resolution Ry of Dy, and Ry of D Lym-

Moreover:
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e R backtracks iff at least one of Ry, R backtracks, and
e If R does not backtrack, then the number of closed components of R is the
sum of the number of closed components of R; and Rs.

Hence, the F—vector space underlying the chain complex CKh(Dr) is canonically
isomorphic to CKh(Dr, ) @ CKh(Dpz.n).

To verify that the boundary map dr on CKh(Dr) agrees with the induced boundary
map on the tensor product, i.e.:

Or =0r, ®1d+1d®dpzm,

it is sufficient to verify that the two maps agree on any decomposable generator
0 = 61 ® 0 of CKh(Dr) associated to a resolution R = (Rj, Re). We may further
assume, without loss of generality, that R does not backtrack.
By definition
or(0)= Y Fror(0)
R'=(R1,R3)

where the sum above is taken over all immediate successors R' to R.

But if R’ = (R}, R)) is an immediate successor of R, then either R} is an immediate
successor of Ry and R, = Rp, or vice versa. Assume for definiteness that it is the
former, the latter case being analogous.

If R’ backtracks, then so does R}, so:

Fror/(0) = (Fr,—r, ®1d) (61 @ 62) = 0.
If R’ does not backtrack, then the saddle cobordism connecting R; to R} is a merge
(resp., split) connecting either

e two closed components of R; (resp., of R}), or
e one closed and one vertical component of Ry (resp., of R}).

In either case, we see that
Fror(0) = [Fr,r; ®1d] (61 © 65).
We conclude that

or(0) = > Faur|(9)
| R'=(R}.R})

= > Frory | @1d+1d® (Y Frypy || (61 ®62)
Ry Ry

= [(9T1 ®@Id+1d® 8L;n} (61 ® 62),

as desired. 0

Proposition 3.6. Suppose that T C D? x I is a balanced, admissible tangle. If the
double branched cover of D? x I branched along T is a product sutured manifold, then
T 1is isotopic to a braid.
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Proof. Let m: F x I — D? x I be the double branched covering map, then the
nontrivial deck transformation p is an involution on F' x I that preserves F' x Ol
setwise. By Meeks—Scott [I5, Theorem 8.1], p is conjugate to a map preserving
the product structureﬂ In particular, 7~!(T), being the set of fixed points of p, is
homeomorphic to P x I C F x I for some finite set P C F, via a homeomorphism of
F x I which preserves F' x 0I. It follows that T is isotopic to a braid. ]

Proposition 3.7. A knot K C S® is the unknot if and only if Kh,(K) 2.

Proof. This result is essentially a theorem of Kronheimer and Mrowka [I4]. The
original theorem of Kronheimer and Mrowka states that K is the unknot if and only
if Kh,(K;Z) = 7Z, where the coefficients ring is Z while ours is F. However, the
version with [ coefficients easily follows from Kronheimer and Mrowka's argument.
As shown in [I4], Corollary 1.3],

rank Kh,.(K;7Z) > rank I*(K).

Kronheimer and Mrowka proved that rank I%(K) > 1 when K is nontrivial. (See the
paragraph after [14, Corollary 1.3].) So rank Kh,(K;Z) > 1 when K is nontrivial. Tt
follows from the universal coefficients theorem that dimp Kh,.(K;F) > 1 when K is
nontrivial. g

Proof of Theorem[I.1] By Lemma if SKh(7T') = F, then T is a string link. In
particular, T" has no closed components, hence T must be nonsplit.

Since T has no closed components, if 7" is nonprime it must be the connected sum
of a tangle with a knot (rather than a link). Suppose that T' = T} # K5, where K3 is
a knot. Then it follows from Lemma that Kh,(K2) = F. Using Proposition
we conclude that K5 is the unknot. Hence T is prime.

Since T is nonsplit and prime, Lemma implies that X(D x I,T) is irreducible.
Suppose that SKh(T) = F. By [6, Proposition 5.20], there is a spectral sequence
whose E? term is SKh(T) and whose E* term is the sutured Floer homology group
SFH(X(D x I,T)). Hence SFH(X(D x I,T)) 2 F. In [I7, [10], it is shown that an
irreducible balanced sutured manifold (M, ) is a product sutured manifold if and only
if SFH(M,~) = F. Hence (D x I, T) is a product sutured manifold. Proposition 3.6
then implies that T is isotopic to a braid. O
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