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1 Introduction

The 3d-3d correspondence is an elegant relation between 3-manifolds and three-dimensional

field theories [1–4]. The general spirit is that one can associate a 3-manifold M3 with a

3d N = 2 superconformal field theory T [M3;G], obtained by compactifying the 6d (2,0)

theory on M3

6d (2,0) theory on M3

 

3d N = 2 theory T [M3].

(1.1)

In this procedure, the 6d theory is topologically twisted along M3 to preserve N = 2

supersymmetry. As a consequence, the 3d N = 2 theory T [M3;G] only depends on the

topology of M3 and the simply-laced Lie algebra g = Lie(G) that labels the 6d theory.1

Although the dictionary between the dynamics of T [M3] and topological properties of M3 is

incredibly rich [1, 3–7] and only partially explored, there are two very fundamental relations

between M3 and T [M3]. Firstly, the moduli space of supersymmetric vacua of T [M3;G]

on R
2 × S1 is expected to be homeomorphic to the moduli space of flat GC-connections

on M3,

MSUSY(T [M3;G]) ≃ Mflat(M3;GC). (1.2)

Second, the partition function of T [M3] on Lens space L(k, 1) should be equal to the

partition function of complex Chern-Simons theory on M3 at level k [7, 8],

ZT [M3;G][L(k, 1)b] = Z
(k,σ)
CS [M3;GC]. (1.3)

1The theory T [M3] doesn’t depend on small deformations of the metric, but could, in principle, depend

on a set of discrete variables. Based on current evidence, it is tempting to conjecture that the topology of

the compact manifold M3, together with a choice of the Atiyah 2-framing, completely determines T [M3].

– 1 –
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The level of complex Chern-Simons theory has a real part k and an “imaginary part”2 σ,

and σ is related to the squashing parameter b of Lens space L(k, 1)b = S3
b /Zk by

σ = k · 1− b2

1 + b2
. (1.4)

For k = 0, L(k, 1) = S1 × S2, and the equation (1.3) maps the superconformal index of

T [M3] to partition function of complex Chern-Simons theory at level (0, σ) [4]

IndexT [M3;G](q) = Tr(−1)F q
E+j3

2 = Z
(0,σ)
CS [M3;GC]. (1.5)

Despite its beauty and richness, the 3d-3d correspondence has been haunted by many

problems since its birth. For example, the theories TDGG[M3] originally proposed in [3]

miss many branches of flat connections and therefore fail even the most basic test (1.2).

This problem was revisited and partially corrected in [10]. As for (1.3) and (1.5), there

is simply no known proposal for T [M3] associated to any M3 that passes these stronger

tests. Even the very first non-trivial example of partition functions in Chern-Simons theory

found in Witten’s seminal paper [11],

ZCS[S
3; SU(2), k] =

√
2

k + 2
sin

(
π

k + 2

)
, (1.6)

has yet to find its home in the world of 3d N = 2 theories.

In [12], a candidate for the 3d theory T [L(p, 1)] was studied in detail:3

T [L(p, 1);G] =
3d N = 2 G super-Chern-Simons theory at level p

+ adjoint chiral multiplet Φ
. (1.7)

This theory was used to produce Verlinde formula, the partition function of Chern-Simons

theory on S1×Σ, along with its “complexification” — the “equivariant Verlinde formula”.

Therefore, one may wonder whether this theory could also give the correct partition func-

tion of Chern-Simons theory on S3 in (1.6) and its complex analog,

ZCS[S
3; SL(2,C), τ, τ ] =

√
4

ττ
sin

(
2π

τ

)
sin

(
2π

τ

)
. (1.8)

Here we have used holomorphic and anti-holomorphic coupling constants

τ = k + σ, τ = k − σ. (1.9)

2We use the quotation mark here because σ can be either purely imaginary or purely real as pointed out

in [9].
3More precisely, the Chern-Simons-adjoint theory is the UV CFT that can flow to numerous different

IR theories labelled by different relevant deformations, and T [L(p, 1)] is expected to be one of them. The

brane system giving rise to T [L(p, 1)] only allows deformations that is compatible with R(Φ) = 2. The

UV description, together with this assignment of R-charge for Φ, is adequate for computing any SUSY-

protected quantities associated with T [L(p, 1)]. Therefore, to avoid clutter, we will not distinguish the IR

SCFT T [L(p, 1)] and its UV description. Still, it is an interesting question to determine the exact relevant

deformation that leads to the correct IR theory. One expects that accidental symmetries will play an

important role in the RG flow.

– 2 –
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Indeed, according to the general statement of the 3d-3d correspondence, T [L(p, 1)] needs

to satisfy

ZT [L(p,1);G][L(k, 1)b] = Z
(k,σ)
CS [L(p, 1);GC] (1.10)

and

IndexT [L(p,1);G](q) = Tr(−1)F q
E+j3

2 = Z
(0,σ)
CS [L(p, 1);GC]. (1.11)

And if we take p = 1, the above relation states that the index of T [S3] should give the

S3 partition function of complex Chern-Simons theory. Even better, as there is a con-

jectured duality [13, 14] relating this theory to free chiral multiplets, one should be able

to obtain (1.6) and (1.8) by simply computing the index of a free theory! This relation,

summarized in diagrammatic form below,

Chern-Simons

theory on S3
3d-3d←−−→ Index of

T [S3]

duality←−−−→ free chiral

multiplets
(1.12)

will be the subject of section 2. We start section 2 by proving the duality in (1.12) for

G = U(N) and then “rediscover” the S3 partition function of U(N) Chern-Simons theory

from the index of N free chiral multiplets. Then in section 3 we go beyond p = 1 and

study more general theories T [L(p, 1)] with p > 1. We check that the index of T [L(p, 1)]

gives precisely the partition function of complex Chern-Simons theory on L(p, 1) at level

k = 0. In addition, we discover that index of T [L(p, 1)] has some interesting properties.

For example, when p is large,

IndexT [L(p,1);U(N)] = (2N − 1)!! (1.13)

is a constant that only depends on the choice of the gauge group. In the rest of section 3,

we study T [L(p, 1)] on S3
b and use the 3d-3d correspondence to give predictions for the

partition function of complex Chern-Simons theory on L(p, 1) at level k = 1.

2 Chern-Simons theory on S3 and free chiral multiplets

According to the proposal (1.7), the theory T [S3] is the N = 2 super-Chern-Simons theory

at level p = 1 with an adjoint chiral multiplet. If one takes the gauge group to be SU(2), this

theory was conjectured by Jafferis and Yin to be dual to a free N = 2 chiral multiplet [13].

The Jafferis-Yin duality has been generalized to higher rank groups by Kapustin, Kim and

Park [14]. For G = U(N), the statement of the duality is:

T [S3] =
U(N)1 super-Chern-Simons theory

+ adjoint chiral multiplet

duality←−−−→ N free chiral

multiplets
. (2.1)

In [12], a similar duality was discovered,

T [L(p, 1)] =
U(N)p super-Chern-Simons theory

+ adjoint chiral multiplet

duality←−−−→ sigma model to

vortex moduli space VN,p
.

(2.2)

– 3 –
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Here,

VN,p
∼=
{
(q, ϕ)

∣∣ ζ · Id = qq† + [ϕ,ϕ†]
}/

U(N), (2.3)

with q being an N × p matrix, ϕ an N ×N matrix and ζ ∈ R
+ the “size parameter,” was

conjectured to be the moduli space of N vortices in a U(p) gauge theory [15]. For p = 1,

it is a well-known fact that (see, e.g. [16])

VN,1 ≃ SymN (C) ≃ C
N . (2.4)

And a power-counting argument implies that, in the IR of the 3d sigma model, the Kähler

metric on VN,1 will flow to the flat one. This completes the proof of the “appetizer duality”

and its U(N) generalizations proposed in [13] and [14].

In particular, at the level of the superconformal index, one has

index of T [S3; U(N)] = index of N free chirals. (2.5)

Combining (2.5) with the 3d-3d correspondence, one concludes that the index of the free

theory equals the S3 partition function of Chern-Simons theory. This is what we will

explicitly verify in this section.

Chern-Simons theory on the three-sphere. The partition function of U(N) Chern-

Simons theory on S3 is

ZCS

(
S3; U(N), k

)
=

1

(k +N)N/2

N−1∏

j=1

[
sin

πj

k +N

]N−j

. (2.6)

For N = 2, this gives back (1.6) for SU(2) (modulo a factor coming from the additional

U(1)). It is convenient to introduce

q = e
2πi
k+N , (2.7)

the variable commonly used for the Jones polynomial, and express (2.6) as (mostly) a

polynomial in q1/2 and q−1/2:

ZCS

(
S3; U(N), k

)
= C · (ln q)N/2

N−1∏

j

[
qj/2 − q−j/2

]N−j
. (2.8)

Here C is a normalization factor that does not depend on q and such factors will be dropped

in many later expressions without comment.

One can easily obtain the partition function for GL(N,C) Chern-Simons theory by

noticing that it factorizes into two copies of (2.6) at level k1 = τ/2 and k2 = τ/2

ZCS

(
S3; GL(N,C)

)
= (ln q ln q)N/2

N−1∏

j=1

[
qj/2 − q−j/2

]N−j [
q−j/2 − qj/2

]N−j
. (2.9)

Here, in slightly abusive use of notation (cf. (2.7)),

q = e
4πi
τ , q = e

4πi
τ . (2.10)

– 4 –
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Notice that the quantum shift of the level k → k + N in U(N) Chern-Simons theory is

absent in the complex theory [9, 17, 18]. Although (2.9) is almost a polynomial, it contains

“ln q” factors. So, at this stage, it is still somewhat mysterious how (2.9) can be obtained

as the index of any supersymmetric field theory.

In (2.9) the level is arbitrary and the k = 0 case is naturally related to superconformal

index of T [S3] (1.11). For k = 0,

q = e
4πi
σ , q = e−

4πi
σ = q−1, (2.11)

and

Z
(0,σ)
CS

(
S3; GL(N,C)

)
= (ln q)N

N−1∏

j=1

[
(1− qj)(1− q−j)

]N−j
. (2.12)

This is the very expression that we want to reproduce from the index of free chiral multi-

plets.

Index of a free theory. The superconformal index of a 3d N = 2 free chiral multiplet

only receives contributions from the scalar component X, the fermionic component ψ and

their ∂+ derivatives. If we assume the R-charge of X to be r, then the R-charge of ψ is

1− r and the superconformal index of this free chiral is given by

Ir(q) =
∞∏

j=0

1− q1−r/2+j

1− qr/2+j
. (2.13)

In the j-th factor of the expression above, the numerator comes from fermionic field ∂jψ

while the denominator comes from bosonic field ∂jX. Here q is a fugacity variable that

counts the charge under E+j3
2 = R/2 + j3 and it is the expectation of the 3d-3d corre-

spondence [4] that this q is mapped to the “q” in (2.12), which justifies our usage of the

same notation for two seemingly different variables. Now the only remaining problem is to

decide what are the R-charges for the N free chiral multiplets.

The UV description of theory T [L(p, 1)] has an adjoint chiral multiplet Φ and in general

one has the freedom of choosing the R-charge of Φ. Different choices give different IR fix

points which form an interesting family of theories. As was argued in [12] using brane

construction, the natural choice — namely the choice that one should use for the 3d-3d

correspondence — is R(Φ) = 2. For example, in order to obtain the Verlinde formula, it is

necessary to choose R(Φ) = 2 while other choices give closely related yet different formulae.

As the N free chirals in the dual of T [S3; U(N)] are directly related to TrΦ, TrΦ2, . . . ,

TrΦN , the choice of their R-charges should be

rm = R(Xm) = 2m, for m = 1, 2, . . . , N. (2.14)

The index for this assignment of R-charges — out of the unitarity bound — contains

negative powers of q. However, this is not a problem at all because the UV R-charges

are mixed with the U(N) flavor symmetries, and q counts a combination of R- and flavor

charges.

– 5 –
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One interesting property of the index of a free chiral multiplet (2.13) is that it will

vanish due to the numerator of the (m− 1)-th factor:

1− qm−rm/2 = 0. (2.15)

However, there is a very natural way of regularizing it and obtaining a finite result. Namely,

we multiply the q-independent normalization coefficient (rm/2−m)−1 to the whole expres-

sion and turn the vanishing term above into

lim
rm→2m

1− qm−rm/2

rm/2−m
= ln q. (2.16)

And this is exactly how the “ln q” factors on the Chern-Simons theory side arise. With

this regularization

I2m(q) = ln q
m−1∏

j=1

[(
1− q−j

) (
1− qj

)]
, (2.17)

and the 2m − 1 factors come from the fermionic fields ψm, ∂ψm,. . . , ∂2m−2ψm. The

contribution of ∂2m−1+lψm will cancel with the bosonic field ∂lX as they have the same

quantum number. The special log term comes from the field ∂m−1ψm, which has exactly

R+ 2j3 = 0.

Then it is obvious that

IndexT [S3;U(N)] =
N∏

m=1

I2m(q) = (ln q)N
N−1∏

j=1

[
(1− qj)(1− q−j)

]N−j
(2.18)

is exactly the partition function of complex Chern-Simons theory on S3 (2.12). For exam-

ple, if N = 1,

IndexT [S3;U(1)] = I2(q) = ln q. (2.19)

For N = 2,

IndexT [S3;U(2)] = I2(q) · I4(q) = (ln q)2 (1− q−1)(1− q). (2.20)

To get the renowned S3 partition function of the SU(2) Chern-Simons theory, we just need

to divide the N = 2 index by the N = 1 index and take the square root:

√
IndexT [S3;U(2)]

IndexT [S3;U(1)]
=
√
I4(q) = −i · (ln q)1/2

(
q1/2 − q−1/2

)
. (2.21)

For compact gauge group SU(2), we substitute in

q = e
2πi
k+2 (2.22)

and up to an unimportant normalization factor, (2.21) is exactly

ZCS(S
3; SU(2), k) =

√
2

k + 2
sin

π

k + 2
. (2.23)

– 6 –
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As almost anything in a free theory can be easily computed, one can go beyond index

and check the following relation

ZN free chirals(L(k, 1)b) = Z
(k,σ)
CS (S3; U(N)). (2.24)

The left-hand side can be expressed as a product of double sine functions [19] and with

the right choice of R-charges it becomes exactly the right-hand side, given by (2.6). As

this computation is almost identical for what we did with index, we omit it here to avoid

repetition.

Before ending this section, we comment on deforming the relation (1.12). In the for-

mulation of T [L(p, 1)] in (1.7), there is a manifest U(1) flavor symmetry that can be weakly

gauged to give an “equivariant parameter” β. And the partition function of T [L(p, 1);β]

should be related to β-deformed complex Chern-Simons theory studied in [12]:

ZT [L(p,1);β](L(k, 1)) = Zβ-CS(L(p, 1); k). (2.25)

When p = 1, this U(1) flavor symmetry of T [S3; U(N)] is expected to be enhanced to a

U(N) flavor symmetry (or at least U(1)N — the part that is compatible with the choice of

R-symmetry) that is only visible in the dual description with N free chiral multiplets. Then

one can deform T [S3] by adding N equivariant parameters β1, β2, . . . , βN . It is interesting

to ask whether the Chern-Simons theory on S3 naturally admits such an N -parameter

deformation and whether one can have a more general relation,

IndexT [S3](q;β1, β2, . . . , βN ) = ZCS(S
3; q, β1, β2, . . . , βN ). (2.26)

As Chern-Simons theory on S3 is dual to closed string on the resolved conifold [20, 21], it

would also be interesting to understand whether similar deformation of the closed string

amplitudes Fg exists.

In the next section, we will be considering L(p, 1) with p > 1. Notice that, analogous

to the p = 1 case, VN,p has SU(p)×U(1) isometry with the SU(p) part being hidden in the

Chern-Simons-matter description of T [L(p, 1)]. It is also interesting to see what the role

played by the fugacities of the SU(p) is.

On a separate issue, the existence of hidden symmetries, either U(N) for p = 1 or

SU(p) for p > 1, shows that accidental symmetries will arise and affect the RG flow of the

Chern-Simons-adjoint theory. Therefore, understanding the flow and its IR fixed point will

pose an interesting challenge.

3 3d-3d correspondence for Lens spaces

In the previous section, we focused on T [S3] and found that it fits perfectly inside the

3d-3d correspondence. This theory is the special p = 1 limit of a general class (1.7) of

theories T [L(p, 1)] proposed in [12]. In this section, we will test this proposal and see

whether it stands well with various predictions of the 3d-3d correspondence. There are

several tests to run on the proposed Lens space theories (1.7). The most basic one is the

– 7 –
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correspondence between moduli spaces (1.2) that one can formulate classically without

doing a path integral:

MSUSY (T [L(p, 1); U(N)]) ≃ Mflat (L(p, 1);GL(N,C)) . (3.1)

And our first task in this section is to verify that this is indeed an equality.

3.1 MSUSY vs. Mflat

The moduli space of flat H-connections on a three manifold M3 can be identified with the

character variety:

Mflat (M3;H) ≃ Hom(π1(M3), H)/H. (3.2)

As π1(L(p, 1)) = Zp, this character variety is particularly simple. For example, if we take

H = U(N) or H = GL(N,C) — the choice between U(N) or GL(N,C) does not even

matter — this space is a collection of points labelled by Young tableaux with size smaller

than N × p. This is in perfect harmony with the other side of the 3d-3d relation where the

supersymmetric vacua of T [L(p, 1); U(N)] on S1 ×R
2 are also labelled by Young tableaux

with the same constraint [12]. We will now make this matching more explicit.

If we take the holonomy along the S1 Hopf fiber of L(p, 1) to be A, then

Mflat (L(p, 1);GL(N,C)) ≃ {A ∈ GL(N,C)|Ap = Id}/GL(N,C). (3.3)

First we can use the GL(N,C) action to cast A into Jordan normal form. But in order to

satisfy Ak = Id, A has to be diagonal, and each of its diagonal entries al has to be one of

the p-th roots of unity:

apl = 1, for all l = 1, 2, . . . , N. (3.4)

One can readily identify this set of equations with the t → 1 limit of the Bethe ansatz

equations that determine the supersymmetric vacua of T [L(p, 1); U(N)] on S1 × R
2 [12]:

e2πipσl

∏

m 6=l

(
e2πiσl − te2πiσm

te2πiσl − e2πiσm

)
= 1, for all of l = 1, 2, . . . , N. (3.5)

For t = 1, this equation is simply

e2πipσl = 1, for l = 1, 2, . . . , N. (3.6)

And this is exactly (3.4) if one makes the following identification

al = e2πiσl . (3.7)

Of course this relation between al and σl is more than just a convenient choice. It can be

derived using the brane construction of T [L(p, 1)]. In fact, it just comes from the familiar

relation in string theory between holonomy along a circle and positions of D-branes after

T-duality. Indeed, in the above expression, the al’s on the left-hand side label the U(N)-

holonomy along the Hopf fiber, while the σl’s on the right-hand side are coordinates on the

Coulomb branch of T [L(p, 1)] after reduction to 2d, which exactly correspond to positions

of N D2-branes.

– 8 –
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GCCC Chern-Simons theory from G Chern-Simons theory. The fact that Mflat is

a collection of points is important for us to compute the partition function of complex

Chern-Simons theory. Although there have been many works on complex Chern-Simons

theory and its partition functions, starting from [9, 22] to perturbative invariant in [17, 23],

state integral models in [7, 24, 25] and mathematically rigorous treatment in [26–28], what

usually appear are certain subsectors of complex Chern-Simons theory, obtained from some

consistent truncation of the full theory. In general, the full partition function of complex

Chern-Simons theory is difficult to obtain, and requires proper normalization to make sense

of. Some progress has been made toward understanding the full theory on Seifert manifolds

in [12] using topologically twisted supersymmetric theories. However, if Mflat(M3;GC) is

discrete and happens to be the same as Mflat(M3;G), then one can attempt to construct

the full partition function of the GC Chern-Simons theory on M3 from the G Chern-Simons

theory. The procedure is the following. One first writes the partition function of the G

Chern-Simons theory as a sum over flat connections:

Z full =
∑

α∈M

Zα. (3.8)

And because the action of the GC Chern-Simons theory

S =
τ

8π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

τ

8π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(3.9)

is simply two copies of the G Chern-Simons theory action at level k1 = τ/2 and k2 = τ/2,

one would have

Zα(GC; τ, τ) = Zα

(
G;

τ

2

)
Zα

(
G;

τ

2

)
, (3.10)

if A and A were independent fields. So, one would naively expect

Z full(GC; τ, τ) =
∑

α∈M

Zα

(
G;

τ

2

)
Zα

(
G;

τ

2

)
. (3.11)

But as A and A are not truly independent, (3.11) is in general incorrect and one needs

to modify it in a number of ways. For example, as mentioned before, the quantum shift

of the level τ and τ in GC Chern-Simons theory is zero, so for Zα(G) on the right-hand

side, one needs to at least remove the quantum shift k → k+ ȟ in G Chern-Simons theory,

where ȟ is the dual Coxeter number of g. There may be other effects that lead to relative

coefficients between contributions from different flat connections α and the best one could

hope for is

Z full(GC; τ, τ) =
∑

α∈M

eiCαZ ′
α

(
G;

τ

2

)
Z ′
α

(
G;

τ

2

)
, (3.12)

where

Z ′
α

(
G;

τ

2

)
= Zα

(
G;

τ

2
− ȟ
)
. (3.13)

One way to see that (3.11) is very tenuous, even after taking care of the level shift, is by

noticing that the left-hand side and the right-hand side behave differently under a change
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of framing. If the framing of the three-manifold is changed by s units, the left-hand side

will pick up a phase factor

exp
[
ϕfr.
C · s

]
= exp

[
πi(cL − cR)

12
· s
]
. (3.14)

Here cL and cR are the left- and right-moving central charges of the hypothetical conformal

field theory that lives on the boundary of the complex Chern-Simons theory [9]:

(cL, cR) = dimG ·
(
1− 2ȟ

τ
, 1 +

2ȟ

τ

)
. (3.15)

The right-hand side of (3.11) consists of two copies of the Chern-Simons theory with

compact gauge group G, so the phase from change of framing is

exp
[
ϕfr. · s

]
= exp

[
πi

12

(
τ/2− ȟ

τ/2
+

τ/2− ȟ

τ/2

)
dimG · s

]
. (3.16)

The two phases are in general different

ϕfr.
C − ϕfr. =

2πi dimG

12
. (3.17)

So (3.11) has no chance of being correct at all and the minimal way of improving it is to

add the phases, Cα, as in (3.12), which also transform under change of framing.

It may appear that the expression (3.12) is not useful unless one can find the values of

the Cα’s. However, as it turns out, for k = 0 (or equivalently τ = −τ), all of the Cα’s are

constant, and (3.12) without the Cα’s gives the correct partition function.4 This may be

closely related to the fact that for k = 0,

cL − cR = −2ȟdimG

(
1

τ
+

1

τ

)
= 0. (3.18)

3.2 Superconformal index

We have shown that the proposal (1.7) for T [L(p, 1)] gives the right supersymmetric vacua

and we shall now move to the quantum level and check the relation between the partition

functions:

IndexT [L(p,1);U(N)](q) = ZCS (L(p, 1);GL(N,C), q) . (3.19)

We have already verified this for p = 1 in the previous section. Now we consider the more

general case with p ≥ 1.

The superconformal index of a 3d N = 2 SCFT is given by [29]

I(q, ti) = Tr
[
(−1)F e−γ(E−R−j3)q

E+j3
2 tfi

]
. (3.20)

Here, the trace is taken over the Hilbert space of the theory on R × S2. Because of

supersymmetry, only BPS states with

E −R− j3 = 0 (3.21)

4“Correct” in the sense that it matches the index of T [L(p, 1)].
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will contribute. As a consequence, the index is independent of γ and only depends on

q and the flavor fugacities, ti. For T [L(p, 1)], there is always a U(1) flavor symmetry

and we can introduce at least one parameter t. When this parameter is turned on, on

the other side of the 3d-3d correspondence, complex Chern-Simons theory will become

the “deformed complex Chern-Simons theory”. This deformed version of Chern-Simons

theory was studied on geometry Σ× S1 in [12] and will be studied on more general Seifert

manifolds in [30]. However, because in this paper our goal is to test the 3d-3d relation (as

opposed to using it to study the deformed Chern-Simons theory), we will usually turn off

this parameter by setting t = 1, and compare the index I(q) with the partition function of

the undeformed Chern-Simons theory, which is only a function of q, as in (2.12).

Viewing the index as the partition function on S1 ×q S
2 and using localization, (3.20)

can be expressed as an integral over the Cartan T of the gauge group G [31]:

I =
1

|W|
∑

m

∫ ∏

j

dzj
2πizj

e−SCS(m)qǫ0/2eib0(h)tf0 exp

[
+∞∑

n=1

1

n
Ind(znj ,mj ; t

n, qn)

]
. (3.22)

Here h,m ∈ t are valued in the Cartan subalgebra. Physically, eih is the holonomy along

S1 and is parametrized by zi, which are coordinates on T.

m =
i

2π

∫

S2

F (3.23)

is the monopole number on S2 and takes value in the weight lattice of the Langlands dual

group LG. |W| is the order of the Weyl group and the other quantities are:

b0(h) = −1

2

∑

ρ∈RΦ

|ρ(m)| ρ(h),

f0 = −1

2

∑

ρ∈RΦ

|ρ(m)| f,

ǫ0 =
1

2

∑

ρ∈RΦ

(1− r) |ρ(m)| − 1

2

∑

α∈ad(G)

|α(m)| ,

SCS = ip tr(mh),

(3.24)

and

Ind(eihj = zj ,mj ; t; q) = −
∑

α∈ad(G)

eiα(h)q|α(m)|

+
∑

ρ∈RΦ

[
eiρ(h)t

q|ρ(m)|/2+r/2

1− q
− e−iρ(h)t−1 q

|ρ(m)|/2+1−r/2

1− q

] (3.25)

is the “single particle” index. RΦ is the gauge group representation for all matter fields.

Using this general expression, the index of T [L(p, 1); U(N)] can be expressed in the follow-
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ing form:

I(q,t) =
∑

m1>···>mN∈Z

1

|Wm|

∫ ∏

j

dzj
2πizj

N∏

i

(zi)
pmi

N∏

i6=j

t−|mi−mj |/2q−R|mi−mj |/4

(
1− q|mi−mj |/2

zi
zj

)

N∏

i6=j

(
zj
zi
t−1q|mi−mj |/2+1−R/2;q

)
∞(

zi
zj
tq|mi−mj |/2+R/2;q

)
∞

×
[
(t−1q1−R/2;q)∞

(tqR/2;q)∞

]N
.

(3.26)

Here we used the q-Pochhammer symbol (z; q)n =
∏n−1

j=0 (1−zqj). Wm ⊂ W is the stabilizer

subgroup of the Weyl group that fixes m ∈ t and R stands for the R-charge of the adjoint

chiral multiplet and will be set to R = 2 — the choice that gives the correct IR theory.

In the previous section, we have found the index for T [S3] to be exactly equal to the

S3 partition function of Chern-Simons theory. There, we used an entirely different method

by working with the dual description of T [L(p, 1); U(N)], which is a sigma model to the

vortex moduli space VN,p. For p = 1, this moduli space is topologically C
N and the index

of the sigma model is just that of a free theory. For p ≥ 2, such a simplification will not

occur and the index of the sigma model is much harder to compute.5 In contrast, the

integral expression (3.26) is easier to compute with larger p than with p = 1, because

fewer topological sectors labelled by the monopole number m contribute. As we will see

later, when p is sufficiently large, only the sector m = (0, 0, . . . , 0) gives non-vanishing

contribution. So the two approaches of computing the index have their individual strengths

and are complementary to each other.

Now, one can readily compute the index for any T [L(p, 1);G] and then compare I(q, t =
1) with the partition function of the complex Chern-Simons theory on L(p, 1). We will

first do a simple example with G = SU(2), to illustrate some general features of the index

computation.

Index of T [L(p, 1); SU(2)]. We will start with p = 1 and see how the answer from

section 2 arises from the integral expression (3.26). In this case, (3.26) becomes

I =
∑

m∈Z

∫
dz

4πiz
eihmq−2|m|

(
1− q|m|eih

)2 (
1− q|m|e−ih

)2 +∞∏

k=0

1− qk+1−R/2

1− qk+R/2

=
∑

m∈Z

∫
dz

4πiz
zmq−2|m|

(
1 + q2|m| − zq|m| − z−1q|m|

)2
[(R− 2) ln q]

=
∑

m∈Z

∫
dz

4πiz
zm
(
q2|m| + q−2|m| + 4− 2

(
z +

1

z

)(
q|m| +

1

q|m|

)
+

(
z2 +

1

z2

))

× [(R/2− 1) ln q] .

(3.27)

5In general, it can be written as an integral of a characteristic class over VN,p that one can evaluate

using the Atiyah-Bott localization formula. Similar computations were done in two dimensions in, e.g. [1]

and [32].
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As in section 2, the index will be zero if we naively take R = 2 because of the 1 − q1−r/2

factor in the infinite product. When R → 2, the zero factor becomes

1− q1−R/2 = 1− exp [(1−R/2) ln q] ≈ (R/2− 1) ln q. (3.28)

As in section 2, we can introduce a normalization factor (R/2−1)−1 in the index to cancel

the zero, making the index expression finite.

The integral in (3.27) is very easy to do and the index receives contributions from three

different monopole number sectors

I =
1

2
ln q (Im=0 + Im=±1 + Im=±2), (3.29)

with

Im=0 =

∫
dz

2πiz

(
q0 + q−0 + 4

)
= 6, (3.30)

Im=±1 = −2
∑

m=±1

∫
dz

2πiz
zm
(
q|m| + q−|m|

)(
z +

1

z

)
= −4(q + q−1), (3.31)

and

Im=±2 =
∑

m=±2

∫
dz

2πiz
zm
(
z2 +

1

z2

)
= 2. (3.32)

So the index is

I =
1

2
ln q

(
6− 4(q + q−1) + 2

)

= −2 ln q
(
q1/2 − q−1/2

)2
.

(3.33)

Modulo a normalization constant, this is in perfect agreement with results in section 2.

Indeed, the square root of (3.33) is identical to (2.21) and reproduces the S3 partition

function of the SU(2) Chern-Simons theory,

ZCS(S
3; SU(2), k) =

√
2

k + 2
sin

π

k + 2
, (3.34)

once we set

q = e
2πi
k+2 . (3.35)

It is very easy to generalize the result (3.33) to arbitrary p. For general p, the index is

given by

I =
1

2
ln q

∑

m∈Z

∫
dz

2πiz
zpm

×
(
q2|m| + q−2|m| + 4− 2

(
q|m| + q−|m|

)(
z +

1

z

)
+

(
z2 +

1

z2

))
.

(3.36)

The only effect of p is to select monopole numbers that contribute. For example, if p = 2,

only m = 0 and m = ±1 contribute to the index and we have

Ip=2 =
1

2
ln q (Im=0 + Ip=2

m=±1) =
1

2
ln q (6 + 2) = 4 ln q. (3.37)
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

U(2) 2(1− q)(1− q−1) 4 3 3 3 3

U(3)
6(1− q)2(1− q2)

(1− q−1)2(1− q−2)

28− 6q−2 − 8q−1

−8q − 6q2
23 + 2q−1 + 2q 16 15 15

U(4)

24(1− q)3(1− q2)2

(1− q3)(1− q−1)3

(1− q−2)2(1− q−3)

504+

84q−4 − 96q−3

−80q−2 − 160q−1

−160q − 80q2

−96q3 + 84q4

204− 30q−3

−48q−2 − 24q−1

−24q − 48q2

−30q3

188 + 10q−2

+24q−1 + 24q

+10q2

121+

2q−1 + 2q
108

U(5)

120(1− q)4(1− q2)3

(1− q3)2(1− q4)

(1− q−1)4(1− q−2)3

(1− q−3)2(1− q−4)

12336+

120q−10 + 192q−9

−1080q−8 + 48q−7

+120q−6 + 3792q−5

−2016q−4 − 1296q−3

−3312q−2 − 2736q−1

−2736q − 3312q2

−1296q3 − 2016q4

+3792q5 + 120q6

+48q7 − 1080q8

+192q9 + 120q10

3988+

180q−6 + 388q−5

−294q−4 − 932q−3

−584q−2 − 752q−1

−752q − 584q2

−932q3 − 294q4

+388q5 + 180q6

2144−
240q−4 − 320q−3

−320q−2 − 192q−1

−192q − 320q2

−320q3 − 240q4

1897+

70q−3 + 192q−2

352q−1 + 352q

+192q2 + 70q3

1188+

14q−2 + 40q−1

40q + 14q2

Table 1. The superconformal index of the “Lens space theory” T [L(p, 1),U(N)], which agrees with

the partition function of GL(N,C) Chern-Simons theory at level k = 0 on Lens space L(p, 1).

If p > 2, only the trivial sector is selected, and

I(p > 2) =
1

2
ln q Im=0 = 3 ln q. (3.38)

This is a general feature of indices of the “Lens space theory” and we will soon encounter

this phenomenon with higher rank gauge groups.

The test for 3d-3d correspondence. We list the index of T [L(p, 1); U(N)], obtained

using Mathematica, in table 1. Due to limitation of space and computational power, it

contains results up to N = 5 and p = 6. The omnipresent (ln q)N factors are dropped to

avoid clutter, and after this every entry in table 1 is a Laurent polynomial in q with integer

coefficients. Also, when the gauge group is U(N), monopole number sectors are labeled by

an N -tuple of integers m = (m1,m2, . . . ,mN ) and a given sector can only contribute to

the index if
∑

mi = 0.

From the table, one may be able to recognize the large p behavior for U(3) and U(4)

similar to (3.37) and (3.38). Indeed, it is a general feature of the index IT [L(p,1);U(N)]

that fewer monopole number sectors contribute when p increases. In order for a monopole

number m = (m1, . . . ,mN ) to contribute,

|pmi| ≤ 2N − 2 (3.39)
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needs to be satisfied for all mi. For large p > 2N − 2, I only receives a contribution from

the m = 0 sector and becomes a constant:

I(U(N), p > 2N − 2) = Im=(0,0,0,...,0) = (2N − 1)!! . (3.40)

For p = 2N − 2, the index receives contributions from two sectors:6

I(U(N), p = 2N − 2) = Im=(0,0,0,...,0)+Im=(1,0,...,0,−1) = [(2N − 1)!! + (2N − 5)!!] . (3.41)

While the ln q factors (that we have omitted) are artifacts of our scheme of removing zeros

in I, the constant coefficient (2N −1)!! in (3.40) is counting BPS states. Then one can ask

a series of questions: 1) What are the states or local operators that are being counted? 2)

Why is the number of such operators independent of p when p is large?

Partition functions ZCS of the complex Chern-Simons theory on Lens spaces can also

be computed systematically. Please see appendix A for details of the method we use. For

k = 0, GC = GL(N,C), the partition functions on L(p, 1) only depend on q = e4πi/τ

as q = e4πi/τ = q−1. After dropping a (ln q)N factor as in the index case, it is again a

polynomial. We have computed this partition function up to N = 5 and p = 6 and found

a perfect agreement with the index in table 1.

From the point of view of the complex Chern-Simons theory, this large p behavior (3.40)

seems to be even more surprising — it predicts that the partition functions of the complex

Chern-Simons theory on L(p, 1) at level k = 0 are constant when p is greater than twice

the rank of the gauge group. One can then ask 1) why is this happening? And 2) what is

the geometric meaning of this (2N − 1)!! constant?

3.3 T [L(p, 1)] on S3

b

In previous sections, we have seen that the superconformal index of T [L(p, 1)] agrees com-

pletely with the partition function of the complex Chern-Simons theory at level k = 0 given

by (3.12) with trivial relative phases Cα = 0:

Z(GC; τ, τ) =
∑

α∈M

Z ′
α

(
G;

τ

2

)
Z ′
α

(
G;

τ

2

)
, (3.42)

for G = U(N). But for more general k, one can no longer expect this to be true. We will

now consider the S3
b partition function of T [L(p, 1)], which will give the partition function

of the complex Chern-Simons theory at level [8]

(k, σ) =

(
1,

1− b2

1 + b2

)
. (3.43)

And we will examine for which choices of N and p that setting all phases Cα = 0 becomes

a mistake, by comparing the S3
b partition function of T [L(p, 1)] to the “naive” partition

function (3.42) of the complex Chern-Simons theory at level k = 1 on L(p, 1).

There are two kinds of squashed three-spheres breaking the SO(4) isometry of the

round S3: the first one preserves SU(2) × U(1) isometry while the second one preserves

6Here, double factorial of a negative number is taken to be 1.
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U(1)×U(1) [33]. However, despite the geometry being different, the partition functions of

3d N = 2 theories that one gets are the same [33–36]. In fact, as was shown in [37, 38],

three-sphere partition functions ofN = 2 theories only admit a one-parameter deformation.

We will choose the “ellipsoid” geometry with the metric

ds23 = f(θ)2dθ2 + cos2 θdφ2
1 +

1

b4
sin2 θdφ2

2, (3.44)

where f(θ) is arbitrary and does not affect the partition function of the supersymmetric

theory.

Using localization, partition function of a N = 2 gauge theory on such an ellipsoid can

be written as an integral over the Cartan of the gauge group [33, 35]. Consider an N = 2

Chern-Simons-matter theory with gauge group being U(N). A classical Chern-Simons term

with level k contributes

ZCS = exp

(
i

b2
k

4π

N∑

i=1

λ2
i

)
(3.45)

to the integrand. The one-loop determinant of U(N) vector multiplet, combined with the

Vandermonde determinant, gives

Zgauge =
N∏

i<j

(
2 sinh

λi − λj

2

)(
2 sinh

λi − λj

2b2

)
. (3.46)

A chiral multiplet in the representation R gives a product of double sine functions:

Zmatter =
∏

ρ∈R

sb

(
iQ

2
(1−R)− ρ(λ)

2πb

)
, (3.47)

where Q = b + 1/b, R is the R-charge of the multiplet and the double sine function is

defined as

sb(x) =
+∞∏

p,q=0

pb+ qb−1 + Q
2 − ix

pb−1 + qb+ Q
2 + ix

. (3.48)

Then we can express the S3
b partition function of T [L(p, 1)] using the UV description

in (1.7) as

Z(T [L(p, 1),U(N)], b) =
1

N !

∫ N∏

i

dλi

2π
exp

(
− i

b2
p

4π

N∑

i=1

λ2
i

)

×
N∏

i<j

4

π2

(
sinh

λi − λj

2

)2(
sinh

λi − λj

2b2

)2

,

(3.49)

which is a Gaussian integral. We list our results in table 2 and 3. A universal factor

(
b

ip

)N/2

π−N(N−1) (3.50)

is dropped in making these two tables.
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p U(2) U(3) U(4)

1
2e−2iπb2− 2iπ

b2

(
1− e

2iπ

b2

)(
1− e2iπb

2
)

6e−8iπb2− 8iπ

b2

(
1− e

2iπ

b2

)3 (
1 + e

2iπ

b2

)

(
1− e2iπb

2
)3 (

1 + e2iπb
2
)

24e−20iπb2− 20iπ

b2

(
1− e

2iπ

b2

)6 (
1 + e

2iπ

b2

)2

(
1 + e

2iπ

b2 + e
4iπ

b2

)(
1− e2iπb

2
)6

(
1 + e2iπb

2
)2 (

1 + e2iπb
2

+ e4iπb
2
)

2
2− 2e−

iπ

b2 − 2e−iπb2

+2e−iπb2− iπ

b2

2e−4iπ(b2+b−2)

(
1− e

2iπ

b2

)(
1− e2iπb

2
)

(
−6e

iπ

b2 + 3e
2iπ

b2 − 6eiπb
2

+ 3e2iπb
2

−4eiπ(b
2+b−2) + 3e2iπ(b

2+b−2)

−6eiπ(b
2+2b−2) − 6eiπ(2b

2+b−2) + 3
)

8e−10iπ(b2+b−2)
(
1− e

2iπ

b2

)2 (
1− e2ib

2π
)2

(
3− 9e

iπ

b2 + 9e
2iπ

b2 − 6e
3iπ

b2 + 9e
4iπ

b2 − 9e
5iπ

b2

+3e
6iπ

b2 − 9eib
2π + 9e2ib

2π − 6e3ib
2π

+9e4ib
2π − 9e5ib

2π + 3e6ib
2π − 9eiπ(b

2+b−2)

+27e2iπ(b
2+b−2) − 4e3iπ(b

2+b−2) + 27e4iπ(b
2+b−2)

−9e5iπ(b
2+b−2) + 3e6iπ(b

2+b−2) − 27eiπ(b
2+2b−2)

+27e2iπ(b
2+2b−2) − 6e3iπ(b

2+2b−2) − 6eiπ(b
2+3b−2)

+9e2iπ(b
2+3b−2) − 27eiπ(b

2+4b−2) − 9eiπ(b
2+5b−2)

−9eiπ(b
2+6b−2) − 18eiπ(2b

2+3b−2) + 9e2iπ(2b
2+3b−2)

−27eiπ(2b
2+5b−2) − 18eiπ(3b

2+2b−2) + 9e2iπ(3b
2+2b−2)

−18eiπ(3b
2+4b−2) − 6eiπ(3b

2+5b−2) − 18eiπ(4b
2+3b−2)

−27eiπ(4b
2+5b−2) − 27eiπ(5b

2+2b−2) − 6eiπ(5b
2+3b−2)

−27eiπ(5b
2+4b−2) − 9eiπ(5b

2+6b−2) − 9eiπ(6b
2+5b−2)

−27eiπ(2b
2+b−2) + 27e2iπ(2b

2+b−2)

−6e3iπ(2b
2+b−2) − 6eiπ(3b

2+b−2) + 9e2iπ(3b
2+b−2)

−27eiπ(4b
2+b−2) − 9eiπ(5b

2+b−2) − 9eiπ(6b
2+b−2)

)

3
2− 2e−

2iπ

3b2 − 2e−
2

3
iπb2

−e−
2iπ
3

(b2+b−2)

−3e−
8iπ
3 (b2+b−2)×

(
4e

2iπ

3b2 + 2e
2iπ

b2 + 2e
8iπ

3b2

+4e
2

3
iπb2 + 2e2iπb

2

+ 2e
8

3
iπb2

−8e
2iπ
3 (b2+b−2) + 4e2iπ(b

2+b−2)

−2e
8iπ
3 (b2+b−2) + 8e

2iπ
3 (b2+3b−2)

−4e
2iπ
3 (b2+4b−2)

+4e
2iπ
3 (3b2+4b−2) + 4e

2iπ
3 (4b2+3b−2)

+8e
2πi
3 (3b2+b−2) − 4e

2πi
3 (4b2+πb−2) + 1

)

−6e−
20iπ
3 (b2+b−2)

(
1− e

2iπ

b2

)(
1− e2ib

2π
)

(
1 + 6e

2iπ

3b2 + 5e
2iπ

b2 + 8e
8iπ

3b2 + 3e
4iπ

b2 + 4e
14iπ

3b2

+6e
2

3
ib2π + 5e2ib

2π + 8e
8

3
ib2π + 3e4ib

2π

+4e
14

3
ib2π − 18e

2iπ
3 (b2+b−2) − 2e

4iπ
3 (b2+b−2)

+25e2ipi(b
2+b−2) − 28e

8iπ
3 (b2+b−2) − 2e

10iπ
3 (b2+b−2)

+9e4iπ(b
2+b−2) − 4e

14iπ
3 (b2+b−2) − 4e

4iπ
3 (b2+2b−2)

+15e2iπ(b
2+2b−2) + 30e

2iπ
3 (b2+3b−2) − 24e

2iπ
3 (b2+4b−2)

+18e
2iπ
3 (b2+6b−2) − 12e

2iπ
3 (b2+7b−2)

+24e
4iπ
3 (2b2+3b−2) + 2e

2iπ
3 (2b2+5b−2) + 4e

2iπ
3 (2b2+7b−2)

+24e
4iπ
3 (3b2+2b−2) + 40e

2iπ
3 (3b2+4b−2) + 20e

2iπ
3 (3b2+7b−2)

+40e
2iπ
3 (4b2+3b−2) + 4e

2iπ
3 (4b2+5b−2) − 20e

2iπ
3 (4b2+7b−2)

+2e
2iπ
3 (5b2+2b−2) + 4e

2iπ
3 (5b2+4b−2) − 4e

2iπ
3 (5b2+7b−2)

+12e
2iπ
3 (6b2+7b−2) + 4e

2iπ
3 (7b2+2b−2) + 20e

2iπ
3 (7b2+3b−2)

−20e
2iπ
3 (7b2+4b−2) − 4e

2iπ
3 (7b2+5b−2) + 12e

2iπ
3 (7b2+6b−2)

−4e
4iπ
3 (2b2+b−2) + 15e2iπ(2b

2+b−2) + 30e
2iπ
3 (3b2+b−2)

−24e
2iπ
3 (4b2+b−2) + 18e

2iπ
3 (6b2+b−2) − 12e

2iπ
3 (7b2+b−2)

)

Table 2. The S3
b partition function of T [L(p, 1),U(N)]. In this table p ranges from 1 to 3.
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p U(2) U(3)

4 2− 2e−
iπ

2b2 − 2e−
1

2
iπb2 − 2e−

iπ
2 (b

2+b−2)

−2e−2iπ(b2+b−2)×
(
−3− 2e

iπ

2b2 + 2e
3iπ

2b2 + 3e
2iπ

b2 − 2e
1

2
iπb2 + 2e

3

2
iπb2 + 3e2iπb

2

+ 4e
iπ
2 (b

2+b−2)

+4e
3iπ
2 (b2+b−2) − 3e2iπ(b

2+b−2) + 4e
iπ
2 (b

2+3b−2) − 6e
iπ
2 (b

2+4b−2)

+6e
iπ
2 (3b

2+4b−2) + 6e
iπ
2 (4b

2+3b−2) + 4e
iπ
2 (3b

2+b−2) − 6e
iπ
2 (4b

2+b−2)
)

5 2− 2e−
2iπ

5b2 − 2e−
2

5
iπb2 + 2 cos 4π

5 e−
2iπ
5 (b2+b−2)

6− 12e−
2iπ

5b2 + 12e−
6iπ

5b2 − 6e−
8iπ

5b2 − 12e−
2

5
iπb2

+12e−
6

5
iπb2 − 6e−

8

5
iπb2 + 4

(
cos 8π

5 + e
4iπ
5

)
e−

2iπ
5

(4b2+b−2)

4
(
cos 8π

5 + 2 cos 4π
5

)
e−

2iπ
5

(b2+4b−2) + 8
(
cos 4π

5 + 2 cos 2π
5

)
e−

2iπ
5 (b2+b−2)

+8
(
cos 12π

5 + 2 cos 6π
5

)
e−

6iπ
5 (b2+b−2) + 2

(
cos 16π

5 + 2 cos 8π
5

)

×e−
8iπ
5 (b2+b−2) − 8e−

2iπ
5 (b2+3b−2) − 8e−

2iπ
5 (b2−3+3b−2) − 8e−

2iπ
5 (b2+3+3b−2)

−8e−
2iπ
5 (3b2+b−2) − 4e−

2iπ
5 (3b2+4b−2) − 4e−

2iπ
5 (3b2−6+4b−2)

−8e−
2iπ
5 (3b2−3+b−2) − 8e−

2iπ
5 (3b2+3+b−2) − 4e−

2iπ
5 (3b2+6+4b−2)

−4e−
2iπ
5 (4b2+3b−2) − 4e−

2iπ
5 (4b2−6+3b−2) − 4e−

2iπ
5 (4b2+6+3b−2)

6 2− 2e−
iπ

3b2 − 2e−
1

3
iπb2 + e−

iπ
3
(b2+b−2)

e−
4iπ
3 (b2+b−2)×

(
−12e

iπ

3b2 − 6e
iπ

b2 − 6e
4iπ

3b2 − 12e
1

3
iπb2 − 6eiπb

2 − 6e
4

3
iπb2 − 8e

iπ
3 (b

2+b−2)

+4eiπ(b
2+b−2) + 6e

4iπ
3 (b2+b−2) + 8e

iπ
3 (b

2+3b−2) + 12e
iπ
3 (b

2+4b−2)

−12e
iπ
3 (3b

2+4b−2) − 12e
iπ
3 (4b

2+3b−2) + 8e
iπ
3 (3b

2+b−2) + 12e
iπ
3 (4b

2+b−2) − 3
)

Table 3. The S3
b partition function of T [L(p, 1),U(N)]. This table, with p ranging from 4 to 6, is

the continuation of the previous table 2. Due to the limitation of space, only partition functions

for U(2) and U(3) are given.

If one compares results in table 2 and 3 with partition functions of complex Chern-

Simons theory naively computed using (3.11), one will find a perfect agreement for p = 1

once the phase factor

exp

[
πi(cL − cR)

12
· (3− p)

]
(3.51)

from the change of framing is added.7 This agreement is not unexpected because for

p = 1, Mflat consists of just a single point and there are no such things as relative phases

between contributions from different flat connections. Even for p = 2, the naive way (3.11)

of computing partition function of complex Chern-Simons theory seems to be still valid

modulo an overall factor. However, starting from p = 3, the two sides start to differ

significantly. See table 4 for a comparison between the S3
b partition function of T [L(p, 1)]

and the “naive” partition function of the complex Chern-Simons theory on L(p, 1) for

G = U(2). Recently, Blau and Thompson studied partition functions of complex Chern-

Simons theory on general Seifert manifolds [40], and it is a very interesting problem to

7The complex Chern-Simons theory obtained from the 3d-3d correspondence is naturally in “Seifert

framing”, as the T [L(p, 1)] we used is obtained by reducing M5-brane on the Seifeit S1 fiber of L(p, 1)

in [12]. However, the computation in appendix A is in “canonical framing” and differs from Seifert framing

by (3− p) units [39].
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p S3
b partition function of T [L(p, 1); U(2)] “naive” partition function of GL(2,C) Chern-Simons theory

1 2− 2q−1 − 2q−1 + 2 (qq)−1 2− 2q−1 − 2q−1 + 2 (qq)−1

2 2 + 2q−
1

2 + 2q−
1

2 + 2 (qq)−
1

2 2i
(
2 + 2q−

1

2 + 2q−
1

2 + 2 (qq)−
1

2

)

3 2 +
(
1−

√
3i
)
q−

1

3 +
(
1−

√
3i
)
q−

1

3 + 1
2

(
1 +

√
3i
)
(qq)−

1

3 2 +
(
1− 3

√
3i
)
q

1

3 +
(
1− 3

√
3i
)
q

1

3 + 1
2

(
1 + 3

√
3i
)
(qq)

1

3

4 2− 2iq−
1

4 − 2iq−
1

4 + 2 (qq)−
1

4 8i (qq)
1

2

(
1 + iq

1

4 + iq
1

4 + (qq)
1

4

)

5 2− 2e
2πi
5 q−

1

5 − 2e
2πi
5 q−

1

5 + 2 cos 4π
5 e

4πi
5 (qq)−

1

5

qq
(
2− 2

(
e

3πi
5 + 2e

4πi
5

)
q

1

5 − 2
(
e

3πi
5 + 2e

4πi
5

)
q

1

5

+
(
1 + 2e

πi
5 + 3e

2πi
5 − 4e

3πi
5 − 4e

4πi
5

)
(qq)

1

5

)

6 2−
(
1 +

√
3i
)
q−

1

6 −
(
1 +

√
3i
)
q−

1

6 − 1
2

(
1−

√
3i
)
(qq)−

1

6 6i (qq)
3

2

(
2 + (−1 + i

√
3)q

1

6 + (−1 + i
√
3)q

1

6 + 1
2

(
1 + i

√
3
)
(qq)

1

6

)

Table 4. The comparison between the S3
b partition function of T [L(p, 1),U(2)] and the “naive”

partition function of the GL(2,C) Chern-Simons theory, obtained by putting together two copies

of the U(2) Chern-Simons theory using (3.42), on Lens space L(p, 1) in “Seifert framing.” Notice

that when p increases, the difference between the two columns becomes larger and larger.

check whether their results, when specialized to L(p, 1), agrees with the prediction of the

3d-3d correspondence using T [L(p, 1)].

A Complex Chern-Simons theory on Lens spaces

Lens space L(p, q) can be obtained by gluing two solid tori S1 ×D2 along their boundary

T 2’s using an element in MCG(T 2) = SL(2,Z):

(
−q ∗
p ∗

)(
m

l

)
=

(
m′

l′

)
. (A.1)

Here (m, l) and (m′, l′) are meridian and longitude circles of the two copies of T 2 = ∂(S1×
D2). So the meridian m′ of one torus is mapped to −qm+ pl of the other torus. As for l,

we do not need to track what it is mapped into as the choice only affects the framing of

L(p, q). A canonical choice of an SL(2,Z) element in (A.1) is given by

ST c1ST c2S . . . T cnS, (A.2)

where (c1, c2, . . . , cn) are coefficients in continued fraction expansion of p/q. For q = 1, the

element that gives L(p, 1) is

ST pS. (A.3)

As SL(2,Z) naturally acts on the Hilbert spaceHCS(T 2;G) of the Chern-Simons theory

on the two-torus, one has

ZCS(L(p, q);G) = 〈0|ST c1ST c2S . . . T cnS|0〉. (A.4)

Here |0〉 ∈ H is the state associated to the solid torus while S and T give the action of

S, T ∈ SL(2,Z) on H. When G is compact, S and T are known from the study of the
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2D WZW model and affine Lie algebra [41] and can be directly used to evaluate (A.4).

Partition functions of Chern-Simons theory on Lens spaces were first obtained precisely in

this manner in [42] for SU(2) and in [43, 44] for higher rank gauge groups. Define k̂ = k+ȟ,

then the partition function of the G Chern-Simons theory on L(p, q) is given by

Z(L(p, q), k̂) =
1

(k̂|p|)N/2
exp

(
iπ

k̂
s(q, p)|ρ|2

)

×
∑

w∈W

det(w) exp

(
−2πi

pk̂
〈ρ, w(ρ)〉

)

×
∑

m∈Y ∨/pY ∨

exp

(
iπ

q

p
k̂|m|2

)
exp

(
2πi

1

p
〈m, qρ− w(ρ)〉

)
.

(A.5)

Here s(q, p) is the Dedekind sum:

s(q, p) =
1

4p

p−1∑

n=1

cot

(
πn

p

)
cot

(
πqn

p

)
, (A.6)

ρ the Weyl vector of the Lie algebra g, W the Weyl group, Y ∨ the coroot lattice, N the

rank of the gauge group, and the inner product, 〈·, ·〉, is taken with respect to the standard

Killing form of g.

Now we start computing the partition function of complex Chern-Simons theory us-

ing (3.12) for GC = GL(N,C). The first step is to separate (A.5) into contributions from

different flat connections. As discussed in section 3.1, the moduli space Mflat of U(N) flat

connections of L(p, q) — whose foundamental group is Zp — consists of discrete points.

Each point can be labelled by (a1, a2, . . . , aN ), where the aj ’s are the p-th roots of unity.

For convenience we use a different set of labels, α = (α1, α2, . . . , αN ) ∈ g∗, with the αj ’s

being integers between 0 and p− 1 that satisfy

e2πiαj/p = aj . (A.7)

Then (A.5) can be rewritten as [45]:

Z(L(p, q), k̂) =
1

N !

∑

α

Zα(L(p, q), k̂),

Zα(L(p, q), k̂) =
1

(k̂|p|)l/2
exp

(
iπ

k̂
N(N2 − 1)s(q, p)

)
exp

(
iπ

q

p
k̂|α|2

)

∑

w,w̃∈SN

det(w) exp

(
−2πi

pk̂
〈ρ, w(ρ)〉

)
exp

(
2πi

1

p
〈w̃(α), qρ− w(ρ)〉

)
.

(A.8)

The set {α} is redundant for labelling flat connections in Mflat because the Weyl group

W = SN ⊂ U(N) acts on {α} by permuting the αj ’s. We will use α̃ to denote equivalence

classes of α under Weyl group action and each α̃ corresponds to one flat connection modulo
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gauge transformations. A canonical representative of α̃ is given by (α1, α2, . . . , αN ) with

α1 ≥ α2 ≥ . . . ≥ αN . Using α̃, (A.5) can be written as

Z(L(p, q), k̂) =
∑

α̃

1

|Wα̃|
Zα̃(L(p, q), k̂), (A.9)

where Wα̃ ⊂ W is the stabilizer subgroup of α̃ ∈ g∗.

Using the naive way (3.11) of computing the partition function of complex Chern-

Simons theory when Mflat is zero-dimensional, one has

Z(GC; τ, τ) =
1

N !

∑

α

Zα

(
G;

τ

2
− ȟ
)
Zα

(
G;

τ

2
− ȟ

)
. (A.10)

Notice that using α̃ labels, this is

Z(GC; τ, τ) =
∑

α̃

1

|Wα̃|
Zα̃

(
G;

τ

2
− ȟ
)
Zα̃

(
G;

τ

2
− ȟ

)
, (A.11)

and the 1
|Wα̃|

factor should not be squared. This is because GC and G have the same Weyl

group W and in complex Chern-Simons theory W acts simultaneously on A and A.

(A.11), together with (A.8), is the equation we use to compute the partition function

of the complex Chern-Simons theory. In the making of the table 1, we have dropped a

universal factor (
4

ττ

)N/2

∝ (ln q)N . (A.12)

This matches the factor that is also omitted on the supersymmetric index side.
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[41] V.G. Kač and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular

forms, Adv. Math. 53 (1984) 125 [INSPIRE].

[42] L.C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles and the

semiclassical approximation, Commun. Math. Phys. 147 (1992) 563 [INSPIRE].

– 23 –

http://dx.doi.org/10.1016/j.geomphys.2007.03.008
https://arxiv.org/abs/math.QA/0604094
http://inspirehep.net/search?p=find+EPRINT+math/0604094
http://dx.doi.org/10.4310/CNTP.2009.v3.n2.a4
https://arxiv.org/abs/0903.2472
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2472
http://dx.doi.org/10.1007/s00220-014-2073-2
https://arxiv.org/abs/1109.6295
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6295
https://arxiv.org/abs/1305.4291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4291
https://arxiv.org/abs/1409.1208
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1208
http://dx.doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1435
http://dx.doi.org/10.1007/JHEP04(2011)007
https://arxiv.org/abs/1101.0557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0557
http://dx.doi.org/10.1007/JHEP06(2012)178
https://arxiv.org/abs/1102.0184
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0184
http://dx.doi.org/10.1007/JHEP05(2011)014
https://arxiv.org/abs/1102.4716
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4716
http://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.Conf.Ser.,21,171%22
http://dx.doi.org/10.1016/j.nuclphysb.2012.07.019
https://arxiv.org/abs/1110.6400
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6400
http://dx.doi.org/10.1016/j.nuclphysb.2012.08.015
https://arxiv.org/abs/1111.6930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6930
http://dx.doi.org/10.1007/JHEP10(2013)095
https://arxiv.org/abs/1307.6848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6848
http://dx.doi.org/10.1007/JHEP01(2014)124
https://arxiv.org/abs/1309.5876
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5876
https://arxiv.org/abs/hep-th/0503126
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503126
https://arxiv.org/abs/1603.01149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.01149
http://dx.doi.org/10.1016/0001-8708(84)90032-X
http://inspirehep.net/search?p=find+J+%22Adv.Math.,53,125%22
http://dx.doi.org/10.1007/BF02097243
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,147,563%22


J
H
E
P
1
1
(
2
0
1
6
)
0
0
8

[43] M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold

invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].

[44] S.K. Hansen and T. Takata, Reshetikhin-Turaev invariants of Seifert 3-manifolds for

classical simple Lie algebras, and their asymptotic expansions, J. Knot Theory Ramifications

13 (2004) 617 [math.GT/0209403].

[45] D. Gang, Chern-Simons theory on L(p, q) lens spaces and Localization, arXiv:0912.4664

[INSPIRE].

– 24 –

http://dx.doi.org/10.1007/s00220-004-1194-4
https://arxiv.org/abs/hep-th/0207096
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207096
https://arxiv.org/abs/math.GT/0209403
https://arxiv.org/abs/0912.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4664

	Introduction
	Chern-Simons theory on S**3 and free chiral multiplets
	3d-3d correspondence for Lens spaces
	M(SUSY) vs. M(flat)
	Superconformal index
	T[L(p,1)] on S**3(b)

	Complex Chern-Simons theory on Lens spaces

