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Quasinormal Modes Beyond Kerr

Aaron Zimmerman, Huan Yang, Zachary Mark, Yanbei Chen, Leisner

Abstract The quasinormal modes (QNMs) of a black hole spacetime ar&¢le,
decaying oscillations of the spacetime, and are well unidedsin the case of Kerr
black holes. We discuss a method for computing the QNMs afespaes which are
slightly deformed from Kerr. We mention two example apgdiicas: the parametric,
turbulent instability of scalar fields on a background whintiudes a gravitational
QNM, and the shifts to the QNM frequencies of Kerr when theblaole is weakly
charged. This method may be of use in studies of black holéstvdre deformed
by external fields or are solutions to alternative theorfegravity.

1 Introduction

The quasinormal modes (QNMs) of a black hole are the charsiitescillations of
the spacetime. They decay in time as energy flows throughattizdm and disperses
to infinity as waves. They are present for all types of pedtidms (scalar, electro-
magnetic, and gravitational), and are excited whenevesplaeetime is transiently
perturbed. In particular, the gravitational wave QNMs magéehe ringdown phase
following a binary black hole merger or the formation of adkdnole, and so they
play an important role in gravitational wave astrophysisterence[2] provides a
detailed review of black hole QNMs.

The QNM frequencies are the solutions to an eigenvalue pnoplnalogous
to the problem of computing the energy spectrum of the hyein@jom in quantum
mechanics. Efficient methods are available for computieddNM frequencies and
wavefunctions for Kerr black holes (e.g. Leaver's methof), [&s well as many
spherically symmetric generalizations of the Schwarzdddtack hole. Itis difficult,
however, to solve for the frequency spectrum for genertédina of Kerr black holes,
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because the fundamental equations may no longer separatesrodecouple (as in
the case of Kerr-Newman black holes).

Here we describe a new method for computing small shifts éoQINM fre-
quencies for spacetimes which are slightly deformed fromr.Kehis method is
analogous to the problem of solving for the shifts in the gpéevels of a quantum
system that is perturbed by a small change in the Hamiltoii@nhave applied this
method to explore a parametric instability among the cstdlh modes of rapidly
rotating black holeg[11], and are currently using the métimocalculate the QNM
frequencies of weakly charged black holes with generic gpithe first time.

2 Quasinormal Modes of Deformed Spactimes

Perturbations of rotating black holes are well underst@od, can be treated us-
ing the Teukolsky formalismi[10] which unifies scalar, eteatagnetic, and grav-
itational perturbations into a single master equations®guation can be solved
for spin-weighted scalar quantitiegy, wheres = 0,+1,+2 correspond to scalar,
electromagnetic, and gravitational perturbations rethgeyg. We write the master
equation schematically as

Lt [s(x)] = 7, (1)

wherelLt is a second order differential operator constructed udiegNewman-
Penrose formulation of the field equatiohs [7], afidrepresents sources of stress
energy which generate the perturbations. Since we areesttt in the free oscil-
lation frequencies of the spacetime, we $ét= 0. All relevant gravitational and
electromagnetic fields can be reconstructed from the sgiigivwed scalargy. Re-
markably, Eq]L separates when we expand the scalars ireifpesincy domain,

=3 [ doe P S (0) Rmal1). @)

wheresSm, are the spin-weighted spheroidal harmonics, &R, are the radial
wavefunctions[[10]. Inserting this expansion into Ef. lufesin a pair of cou-
pled eigenvalue equations feffm, andsRmw, Which give the angular eigenvalues
sAim(w) and the QNM frequencies m.

We are interested in how this situation changes when wedntre a small de-

formation to the black hole spacetimgy, = gﬁ,o\z + nhi,la with n < 1. We call

this a “deformation” to distinguishﬁ,l\z from the further QNM perturbations of the

spacetime. The deformation can represent any small matiifice the spacetime,
for example the impact of additional multipole moments & ttentral object is a
“bumpy” black hole, or the addition of a small amount of cleatg the hole (which
carries additional complications). As we proceed, we orlgkterms linear im.
The small deformation should only change the QNM spectrighty, introduc-
ing frequency shiftso — ©© + nw. To compute the frequency shiftsV), we
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first write Ymw(r, 0) = sSmwsRimw and expand the master equation in frequency
and azimuthal harmonics,

I~-T [lew(ra 6)] =0. (3)
Introducing the deformation and the shifts to the QNM fraggies gives
-0, w10 &
L' +nw 0—w+nLT {‘l’|mw+’7‘l’|mw ~0. 4)

Equation4 is a perturbed eigenvalue equation, and is rengnt of the problem
of solving for the eigenvalues of a perturbed Hamiltoniamirantum mechanics.
In that case, we have a Hamiltonidth=H® + nH®, perturbed energies, ~
EY + nE,gl), and perturbed eigenstat@s ~ [n(9) + n|nM). In order to solve for
E,(11>, we left multiply the equatiofd |n) = En|n) with background energy eigenstate
(n(9)], expand to leading order i, and arrive at

n©|H @)
<n(0) |n(0)>
Here we have writteE,gl) in a manner that emphasizes that this expression does not
require a normalized (or even orthogonal) basis. We onlyireghat(n(©|(H© —

Er(10>) InMy = 0, by acting the Hamiltonian on the left. In order to solvetfw shifted
energies, we need a self-adjoint, finite inner prodtict

We can isolate the shifted frequencies of Hg. 4 by defining sugroduct. How-
ever, at spatial infinity the outgoing boundary conditioos the radial functions
mean thatR|m ~ r~2 1d@®R=+aT wherew = wr — i . In order for the QNMs
to decay in timew > 0, so that the radial wavefunctions diverge at infinity. By
analytically continuingRn, into the complex-plane, these same solutions are ex-
ponentially decaying as we move into the upper half plare+ic. Thus we define
the finite inner product between two wavefunctions with tegnaptotic behavior of
QNMs,

Wix) = [ (r=r )% —r_)%r [ sin6doy(r.6)x(r.6). (6)

where the contou¥” begins att-ico, encircles a branch cut R, running from
the horizonr ;. parallel to the imaginary axis, and returns{too on the other side
of the cut. The weights of the integral guarantee that thelyebis self-adjoint, so

that(t,ul(r?])w|IN_(TO> [lpl(él) = 0. Using this inner product, the frequency shifts are
0 (1), ,(0
(Uhmtol L1 | i)
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Note that this procedure works even WH.Néfl? cannot be separatedirand8. We
have tested that this method recovers the corrections tQthe frequencies of
Schwarzschild when slow rotation is added.

3 Parametric I nstability of Rapidly Rotating Kerr Black Holes

As a first application of the method described above, we haxestigated the possi-
bility of parametric resonances around rapidly rotatingrdack holes. For rapidly
rotating black holes, witls = 1 —a < 1, the QNM spectrum is weakly damped and
nearly evenly spaced in the azimuthal mode nunthew = m/2+ O(\/€). This
spacing leads to the possibility of resonant mode intesastbeyond linear order in
perturbations about Kerr. In particular, parametric resme is a possibility, since
parametric resonance occurs when an oscillator is drivarfriquencyw approx-
imately twice its natural frequencyy ~ 2«'. This happens when a QNM of mode
numberm drives a mode with half its mode numbef = m/2. The strength of the
driving depends on the small amplitude of the driving moae, @mpetes with the
slow O(y/€) decay of the driven mode.

To investigate the possibility that an initially excited ®@N\can parametrically
drive one or more modes into growth, we must use second oedirpation theory.
Since this is quite challenging, we instead deal with thepgémbut conceptually
similar situation of a scalar field evolving in a dynamic bgedund consisting of
the black hole plus a weak graviational QNM perturbatione TNM then serves
as the driving mode, and the scalar field as a test oscillatican be driven.

The scalar field obeys

Hyonn ¥ = (ng) +H [h(l)]) (W] =0, (8)

where 7 is the linearization of the wave operator with respednf(}. Using the
ansatz that the scalar field solution is a background QNM waiitfadditional time
dependence,

W~ of a(t)dt—aft o—i(wr/2t+i(M/2)@ (‘M(r%y i ‘1U|(nl1>a/) tcc., (9)

we can use the method described above to solve for the groavemmetero (t),

which is time-dependent because the background QNM dexaiysé. In the above
equation, c.c. indicates the complex conjugate of the pliageterms. Our self-
adjoint inner product allows us to eliminate the unknowrrection to the wave-

functions LIJf;'.Zu, and a(t) can be determined solely from integrals involving the
unperturbed QNM wavefunctions and the metric. Whether égnawth occurs for
some time is a sensitive function of the initial amplitudetoé gravitational pertur-
bation, but may be possible for a moderately small mass nagi@er, provided the



Quasinormal Modes Beyond Kerr 5

final black hole is rapidly spinnin@ [11]. The growth is alveayansient, because the
driving mode decays in time.

An intriguing aspect of this instability is the fact that agle gravitational mode
with azimuthal numbem can drive modes with many different angular numbers
I, provided they have azimuthal numbet = m/2. In addition, modes of lower
frequencies are driven by modes with higher frequencieis.Situation is analogous
to the recently discovered turbulent behavior of pertudostof 4-dimensional AdS
black hole spacetimesl[1] and their 3-dimensional confbfha duals [4], which
feature an inverse cascade of mode energy to lower fregegnai fact, it is the
connection to the fluid-gravity correspondence that firstivated the study of the
parametric instability, which may represent the onset dfilence around a rapidly
rotating black hole[[11]. This would be the first example abtulent gravitational
behavior in an asymptotically flat spacetime.

4 The Quasinormal Modes of Kerr-Newman Black Holes

A second application of this method is to weakly chargedtnog) black hole space-
times. These are the small-charge limit of Kerr-Newman (KMck holes, param-
eterized by botla and the charg® in geometric units. In this case, the background
spacetime contains electromagnetic (EM) fields. A pertiiwhdo the gravitational
fields couples to the background EM fields and vice versa,adltlese types of per-
turbations are coupled. Because of this, the problem otigeations of KN black
holes has only been treated in the cases0 (Reissner Nordstrom black holes) [6]
anda< 1 [8,9]. The methods discussed here allow for the computatithe QNM
frequencies in small charge limit, whege= Q? < 1. In this case the KN solution
is simply a small deformation of Kerr.

The perturbation equations were derived by Chandrasefliae iphantom gauge
for the coupleds = 2 ands = 1 scalars[[B], and are schematically given by

(L +al + a0 9l | il = aGW 1t (10)

L7+ ol + 0000l | l1timo] = oF D ¥ (11)

However, we are interested in how the background gravitaties = 2) modes
change with the addition of a small charge, and in this caseetectromagnetic
(s=1) modes must b&(q),

2Wimeo = 2oy + 0 2Yy + O(P) (12)
1Wimw =4 l‘l’|(r~:,L1)w + O(qz) . (13)

Inserting this expansion into the pair of Efs] 10 11, veever Eq[# for the
shift of the gravitational QNM frequencies. Similarly, warcrecover the leading
correction to the electromagnetic QNM frequencies.
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5 Outlook

The eigenvalue perturbation method described here canfiedpo a variety of
situations of theoretical and astrophysical interestaft be applied directly when
the deformation of the black hole spacetime is stationadyadisymmetric, and it
can also be generalized to dynamical or non-axisymmetfargetions when these
are decomposed into modes, as the case of the parametaibilitgtillustrates. In
addition, the analysis of the Kerr-Newman black hole intlisathat the method
applies even when coupling exists between perturbatiodsttaa sources of the
deformed metric, such as stress-energy in the spacetined. Quplings shift the
QNM frequencies beyon@(n) and can be neglected at that order. The method is
quite general, and can be applied to deformations of oth&esys whose QNM
spectrum is known. In particular, application to higher dimional black holes may
provide new insights about these objects.

A major technical challenge is to compute the correctiom&Teukolsky equa-

tion, I:(Tl) given the deformatiohﬂ to the background metric, but in principle this is
straightforward. The case of scalar fields is especiallyp&mA general procedure

for generatingi(Tl) for all spin-weights is left to future work, along with addial
applications of the eigenvalue perturbation method.
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