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Abstract— We consider a discrete time linear feedback con-
trol system with additive noise where the control signals are
sent across a network from the controller to the actuators.
Due to network considerations it is desired to reduce the
transmission frequency of the control signals. We show that by
including a finite sequence of predicted control signals in each
communication packet the frequency of transmission can be
reduced by transmitting only when the previously sent sequence
has run out, although as a consequence the closed loop error will
increase. We introduce a communication protocol, which we call
Input Difference Transmission Scheme (IDTS), that transmits
control packets when the difference between newly computed
control values and the predicted control sequence previously
transmitted is larger than a certain threshold. This threshold
is a design parameter and we show how the closed loop behavior
varies with this threshold. Simulation results are provided to
augment the theory.

I. INTRODUCTION

The use of communication networks in feedback loops,

termed Networked Control Systems (NCS) [1], has become

a fast growing area of research. There are several advan-

tages for introducing communication networks in feedback

loops, including modularity and reconfigurability of system

components, however potential issues arise when closing the

loop around imperfect communication links including data

dropout, delays and quantization effects. Researchers have

addressed many of these issues, see [2] for a recent survey.

Often the information communicated in NCS is in the form

of packets [3]. These packets have a fixed header length and

additional space to be used for data. Due to the overhead

included in each transmission, if the frequency of transmis-

sion is decreased there will be a corresponding savings in

bandwidth and decrease in network congestion. Thus it is

desired to send fewer but more informative packets. In this

work we are concerned with how much extra information

should be included in the packets, when they should be

transmitted and the impacts on closed loop performance.

In this work we assume control values are transmitted

across a communication link to the plant, a schematic of

this situation is shown in Fig. 1. A motivating example for

this type of system is those similar to [4] where remote

vehicles with limited computation are sent trajectory and/or

control commands from remote processing units. To make

the packets more informative we will include not only the

control value computed for the current time step but also

predicted control values for the next N steps in the future.
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We will investigate the closed loop performance as a function

of this buffer length under different communication schemes.

First we consider the case that the controller transmits only

when the buffer at the actuator is empty. We will also

introduce a communication protocol, which we call the Input

Difference Transmission Scheme (IDTS), that calculates a

new control sequence at every time step but only transmits

to the actuator when the difference between the new sequence

and that in the buffer has exceeded a threshold. We will show

how this scheme can improve the closed loop performance

and provide more flexibility for the system designer.

Other researchers have studied ways to determine access

to a shared communication medium by nodes of actuators

and sensors. In [5] they provide conditions for a stabiliz-

ing communication sequence to exist and an algorithm to

construct such a sequence. This uses a static scheduling

protocol and assumes zero values when transmission does not

occur rather than incorporating some form of an estimator

or buffer. A similar setting is considered in [6] but they

include estimators on the receiving side of every network

transmission to estimate the value of a signal when it is

not transmitted. In addition to a static transmission policy

they study granting access to the nodes whose difference

between estimated and true signal is largest. The problem

setting is slightly different from the one considered here since

they consider continuous plants and are not concerned with

limiting transmission frequency. In [7] an optimal communi-

cation logic is developed to strike a balance between closed

loop error and communication rate. The logic that results

is similar to the IDTS in this paper, data will only transmit

when an estimated state differs from a true state by more than

a specified amount, however they transmit state information

rather than control values and thus make no use of a control

buffer.

The notion of using a buffer with predicted control values

in a NCS setting is not necessarily new, for example see [8],

[9], however not much has been investigated relating the

length of the buffer to the closed loop performance, espe-

cially in terms of reducing the communication frequency.

In [10] the authors consider a similar setting, but their

analysis of performance as a function of the buffer size is

affected by the discretization sampling time of a continuous

time plant. Furthermore, they have not considered the effect

on the transmission frequency. In [11] the authors consider

transmitting a packet that contains future control signals,

but they are not concerned with limiting the transmission

frequency, only reducing the effect of communication losses.

The remainder of the paper is organized as follows. In
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Section II a mathematical description of the problem setting

is given. The communication protocol is introduced and

analyzed in Section III. Simulation examples are shown in

Section IV. Finally the paper concludes with a summary of

the work and future directions in Section V.

II. PROBLEM SET UP

We consider discrete time linear time invariant systems of

the form

xk+1 = Axk + Buk + wk (1)

where xk ∈ IRn is the state, uk ∈ IRr is the control input

and wk ∈ IRn is an unknown but bounded disturbance. We

also assume a bound on the initial condition so that

‖wk‖ ≤ W ∀k and ‖x0‖ ≤ χ .

Unless otherwise stated the norm ‖ · ‖ will be the two-norm

for vectors and the induced two-norm for matrices.

Further we assume A is unstable, the pair (A,B) is

controllable and that a feedback gain F has been designed so

that in the absence of the network the control signal would

be uk = Fxk and (A+BF ) is stable. We consider the case

where the control signal uk arriving at the actuators/plant is

transmitted across a network from a remotely located con-

troller, as shown in Fig. 1. We will ignore delay, quantization

and lost information effects of the network.

Fig. 1. NCS feedback loop.

The information is transmitted in a packet containing a

fixed amount of overhead. As discussed earlier, it is advan-

tageous to put more information into a single packet and

reduce the frequency of transmission. We use an anticipative

controller that will transmit a sequence of control steps

each time a packet is sent to plant. In [12] the authors

use an anticipative continuous-time controller as a way to

reduce the negative effects introduced by network delays,

while our aim is to use it to reduce transmission frequency.

In addition we propose different methods for determining

when to transmit the packets. The overall performance of the

system we consider is the closed loop error and the frequency

of transmission of the control packets, with a desire to keep

both of these quantities low. The tradeoff is that lowering

the transmission frequency can increase the error. We will

analyze how the closed loop performance varies with the

length of the control sequences transmitted and by using

different transmission protocol.

At every instance in time a control signal for the current

time and any future time can be computed based on the

current state. Denote the control signal to be applied at time

k + j but computed at time k by uk+j|k, j = 0, 1, . . .. Note

the information available to the controller when calculating

uk+j|k is Ik = {Ik−1, xk, uk−1}. We consider a controller

that at every time instant computes a control signal for

the current time and N ≥ 0 time steps in the future, i.e.

{uk|k, uk+1|k, . . . , uk+N |k}. The information packet that can

be transmitted from the controller to the plant at time k is

exactly this control sequence

Uk = {uk|k, uk+1|k, . . . , uk+N |k} . (2)

Denote the elements of the packet by Uk(j) = uk+j−1|k,

j = 1, 2, . . . , N + 1. With this scheme each control packet

contains r · (N + 1) data points.

When the plant receives packet Uk it discards all pre-

viously buffered commands and follows the current control

sequence. If a packet is not received the plant applies the

corresponding control signal in the buffer from the last

previously received packet. For example, assume that at time

k + M the last previously received packet was that from

time k, then the control signal applied to the plant would be

uk+M = uk+M |k = Uk(M + 1). Since we have assumed

a finite packet length, N < ∞, we must decide what to

do when M > N . In this case the last previously received

packet will only contain control signals up to time uk+N |k,

so we must choose what control signal the plant will apply

for time uk+N+j , j = 1, 2, . . .. There are two possibilities:

apply zero control, uk+N+j = 0, or hold the control from

the last command in the sequence, uk+N+j = uk+N |k.

The control applied to the plant at time k + M assuming

the last transmitted packet was sent at time k is

uk+M =

{
uk+M |k = Uk(M + 1) if M ≤ N

γuk+N |k = γUk(N + 1) otherwise
(3)

where γ ∈ {0, 1} indicates if the choice is to use zero control

(γ = 0) or hold the last command (γ = 1). If a state

feedback controller is used with the future controls signals

based on the predicted evolution of the system, then we see

Uk = {Fxk, F (A + BF )xk, . . . , F (A + BF )Nxk} . (4)

III. TRANSMIT PROTOCOL

To reduce the amount of traffic on the network, the

controller will not transmit every control packet Uk. There

are several options for determining when to transmit the

control packet, they are explored below.

A. Fixed Transmission Time

The simplest scheme to implement is that with a fixed

transmission time. Given that the length of the control buffer

is N , so that each control packet contains the current control

signal and the next N predicted control signals, if the packet

is transmitted at time k then the control buffer will not be

empty until time k + N + 1. Thus if the control sequence

is transmitted every N + 1 time steps the actuator will

always have a control signal to apply. We transmit the first

control packet U0, thus the packets that will be transmit are

{U0,UN+1,U2·(N+1), . . .}.
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If the control sequence were transmitted more frequently

there would be some elements of the transmitted control

buffer that would never be implemented and these would

be unnecessary to include. For example, if the packet that

was sent at time k contained uk+N+j|k, j = 1, 2, . . . these

control signals would never be applied since at time k +
N +1 a new packet is transmitted to the actuator containing

uk+N+1|k+N+1 and this is applied to the plant. Thus we

set the time between transmissions equal to the number of

control signals included in each packet, N + 1.

Lemma 1: The fixed transmission scheme with buffer

length N using state feedback has closed loop performance

bounded by

‖xk‖ ≤ ‖(A + BF )k‖χ + g(A,B, F, N, k) W (5)

with the effect of the noise terms being accounted for in

g(A,B, F, N, k) =

h(k−1,N)∑
j=0

∥∥Aj
∥∥

+

⎛
⎜⎝� k−1

N+1	−1∑
j=0

∥∥∥(A + BF )
s(j,k,N)

∥∥∥
⎞
⎟⎠

⎛
⎝ N∑

j=0

∥∥Aj
∥∥
⎞
⎠ (6)

where

h(k, N) = mod(k, N + 1)

s(j, k,N) = (N + 1)j + h(k − 1, N) + 1

and � 	 is the floor operator.

Proof: The control packet is transmitted every N + 1
time steps, i.e. whenever h(k, N) = 0 the packet Uk is

transmitted. This allows us to write the control applied to the

plant as uk = F (A + BF )h(k,N)xk−h(k,N), and the closed

loop evolution as

xk+1 = Axk + BF (A + BF )h(k,N)xk−h(k,N) + wk (7)

It is not too difficult to use this to express the closed loop

state, for k ≥ 1, as

xk = (A + BF )kx0 +

h(k−1,N)∑
j=0

Ajwk−j−1

+

� k−1

N+1	−1∑
j=0

(A + BF )
s(j,k,N)

d(j, k,N) (8)

where

d(j, k,N) =
N∑

i=0

Aiwk−s(j,k,N)−i−1 .

The first term in Eqn. (8) accounts for the initial condition.

The second term is from the noise acting on the system in

the time since the last transmitted control sequence, this

noise cannot be compensated for by the current control

sequence. The last term accounts for all the noise prior

to the last transmitted packet, this is compensated for by

the current control sequence through the use of xk−h(k,N).

From Eqn. (8) and the properties of the norm and bound

on ‖wk‖ we arrive at the upperbound on ‖xk‖ in Eqn. (5). �

Note that whenever a packet is transmitted the control

sequence is a function of the initial condition and the

previous noise sequences and will only be able to compensate

for those terms. For example, consider the control packet that

is sent at time k −N , Uk−N . The control signals from this

packet are applied between time k −N and time k and will

compensate for the noise sequence prior to time k−N which

are manifest in xk−N and hence Ik−N . The noise terms

{wk−N+1, . . . , wk} will not be compensated by the control

sequence and their effect can be amplified by the open loop

dynamics, this is the second term on the right hand side of

Eqn. (8).

The fixed transmit scheme is simple to implement and

it is easy to see that as the buffer length, and hence

transmission interval, is increased the transmission frequency

will decrease but the bound on the closed loop error will

increase. This gives a design tradeoff as desired. The po-

tential downside with the fixed communication scheme is

that it might not be utilizing the network very efficiently.

The control packets are transmitted at fixed points in time

regardless if their transmission will have a significant impact

on the closed loop error. We seek a scheme that can chose

whether or not to transmit online and utilize the network

resources more efficiently.

B. Input Difference Transmission Scheme (IDTS)

We propose a simple algorithm that at each time step will

determine if the control packet should be sent. The algorithm

computes a sequence of controls at every time step but will

only transmit this sequence to the plant if the difference

between the newly computed control sequence and the last

sequence sent to the plant is larger than a certain threshold.

This threshold becomes a design parameter and we will show

its impact on the closed loop performance.

To formalize the scheme, at time k + M the computed

sequence of commands is Uk+M and let the last packet sent

to the plant be the one sent at time k, Uk. The criterion

that determines whether or not to transmit packet Uk+M is

based on the norm of the difference between the two control

signals. Define

ΔUk+M
k (j) = Uk+M (j)−

{
Uk(M + j) if M + j ≤ N + 1

γUk(N + 1) otherwise

(9)

for j = 1, . . . , N . Let αj ≥ 0 be a scaling factor and define

the weighted norm to be

‖ΔUk+M
k ‖(∞,αj) = max

j
αj‖ΔUk+M

k (j)‖ . (10)

Next pick a scalar U so the controller will only transmit the

packet Uk+M to the plant if

‖ΔUk+M
k ‖(∞,αj) > U . (11)

Remark 2: The 1-norm can easily replace the ∞-norm

with slight modification to the results below.
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Based on this scheme the controller will transmit if the

newly computed control command differs from the command

sequence currently in the plant’s buffer. In essence this will

only utilize the network resources when the transmission of

a control packet will have an impact on the system compared

to not sending the packet. Additionally, this scheme can

be combined with a force send feature, which will force

transmission if the buffer at the plant has been exhausted,

i.e. the time since the last transmit is greater than the length

of the control sequence. The αj coefficients and U value are

also available design choices. The new transmission scheme

is illustrated in Table I.

TABLE I

INPUT DIFFERENCE TRANSMISSION SCHEME (IDTS).

0)
− Chose design parameters

• F, N, U, αj , FORCE SEND
− Set
• time step k ← 0
• last sent indicator to k∗ ← −N − 1 ;

1) Measure xk ;
2) Compute Uk = {uk|k, uk+1|k, . . . , uk+N|k} ;

3) Determine ‖ΔUk
k∗
‖(∞,αj) ;

4) If ( ‖ΔUk
k∗
‖(∞,αj) > U )

OR
( FORCE SEND = 1 AND k − k∗ > N ) ;
• Transmit Uk ;
• Set k∗ ← k ;
EndIf ;

5) Set
k ← k + 1 ;

6) Goto 1 ;

Lemma 3: With the IDTS using the state feedback con-

troller so that Uk is given by Eqn. (4) then if α1 = 1, the

norm of the state is bounded according to

‖xk‖ ≤ ‖(A+BF )k‖χ+

k−1∑
j=0

‖(A + BF )j‖
(
‖B‖U + W

)
.

(12)

Proof: Consider that at time k the last packet transmitted

was at time k −M . The control applied to the plant at time

k can be written as

uk = uk|k − (1 − λk) · ΔUk
k−M (1) (13)

where λk ∈ {0, 1} is used to indicate if the control packet

Uk is transmitted or not.

Since we are using a state feedback controller, we have

uk|k = Fxk and we can write Eqn. (13) as

uk = Fxk + zk

zk = (1 − λk) · ΔUk
k−M (1) .

If λk = 1 then Uk is transmitted and we have zk = 0. If

λk = 0 then the packet is not transmitted, however, using

IDTS with α1 = 1 if the packet is not transmitted then

we are guaranteed to have ‖zk‖ = ‖ΔUk
k−M (1)‖ ≤ U .

Thus regardless of the value of λk, i.e. independent of the

transmission status of Uk, we get that ‖zk‖ ≤ U .

The closed loop system can be rewritten as

xk+1 = Axk + Buk + wk

= (A + BF )xk + (Bzk + wk)

which is a stable system with a bounded disturbance term

‖Bzk + wk‖ ≤ ‖B‖U + W . The state can be written as

xk = (A + BF )kx0 +
k−1∑
j=0

(A + BF )k−j−1(Bzj + wj)

from which the bound in Eqn. (12) directly follows. �

Remark 4: The bound in Eqn. (12) is independent of

the buffer length N . It is also a worst case analysis, but

it allows comparison with the worst case analysis for the

fixed transmission scheme. These worst case bounds will be

conservative due to the use of the norm properties as well

as assuming the worst case noise in each step, nonetheless

they can be useful guides.

In addition to computing this upper bounds on the state

error we would also like to characterize the transmission

frequency using IDTS since the number of time steps be-

tween transmissions will no longer be fixed. In Lemma 3

the condition α1 = 1 was imposed. In fact if we set

αj = 0 ∀j ≥ 2 the result is unaffected and the transmit

criterion in Eqn. (11) becomes

‖ΔUk+M
k (1)‖ > U .

This means the decision to transmit the control packet

depends only on the difference between the control signal

for the current time step and not the future control signals,

though they will be transmitted in the packet. Since the

condition to transmit is checked at every time step, removing

the dependence on the future control signals is less critical

and will simplify the analysis. Likewise we will assume a

zero control scheme if the buffer runs out, i.e. γ = 0, which

will also simplify the analysis below. Thus for the remainder

of this section we will assume

• α1 = 1 and αj = 0 for j ≥ 2
• γ = 0

though similar results can be obtained without these.

In the analysis below we will make use of the following

quantity. With m ≥ 1 a positive integer define

L(m, k, N) =

m−1∑
j=0

Am−j−1wk+j

+ δ(m − N − 1)Am−N−1(A + BF )N+1xk (14)

with

δ(j) =

{
0 , if j ≤ 0

1 , if j > 0
.

Proposition 5: Given the last transmission occurred at

time k, the next transmission will be at time k + M where

M = min

[
N + 1

β
, min
m>0

{
m : ‖F · L(m, k, N)‖ > U

}]
,

(15)
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and β is used to indicate if using the force send feature

(β = 1) or not (β = 0).
Proof: The packet transmitted at time k is given by

Eqn. (4). We are interested in the time when the next packet

is sent, so we can write the closed loop evolution based on no

packet being sent between k and k+m. For 1 ≤ m ≤ N +1
the applied control signal is uk+m−1 = F (A + BF )m−1xk

and the state is given by

xk+m = (A + BF )mxk +
m−1∑
j=0

Am−j−1wk+j .

No control will be applied starting at time k + N + 1, i.e.

uk+i = 0 for i = N+1, N+2, . . . ,m−1, thus for m > N+1
the state can be written as

xk+m = Am−N−1(A + BF )N+1xk +
m−1∑
j=0

Am−j−1wk+j

From this and the fact that uk+M |k+M = Fxk+M , it

is easy to see that ‖ΔUk+m
k (1)‖ = ‖F · L(m, k, N)‖.

The next transmission will occur at the first instance that

‖ΔUk+m
k (1)‖ > U , or if force send is in effect it will

occur at time k + N + 1 if m > N + 1. This is exactly the

expression captured in Eqn. (15). �

With the IDTS using the force send feature and state feed-

back control, the number of time steps between successive

transmissions is simply a function of the realization of the

noise sequence and the buffer length, it is independent of

the state. That is to say with the force send feature it is

not possible to wait longer than N + 1 time steps so we

only need to evaluate ‖F ·L(m, k, N)‖ for m ≤ N + 1 and

from Eqn. (14) we see the xk term disappears so it is only

a function of the open loop dynamics and realization of the

noise sequence from time k. Without the force send feature

it is possible to wait longer than N + 1 time steps so we

check all m ≥ 1 and for m > N + 1 and the state xk will

appear in the expression for L(m, k, N) meaning in this case

the number of time steps between transmissions depends on

the value of the state at the last transmission.

As can be seen in Proposition 5 the design parameter U

affects the time between transmissions. In fact, it is possible

to show how the minimum time between transmissions

depends on U and W .

Lemma 6: Define

m∗ = min
m>0

⎧⎨
⎩m : ‖F‖ · W ·

m−1∑
j=0

‖Aj‖ > U

⎫⎬
⎭ . (16)

Then using IDTS with state feedback control a lower bound

on the time between transmissions is given by

M∗ = min [N + 1,m∗] . (17)

Proof: As seen in Proposition 5 the key in determining

the time between transmissions is the term

‖F · L(m, k,N)‖ > U .

For m ≤ N + 1 the second term in Eqn. (14) drops out and

we can write

‖F · L(m, k, N)‖ =

∥∥∥∥∥∥F ·
m−1∑
j=0

Am−j−1wk+j

∥∥∥∥∥∥
≤ ‖F‖ · W ·

m−1∑
j=0

‖Aj‖ .

Thus ‖F‖ · W ·
m−1∑
j=0

‖Aj‖ > U is a necessary condition

for ‖F · L(m, k, N)‖ > U , i.e. it will require at least m∗

time steps before the noise alone could trigger the transmit

criterion. If m∗ > N + 1 then the value of the state xk will

affect the value of ‖ΔUk+m∗

k ‖, however, with force send

the packet will automatically be sent after N +1 time steps,

and without force send the lower bound of N + 1 will still

hold. Hence we arrive at Eqn. (17). �

Remark 7: With force send the transmission time will

be in the interval [M∗, N + 1] and without force send it

will be in the interval [M∗,∞). Thus if M∗ = N + 1,

meaning m∗ ≥ N +1, then with force send the time between

transmissions will be exactly fixed at N + 1, i.e. it recovers

the fixed transmission scheme.

Remark 8: When N + 1 >> M∗ the transmission rate is

qualitatively the same whether or not force send is used. This

behavior is expected since the only difference is that without

force send the transmission time can lie in the interval [N +
2,∞). With N + 1 >> M∗, however, this will rarely occur

and it will more likely be in [M∗, N + 1] for both schemes.

IV. EXAMPLES

We consider the plant in Eqn. (1) with

A =

⎡
⎢⎢⎣

1.2 0.4 1.2 1.5
−0.2 −0.4 −0.2 −0.4

0.1 −0.2 1.6 2.0
−0.2 0.4 1.1 1.3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1
0 0
0 1
1 0

⎤
⎥⎥⎦ .

This has open loop eigenvalues of [2.79, 1.25, 0.37, 0.092].
The disturbance was bounded according to W = 2. The

state feedback gain was chosen to place the closed loop

eigenvalues at [0.267, 0.234, 0.15, 0.12]. A total of 10, 000
simulations of 100 time steps each were used to generate

the noise sequences and initial conditions. The closed loop

system was then simulated with the different communication

schemes and various buffer lengths.

We used buffer lengths of N =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20} and bounds of

U = {20, 500}. With U = 20 we have m∗ = 2, i.e.

without force send the IDTS will always skip at least 1

time step in between transmissions and with U = 500 we

have m∗ = 5. In Fig. 2 we plot the transmit properties. The

top plot shows the percent of time the control packet is

transmitted to the plant. The transmit rate is the same for

IDTS with force send and the fixed transmission scheme
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when N + 1 < m∗. For IDTS, as N >> M∗ we see that

the percent of time transmitting is roughly the same with or

without force send and only depends on U . As the transmit

criterion U is increased the controller does not transmit as

often. The bottom plot is the percent of time no control

is applied and the plant evolves completely open loop, i.e.

uk = 0. This will occur only when the controller does not

transmit a packet and the time since the last transmit is

greater than N +1. This can not happen with the force send

so we only plot the cases without force send.
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Fig. 2. Simulation results. Top plot shows the percent of time the controller
transmits to the plant. Bottom plot is the percent of time the plant evolves
without applying any control, i.e. uk = 0.

In Fig. 3 the state errors are plotted. The maximum error

over all simulation time steps and the theoretical upper

bounds are plotted. Again notice that for N >> M∗

the IDTS with and without force send exhibit the same

closed loop error characteristics. Notice that for very similar

transmit rates, the IDTS has smaller error compared to the

fixed transmission scheme. This is evidence that the IDTS

makes more effective use of the network by transmitting the

packets when it is deemed important.

V. CONCLUSIONS AND FUTURE WORK

We considered an NCS setting where the control signal

is sent across a network to the plant. The goal was to

design a system that sent less frequent but more informative

information packets. The data in each control packet contains

the control signal for the current time step as well as a

buffered sequence of predicted future control signals.

While this initial study introduced the IDTS communi-

cation scheme to reduce the transmission frequency and

provided some initial insights into the performance char-

acteristics, there is certainly more work that can be done.

From the modeling standpoint, one can consider the effect

of measurements taken from noisy sensors and using an

observer. Network effects such as lost packets, delays and

quantization were all ignored, it would be interesting to see

how the communication schemes presented here would work
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Fig. 3. Worst case simulation error and theoretical bounds. The IDTS
bound is given by Eqn. (12), while the fixed transmission bound that is
plotted is the maxk of the equation given in Eqn. (5).

when these scenarios are present and what modifications

could be made to compensate for these effects.

In this work it was assumed the state feedback controller,

F , was designed without regard to the network considera-

tions. The closed loop properties will depend on the gain, for

example a smaller ‖F‖ will increase the minimum number

of steps between transmissions. This relationship could be

investigated in further detail. It would also be interesting to

consider more general Model Predictive Controllers in place

of the anticipative controller.
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