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We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT)
for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of
dengue fever. The model differs from the majority of those studied previously in that it is simultaneously
spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uni-
form equilibria of the model are identified and analysed. Simulations are performed to analyse the impact
of varying the number of release sites, the interval between pulsed releases and the overall volume of
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SIT Results show that, given a fixed volume of available sterile insects, increasing the number of release
RIDL sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that
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Aedes aegypti
Dynamical systems

programmes may become completely ineffective if the interval between pulsed releases is greater that a
certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects
released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid
recolonisation of areas in which the species has been eradicated and we argue that understanding the
density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT
programmes.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

The sterile insect technique (SIT) is a method for the control or
eradication of insect species through the release of large numbers
of insects (usually exclusively males) that have been modified to
reduce their reproductive success. The insects may be exposed to
radiation, infected with bacteria or, in a variation known as RIDL
(released insects with a dominant-lethal), genetically modified to
be dependent on a chemical that is not available in their natural
environment. Whichever technique is employed, the objective is
that modified insects will mate with wild insects, but that their
offspring will be largely non-viable. This technique has been
successfully used to eradicate or suppress many species of insect in
various environments around the world and remains in operation
on large scales, with some facilities capable of producing around
two billion sterile insects per week for SIT programmes [1].
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The mosquito Aedes aegypti is the main vector of dengue fever, a
potentially fatal disease with 50-100 million cases per year, for
which there is no approved vaccine or medication [2]. Several
authors have advocated SIT as a means to control populations of
mosquito species and thus to address the threat of dengue fever
and other diseases [1,3], though others have argued that Aedes
aegypti may not be suitable for an SIT programme owing to the
dispersal and distribution characteristics of the species [4]. While
previous attempts to apply SIT to mosquito species have been suc-
cessful against isolated populations, they have been unsuccessful
on larger scales, partly because the techniques used to sterilise
males have often reduced their fitness to mate with wild females.
However, modern transgenic techniques may have the potential to
overcome these issues [5].

Predicting the outcome of SIT programmes is extremely
important to ensure that they are practical, affordable and effective
and several mathematical models have been presented to simulate
the application of the technique to Aedes aegypti. Several authors
have created extremely detailed models that take into account
the multiple stages of the mosquito’s development, the varying
gonotrophic cycle of the female (the feeding and reproductive
cycle) and diverse environmental factors. A detailed review
of the mathematical modelling of mosquito populations
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(particularly Aedes aegypti), their role in spreading dengue fever
and the effect of SIT is presented in Section 2.

In this paper, we present a simple model of the population
dynamics of Aedes aegypti and the effects of SIT on the species.
Unlike the vast majority of those that have previously been stud-
ied, the model is both spatially explicit and involves pulsed (rather
than continuous) sterile insect releases. This lends it the flexibility
to simulate a wide range of spatial and temporal sterile insect
release strategies for Aedes aegypti, which have not previously been
investigated in a systematic way.

Following the review of previous modelling approaches in Sec-
tion 2, the model is defined in Section 3 and certain equilibria of
the dynamics are analysed in Section 4. Section 5 discusses how
the parameters of the model were chosen to represent an SIT pro-
gramme for Aedes aegypti with the subsequent analysis of different
release strategies presented in Section 6. A discussion of the
strengths and weaknesses of the model and of possible directions
for future research is presented in Section 7, with the main conclu-
sions of the paper listed in Section 8. A brief comparison of alterna-
tive sterile insect release patterns can be found in Appendix A.

All simulations presented in this paper were programmed in
Python [6], using NumPy [7], with visualisations created using
Matplotlib [8].

2. Dynamical models of mosquito populations, dengue
transmission and control strategies

Unless otherwise stated, the models discussed in this section
relate exclusively to the mosquito Aedes aegypti. However, certain
sources that focus on other species have been included where their
results were judged to be particularly relevant to our work.

2.1. Non-spatial models of mosquito population dynamics

The simplest dynamical population models of Aedes aegypti and
other insect populations are simulated dynamic life tables. These
are essentially non-spatial discrete-time dynamical systems, in
which the dynamical variables represent the sizes of various sub-
populations of the insect species (e.g. eggs, larvae, mature females),
tracked by cohort, with the rates of transition between these sub-
populations at each time step defined by means of dynamical equa-
tions. These equations may be extremely complex, involving many
separate biological and physical processes, and are generally
dependent on parameters that represent characteristics of the
insects (e.g. oviposition rate, mortality) and the habitat (e.g. tem-
perature, number and type of available oviposition sites, predation).
The parameters may vary both seasonally and stochastically,
though the population dynamics themselves are otherwise intrinsi-
cally deterministic [9].

An early example of such a dynamical system model for Aedes
aegypti was presented by Birley [10], who showed that models of
this type could be used to understand the statistical variability of
the rates of development of different individual insects. Many later
dynamic life table simulations of Aedes aegypti are based on the
‘container inhabiting mosquito simulation model’ (CIMSiM) of Focks
et al. [11], which incorporates numerous factors affecting the
population dynamics such as the gonotrophic cycle of the female,
the influence of weather and the depletion of food supplies [12].

Maguire et al. [13] used CIMSiM to compare potential control
strategies for Aedes aegypti, commenting that “simulation model-
ling. . .may never be sophisticated enough to be used as a forecast-
ing tool...” and identifying the true role of such models as
determining the “most effective combination and timing of control
methods and. . .areas at highest risk of having large Aedes aegypti
populations.”.

More recently, Williams et al. [14] successfully used CIMSiM to
estimate and predict the size and structure of Aedes aegypti popu-
lations in Queensland, Australia, while Morin and Comrie [15]
created the related ‘dynamic mosquito simulation model’
(DyMSiM) to investigate the possible effects of climatic changes
on populations of another mosquito species, Culex quinquefasciatus
(a vector of West Nile virus).

Alternative discrete-time dynamical models to CIMSiM include
TAENI2 [16], a biologically detailed simulation model of the black
salt marsh mosquito, Aedes taeniorhynchus. Though the model is
essentially non-spatial, insect immigration and emigration are
included as exogenous processes, and the authors observe that
mosquito dispersal can lead to rapid recolonisation of areas in
which the species had previously been eradicated.

Another approach was presented by Otero et al. [9], who mod-
elled the life cycle of Aedes aegypti as a Markov chain, using their
model to establish a criterion for Aedes aegypti persistence in urban
environments.

2.2. Spatial models of mosquito population dynamics

The most common means of creating a spatially explicit mos-
quito population dynamical model has been to run a large number
of discrete-time dynamical models of the sort described in the pre-
vious section in parallel over a lattice of cells, introducing diffu-
sion-type dynamics to model mosquito dispersal.

This was the approach employed by Otero et al. [17], when
developing a spatially explicit version of their earlier model, claim-
ing that they had created “the first stochastic spatial model for
Aedes aegypti populations based on the life cycle of the mosquito
and its dispersal”. Their conclusion, that the observed dynamics
of the species in Buenos Aires, Argentina, could be explained by a
complex process of local eradication, dispersal and recolonisation,
recalls that of Ritchie and Montague [16]. The Otero et al. [17]
model was recently refined further to introduce more detailed
hatching and pupation processes [18].

In a similar way, Legros et al. [19] developed a spatial simula-
tion of Aedes aegypti population dynamics, ‘Skeeter Buster’, which
built on CIMSiM, incorporating additional stochasticity, breeding
container scale spatial structure and a lattice of cells representing
individual houses. The model was able to broadly replicate the
observed population dynamics of Aedes aegypti in Iquitos, Peru,
and Buenos Aires over periods of a year or more.

A potentially more sophisticated approach to the spatial model-
ling of mosquito population dynamics is to replace the discrete-
time component of these lattice models with a continuous-time
version, based on ordinary differential equations (ODEs). One such
approach is proposed by Mageni Lutambi et al. [20], who create a
detailed mosquito dispersal model over a hexagonal lattice, taking
into account heterogeneously distributed resources (e.g. human
hosts or oviposition sites), and use it to demonstrate that such het-
erogeneity in the environment can have a complex effect on the
population dynamics of a species.

One of the relatively few true agent-based approaches to spatial
modelling of Aedes aegypti is SimPopMosq [21], a highly detailed,
spatially and temporally discrete model with agents representing
mosquitoes, humans and other mammals as well as inanimate
objects such as water containers. These agents interact over a rect-
angular cellular lattice and emit traces (such as odours) which dif-
fuse across space, while mosquito agents have a number of
developmental stages and can adopt a variety of behaviour
patterns. The authors reported high levels of similarity between
SimPopMosq simulations and experimental data.

The majority of spatially explicit simulations of Aedes aegypti,
however, are not pure population dynamical models, but incorpo-
rate additional factors, such as dengue transmission and explicit
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modelling of SIT. These include a number of models that are con-
tinuous in time and space, based on partial differential equations
(PDEs), some of which are mentioned in the forthcoming sections.

2.3. Models incorporating dengue transmission

As Aedes aegypti is a principal vector of dengue fever, mathe-
matical models of the coupled dynamics of mosquito populations,
human populations and the dengue virus can be a valuable public
health tool. One such model combines CIMSiM, representing the
dynamics of the mosquito population, with a Dengue Transmission
Model (DENSiM), a non-spatial individual-based model of human
population dynamics and multiple strains of the dengue virus. This
model has been recommended by the United Nations [12] for
optimising dengue control strategies and evaluating the impact
of climate change and has been used to identify the most impor-
tant factors affecting dengue transmission [22].

Other spatial models of dengue transmission have built on the
spatial model of Otero et al. [17]. For example, Barmak et al. [23]
propose an individual-based model of mosquito and human popu-
lations, over a cellular lattice representing heterogeneous city
blocks in Buenos Aires. In this model, while mosquitoes move
according to the same diffusion-type process described by Otero
et al. [17], the movement of human agents is based on detailed
research, with complex mobility networks, commuting and Lévy
flights. The authors identify long-distance human mobility as a
key factor in accelerating the spread of dengue outbreaks.

Otero and Solari [24] also extended the Otero et al. [17] model
to incorporate dengue transmission, coupling it with an SEIR (sus-
ceptible-exposed-infected-recovered) dynamical system model of
dengue infection in humans to evaluate different epidemic
scenarios.

Additional work on the modelling of dengue transmission
includes that of Favier et al. [25], in which SEI models of Aedes
aegypti dynamics within households are coupled with spatial and
non-spatial individual based SEIR models of human dynamics
between households, and that of Tran and Raffy [26], which also
uses a coupled SEI/SEIR approach, but includes the movement of
Aedes aegypti as a spatial diffusion process and does not explicitly
model the movement of human hosts.

2.4. Non-spatial sterile insect models

Several authors have expanded non-spatial discrete population
dynamical models to model SIT and RIDL control programmes. One
of the earliest to be investigated using computer simulation was
that of Curtis et al. [27], who compared experimental data from
caged Aedes aegypti mosquitoes with simulated releases of sterile
males and ‘distorter males’ (that produce lower ratios of female
offspring), to identify the more effective intervention.

This work was followed by that of It6 [28] and It6 and
Kawamoto [29], who combined a discrete-time logistic model of
melon fly (Dacus cucurbitae) population growth with a Poisson-
binomial model of matings. This model was used to predict the
necessary ratios of sterile to healthy insects for species eradication,
but the authors noted that their results were far more optimistic
than the ratios required in practice. As in the later work of Ritchie
and Montague [16] and Otero et al. [17], spatial effects that could
not be captured by the model were proposed as a reason for this
discrepancy, specifically insect dispersal and recolonisation of
treated areas.

More recent non-spatial approaches to modelling SIT have been
based on systems of ODEs. For example, Barclay and Mackauer [30]
considered a logistic population model to compare the effective-
ness of sterile male, sterile female and mixed gender SIT release
programmes and to identify threshold populations for species

eradication. Another SIT model of this type, based on the
Lotka-Volterra equations, was considered by Harrison et al. [31]
to analyse pest populations subject to predation.

Esteva and Yang [32] analysed an ODE model of SIT to deter-
mine equilibria and bifurcations for the population dynamics of
Aedes aegypti, with particular reference to parameters governing
the reproductive rate, the ratio of sterile to healthy males and
the rate of sterile releases. A more detailed system of time delayed
ODEs, combined with an SIR-like compartmental epidemiolgical
model, was considered by Alphey et al. [33] and used to assess
the effectiveness of RIDL programmes for Aedes aegypti, concluding
that the cost of such programmes would be lower than the finan-
cial burden directly and indirectly imposed by the disease.

2.5. Spatial sterile insect models

Much of the most recent work on the modelling of sterile insect
methods has involved spatially explicit models, some of which
have been based on the principle of parallel discrete-time dynam-
ical systems over cellular lattices, as discussed in Section 2.2. For
example, Yakob and Bonsall [34] considered a model of this type
to investigate RIDL control strategies, initiating their simulations
at the non-zero equilibrium of the wild population to represent
the control of an established pest species and considering uniform
releases of sterile insects across all cells in the target area. Once
again, results suggested that high rates of insect dispersal reduce
the effectiveness of control strategies.

Similar techniques were employed by Potgieter et al. [35] to
model SIT control of the moth Eldana saccharina by means of a cel-
lular discrete-time reaction-diffusion model. Unlike the approach
of Yakob and Bonsall [34], however, this model did not assume
spatially uniform sterile insect releases, but supposed that releases
only occurred along particular strips of the region, thus modelling
releases from a vehicle travelling along particular paths through
the target area. The authors concluded that optimal release strate-
gies were highly dependent on factors including dispersal rates
and sterile insect release rates.

Another attempt to understand the effect of the spatial distribu-
tion of release sites in RIDL programmes for Aedes aegypti was pro-
duced by Legros et al. [36], who used their ‘Skeeter Buster’ model,
parameterised to represent Iquitos, Peru, to compare uniform spa-
tial release strategies with strategies involving releases at discrete
locations, either chosen randomly or spread evenly across the sim-
ulation region. While observing that total eradication of the target
population was potentially unrealistic owing to spatial heteroge-
neity, they concluded that evenly spread release sites were more
effective than randomly chosen sites.

An alternative strategy for spatially explicit SIT modelling is to
use PDEs. The work of Manoranjan and van den Driessche [37] is
an early example of such an approach, in which the ODE model
of Barclay and Mackauer [30] is expanded to a spatial PDE model
through the introduction of a diffusion-like insect dispersal pro-
cess. The spatial nature of this model allowed the authors to con-
sider SIT techniques over a heterogeneous environment and to
consider spatially non-uniform sterile insect releases, as Potgieter
et al. [35] had done.

In contrast, Li and Zou [38] studied a highly abstract one-
dimensional PDE model of SIT, in which sterile insects are released
at the boundaries of an interval, identifying the volume of sterile
releases required for species eradication in this setting.

One of the most novel approaches to spatial SIT modelling was
provided by Ferreira et al. [4], who produced a cellular automata
model of sterile insect control of Aedes aegypti over a rectangular
lattice and considered the dynamics of the species for different
spatial distributions of breeding sites. This is both one of the only
true cellular automata models of SIT and one of the only models in
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which sterile male releases occur at random locations, rather than
uniformly across space or at specified locations. From simulations
of the model, the authors identified spatial heterogeneity of the
environment as having a significant impact of the effectiveness of
SIT programmes.

One of the few true agent-based spatial models of SIT for Aedes
aegypti was presented by [39]. The model is similar to the later
simulation of de Almeida et al. [21] (which did not involve sterile
insect releases), in that it is built on a rectangular lattice, features
versatile agents representing mosquitoes and humans and includes
elements that diffuse across space, such as pheromones and
humidity. However, the authors acknowledge that the model is
not complete and would require further modifications to improve
its applicability.

2.6. Sterile insect models with pulsed releases

In all the above SIT models, sterile insect releases occur at a uni-
form rate, at least to the degree of temporal discretisation of the
model. Few models have been proposed in which sterile releases
occur in discrete pulses, despite the fact that such release strate-
gies are more realistic.

One exception is a time-delayed, non-spatial ODE model, pre-
sented by White et al. [40], parametrised for Aedes aegypti. The
authors use their model to demonstrate that small, frequent
releases are more effective than larger, less frequent releases, going
on to remark that “models that assume a constant release strategy
will tend to over-estimate the true level of population control.”

Another non-spatial ODE SIT model with pulsed releases, com-
posed of coupled SIR-type models for the mosquito and human
populations, was proposed for the Asian tiger mosquito Aedes
albopictus by Dumont and Tchuenche [41]. The conclusions from
this work were in line with those of White et al. [40], that small,
frequent pulsed releases were most effective.

Very few explicitly spatial models are known to have been used
to study SIT techniques with pulsed sterile insect release. One
exception is the recent work of Dufourd and Dumont [42,43], in
which a biologically detailed continuous spatial (PDE) model of
the dynamics of Aedes albopictus, is used to examine the most
effective strategies for SIT control programmes with pulsed
releases. The main focus of this work is the effect of environmental
heterogeneity, particularly in the distribution of breeding and
feeding sites and the wind direction, and temporal heterogeneity
(seasonal temperature variation) on the dynamics of the species
and the effect of such heterogeneity on potential control
programmes. The work also includes some comparison of SIT strat-
egies in terms of the time between pulsed releases and the optimal
location of releases with reference to the prevailing wind direction.

Significant conclusions of this work include the observations
that understanding the effect of environmental heterogeneity is
necessary for the development of successful SIT programmes, thus
supporting the case for spatial over non-spatial models, and that
smaller and more frequent releases are more efficient than larger
and less frequent releases, further supporting the work of White
et al. [40] and Dumont and Tchuenche [41] (albeit from a model
of a different species of mosquito).

3. An SIT model for Aedes aegypti
3.1. Motivations

Considering the literature on modelling mosquito dynamics as a
whole, two key factors may be identified that have been observed
to have a significant effect on the efficacy of SIT programmes in
simulations: mosquito dispersal, through which healthy insects

are able to rapidly recolonise areas that have been cleared by SIT
or other control programmes; and pulsed rather than continuous
sterile insect releases, a practical necessity in real world applica-
tions of SIT. Analysis of these two factors and the relationship
between them demands the study of a spatially explicit model
with a pulsed release strategy, something that has received very
little consideration by previous authors, particularly for the
mosquito Aedes aegypti.

The primary goal, therefore, is to present and analyse a simple
model that replicates the essential features of SIT in Aedes aegypti
without detailed reference to the precise biology of the species,
but which is both spatially explicit and capable of simulating
pulsed sterile insect releases. Naturally, the complexity of the
model may be increased in later work through the reintroduction
of more detailed biological information, when the essential influ-
ence of the key spatial and temporal factors has been understood.

In line with the conclusions of Maguire et al. [13] on the value of
such models, the aim is not to create a tool capable of precise fore-
casting for specific SIT implementations, but to broadly assess the
likely impact of simultaneously varying certain factors that have
been seen to affect the efficacy of SIT programmes, including the
number of sites at which sterile insects are released, the interval
between pulsed releases, and the overall volume of sterile insect
releases.

The results obtained from simulations of this model will be
compared with those derived from other models, which may
include more biological detail (with particular reference to the
recent spatial pulsed SIT models of Aedes albopictus from Dufourd
and Dumont [42,43]), to determine whether the relatively simple
assumptions underlying it are capable of producing interesting
and valuable conclusions.

3.2. General features

The model we propose follows similar principles to those of
Legros et al. [19], Barmak et al. [23], Otero and Solari [24], Yakob
and Bonsall [34], and Potgieter et al. [35], in that it comprises many
discrete-time dynamical systems run in parallel over a cellular lat-
tice, with local interactions between cells to model insect dispersal.

Three subpopulations of insects are considered: healthy female
mosquitoes, healthy male mosquitoes and sterile male mosquitoes.
Unlike previous similar models, which were based on rectangular
lattices, the environment is modelled as a hexagonal lattice to
provide more even dispersal of mosquitoes over small time incre-
ments, in order that dispersal between frequent pulsed releases
may be accurately modelled. The precise size and shape of the lat-
tice may be altered depending on the particular environment to be
modelled.

Model time advances in discrete intervals, and dynamical tran-
sition rules are applied to the three subpopulations in each cell.
Formally, x;;,y;, and z;; represent the per-cell population densities
of healthy female, healthy male and sterile male mosquitoes in cell
i at time t. Note that, to ensure the simplicity of the model, these
variables are not constrained to take integer values.

The transition rules calculate dispersal, mortality and reproduc-
tion sequentially as separate processes. Clearly, this is a simplifica-
tion of the true dynamics, since we would not expect these
processes to occur separately in reality.

The different variables and their meanings are summarised in
Fig. 1.

3.3. Dispersal
In common with the models of Otero et al. [17], Barmak et al.

[23], and Potgieter et al. [35], among others, individual insects
are assumed to move to adjoining cells according to a random
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walk. Justification for this process as a basis for mosquito move-
ment in the absence of other stimuli may be found in the work
of Daykin et al. [44], who state that mosquitoes may be assumed
to move in a random direction in such circumstances, and that of
Otero et al. [17], who observe that many experiments (though
not all) show very short dispersal of Aedes aegypti, suggesting that
restricting movement to occur between neighbouring cells should
therefore be reasonable, provided that the spatial scale of the
model is carefully chosen (see Section 5.2).

We suppose that individuals remain in their current cell i with
probability p and move to any particular neighbouring cell with
probability (1 —p)/|N(i)|, where N(i) is the open neighbourhood
of i, the set of all cells adjacent to i. In an infinite hexagonal lattice,
IN(i)| = 6 for all cells. The aggregated dispersal of the mosquitoes is
therefore a diffusion-like process, in common with that of many
previous models (see Sections 2.2, 2.3 and 2.5).

The density of individuals of each type in cell i at time ¢, after
dispersal has been accounted for, is thus given by the following
equations:

Xj 1
Xie = pXjp_1 + (1 Z }t
jeN()
YJt l
Vie = DYy + (1 E: (1)
_]EN
— zjt 1
Zig =pz;p 1+ ( Z
JeN(i)

3.4. Mortality

To model mosquito mortality, we suppose that a certain propor-
tion of insects present ini at time t — 1 will not survive to time t. As
in a logistic growth model, this proportion will depend on the total
population of i, with high mosquito density leading to an increased
mortality rate due to increased competition for resources (for more
detailed discussion of density dependent mortality in relation to
Aedes aegypti and in other SIT models, see [9,19,30]).

We also suppose that each subpopulation has a certain baseline
survival rate, o, f,7 € [0, 1], the respective probabilities that an
individual from each group will survive from time t — 1 to time t
when the population density is low enough that there is no compe-
tition for resources.

Letting X;; = X;; + Vi + Zit» We suppose that the decrease in
each of the subpopulation in i at time t due to mortality is given
by the expressions:

Xie[(1 — o) + oF (X))
Yiel(1 = B) + BF(Xio)] (2)

Zit[(1 =) + YF(Xio)]

where F is a function representing mortality due to density
dependence.

Fig. 2. The dynamics of a dual case The diagrams show the two possible dynamical
behaviours of the dual case in which (0,0) is ‘unstable’ in region A and ‘stable’ in
region B. Regions A and B are divided by the interface y = (o/g)mx. (i) (36) false: e,
(dotted) and e, are directed into region B. (ii) (36) true: e, (dotted) is directed into
region B and e, has non-positive gradient.

Ideally, we would choose F based on our insight into the biolog-
ical processes involved. However, the precise form of the function
is unknown, so in order to gain an understanding of the dynamics,
we choose a generic function with the following features (the
subscripts i and t have been removed for the sake of clarity):

1. F(X) should be continuous and increasing ¥X > 0,
2. F(X) €[0,1],¥X > 0,
3. F0)=0and FX) — 1 as X — oo.

Condition 1 ensures that greater population densities result in
higher mortality and that this relationship is continuous. Condition
2 ensures that the number of deaths in each group is non-negative
and does not exceed the size of the subpopulation. Condition 3
ensures both that mortality due to competition is negligible for
sufficiently low population densities and that there is no upper
bound on the proportion of the population that may die owing to
competition as the density increases.

We choose:

F(X) C>0 3)

C+X’
which clearly satisfies the necessary conditions. Observe that (3) is
related to the Monod equation of microbial growth [45].

Cis a parameter that can be interpreted as controlling the num-
ber of mosquitoes that can be supported by a single unit of area.
Specifically, C is the population density (after dispersal) at which,
at a given iteration and in a given cell, precisely half of all mosqui-
toes will die from overcrowding. In regions in which the terrain is
not homogenous, this parameter may vary from location to loca-
tion, but the analysis of such situations is beyond the scope of this
paper.

We therefore have the following equations to describe the
surviving population in cell i at time t:

()
Density at Di 1 After
time ¢ — 1 1spersa dispersal
Healthy _
Ti,t—1 I Tt
Females ' '
Healthy ‘ . _
Males Yie—1 Yie
Sterile . z
me N :
Males it-1 bt

. After . Density
Mortality ioetaliy Reproduction ot e 4
— it — Tit
— it — Yit
— Ziyt — Zi,t

-/

Fig. 1. Diagram showing the events considered by the model over a single time interval and the meanings of the different variables used at each stage of the process.
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Xip = X o1 — F(Xie)]
Vie = YieB1 — F(Xip)] (4)
Zir =Ziy[1 — F()_(i,t)]

3.5. Reproduction

We assume that, in the absence of sterile males, there is an opti-
mal ratio m of healthy males to healthy females, at which females
can reproduce at their maximum biological rate, b healthy off-
spring per female per time interval, and that when only healthy
insects are present the relationship between the actual ratio of
males to females m;, and the actual rate of production of healthy
offspring per female per time interval b;, is linear for m;, < m.
However, when sterile males are present, this rate will be reduced,
since matings involving such males will be largely unsuccessful.

We suppose that in a cell i, matings involving healthy and ster-
ile males are in the ratio y;; : rz;;, where r is the coefficient of
reduced mating competitive ability of sterile males [40]. Generally,
r < 1 since the procedures used to modify the sterile males also
reduce their reproductive success [1]. If we further assume that a
low proportion » € [0, 1] of the offspring of sterile males are viable
(the basis of the SIT and RIDL techniques), neglecting the subscripts
i,t for clarity and having already reduced the population due to
mortality, we have that the number of healthy offspring produced
iniat time t is given by:
xB<L+ vi) (YL) J4rz < mX

y+1z y+rz mx

XB(L+ v.’—z),

y+1z y+rz

B(x,y,2) =
otherwise

This can be simplified to the following form, from which it can
be seen that the first case is limited by the size of the sexually
active male population y + rz, while the second case is limited by
the size of the female population X :

()

o LGy rurz), y+rz<mx
Bx.y.2) =4 _: i 0 i
Xb<y+r2 ) ,  otherwise

To simplify the model, we assume that the delay from fertilisa-
tion to oviposition is negligible and that viable offspring immedi-
ately become sexually mature adults.

Setting g € (0, 1) equal to the mean proportion of offspring that
are male, the equations governing the change in the populations of
each type of mosquito in i at time t can be written:

Xt = Xip + (1 — )B(Xi¢,Vit, Zie)
Yie = Yir + 8BXis, Vi, Zit) (6)
Zit = Zig

3.6. Equilibria of the healthy population

A derivation of these results presented in this section and visual
representations of the bifurcations described (Figs. 5 and 6) can be
found in Section 4.

Under the dynamics of the model, in the absence of sterile
males, for cells sufficiently far from the boundary, the healthy pop-
ulation (x;;,y;,) tends to an equilibrium (x*,y*), where x* and y*
depend on the values of the parameters. There are three possible
cases:

then (0,0) is the only equilibrium. It is a global attractor and any
healthy population will tend to extinction.
2. 1If:

ool 1)2G)

m < #
(x—p)+ab(1-g)
then (0,0) is an unstable equilibrium and any mixed population of
healthy males and females tends to the following stable
equilibrium:
v _cle=p+abi-g
(c—p)+ob

y = C{w—aﬁlﬁaﬁ [cx(l +b(1 fg)> - 1]

and

[aa +h(1-g) - 1]

and
pbg
(o~ p) +ob(1-g)

then (0,0) is an unstable equilibrium and any mixed population of
healthy males and females tends to the following stable

equilibrium:
[ sha-9 b
X = C{ pl1 +gﬁ -1

>

(h—o)+ph @®
(B—o) + g b

f=C|—— =2 1 — -1

g Lﬁ—a)ﬂf% ﬂ( +gm> }

Evidently, any population involving only one gender will tend
to extinction in all circumstances.
These results demonstrate the existence of a bifurcation at:

-l (11) 230

where the stable equilibrium at (0, 0) splits into a stable equilib-
rium (x*,y*) and an unstable equilibrium at (0, 0) as b increases.

4. Mathematical analysis of the model
4.1. Locating spatially uniform equilibria

A spatially uniform equilibrium of the model (on an infinite
lattice) is a state in which the values of x;;,y;,,z; are constant
(equal to x*,y*,z*, say) over all cells i and at all times t. At such
an equilibrium, by symmetry it is clear that dispersal effects can
be neglected and analysis reduced to a single cell. It is also clear
that z- =0, since any non-zero population of sterile males is
strictly decreasing due to mortality. We therefore restrict our
analysis to the two-dimensional system representing the healthy
population before the commencement of a sterile insect programme.

Let m* be the ratio of males to females at a particular spatially
uniform equilibrium. The population vector for a single cell at such
an equilibrium can then be written as (x*,m*x*) and, by (6), we
have:
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X' =X +(1-g)Bkx".y",0)
mx =y +gB(x.".0)
where x* and y* represent the densities of males and females after

mortality (but before reproduction) in this scenario.
By (4), these equations can be rewritten:

x* =x0[1 - F(1+m")x)] + (1 -g)BX",y,0)

mx = ma Bl - F((1+m')x)] + gBX',5",0) ®

It is clear that x* = y* =0 is trivially an equilibrium. To find
other equilibria, there are two possible cases to consider. First,
we consider the case in which, after mortality has been calculated,
there is no deficit of males: y*/x* > m. By (5), after rearranging and
simplifying, (9) becomes:
1=ofl —F((1+m")x)][1+b(1—g)] (10)
m* = [1 - F((14m")x")][m"p + obg] (11)

and (10) can be rearranged to give:

1
_ 12
1+b(1 —g)} 12

F(1+m)x) =1 —%

Substituting into (11), we find that the ratio of males to females
is:

B9

Finally, using (12), (13) and the definition of F, we find that:

X*_C{wmwﬁ(lg)

o [rx(l +h(1 —g)) —1}

: (14)
y=C {70(@ <

s [a(l +h(1 —g)> - 1]

The second case is that in which there is a deficit of males after
mortality has been calculated: y*/x* < m. Following a similar
method, we have:

ek 3]

r8)
(16)

x*=CLﬁ%(1_g)

B—o)+p

(B—o)+ple b
f= (| fme 1+g-|-1
ree G )|

4.2. Validity of spatially uniform equilibria

For each of these two cases to represent a genuine non-trivial
equilibrium, three conditions must be satisfied:

1. y*/x* = m; [for (14)] or y*/x* < m; [for (16)],
2. m >0,
3.x+y" >0.

These are necessary and sufficient conditions for the equilibria
to exist.

We first demonstrate that it is not possible for both equilibria
to exist simultaneously. From (4), we see that y*/x* = m*(f/a).
Substituting into this expression for the first equilibrium (14),
using the appropriate expression for m* (13), condition 1
becomes:

< pbg.
(0= p)+ab(1-g)

For the second equilibrium (16), with a similar substitution of
(15), condition 1 becomes:

(= p)+ab(1-g)>0 (17)

e P8 g iab(—g) >0 (18)
(x—p)+oab(1-g)
Hence the existence conditions for each equilibrium are mutu-
ally exclusive.
Note that the condition (o — f) + ocB(l — g) > 0 is stated for the
following reasons:

o (00— pB)+ ozi)(l — g) < 0 would imply that the right hand sides of
the inequalities for m are negative. Since m > 0, this leads to a
clear contradiction in (17). It also leads to a contradiction in
the second case, since the inequality would be reversed during
the algebraic manipulation required to derive (18).

e (00— B) +ab(1 —g) = 0 is not possible at a non-trivial equilib-
rium. In the first case, substituting this expression into (14)
would imply a violation of condition 3. In the second case,
substituting (15) into condition 1 leads to a contradiction of
the equality.

Now, taking the first case (13, 14), conditions 2 and 3 become:

b>-1(t_1 .
) ma =) <:>b>L<1—l> (19)
b>:(G-1) 1-g\x

For the second case (15) and (16), conditions 2 and 3 become:

>%<’%_ > <:>B>§(1—1> (20)

oo

oo
\
0|3
S
|
N——

So, (14) is a valid non-trivial equilibrium if and only if condi-
tions (17) and (19) hold, while (16) is a valid non-trivial equilib-
rium if and only if conditions (18) and (20) hold.

To consider a special case, if we assume that males and females
are born and die at equal rates and that the optimal reproductive
ratio of males to females in the ecosystem is one-to-one (i.e.
g=1,0=p=0a,m=1), the two equilibria coincide:

x*:y*:%[ao<2+[)>—2] 1)

This is a valid non-zero equilibrium provided that it defines
positive values for y* and x*, which is the case if and only if:

B>2<171)
0o

4.3, Stability of non-trivial equilibria

Consider the Jacobian matrix J of the dynamical system (6)
(following on from the previous sections, we consider only the
two-dimensional dynamics of a healthy population):

J— (8)(:/8?(:71 8?([/3th1)
Y /O%e 1 OYi/0Yeq

In this model, there are two forms for the Jacobian matrix,
J; and J,, for the two «cases (Y, ;/x1)(B/a) > m and
(Vi_1/X-1)(B/ox) < i respectively.

The stability of an equilibrium of a two-dimensional discrete-
time dynamical system is determined by the eigenvalues /;, Z, of
J, which may be real or complex. Without loss of generality,
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suppose that |1;| < |42|. A point is stable if | 4,|,|42] < 1 and unstable
if at least one of |24], |1;| is greater than 1.
From (6), neglecting the subscript t — 1 for clarity, we find that:

-8l

C 3
[C+x+y]

det(J,) = ocﬁ[l +b(1

b (22)
det(J,) = af|1 t58

Notice that det(J,) and det(J,) depend only on the total popula-
tion x + ¥, and are independent of the ratio of males to females.
Substituting (14) into det(/,) and (16) into det(/,), we have:

det(]) = {1 +b(1- )] N at equilibrium (14)
-2 (23)

at equilibrium (16)

det()) == |1 +%g

For the trace, we find that:

~ |a(C+Y)+ B(C+x)+ab[(1—g)(C+y) — gx]
tr(.]]) - 2
(C+x+y) (24)
| UC+Y)+ BC+X)+ pL[g(C+x)— (1-g)yl]
tr(]z) - 2
(C+x+y)

Substituting (13) and (14) into tr(J;) and (15) and (16) into
tr(J,), we have:

tr(J) = /H] [1 +b(1- )]71 at equilibrium (14)
. (25)

2t at equilibrium (16)

B

Since det(J) = 214, and tr(J) = 41 + 42, we can write the eigenvalues
at each equilibrium by inspection:

tr(J) = 1+bg

for equilibrium (14)

for equilibrium (16)

Note that in each case the eigenvalues are real, positive and
distinct.

Now, from (19), we see that 1 + B(l —g) > o1 at equilibrium
(14). Comparing this with the expressions above shows that
|41],142| < 1. Similarly, from (20), we see that 1+ gh/m > ! at
equilibrium (16). Again, this implies that |24], |12] < 1.

These results guarantee the stability of non-trivial equilibria in
the majority of cases. However, it remains to consider equilibria
that lie on the line y = (a/f)mx between the region in which
there is an excess of males and that in which there is a deficit.
Such equilibria must be shown to be stable from both sides of
this interface. In other words, at an equilibrium on this line, we
require that:

1. The point would be an equilibrium under both forms of B (see

(5))-
2. In both cases of (26), |11],|42| < 1 at this point.

For a non-trivial equilibrium, these conditions are easily dem-
onstrated. Condition 1 holds through the continuity of B as func-
tion of X,y,z on the interface. Condition 2 holds automatically for

the first case of (26), since equilibrium (14) is defined on
y = (o/p)mx. For the second case, from (17) and (18) we see that

at an equilibrium on the boundary:
m—___ Pbs
(0= p) +ab(1-g)

Substituting this into the second case of (26), we find that

:[1+l5(1—g)]71 :1[1+13(1—g)y1
o
These are both less than 1 in modulus, since we again have that
1+b(1-g)>oa! at equilibrium (14), by (19), which confirms
condition 2.
Therefore, if they exist, equilibria (14) and (16) are stable.

44. Stability of (0,0)

The point (0,0) also lies on y = (o/f)mx, but since the above
results were only valid for non-trivial equilibria, there is no prima
facie guarantee that the origin will not be stable from one side of
this line and unstable from the other.

By (22) and (24), at (0,0), we have:

det(],) = ap [1 +h(1- g)]

det(J,) = B |1+ = b g

tr(f,) :ﬂ+a[l +h(1 7g)}

b
tr(J,) =o+p 1+ﬁg

Hence by inspection, we have the following eigenvalue pairs:

=p, = (x{l +b(1 —g)] for J,
b (27)
A =0, 12:ﬁ1+ﬁg for J,

Note that we no longer necessarily suppose that |41| < |12]-
After rearranging, sufficient stability conditions for (0,0) can
hence be written:

- 1 1 . o .
b<—(f—1> for the regiony > — mx 28
7 \z giony > 7 (28)
- m/1 o
b<—<——1> for the region y < —mx 29
7 7 giony < (29)

Note that these inequalities unsurprisingly mirror stability con-
ditions (19) and (20) for the non-trivial equilibria. If both these
conditions hold, then (0, 0) is stable. Otherwise, the point may be
‘stable’ under some perturbations but ‘unstable’ under others.
We describe such situations as dual cases.

4.5. Analysis of dual cases

Understanding exactly what happens in the neighbourhood of
(0,0) for these dual cases requires further analysis of the eigen-
vectors of J; and J, at (0,0). Clearly [0,1]" is an eigenvector of J,
and [1,0]" is an eigenvector of J,. With regard to the other
eigenvectors, it is important to understand whether the gradient
of each is greater than or less than the gradient (o/f)m of the
interface between regions with an excess and with a deficit of
males.
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The eigenvectors are:

(1 Al
el{g<l+b(l—g)—&>,l} for J,

m b o\l

Note that the first component of e; and the second component
of e, may be equal to zero, leading to degenerate behaviour. We
disregard these situations, since they are not preserved under
small perturbations of the parameters and are therefore unlikely
to occur in reality.

Suppose that, according to our analysis, (0,0) is potentially
‘unstable’ in the region y > (o/f)mx in which there is an excess
of males, and ‘stable’ in the region y < («/f)mx in which there is a
deficit of males. This means that (29) holds and (28) does not hold:

B;é(#l) (30)
B<§<%71> (31)

Clearly, the gradient of e, the eigenvector associated with the
‘unstable’ region, is not equal to zero. We also observe that it can-
not be negative, since this would imply:

-1 (B 1 /1
”<@<&”><ﬁ(&”)

which contradicts (30).
Now assume that the gradient of e, is greater than or equal to
the gradient of the interface:
- - p 1w
— - > —
bg(1+b(1 g) P /),m

Having established that the gradient is non-negative, this can be
rearranged as:
~ m [o ~
> | = _ _
b= L} (1+b(1 g)) 1} (32)

and, by (30), this implies:

02230y 1 )o-a)-
;»B>;<1—1> (33)

which contradicts (31). Hence, the assumption was false and the
gradient of e; must be less than the gradient of the interface and
greater than zero.

Now assume that the gradient of e, is greater than or equal to
the gradient of the interface:

L I
b(1-g) m= B B

This can be rearranged as:
-1 [p b
bglg[a (1+mg) —1} (34)

and, by (31), this implies:

< 2D -6ty (o) o

which contradicts (30). Hence, the gradient of e, must be less than
the gradient of the interface, becoming non-positive when:

<2

So, if (0,0) is potentially ‘unstable’ in the region y > (a/8)rmx
and ‘stable’ in the region y < (o/B)mx, as we supposed, then we
have shown that, when the eigenvectors are anchored at (0, 0), nei-
ther is directed into the region above the interface, with e, directed
between the interface and the x-axis and e, directed into the same
region or into the negative quadrant. The two possible classes of
dynamical behaviour are illustrated in Fig. 2. Trajectories are rep-
resented as curves for ease of understanding, though they are actu-
ally sequences of discrete points.

The key point is that the eigenvector e, associated with unstable
behaviour is not directed into the region in which this instability
occurs. Therefore, near (0, 0), trajectories from this ‘unstable’ region
must cross the interface and then converge to (0,0) along a path
which becomes parallel to e; if this vector is directed into the posi-
tive quadrant (Fig. 2 (i)), or to the x-axis if it is not (Fig. 2 (ii)). To see
that e, dominates the behaviour of trajectories near (0,0) in situa-
tion (i) while [1,0]" dominates the behaviour of trajectories near
(0,0) in situation (ii), it suffices to consider the relative size of the
eigenvalues of J, when (36) is true and when it is false.

A similar argument can be made to demonstrate that the two
eigenvectors have gradient greater than that of the interface when
(0,0) is ‘stable’ in the region y > (o/f)mx and potentially ‘unstable’
in the region y < (a/B)mx.

There remains an ambiguous case in which neither (28) nor (29)
holds, but where:

-l (1-1) 230

In this case, the point (0,0) is stable, since the relevant equa-
tions that should define a stable non-trivial equilibrium, (14) or
(16), can be shown to coincide with the origin.

Hence, (0,0) is unstable if and only if:

oy ()20

4.6. Parameter variation

(14) and (16) and their accompanying existence conditions,
constitute an explicit description of the non-trivial spatially uni-
form equilibria of the model. In Section 5 we attempt to determine
realistic values for the parameters, but it should be noted that
alongside the ‘fast’ population dynamics described by the model
the parameters may also change on longer time scales. In particu-
lar, the number of mosquitoes that ultimately reach adulthood
from a single oviposition depends on temperature and rainfall,
leading to significant seasonal variations in the population [9]. In
our model, this variation is contained in the parameter 15, so it is
sensible to examine how the dynamics change as b varies.

Eliminating b from (14) provides the locus of the equilibrium in
the region y > (ot/p)mx:

x* - Gy2 +(1-gxy+(1—-0)Cx—(1-p)CGy=0 (37)
where
G:l—l

g

Eliminating b from (16) yields the same equation. This indicates
that for fixed values of g, o« and B, the potential equilibria for pop-
ulations with an excess of males and for those with a deficit lie on
the same curve in the phase plane. Choosing a particular value of b
determines the position of each of the potential equilibria on this
curve. From Section 4.2, we know that at most one of these points
will lie in the region of the phase plane in which it defines a true
equilibrium.
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Fig. 3. Bifurcation diagrams for the spatially uniform equilibria of the healthy population as b varies. Solid graph lines represent stable equilibria, while dotted graph lines

represent unstable equilibria. Arrowheads indicate convergence to equilibrium for different values of b.
(i) o =%, p=7%,C=8,g =3, m=1[Deficit of males at (x*,y")] (ii) x = 5,8 =55,C=8,g =3, m =1 [Excess of males at (x*,y*)] (iii) « = &,

The parameters for each subfigure are:
8 — _ 51 T — 51
0. C=8,g=77.Mm=2

[‘Optimal’ gender ratio at (x*,y*)] where (x*,y*) represents the non-trivial equilibrium, where it exists.

Eq. (37) defines a conic, whose squared eccentricity is given by:
G +1
V2VGE +1+(1-g)

e? =2v2

(38)

where the sign of (1 —g) in the denominator matches the sign of
(@ p).

Observe that, in both cases, the right hand side of (38) is greater
than 1,vg >0, and therefore, since the eccentricity is a non-
negative quantity, we have that e € (1,0),Vg > 0. Therefore, the
locus of the equilibrium as b varies is part of a (possibly degener-
ate) hyperbola for all values of the other parameters.

One question that can be posed about the system is whether the
population of mosquitoes can pass from an equilibrium state in

which there is a deficit of males to one in which there is an
excess as b varies. This situation can occur if Eq. (37) and the
interface y = (o/B)1mx intersect at some point with positive x
and y coordinates. Aside from the origin, the intersection point
is given by:

T - @B a1 p)Gin
*= ’K[ (o + B) (G — f) }
T wp— o — p)Gin
y‘“aﬁ wm+mwmc—m}

(39)

and it is easy to check whether or not these equations define posi-
tive x and y values for a given set of parameters.
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Fig. 4. Bifurcation diagrams for the spatially uniform equilibria of the healthy population as b varies. Solid graph lines represent stable equilibria, while dotted graph lines

represent unstable equilibria. Arrowheads

indicate convergence to equilibrium for different values of b. The parameters for this subfigure are:

(iv)

o=%,8=17%,C=8,g=2%1m=1.In this case, whether there is a deficit or an excess of males at the non-trivial equilibrium (x*,y*) depends on b. The vertical dotted line
indicates the point at which (x*,y") crosses the interface y = (a/f)mx from the zone in which there is a deficit to the zone in which there is an excess.

(i) (ii)
8.0 - 8.0 .
6.4} / 6.4 |
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3.2 3.2 7
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1.6 1.6 52
0.g&— : : : 00— : : ’
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% T
(iii) (iv)
8.0 . 8.0 : -
6.4 6.4
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4.8t 4.8
Y Y
3.2 3.2
Deficit of males Deficit of males
1.6f 1.6
0.0 . . . . 0.0 : - : :
0.0 1.6 3.2 4.8 6.4 8.0 0.0 1.6 3.2 4.8 6.4 8.0
X xX

Fig. 5. The locus of the non-trivial equilibrium (x*,y*) as b varies. The arrows indicate the direction of increasing b. The interface y = («/p)mx between zones with an excess
and with a deficit of males is indicated with a dotted line. The parameters for each subfigure are: (i) o =%, =%,C =8,g = {;,m =1 [Deficit of males at (x*,y")] (ii)
o= f=5.C=8,g =3k, =1 [Excess of males at (x',y)] (iii) & = &, f = .C = 8,g = £, i = 3} [‘Optimal’ gender ratio at (x'.y")] (iv) ot = &.f = %5.C = 8,g = .11 = 1
[Deficit, excess and ‘optimal’ cases all possible, depending on b]

Note that in the special case where amG = B, there are two

possible situations:

o If o # B, then the origin is the only point of intersection.

The changing behaviour of the system as b is varied is visualised
in Figs. 3-6. Figs. 3 and 4 show bifurcation diagrams of the dynam-
ics of the healthy population as b varies for four distinct cases,
clearly indicating the bifurcation described in Section 3.6. Fig. 5

e If o = 3, then (37) and y = (a/B)mx coincide. In this case, if the
non-trivial equilibrium exists then it necessarily has the
‘optimal’ ratio m of males to females.

shows the locus of the non-trivial equilibrium (x*,y*) as b varies
for the same four cases. Fig. 6 presents vector fields of the
dynamics and the location of (x*,y*) for particular values of b.
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5. Parametrisation of the model for Aedes aegypti
5.1. Objectives

In this section, with reference to previous research, we attempt
to determine sensible values for the parameters
P, By, b,g,m,r, vand C, and for the cell-size and time increment,
such that the model may represent the dynamics of an SIT pro-
gramme for Aedes aegypti. We also attempt to determine what a
sustainable overall rate of sterile insect release for such a pro-
gramme might be.

Naturally, the values chosen should in no way be seen as defin-
itive, not least because most would be expected to vary consider-
ably, both geographically and seasonally, or to depend on the
precise way in which sterile insects are produced. They should
rather be seen as reasonable initial values for our simulations,
through which a broad analysis of the behaviour of the model
may be performed.

A summary of the final values chosen for each parameter, along
with the sources from which they were derived, is provided by
Table 1.

5.2. Dispersal

Shelly and Mclnnis [2] argue that any successful SIT programme
for Aedes aegypti “demands a very fine spatial scale” owing to the
low dispersal rate of the insect. Estimates of the mean distance
travelled per day by Aedes aegypti vary considerably between stud-
ies. Muir and Kay [46] calculated values of 24.7 m and 18.2 m for
females and males released outdoors, and commented that dis-
persal rates “would depend on the physical characteristics of the
study site ...and on the physiological state of the mosquitoes.”
Sheppard et al. [47] estimated a mean distance travelled per day
of 37 metres.

A mark-release-recapture study of the dispersal of the species
in Cairns, Australia [48] divided the recapture zone into annuli
whose radii increased by increments of 50 m. If we similarly set
the distance between the centres of neighbouring cells in our
model to 50 m, the time increment of the model to 24 h and the
value p = 0.4, the mean distance travelled by mosquitoes in a sin-
gle time increment (one day) is 50(1 — 0.4) = 30 m, which is of a
similar order to the estimates cited.

Table 1

Summary of parameter values used in the model simulations and the sources from
which they were derived. Note that the values are not necessarily drawn directly from
the sources; rather, where multiple sources are cited, they have been compared and
combined to deduce reasonable values for the relevant parameter. Discussion of the
reasoning behind these decisions can be found in the given sections of the text.

Parameter Value used in Sources  See Section...
simulations

p 0.4 [2,46,47] 5.2
o 0.9 [9,46,49] 5.3
B 0.7 [9,46,49] 5.3
Y 0.6 See text. 5.3
b 16 [9,46] 5.4
g 51/101 [50] 5.4
m 1 See text. 5.4
r 0.56 (5] 5.4
v 0.035 [5] 5.4
C 8 [9,51,52] 5.5
Distance between centres of 50 m [48] 5.2
neighbouring cells represents. ..

One model iteration represents... 24h See text. 5.2

5.3. Mortality

Most models and studies of Aedes aegypti dynamics agree on a
survival rate per day of around 0.9 for healthy female mosquitoes,
though the value decreases with the age of the insect [9,46,49]. For
males there is more variation in the figure used, with estimates
ranging between 0.53 and 0.87. We take the values o= 0.9,
B =0.7. Since there are many variations of SIT, with transgenic
methods developing all the time, choosing a realistic survival rate
for sterile males in a hypothetical future control programme is
difficult. We assume that the ‘sterilisation’ procedure decreases
the survival rate slightly and set y = 0.6.

5.4. Reproduction

Female Aedes aegypti lay an average of 63 eggs in a single gono-
trophic cycle [9]. A gonotrophic cycle lasts around four days [46],
though a female’s first cycle is shorter than normal [9]. We take
a value of b = 16, the average number of healthy offspring per
female per day, assuming that there is no deficit of males. This
may be an overestimate, since a significant proportion of eggs will
fail to develop into sexually mature adults (see [24]).

Arrivillaga and Barrera [50] found that the ratio of males to
females that reach maturity (as opposed to the gender ratio of
mosquitoes living in the environment) is 1.02, which suggests a
value of 2; for g. The correct value of i, the minimal ratio of males
to females in the environment such that females can reproduce at
their maximum rate, is unknown. For our simulations, we take
m=1.

A recent study by Harris et al. [5] found that the relative repro-
ductive fitness of genetically modified males for SIT was 0.56. The
same study showed that 3.5% of the offspring of these males were
viable when mating with healthy females. This suggests parameter
values of r = 0.56, v = 0.035.

5.5. Population density

Although C was defined in terms of the effect of overcrowding
on insect mortality, it effectively governs the density of the healthy
mosquito population at equilibrium, as seen in (7) and (8). Since
mosquito density varies according to the terrain and the tempera-
ture and displays seasonal cycles [9,17], it is impossible to choose a
value for C that would be appropriate in all circumstances.

A comparison of the conclusions of the following studies illus-
trates the extent of this variation. A 1960-1961 study of Aedes
aegypti in Pensacola, Florida [51] estimated an indigenous popula-
tion of approximately 3.56 male mosquitoes per hectare in a sub-
urban area of 238 acres (96 hectares) in July 1960, and of
approximately 67.9 male mosquitoes per hectare in a rural area
of 48 acres (19 hectares) in July 1961. In contrast, a 1970 study car-
ried out over a scrap heap in Dar-es-Salaam, Tanzania [52] pro-
duced estimated female populations of around 2300 per hectare
on 19 September, dropping to just over 900 per hectare a little over
a month later. More recently, a simulation of Aedes aegypti popula-
tions in Buenos Aires, Argentina [9] indicated population cycles of
between 0 and 400 adult mosquitoes per hectare across the year.

Given the values chosen for the other parameters, using the
results of Section 3.6, our model predicts an equilibrium popula-
tion density of 5.36C healthy mosquitoes per cell, which corre-
sponds to 24.7C healthy mosquitoes per hectare (to 3 significant
figures). For the purposes of the simulation, we set C = 8, resulting
in an equilibrium population density of approximately 197.9
healthy mosquitoes per hectare, very broadly in line with the
widely spread observed and simulated population densities
discussed above.
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5.6. Volume of sterile male releases

To gain an insight into the volume of sterile male releases that
may be sustainable, the aforementioned 1960-1961 Pensacola SIT
study involved a mean release rate of over 100000 sterile males
per week (4600000 sterile male releases over 43 weeks [3]).
Indeed, much higher volumes may be possible and have been
achieved with other species, such as in the successful programme
to control screwworm fly (Cochliomya omnivorax) in 1958, also in
Florida, in which around 50000000 flies were released per week
over a period of eighteen months [32]. [1] note that “the largest
single sterile-insect production facility in the world produces
around 2 billion sterile male Medflies per week”, while certain
mosquito species have reared at volumes of greater than
1000000 males per day.

6. Analysis of release strategies for SIT
6.1. Simulation methodology

A computer simulation of the model was used to examine the
impact of three factors on the effectiveness of SIT in reducing Aedes
aegypti populations: the number of release sites, the interval
between pulsed releases and the overall mean volume of sterile
mosquitoes released per unit of time.

Simulations were performed over a lattice of 144 hexagonal
cells, arranged in 12 rows of 12. To eliminate edge effects, opposite
edges of the grid were considered to be connected such that, in
Fig. 7, all cells marked ‘B’ are neighbours of ‘A’ and all cells marked
‘D’ are neighbours of ‘C’. To interpret the use of periodic spatial
boundary conditions of this sort, we suppose that an SIT pro-
gramme is applied ‘evenly’ to a large region of which the simula-
tion zone represents a smaller part. The validity of the use of

Fig. 7. The simulation zone
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periodic boundary conditions to model large spatial regions in this
way has been investigated (and confirmed) by [53].

Based on our parameters, the simulation zone has an area of
approximately 312000 square metres (31.2 hectares) and is roughly
rectangular, measuring 600 m by 520 m. In applications of the
model, the size and shape of the region and the nature of the bound-
aries would naturally depend on the area to be represented.

In all runs of the simulation, in common with the approach of
Yakob and Bonsall [34] to model SIT control of an established wild
mosquito population, the initial population of healthy males and
healthy females was set at the spatially uniform equilibrium deter-
mined in Section 3.6: approximately 99.7 healthy females and 98.1
healthy males per hectare, corresponding to 21.6 healthy females
and 21.2 healthy males per cell (all to 3 significant figures). Natu-
rally, the model is sufficiently flexible that other initial distribu-
tions of mosquitoes could be simulated to match field
observations for a specific location.

6.2. Sample runs
Figs. 8 and 9 show the results of 20 sample runs of the simula-

tion for various release intervals and numbers of release sites. For
each run, sterile insect releases commenced at the eighth iteration

(i.e. after one week). A random spatial release strategy was
employed, similar to that of Ferreira et al. [4], such that for each
individual pulsed release, an appropriate random sample of the
144 cells was chosen as the release sites and available sterile male
mosquitoes were divided evenly between these cells. A brief
discussion of alternative patterns of sterile insect releases can be
found in the appendix.

In each case, the total number of insects released was fixed to
ensure a mean release rate of 100000 sterile males per week (7
iterations) across the entire simulation zone. This corresponds to
a mean rate of release of approximately 3200 sterile males per
hectare per week. Recall that for the sake of simplicity, the model
does not require that insect populations per cell be integers.

The 20 runs depicted in Figs. 8 and 9 were chosen as represen-
tative examples of the much larger number of simulations that
were conducted. They illustrate several key features of the popula-
tion dynamics, which were widely observed across all runs of the
model.

Firstly, in all cases, the greater the number of sites over which
sterile males are divided, the more effective the release strategy
seems to be in reducing the size of the healthy population.
Similarly, though the mean rate of release is the same in all cases,
shorter intervals between pulsed releases seem to be more
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effective than greater intervals, in line with the findings of White
et al. [40], Dumont and Tchuenche [41], and Dufourd and Dumont
[42,43].

Secondly, it is evident from the figures that while sterile male
releases can dramatically reduce the size of the healthy population
in the short term, recovery between releases is extremely rapid.
For the greater release intervals seen in Fig. 9, it can be seen that
even when reduced to extremely low levels by widely spatially
spread releases, the healthy population is able to bounce back
quickly, such that in many cases the population has recovered
almost to the healthy equilibrium before the next releases take
place.

Examining individual runs suggests that this may be due not
only to a rapid rate of convergence to equilibrium in the model,
but also to the fact that since sterile males are released in dense
groups, they are subject to high mortality. This results in a low dis-
persal of sterile males and the persistence of pockets of healthy
mosquitoes that are largely unaffected by sterile releases and are
therefore able to rapidly recolonise those areas in which healthy
insects have been wiped out.

This finding is in line with the observations of several other
authors [16,17,29,34] regarding local eradication and recolonisation

processes in SIT models. However, it has a potentially interesting
implication for the design of SIT programmes that has apparently
not been noted in previous work, since few authors have explicitly
considered the spatial distribution of sterile insect release sites in
pulsed release models.

Specifically, this finding suggests that it may be necessary to
carefully consider any density dependent mortality of sterile
males, their rate of dispersal and the density of the wild population
to determine the optimal distance between release sites, interval
between pulsed releases and number of sterile males released
together at each location, to ensure that the number of unneces-
sary deaths of sterile males due to localised high population densi-
ties is minimised. If this effect truly exists in real world
applications of SIT, failure to take these factors into account could
lead to costly and ineffective control programmes.

Thirdly, for those sample runs with release intervals greater
than 1 day, two distinct dynamical behaviours are evident. Either
the healthy population is eradicated or it settles into fairly regular
oscillations whose period is equal to the release interval. The main
exception is the run representing a release strategy of 45 release
sites, with a release interval of 3 days, where it is not clear from
Fig. 8(ii) whether the long term dynamics will conform to one of
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iterations (119 iterations for release intervals of 7 days) of each of 10 simulations of 300 iterations, relative to the equilibrium value of approximately 197.9 insects per

hectare.

these two types or display some form of irregular oscillatory
behaviour.

Of the 5 sample runs with release intervals of 1 day, in those for
1 and 5 release sites, the healthy population seems to settle to a
noisy equilibrium, for 45 and 135 release sites the healthy popula-
tion is rapidly eradicated, while for 15 release sites, it is again
unclear from Fig. 8(i) whether the long term dynamics will
conform to one of these two types or display some form of irregu-
lar oscillatory behaviour.

6.3. Release interval and number of release sites

To examine the effect of varying the release interval and
number of release sites in more detail, 84 different release strate-
gies were considered, with the release interval ranging from 1 to
7 days and the number of sites ranging from 1 to 144 (the latter
representing a uniform release of sterile males in every cell).

To measure the success of a particular release strategy, the sim-
ulation was run for 300 iterations and the mean size of the healthy
population per hectare was calculated over the final 120 iterations
for release intervals of 1 to 6 days or the final 119 iterations for a
release interval of 7 days (ensuring that a whole number of release
cycles was included in each calculation). The mean of these values
was calculated over 10 runs to obtain a measure of the long-term
mean healthy population per hectare for each release strategy. As
in Section 6.2, releases commenced at the eighth iteration, were
divided evenly between randomly chosen release sites and the
overall rate of sterile male production was fixed at 100000 insects
per week.

The results are presented in Fig. 10. The percentages in the fig-
ure compare the observed long-term mean healthy population per
hectare from the simulations to the healthy equilibrium of 197.9
insects per hectare. It should be noted that, while percentages of
0% indicate eradication, the non-zero percentages mostly do not
represent stable states, but the averages of high-amplitude oscilla-
tions, as seen in Figs. 8 and 9.

The figure supports the hypothesis that lower release intervals
and higher numbers of release locations are more effective in
reducing the size of the healthy population. It can also be observed
that for release intervals of 5 days or more, the value of increasing

the number of release locations is significantly reduced. For release
intervals of 6 or 7 days, even distributing sterile males evenly
across every cell is not sufficient to reduce the healthy population
to below a third of its equilibrium value on average. This suggests
that there may be some threshold release interval (4 days in this
model and with these parameters), above which the efficiency of
a release strategy is seriously compromised.

It should also be noted that Fig. 10 shows that even for daily
releases, more than 14 release sites were required across the
simulation region to induce eradication of the healthy population,
corresponding to greater than 2.2 release sites per hectare, thus
supporting the assertion of Shelly and McInnis [2] that a successful
SIT programme for Aedes aegypti demands “a very fine spatial
scale”.

6.4. Release volume

Using a similar method to that of Section 6.3, further runs were
performed in which the overall rate of sterile male production in
the model was varied between 10" and 107 individuals per week.

Since the parameter values determined in Section 5 are neces-
sarily rather broad estimates, it would be unreasonable to draw
conclusions from the model that rely strongly on absolute numbers
of insects. The structure of the dynamical Egs. (6), which are invari-
ant under the multiplication of the variables x;;,y;.,zi by a com-
mon factor, suggests that some consideration of the relative sizes
of the populations would be a more justifiable approach.

For this reason, rather than considering absolute volumes of
sterile male releases, we instead consider the ratio of the overall
rate of sterile male production per week to the equilibrium popu-
lation of healthy males across the entire simulation zone (approx-
imately 3060). In Fig. 11, which shows the long-term mean healthy
populations per hectare calculated from simulations for various SIT
strategies, this quantity is referred to as the “production ratio per
unit area” and is plotted on a logarithmic scale. As before, each
point plotted represents an average across 10 runs, over the final
119 or 120 of 300 iterations.

The production ratio is a convenient measure of the intensity of
sterile male releases both because it is simple to convert between
it and the absolute volume of sterile males produced in the model
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(a production ratio of 10* is approximately equal to a model
weekly production of 103> sterile males) and because it facili-
tates comparison with other works that also consider ratios of ster-
ile to healthy males (e.g. [29,34,36]).

From the figure, it may be observed that for production ratios
below 1 (10° in the figure), simulation results suggest that SIT is
almost completely ineffective for all release intervals and numbers
of release sites. Since a production ratio of 1 indicates that the
number of sterile males produced per week per unit area is equal
to the equilibrium population of healthy males per unit area, this
result tentatively suggests the existence of a threshold time inter-
val (approximately one week in this model) across which the vol-
ume of sterile males released must exceed the equilibrium size of
the healthy male population in order for an SIT strategy to be
effective.

It can also be observed that in all cases, whether the healthy
population has been eradicated or not, if all other release options
are held constant, above a certain threshold production ratio, even

dramatic increases in the volume of sterile male releases have little
to no effect on the resulting effectiveness of SIT, as measured by the
long-term mean healthy population per hectare. Depending on the
release interval and the number of release sites, this threshold value
is broadly observed to lie somewhere between 10" and 10?, indicat-
ing overall sterile male production per week per unit area of
between 10 and 100 times the equilibrium size of the healthy male
population per unit area. This effect may be due to density depen-
dent mortality of sterile males, as discussed in Section 6.2.
Whatever the causes, if the observed effects are replicated in
real world applications of SIT, identifying these threshold values
would be extremely important in avoiding both futile underpro-
duction and costly and ineffective overproduction of sterile insects.

7. Discussion of the model

Since the model presented in this paper was designed to repli-
cate the spatial dynamics of an SIT programme in a simple manner,
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there are clearly a number of ways in which it could be adapted,
extended and improved.

Regarding the modelling of the dispersal of Aedes aegypti as a
random walk, some studies have suggested that this may not be
justified. From research with honeybees, [54] suggest that flying
insects may search for food using a Lévy flight pattern, while
dispersal studies of Aedes aegypti indicate that females preferen-
tially move towards more highly shaded and vegetated areas with
high concentrations of suitable breeding sites and that they avoid
crossing busy roads [48]. Also, the model does not explicitly con-
sider the availability of food (human blood in preference [9]),
which might be expected to have a significant effect on mosquito
movement. It may therefore be beneficial to incorporate a more
detailed representation of mosquito dispersal (that proposed by
[20], for example) into future versions of the model, in which indi-
viduals preferentially move towards more attractive locations (e.g.
more highly populated areas or those with higher concentrations
of oviposition sites), by adding spatially dependent biases to the
random walk process.

The consideration of mosquito densities rather than explicitly
counting individuals may also give rise to misleading conclusions.
In the model, since mosquito populations are not required to take
integer values, the healthy population of a cell may recover from
levels close to zero, when in reality a population of less that one
should indicate eradication. Therefore, some strategies may be
more effective than the model would suggest. This issue could be
addressed by rounding all populations to the nearest integer or
by considering an equivalent agent-based model.

It is further noted that several of the simplifying assumptions of
the model, such as the immediate introduction of sexually mature
offspring following fertilisation, may not be reasonable, since the
validity of models that do not fully take into account the complex
life-cycle of Aedes aegypti has been called into question [40]. In par-
ticular, it has been observed that density dependent mortality in

the species operates particularly strongly at the larval stage of
development, and both experimental and theoretical studies have
concluded that reducing the number of individuals present at this
stage (for example, as the result of an SIT programme) may actually
result in an increase in the size of the adult population [55,34],
potentially necessitating far more detailed modelling of the pro-
cesses of hatching and development than is present in the model
considered here [18]. Again, this suggests that it may be beneficial
to extend the current model, either through the introduction of a
time delay between fertilisation and the introduction of mature
offspring or through explicit modelling of the immature stages of
the insect’s life cycle.

It may also be beneficial to re-examine those parameter values
used in the model that relate directly to the biology of Aedes
aegypti. In particular, it would be desirable to determine a reason-
able value for the ratio m of healthy males to healthy females at
which females may reproduce at their maximum biological rate.
Evidence suggests that the correct value may be smaller than that
used in our simulations, since male mosquitoes of the related
species Aedes albopictus have been described as “sexually very
active” and are capable of mating with 8-9 females per day [43].

However, key features of the dynamics described in this paper
do match those reported in other work, such as the observed local-
ised eradication and recolonisation processes, and it is therefore
hoped that the model provides a sufficiently faithful representa-
tion of SIT such that the broad conclusions drawn regarding release
strategies may prove valuable in informing future modelling and
field studies.

As noted in Section 5, the parameter values used in the simula-
tions have been drawn from multiple sources and are not intended
to be definitive, but are rather considered to be sensible estimates
with which to calibrate the model such that general conclusions
can be drawn. As discussed, several of the parameters, particularly
the birth rate (B) and the parameter governing the equilibrium
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density of healthy mosquitoes (C) would be expected to vary
depending on terrain, temperature or other factors.

Two further potential technical criticisms of the model dynam-
ics should also be acknowledged. Firstly, the form of the function
F was chosen to satisfy particular conditions rather than to reflect
the biological properties of Aedes aegypti, and the choice may not
therefore be justifiable. Secondly, the decision to model dispersal,
mortality and reproduction sequentially rather than simulta-
neously (though also seen in other models) may be a weakness. A
careful analysis of the model against data from field studies would
be required to determine the validity of these simplifications.

A more subtle potential weakness of this model (and indeed
with the modelling of SIT strategies more generally) concerns the
extent to which mating preference may be genetically determined

in Aedes aegypti. Mating preference can be considered to be a
“labile trait”, whose expression may exhibit considerable pheno-
typic variation across the species and phenotypic plasticity (envi-
ronmental dependence) within or between individuals (see, for
example, [56-58]). If there is a genetic predisposition of certain
females to mate with sterile males, the rate of such matings would
be expected to drop over the course of an SIT programme as the
relevant genotype becomes more rare, resulting in a corresponding
drop in the effectiveness of the control strategy over time.

There is plenty of scope for further mathematical analysis of the
model. For example, it may be of interest to investigate the exis-
tence of spatially uniform forced equilibria and forced oscillations,
in which a fixed number of sterile males are introduced to every
cell at regular intervals. It may also be possible to investigate the
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continuous limit of the model as the spatial and temporal intervals
tend to zero, potentially replacing the discrete model with a set of
partial differential equations. The relatively fine spatial scale of the
model would also allow for the examination of a wider variety of
sterile insect release patterns (see Appendix A).

Of immediate value would be a deeper analysis of the impact of
density dependent mortality of sterile males on the effectiveness of
SIT programmes, as discussed in Section 6.2. Such analysis would
serve both to confirm density dependent mortality as the cause
of the observed effects and then to identify the optimal spatial sep-
aration of release sites and interval between pulsed releases and
the appropriate volume of sterile male production such that this
problem is minimised.

It would also be of interest to attempt to apply the model to a
specific region where an SIT programme could be undertaken,
allowing C to vary spatially to reflect the suitability of the terrain
as a habitat for Aedes aegypti, tuning the other parameters to fit
data collected on mosquito populations in the region and introduc-
ing a variable birth rate b to correspond to seasonal conditions.

8. Conclusions

Our goal was to create a simple spatially explicit model that
would replicate the essential features of SIT in Aedes aegypti and
to use it to compare different release strategies in terms of the vol-
ume of sterile insects released, the number of releases sites and the
interval between pulsed releases, factors that had not previously
been considered in combination. The model dynamics of a healthy
mosquito population were analysed, with the location and stability
of equilbria determined and bifurcations identified as the repro-
ductive rate of the species was allowed to vary.

Despite the reservations outlined in Section 7, the following
general results from the model can be advanced as indications of
which release strategies may be most effective in using SIT to con-
trol populations of Aedes aegypti, and of the issues that should be
considered when planning such control programmes:

1. Given a fixed quantity of sterile males available for release per
unit of time for a given area, increasing the frequency of
releases and the number of release sites improves the effective-
ness of an SIT programme. This was consistently demonstrated
by simulations (see Section 6.3). The maximum release interval
and minimal number of sites required to eradicate the healthy
population should be confirmed by field trials to avoid unneces-
sary expense.

2. Again, for a fixed quantity of sterile males available for release
per unit of time for a given area, there may be a threshold
release interval, above which the efficiency per release site of
SIT is reduced and eradication of the target species may be
unattainable (see Fig. 10). The existence and value of this
threshold would also need to be determined by field trials
and may be expected to depend on the density of the healthy
population.

3. After the cessation of an SIT programme that has not completely
eradicated a population of Aedes aegypti, or in the periods
between insufficiently regular pulsed sterile insect releases, a
healthy mosquito population may be expected to rapidly return
to its equilibrium value. A key factor behind this effect appears
to be the recolonisation of areas of low population density from
areas of higher population density that were less affected by
SIT, driven by mosquito dispersal (see Section 6.2).

4. Density dependent mortality of sterile males may lead to
reduced SIT efficiency if insects are released in large groups
(see Section 6.2). Understanding this effect could allow for a
reliable cost-benefit analysis of different SIT strategies to be

performed in terms of the number and separation of release
sites, the interval between pulsed releases and the overall rate
of sterile male production.

5. A threshold value may be identified on the overall rate of sterile
male release per unit area, in terms of the ratio of sterile males
released per unit time to the size of the population of healthy
males at equilibrium, above which no further gains in SIT effec-
tiveness can be obtained (see Section 6.4). This highlights the
risk of costly and ineffective overproduction of sterile insects.
Again, the existence and value of this threshold would need to
be determined by field trials and may be expected to depend
on the density of the healthy population.

Comparing these conclusions with those drawn from the recent
work of Dufourd and Dumont [42,43], one of very few other mod-
els to combine pulsed releases with a spatially explicit examina-
tion of SIT strategies, we note that, despite the relative simplicity
of our modelling approach, our work supports their conclusions
on several key points. Firstly, our first conclusion, that increasing
the frequency of pulsed releases and the number of release sites
leads to improved efficiency of an SIT programme, is in line with
their findings and with those drawn from non-spatial models such
as those of White et al. [40] and Dumont and Tchuenche [41]. Our
third conclusion, that a healthy mosquito population may be
expected to rapidly return to its equilibrium value on the cessation
of an SIT programme, also echoes the findings of Dufourd and
Dumont [43], and is in line with the those of other authors regard-
ing local extinction and recolonisation processes [16,17,29,34].

More broadly, all of the results presented in this article (includ-
ing the brief comparison of spatially random and spatially uniform
release patterns, presented in Appendix A) provide firm support for
the principle that “it is necessary to consider a spatio-temporal
model to obtain realistic simulations and to simulate several vector
control strategies...” Dufourd and Dumont [42] and we hope that
this will inform the direction of future research in the field.
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Appendix A. Alternative release patterns

Using a similar method to that of Section 6.3, further runs were
performed to compare the effectiveness of the random spatial
release strategy with a strategy of fixed release locations arranged
in an equilateral triangular lattice. Given the way in which
opposite edges of the simulation zone are connected, 4 such lattice
patterns are possible, involving 4,16,36 and 144 release sites, as
shown in Fig. 12. Naturally, the lattice of 144 release sites coincides
with the random strategy and will therefore be disregarded.

Fig. 13 shows the long-term mean healthy mosquito popula-
tions per hectare calculated from simulations of SIT programmes
with various release intervals, both for the random spatial release
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strategy and the fixed lattice release strategy. As in Section 6.3,
each column represents an average over the final 119 or 120 of
300 iterations, across 10 independent runs of the model. Note that
those runs conducted with fixed release sites are deterministic and
hence the results show no variation. Standard deviation bars have
been omitted from the columns representing the random release
strategy, since variation was negligible compared to the scale of
the graph.

A clear discrepancy can be observed between the results of runs
with a release interval of 1day and those with greater release
intervals. In the latter case, the strategy involving a fixed lattice
of release sites is consistently more effective at reducing the size
of the healthy population. Furthermore, this benefit is observed
to increase for higher numbers of release sites. However, in the for-
mer case, the reverse seems to be true, with the random strategy
outperforming the lattice strategy.

These results suggest that a random release strategy may be
more effective for very short pulsed release intervals, while a fixed
lattice strategy may be more effective for greater intervals.
Unfortunately, geometric limitations of the model preclude a more
detailed analysis, since no other equilateral triangular lattices can
be described that are consistent with the boundary conditions of
the region and the scale is sufficiently coarse that approximations
to regular lattices would not be expected to produce reliable
results. The observed results may merely be an artefact of the
geometry of the simulation region and far more work would be
required to draw firm conclusions about the most effective spatial
release patterns.

In future work, it may be beneficial to investigate a wider
variety of release patterns. In particular, a cycle of fixed offset equi-
lateral lattice patterns of release sites may outperform both of the
patterns considered here.

The only previous work known to the authors that has
attempted to compare randomly distributed and evenly spread
patterns of release sites in a similar way is that of Legros et al.
[36], although in their work, randomly chosen sites were picked
at the start of a simulation and did not change throughout the
duration of a model run. They concluded that strategies involving
randomly chosen sites were less effective at reducing the size of
the target population than those involving evenly spread sites,
broadly agreeing with the results presented here for simulations
with release intervals greater than one day. However, since
releases in their model occurred at intervals of one week only, it
is not known whether the performance of their random strategy
would have improved in scenarios with more frequent releases,
as observed here.

References

[1] L. Alphey, M. Benedict, R. Bellini, G. Clark, D. Dame, M. Service, S. Dobson,
Sterile-insect methods for control of mosquito-borne diseases: an analysis,
Vector-Borne Zoonot. Dis. 10 (3) (2010) 295.

[2] T. Shelly, D. Mclnnis, Road test for genetically modified mosquitoes, Nat.
Biotechnol. 29 (11) (2011) 984.

[3] M.Q. Benedict, A.S. Robinson, The first releases of transgenic mosquitoes: an
argument for the sterile insect technique, Trends Parasitol. 19 (8) (2003) 349.

[4] C.P. Ferreira, H.M. Yang, L. Esteva, Assessing the suitability of sterile insect
technique applied to Aedes aegypti, ]. Biol. Syst. 16 (4) (2008) 565.

[5] A.F. Harris, D. Nimmo, A.R. McKemey, N. Kelly, S. Scaife, C.A. Donnelly, C. Beech,
W.D. Petrie, L. Alphey, Field performance of engineered male mosquitoes, Nat.
Biotechnol. 29 (11) (2011) 1034.

[6] Python Software Foundation, Python Programming Language - Official
Website. <www.python.org>, 2012 (accessed 6.6.2012).

[7] NumPy Developers, NumPy. <http://numpy.scipy.org>, 2012 (accessed
6.6.2012).

[8] J.D. Hunter, Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9 (3)
(2007) 90.

[9] M. Otero, H.G. Solari, N. Schweigmann, A stochastic population dynamics
model for Aedes aegypti: formulation and application to a city with temperate
climate, Bull. Math. Biol. 68 (8) (2006) 1945.

[10] M.H. Birley, Estimation and simulation of variable developmental period, with
application to the mosquito Aedes aegypti (L.), Res. Popul. Ecol. 21 (1) (1979)
68.

[11] D.A. Focks, D.G. Haile, E. Daniels, G.A. Mount, Dynamic life table model for
Aedes aegypti (Diptera: Culicidae): analysis of the literature and model
development, J. Med. Entomol. 30 (6) (1993) 1003.

[12] United Nations Framework Convention on Climate Change (UNFCCC)
Secretariat, Stratus Consulting Inc., Compendium on Methods and Tools to
Evaluate Impacts of, and Vulnerability to, Climate Change, Final draft report -
CIMSiM and DENSiM (Dengue Simulation Model). <http://unfccc.int>, 2005
(accessed 1.3.2014).

[13] M. Maguire, C. Skelly, P. Weinstein, J. Moloney, Simulation modelling of Aedes
aegypti prevalence, an environmental hazard surveillance tool for the control
of dengue epidemics, Int. J. Environ. Health Res. 9 (4) (1999) 253.

[14] C.R. Williams, P.H. Johnson, S.A. Long, L.P. Rapley, S.A. Ritchie, Rapid estimation
of Aedes aegypti population size using simulation modeling, with a novel
approach to calibration and field validation, J. Med. Entomol. 45 (6) (2008)
1173.

[15] C.W. Morin, A.C. Comrie, Modeled response of the West Nile virus vector Culex
quinquefasciatus to changing climate using the dynamic mosquito simulation
model, Int. ]. Biometeorol. 54 (5) (2010) 517.

[16] S.A. Ritchie, C.L. Montague, Simulated populations of the black salt marsh
mosquito (Aedes taeniorhynchus) in a Florida mangrove forest, Ecol. Modell.
77 (2-3) (1995) 123.

[17] M. Otero, N. Schweigmann, H.G. Solari, A stochastic spatial dynamical model
for Aedes aegypti, Bull. Math. Biol. 70 (5) (2008) 1297.

[18] V.R. Aznar, M. Otero, M. Sol De Majo, S. Fischer, H.G. Solari, Modeling the
complex hatching and development of Aedes aegypti in temperate climates,
Ecol. Modell. 253 (2013) 44.

[19] M. Legros, K. Magori, A.C. Morrison, C. Xu, T.W. Scott, A.L. Lloyd, F. Gould,
Evaluation of location-specific predictions by a detailed simulation model of
Aedes aegypti populations, Plos One 6 (7) (2011).

[20] A. Mageni Lutambi, M.A. Penny, T. Smith, N. Chitnis, Mathematical modelling
of mosquito dispersal in a heterogeneous environment, Math. Biosci. 241 (2)
(2013) 198.

[21] S.J. de Almeida, R.P. Martins Ferreira, A.E. Eiras, R.P. Obermayr, M. Geier, Multi-
agent modeling and simulation of an Aedes aegypti mosquito population,
Environ. Modell. Softw. 25 (12) (2010) 1490.

[22] A.M. Ellis, AJ. Garcia, D.A. Focks, A.C. Morrison, T.W. Scott, Parameterization
and sensitivity analysis of a complex situation model for mosquito population
dynamics, Dengue Transm. Their Control Am. J. Trop. Med. Hyg. 85 (2) (2011)
257.

[23] D.H. Barmak, D.O. Dorso, M. Otero, H.G. Solari, Dengue epidemics and human
mobility, Phys. Rev. E 84 (1) (2011).

[24] M. Otero, H.G. Solari, Stochastic eco-epidemiological model of dengue disease
transmission by Aedes aegypti mosquito, Math. Biosci. 223 (1) (2010) 32.

[25] C. Favier, D. Schmit, C.D.M. Miiller-Graf, B. Cazelles, N. Degallier, B. Mondet,
M.A. Dubois, Influence of spatial heterogeneity on an emerging infectious
disease: the case of dengue epidemics, Proc. Roy. Soc. B 272 (1568) (2005)
1171.

[26] A. Tran, M. Raffy, On the dynamics of dengue epidemics from large-scale
information, Theor. Popul. Biol. 69 (1) (2006) 3.

[27] C.F. Curtis, N. Lorimer, K.S. Rai, S.G. Suguna, D.K. Uppal, S.J. Kazmi, E. Hallinan,
K. Dietz, Simulation of alternative genetic control systems for Aedes aegypti in
outdoor cages and with a computer, J. Genet. 62 (3) (1976) 101.

[28] Y. 1td, Model of sterile insect release for eradication of melon fly, Dacus
cucurbitae COQUILLETT, Appl. Entomol. Zool. 12 (4) (1977) 303.

[29] Y. It6, H. Kawamoto, Number of generations necessary to attain eradication of
an insect pest with sterile insect release method - model study, Res. Popul.
Ecol. 20 (2) (1979) 216.

[30] H. Barclay, M. Mackauer, The sterile insect release method for pest-control - a
density-dependent model, Environ. Entomol. 9 (6) (1980) 810.

[31] G.W. Harrison, HJ. Barclay, P. van den Driessche, Analysis of a sterile insect
release model with predation, J. Math. Biol. 16 (1) (1982) 33.

[32] L. Esteva, H.M. Yang, Mathematical model to assess the control of Aedes
aegypti mosquitoes by the sterile insect technique, Math. Biosci. 198 (2)
(2005) 132.

[33] N. Alphey, L. Alphey, M.B. Bonsall, A model framework to estimate impact and
cost of genetics-based sterile insect methods for dengue vector control, Plos
One 6 (10) (2011).

[34] L. Yakob, M.B. Bonsall, Importance of space and competition in optimizing
genetic control strategies, J. Econom. Entomol. 102 (1) (2009) 50.

[35] L. Potgieter, J.H. van Vuuren, D.E. Conlong, A reaction-diffusion model for the
control of Eldana saccharina Walker in sugarcane using the sterile insect
technique, Ecol. Modell. 250 (2013) 319.

[36] M. Legros, C. Xu, K. Okamoto, T.W. Scott, A.C. Morrison, A.L. Lloyd, F. Gould,
Assessing the feasibility of controlling aedes aegypti with transgenic methods:
a model-based evaluation, Plos One 7 (12) (2012).

[37] V.S. Manoranjan, P. van den Driessche, On a diffusion-model for sterile insect
release, Math. Biosci. 79 (2) (1986) 199.

[38] X. Li, X. Zou, On a reaction-diffusion model for sterile insect release method
with release on the boundary, Discrete Contin. Dyn. Syst. — Ser. B 17 (7) (2012)
2509.

[39] C.Isidoro, N. Fachada, F. Barata, A. Rosa, Agent-based model of Aedes aegypti
population dynamics, in: Lopes, LS., Lau, N., Mariano, P., Rocha, L.M. (Eds.),
14th Portuguese Conference on Artificial Intelligence Progress in Artificial


http://refhub.elsevier.com/S0025-5564(14)00107-2/h0005
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0005
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0005
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0010
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0010
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0015
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0015
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0020
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0020
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0025
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0025
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0025
http://www.python.org
http://numpy.scipy.org
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0030
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0030
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0035
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0035
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0035
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0040
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0040
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0040
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0045
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0045
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0045
http://unfccc.int
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0050
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0050
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0050
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0055
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0055
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0055
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0055
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0060
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0060
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0060
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0065
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0065
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0065
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0070
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0070
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0075
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0075
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0075
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0080
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0080
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0080
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0085
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0085
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0085
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0090
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0090
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0090
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0095
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0095
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0095
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0095
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0100
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0100
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0105
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0105
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0110
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0110
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0110
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0110
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0115
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0115
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0120
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0120
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0120
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0125
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0125
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0130
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0130
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0130
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0135
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0135
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0140
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0140
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0145
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0145
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0145
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0150
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0150
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0150
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0155
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0155
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0160
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0160
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0160
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0165
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0165
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0165
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0170
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0170
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0175
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0175
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0175

T.P. Oléron Evans, S.R. Bishop /Mathematical Biosciences 254 (2014) 6-27 27

Intelligence, Proceedings, vol. 5816 of Lecture Notes in Artificial Intelligence,
2009, pp. 53-64, ISBN:978-3-642-04685-8, ISSN:0302-9743.

[40] S.M. White, P. Rohani, S.M. Sait, Modelling pulsed releases for sterile insect
techniques: fitness costs of sterile and transgenic males and the effects on
mosquito dynamics, J. Appl. Ecol. 47 (6) (2010) 1329.

[41] Y. Dumont, J.M. Tchuenche, Mathematical studies on the sterile insect
technique for Chikungunya disease and Aedes albopictus, ]J. Math. Biol. 65
(5) (2012) 809.

[42] C. Dufourd, Y. Dumont, Modeling and simulations of mosquito dispersal. The
case of Aedes albopictus, Biomath 1 (2) (2012).

[43] C. Dufourd, Y. Dumont, Impact of environmental factors on mosquito dispersal
in the prospect of sterile insect technique control, Comput. Math. Appl. 66 (9)
(2013) 1695.

[44] P.N. Daykin, F.E. Kellogg, R.H. Wright, Host-finding and repulsion of Aedes
aegypti, Canadian Entomol. 97 (3) (1965) 239.

[45] J. Monod, The growth of bacterial cultures, Ann. Rev. Microbiol. 3 (1949) 371.

[46] L.E. Muir, B.H. Kay, Aedes aegypti survival and dispersal estimated by mark-
release-recapture in northern Australia, Am. J. Trop. Med. Hyg. 58 (3) (1998) 277.

[47] P.M. Sheppard, W.W. MacDonald, RJ. Tonn, B. Grab, Dynamics of an adult
population of Aedes aegypti in relation to dengue haemorrhagic fever in
Bangkok, J. Anim. Ecol. 38 (3) (1969) 661.

[48] R. Russell, C. Webb, C. Williams, S. Ritchie, Mark-release-recapture study to
measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland,
Australia, Med. Veter. Entomol. 19 (4) (2005) 451.

[49] P. McDonald, Population characteristics of domestic Aedes-aegypti (Diptera—
Culicidae) in villages on Kenya coast - 1. Adult survivorship and population-
size, ]. Med. Entomol. 14 (1) (1977) 42.

[50] J. Arrivillaga, R. Barrera, Food as a limiting factor for Aedes aegypti in water-
storage containers, J. Vector Ecol. 29 (1) (2004) 11.

[51] H.B. Morlan, E.M. McCray Jr., JW. Kilpatrick, Field tests with sexually sterile
males for control of Aedes aegypti, Mosquito News 22 (1962) 295.

[52] G.R. Conway, M. Trpis, G.A.H. McClelland, Population parameters of the
mosquito Aedes aegypti (L.) estimated by mark-release-recapture in a
suburban habitat in Tanzania, J. Anim. Ecol. 43 (2) (1974) 289.

[53] K.T.Z. Xiang, S.R. Bishop, Cellular Automata Model for Free Aeolian Sand Dunes,
MSc dissertation — University College London, 2010 (unpublished).

[54] A.M. Reynolds, J.L. Swain, A.D. Smith, A.P. Martin, ].L. Osbourne, Honeybees use
a Lévy flight search strategy and odour-mediated anemotaxis to relocate food
sources, Behav. Ecol. Sociobiol. 64 (1) (2009) 115.

[55] F. Agudelo-Silva, A. Spielman, Paradoxical effects of simulated larviciding on
production of adult mosquitoes, Am. J. Trop. Med. Hyg. 33 (6) (1984) 1267.

[56] C.D. Schlichting, M. Pigliucci, Gene regulation, quantitative genetics and the
evolution of reaction norms, Evol. Ecol. 9 (2) (1995) 154.

[57] R. Przybylo, B.C. Sheldon, ]. Merild, Climatic effects on breeding and
morphology: evidence for phenotypic plasticity, J. Anim. Ecol. 69 (3) (2000)
395.

[58] J.E. Brommer, Phenotypic plasticity of labile traits in the wild, Curr. Zool. 59 (4)
(2013) 485.


http://refhub.elsevier.com/S0025-5564(14)00107-2/h0180
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0180
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0180
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0185
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0185
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0185
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0190
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0190
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0195
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0195
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0195
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0200
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0200
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0205
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0210
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0210
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0215
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0215
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0215
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0220
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0220
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0220
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0225
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0225
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0225
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0230
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0230
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0235
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0235
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0240
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0240
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0240
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0245
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0245
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0245
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0250
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0250
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0255
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0255
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0260
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0260
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0260
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0265
http://refhub.elsevier.com/S0025-5564(14)00107-2/h0265

	A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti
	1 Introduction
	2 Dynamical models of mosquito populations, dengue transmission and control strategies
	2.1 Non-spatial models of mosquito population dynamics
	2.2 Spatial models of mosquito population dynamics
	2.3 Models incorporating dengue transmission
	2.4 Non-spatial sterile insect models
	2.5 Spatial sterile insect models
	2.6 Sterile insect models with pulsed releases

	3 An SIT model for Aedes aegypti
	3.1 Motivations
	3.2 General features
	3.3 Dispersal
	3.4 Mortality
	3.5 Reproduction
	3.6 Equilibria of the healthy population

	4 Mathematical analysis of the model
	4.1 Locating spatially uniform equilibria
	4.2 Validity of spatially uniform equilibria
	4.3 Stability of non-trivial equilibria
	4.4 Stability of ? 
	4.5 Analysis of dual cases
	4.6 Parameter variation

	5 Parametrisation of the model for Aedes aegypti
	5.1 Objectives
	5.2 Dispersal
	5.3 Mortality
	5.4 Reproduction
	5.5 Population density
	5.6 Volume of sterile male releases

	6 Analysis of release strategies for SIT
	6.1 Simulation methodology
	6.2 Sample runs
	6.3 Release interval and number of release sites
	6.4 Release volume

	7 Discussion of the model
	8 Conclusions
	Acknowledgements
	Appendix A Alternative release patterns
	References


