
2-D Compaction
A Monte Carlo Method
Richard C. Mosteller
Computer Science Department
California Institute of Technology
Pasadena, Ca. 91125

Alexander H. Frey
IBM and Computer Science Department
California Institute of Technology
Pasadena, Ca. 91125

and Roberto Suaya
Schlumberger Palo Alto Research
3340 Hillview, Palo Alto, Ca. 94304

Abstract

In this paper we study the two-dimensional compaction of integrated
circuit layouts. A curvilinear representation for circuit elements, specifically
chosen to make the compaction efficient, is developed. A Monte Carlo algo­
rithm with heuristic termination criteria was applied to a variety of designs.
These experiments give running times for compaction that are consistent
with a conjectured average complexity of O(N312 log2 (N)) where N is the
number of non-wire primitives in the cell. These experiments also produced
favorable comparisons with hand-designs and with designs using iterated
applications of one dimensional compactors. Several cells also were fabri­
cated and tested to demonstrate the practicality of the representation and
the compaction technique.

1 Introduction

Integrated circuit compaction reduces the area of a cell while preserving both
the topology of the circuit layout and the Geometric Design Rules - GDRs.
The Geometric Design Rules are constraints needed for manufacturing, as­
sociated with the relative position and overlap of the different components
--electrically active devices and interconnecting wires- of the circuit.

Manufacturing considerations in VLSI provide a considerable incentive
to minimize the silicon area required for the design of a cell since

yield~ exp(- area).

In this paper we address the problem of minimizing area, and describe a
working system used for the automatic generation of near-optimal MOS lay­
outs of cells. We use, as an optimization criterion, a function that combines

174

considerations of wire lengths and the distance of structures from a specified
interior line.

Previous work in two dimensional compaction[11,9] has been limited ex­
clusively to "Manhattan" geometry, i.e. rectangles oriented along cartesian
axes. Hand designers do not limit themselves always to orthogonal geometry
as shown in Figure 1 - a hand-designed nMOS cell. Tightly compacted cells
can be produced this way. Curvilinear hand compaction has, to date, been
an art that requires a highly skilled designer. It is, moreover , time consum­
ing and error prone. But when density of the layout is a primary concern, as
it is in custom VLSI, no automatic tool previously has been able to obtain a
density comparable to that achieved by a craftsman artwork designer. One
purpose of the work reported in this paper has been to break that barrier.

Figure 1 Curvilinear Sample Design

Issues like portability, scaling and updatibility can all be addressed in
a simplified manner with this two-dimensional compactor - as can decisions
related to composition such as port position and cell shape e.g., aspect ratio
for a rectangular bounding box.

We now will give a guided tour of the compaction process through a
simple example. Consider a 4:1 multiplexor whose schematic transistor rep­
resentation is shown in Figure 2. The input description is a loose geometrical
specification of the cell shown in Figure 3. Not ice how transistors are made
out of the primitives, bubbles and wires, and how wires can bend around
bubbles.

A

A

8

li
out

2 3 4

c- h
[----- ~

....r .,_

1 2 3 4

A

A

8

li

Figure 2 A 4:1 Multiplexor Logic Diagram

175

Figure 3 The 4:1 Multiplexor Initial Design Configuration

Guaranteeing the correctness of the input Geometric Design Rules is
done by an interactive checker within the compactor's front-end editor. The
designer's task is simplified by the allowed looseness of the input. The te­
dious , time consuming, and error prone phase of shrinking the cell to mini­
mize its area -for a given pitch if necessary- while preserving the GDR's
becomes a task for the compactor.

After the cell is entered, the compaction is performed using the sim­
ulated annealing technique and optimization schedule similar to that de­
scribed by Kirkpatrick [3] . The annealing process optimizes a cost function
made up of a monotonic function of the wire lengths plus a central potential
acting on the bubbles. The cost function chosen reflects extensive experi­
mental work [7]. Figure 4 shows the cell after several attempts to move all
the bubbles at high temperature. During bubble motion, wires are bent and
pushed around obstacles.

Figure 4 The 4:1 Multiplexor at Cooling stage 1

AB the temperature is gradually lowered, the bubbles move slowly tcr
ward the center of the cell, as shown in Figure 5 and Figure 6. Although
bubbles are pulled together somewhat along the paths of the wires, the major
force pulling the bubbles towards the center of the cell is the central poten­
tial. At low temperatures, the central potential can produce some distortions
on the layout, particularly around the edge of the cell. This distortion is re­
moved by performing a final -minimum temperature- compaction after
turning off the central potential. While doing this, a wall -an infinite per
tentia l barrier- is placed at the minimum bounding box of the cell. T he
resulting cell is compared with a hand layout in Figure 7. It is instructive to
note that it took 0.5 CPU hours on a DEC-SYS-20/ 60 to compact this cell.

176

Figure 5 The 4:1 Multiplexor at Cooling stage 2

Figure 6 The 4:1 Multiplexor at Cooling stage 3

Figure 7 The 4:1 Hand and Automatic Compacted Cell

177

The "Bubbleman" implementation system was written, using the Main­
sail programming language, by R. Mosteller[7J. Figure 8 shows a block dia­
gram of the system.

Graphic Structure Optimization

Editor IAodifter Scheduler

~'/
Dolo @} Simulator

IAonoger
......

Interface

l~
User Compos!Hon Utilities

Interface

Figure 8 The Bubbleman System

It consists of 8 modules interacting with a data base. When circuits are
initially entered -through the Interactive Graphic Editor- a check is made
to assure that no GDR's are violated. The GDR's continue to be satisfied
throughout the annealing process. A composition module is provided to al­
low a hierarchical approach making use of both the editor and the compactor
functions.

In Section 2 we will discuss the representation. The primitive data
types, bubbles and wires, are described together with how they are used
for GDR checking . Composites of the primitives, called models, are used to
build transistors and contacts. The special characteristics of these structures
are briefly discussed.

In Section 3, the main body of the algorithm is presented. Tlie clear
path algorithm, the move construction, and the optimization strategy based
on simulated annealing all are discussed.

Finally, in Section 4, we show some measurements of compaction per­
formance on test cells. Some meaningful comparisons with hand layouts and
with semi-automatic one-dimensional-compactor-generated cells are given.
Some rough estimates from Section 3 of the growth of complexity with cell
size are compared to limited test results. Finally, a simple adder cell was

designed using this representation, compacted by this simulated annealing
program, and successfully fabricated and functionally tested.

2 Representation

To minimize the computational cost of simulated annealing in two dimen­
sional compaction, an easily-modified representation is required. Speed often

178

comes with simplicity, but the variety of objects -transistors, contacts, re­
sistors, wires, etc.- and the variety of object sizes found in VLSI circuits
makes finding such simplicity in a representation more difficult. For ex­
ample, a new curvilinear representation developed by Whitney [lO] was not
designed for fast modification and update. Also, transistors and contacts in
that representation were not designed to be malleable during compaction.
Updating the data structure of EARL, a curvilinear representation devel­
oped by Kingsley[2], was also very time consuming.

2.1 A Simply-Modified Representation

Earlier applications of simulated annealing to molecular dynamics suggested
a new representation. Only two primitive components are used. Circular
objects called bubbles are connected by wires as shown in Figure 9. Bubbles
are hard objects that will be moved around as if they were molecules during
the annealing process. Wires connecting bubbles are stretchable objects
which are continuously modified to follow the shortest path between the
bubbles they connect while preserving all required Geometric Design Rule
constraints. The wires act as an elastic medium between the bubbles they
connect during the annealing process.

Figure 9 Bubbles and Wire

In this representation bubbles are solid circular objects that cannot
be distorted or moved by other objects. Wires are pliable but are always
stretched tight so as to follow the shortest path between bubbles that pre­
serves the initial topology of the circuit without violating any GDR's. Each
wire consists of an alternating sequence of pieces called segments and arcs,
always starting and ending with a segment. A segment may have zero length.

VLSI circuits are designed and fabricated in several layers. Structures
such as contacts or transistors are composed of bubbles and wires with sev­
eral layers per primitive. These structures form models for each desired type
and size of such structures, and their names are included in the menu of the
graphic editor so that they can be instantiated as needed by the designer.
After a model is instantiated, the individual objects in the structure are
t reated independently by the move algorithm. This enables the shape and
orientation of the structure to be modified during the compaction process,
to make better use of the total space available.

To achieve a compact representation, all primitive objects are divided
into types, where the characteristics of each type are defined by a rule for

179

that type of object. There are very many objects of relatively few types
in any large cell. Thus the unique data associated with the object can be
limited to position and connectivity information plus a rule reference, and
all the other information needed for GDR checking can be placed in the rule
definition.

The GDR's for the several layers of design and fabrication are described
through a set of tables reflecting the technology of the current implemen­
tation. In the tables describing the technology of the design are minimum
separation values, MinS£, for any two objects in a layer. The rule associated
with an object, Oi, not only indicates when the object is in the layer, L, but
also specifies, Wi, the width of that wire or the diameter of that bubble
in that layer. Using these values, we can compute the minimum allowable
separation distance, MinD(Ot.02), for two objects, 01 and 02, in the layer,

. (O) w1 w2 M. 8 MmD 1, 02 = 2 + 2 + m L·

To check that 01 and 02 do not violate a GDR in L, the distance between
the closest points of 01 and 02 is computed and compared to MinD(01, 02).

For the purpose of efficient GDR checking, each rule contains several
arrays of Boolean variables. These arrays are used to determine what other
types of objects must be kept away from this type. Speed is obtained by
using only logical functions for determining this. Two objects are seen to be
in the same layer when the Boolean variable corresponding to that layer is
set to 1 in the rule for each object. For example, the diffusion layer is called
green. A value, 1, for the green variable in the rule for an object indicates
that that type of object has content in the diffusion layer. Two objects with
green content are detected by ANDing the array of color variables in each of
their rules. The technology file is referenced to see how far the green content
of these two objects must be kept separated.

Wherever a wire is connected to a bubble we impose a constraint that
the bubble diameter must be equal to or greater than the width of the wire.
Not only does this avoid any sharp corners, but it greatly simplifies GDR
checking. In particular, the end of a segment does not have to be considered
separately, even when the direction that a wire leaves a bubble is rotated.

When there is a design rule between two different fabrication layers, a
new hypothetical layer is created to implement this rule. For example, to
implement a design rule between polysilicon -red- and diffusion - green-,
a hypothetical color red/ green is created and all objects with either red or
green content also are given red/ green content. Thus a red object and a
green object are found to have the red/ green layer in common and must be
kept separated by the distance indicated for red/ green in the technology file.

Provision is also made whereby one color may supersede another by a
logical check of additional Boolean arrays in the rules for two objects. This
provision might need to be used, for example, if the red/ green separation dis­
tance were greater than the red separation distance. Two red objects would

180

have both red content and red/ green content. In this case the red/ green
distance could be ignored and only the red distance applied.

There are some cases where two objects that would normally be sepa­
rated by a GDR should be treated differently. For example, if two objects
are electrically connected, they are not subject to the same GDR as they
would be if they were not connected. A concept called related is used to
handle these exceptions. Electrical connectivity is the most common reason
for two objects to be related, although there are other reasons, in particular,
for objects in a model. Each primitive object has a related number associated
with it that can be compared with the related number of another object to
determine when to apply the related arrays in their respective rules for com­
puting the required separation distance. For most objects not in models the
related number corresponds to a net number.

drain drain

+ .
gate 2 gate , gate , gate , -tt{-

source source
Figure 10 Enhancement Transistor Model Example

The identity of each object in the model is continually maintained in the
data structure. By carefully choosing the rules between particular objects
in a model, excessive distortions are allowed to occur at high temperatures
during annealing, and are eventually removed as the total circuit is cooled.
For example, consider the model for a minimum size nMOS enhancement­
mode transistor together with its circuit representation, as shown in Figure
10. Observe that the model contains five interconnected bubbles. The need
for several bubbles is illustrated in Figure 11 that displays an example of
excessive distortion in such a transistor. Figure 12 shows how a strong
attraction between the four outside bubbles and the center bubble insures
that the electrical characteristics of the transistor measured by length and
width are preserved in the final compacted cell. Similarly, invalid and valid
buried contacts are shown in Figures 13 and 14.

+ . . .

Figure 11 Invalid Enhancement Transistor

+
Figure 12 Valid Enhancement Transistor

Figure 13 Invalid Buried Contact

Figure 14 Valid Buried Contact

181

182

Figure 15 Snaky Enhancement Transistor

Wide transistors, as shown in Figure 15, illustrate another application of
hypothetical colors in the design of models. The distance required between
adjacent bubbles is determined by the rule specified for each bubble. By
including two hypothetical colors alternately on the bubbles, the distance
between these colors limits how close the alternate bubbles can get. When
the adjacent bubbles are tightly packed, this distance between alternate
bubbles determines the angle of bends in the transistor. For example, a
minimum separation between alternate bubbles of -./2 times the minimum
separation of adjacent bubbles will limit the angle of bend to 90 degrees
after cooling. Of course, if the designer does not want to allow any bends
in the wide transistor, no intermediate bubbles are needed and the width is
determined by the separation of the two end gate bubbles. The transistor
will be straight when cooled if the pull of the gate wire on the end bubbles
is large enough.

The concept of related objects being exceptions to the standard GDR's
is particularly useful in the design of models. For example, in the minimum­
size enhancement transistor shown above in Figure 12, the two diffusion
bubbles on opposite sides of the gate are not electrically connected. However
their minimum separation distance should be 2.A rather than the usual 3.A
distance for unrelated diffusion primitives. Their separation distance from
their transistor gate and polysilicon is also less than from the gate and
polysilicon of other unrelated transistors. To provide for all these relations,
primitives in models are given four related numbers compared to only one
for non-model primitives.

3 Algorithms

We will compact our design to a smaller or different shape in a sequence
of small steps to produce large modifications. Each small step is a move
of a single bubble in a straight line to a new position where the following
invariant conditions are preserved; the Geometric Design Rules are satisfied
at all times, the topology of the initial design is maintained, and all wires
connecting bubbles follow the shortest path that preserves that topology.

183

3.1 The MOVE Algorithm

A bubble move is an atomic action -that is, only one bubble may be pro­
cessed at a time. We do not allow one bubble to push or move another
bubble in this process. The fact that all GDR's have been represented using
single layer constraints, allows the move process to consider each primitive
in each layer independently. To see that the proposed position of two prim­
itives does not violate any GDRs, it is sufficient to see that they are not
violated in any single layer. Therefore the distance between two primitives
must be at least the maximum of the single layer requirements. We will now
describe how the move processing works in a single layer. An example of a
cell before and after a bubble move is shown in Figure 16.

Figure 16 Bubble Move Example

A complex move example, one that has been carefully chosen to contain
most of the special cases a move process must consider, is shown in Figure 17.

Figure 17 Bubble Move Example, Before Move

184

The example shows some of the interesting deformations to wires that
are needed in order to preserve the invariant conditions. Notice that the
bubble B1 in Figure 17 has an attached wire W1 which will need to wrap
bubble B2 in the new position. The arc of wire W2 which wraps bubble B1
may need to be unwrapped, and in turn, W2 may need to wrap the arc of
wire W1 around B2 . Now look at wire W3 . It will be pushed by bubble B 1
and thus will need to be wrapped around it. In a similar manner wire W 4
will need to be wrapped around that arc of Ws. There is also an arc of W4
around B3 that may possibly need to be unwrapped.

Before we move the bubble B1 to its new position, we need to check that
the bubble can be moved directly -i.e. in a straight line- to that position
without violating any GDRs and without moving any other bubbles on the
way. H we can move the bubble without causing any design rule errors
along the way, then the move may be performed. The move process is
thus divided into two parts. The first part is the clear path algorithm which
determines whether the bubble can be moved with no errors along the desired
straight-line path. The second part is the queue construction which builds
the required add and delete queues of primitives to implement the actual
move. The area that must be free of bubbles in the above example -that
is, the required clear path- is shown in Figure 18.

Figure 18 Bubble Move Clear Path Example, Before Move

185

Figure 19 Bubble Move Example, After Move

The position of all the bubbles and wires after the move is shown in
Figure 19. In constructing the add and delete queues to implement the
move, the order in which the wires are considered is important. The wire
furthest in the direction that the bubble is being moved should be considered
first, then the next furthest. The last wire considered should be the wire
furthest in opposite direction from the bubble move.

Notice that, in both clear path construction and queue construction,
one primitive is considered at a time. In the case of a multi-layer move,
all the layers are considered for each primitive before going on to the next
primitive. This is all that is required to go from the single-layer case to the
multi-layer case.

3.2 MOVE Algorithm Run Time

Both checking the clear path for a move and constructing the add and delete
queues - i.e. moving relevant wires- require searching areas of the cell for
primitives. The clear path area is defined by the bubble move and the wires
being pushed by that bubble move. For queue construction, each wire move
requires searching one or more triangles across which the wire would move
if there were no bubbles in the way. Each triangle side may end in an arc
which complicates the triangle search process. A tree search is used so that
the search time only grows with the logarithm of the number of primitives
in the cell. Part of constructing the add and delete queues for each move is
updating the search trees for each primitive that is modified.

The time for a move depends on two factors, the time to search and
update the search tree, and the density of bubbles and wires around the
bubble being moved. The first grows with the logarithm of the number of

186

bubbles in the cell. The second is a function of the compactness of the
cell. The central potential may cause large cells to be more compact on
the average in the interior than small cells. But this increase in density is
expected to be only a small factor in the increase of CPU time for a bubble
move. Experimental data is consistent with a very slow growth of the average
time for a single move during a compaction process -see Section 4 where
the increasing density factor appears to be bounded by log(N), giving an
overall average move time growth of less than log2 (N).

3.3 The Compaction Algorithm

Two dimensional compaction is known to be NP hard[8]. This does not pre­
clude the existence of algorithms that can obtain reasonable near-optimum
configurations in polynomial time. A careful use of the Monte Carlo method
known as simulated annealing[3] provides a heuristic optimization algorithm.

This optimization method uses a cost function for each configuration in
the domain of optimization. A key to success when using simulated annealing
is the choice of this cost function for each configuration. Near-minimums
of the cost function must correspond to near-optimum configurations, and
when a configuration is modified, the corresponding delta to the cost function
should be easily computable from information local to the modification.

The cost function we have chosen has two major parts: 1) a wire cost,
based on the length of each wire, to keep wires short, and, 2) a central
potential cost, based on the position of each bubble and arc, to pull the
various primitives toward the center of the cell.

A normal wire contributes a cost proportional to its length. A coefficient
of cost is chosen for each layer, larger coefficients being associated with the
less desirable layers, e.g., diffusion or polysilicon. For wires that are part
of models, e.g., transistors, buried contacts, etc., the cost of each wire is a
quadratic function of its length. This allows the models to move without
spreading out too far, and delta wire costs still can be calculated with only
local information.

The central potential is implemented in several pieces. A cell wall is
given, beyond which there is an infinite potential. A second boundary, called
a membrane, is used to control a quadratic growth of the cent ral potential
cost inside the wall. The shape of the membrane is chosen to approximate
the desired form factor of the compacted cell. Outside of the membrane,
the central potential cost is a quadratic function of the distance from the
membrane. For bubbles inside the membrane, the central potential cost is
another quadratic function of the distance of the bubble from the center of
the cell. The quadratic central potential costs are then chosen so that the
derivative of the central potential cost for a bubble located at the membrane
is roughly equivalent to the derivative of the cost for a typical single wire at­
tached to the bubble. Port bubbles are only affected by the central potential
parallel to their boundary.

187

The resulting form of the cost function for any configuration is

Nw Nmw Nb Na Np
H = L Cw(Wn)+ L Ci(W;)+ L Cmb(B.~;)+ LCma(At)+ L Cp(Pm),

n=1 j=1 .1:=1 1=1 m = 1

where n indexes the non-model wires with costs Cw, j indexes the model
wires with costs Ci, k indexes the bubbles with Cmb being the central poten­
tial cost function for bubbles, 1 indexes the arcs with Cma being the central
potential function for arcs, and m indexes the ports with central potential
cost Cp.

When any move is considered in the compaction process, only the delta
cost is computed, i .e. the difference in the contribution to the cost function
for each primitive that is changed by the move. The rule to determine if a
considered move should be implemented is as follows:

1. The move is rejected unless it can be implemented without
violating any geometric design rules.

2. If it does not violate any geometric design rules and if the delta
cost of the move is negative, then the move is implemented.

3. If it does not violate any geometric design rules and the delta
cost of the move is positive, then the move is implement if and
only if

where T is the temperature, and for each move, R is chosen
to be an independent uniformly distributed random variable
between zero and one.

The move length is decreased monotonically from a value equal to the
average bubble size at high temperature to a minimum of 0.25.A at low tem­
peratures. The move size is large at high temperatures so that objects can
move more quickly to configurations in equilibrium. As the temperature is
lowered, the cell becomes more compact, and the move size is dec.reased to
avoid too many move rejections caused by GDR violations. When the move
size is changed, the temperature should also be lowered. Ideally one would
try to continually balance the two independent parameters, temperature and
move size, to have a similar average probability of acceptance - for moves
that do not violate any GDR's- whenever the move size is changed. In
practice, the decreasing move size was implemented with two move sizes,
average bubble size and 0.25.A. This was found to be satisfactory.

With regards to the Monte Carlo simulation strategy, bubbles are chosen
randomly. When a bubble move is rejected by the clear path algorithm,
another attempt to move the same bubble is made in a different direction
chosen at random. If necessary, there may be up to four clear path rejections
on a single bubble before a different bubble is considered. This strategy is
slightly different than the strict Metropolis algorithm[4]. The convergence

188

properties have been shown experimentally[7] to be slightly better than the
Metropolis strategy.

We have chosen an exponential temperature cooling schedule
Tn = 0.8 * Tn-1 · The initial temperature is chosen to be

Wma:r: Cmem
To= - Jn(P} + -Jn(P}'

where W ma:r: is the maximum wire cost, Cmem is the cost of a one step
move for a bubble when the bubble is at the cell boundary. The normalizing
probability, P, is chosen to be 0.5. The process of compaction occurs in three
stages. The first stage is characterized by high temperatures and large move
sizes. The second stage uses lower temperatures and small move sizes. The
final stage is used to reduce the distortion due to the central potential. It
eliminates the central potential and uses temperatures gradually approaching
freezing with small move sizes.

The schedule is independent of the number of bubbles and is the same
for all cells. Bubble moves are grouped into passes, where a pass consists
of an attempt to move N bubbles, N being the number of bubbles in the
cell being compacted. At each temperature the..process runs for a variable
number of passes until a rough measure of equilibrium is reached. We have
used a heuristic criteria to indicate when equilibrium has been reached. We
continually compute the average delta cost over the last k passes. When this
function changes sign then equilibrium is assumed. In most experiments, we
have Jet k = 8.

3.4 Compaction Algorithm Run Time

The run time complexity of the compaction algorithm itself is very difficult
to estimate. Some parameters other than cell size whose adjustment is im­
portant to the compaction CPU time are membrane position, move length,
annealing schedule, and equilibrium stopping criteria. In larger cells, prim­
itive elements have further to move on the average between their initial
position and their final position. We do not know that this time should be
linear with distance. But if it were, then the time -measured in required
number of bubble moves- would be increasing linearly with the square root
of the number of bubbles. We use this as a first order estimate of the growth
of the number of passes.

Combining this factor with the earlier estimates of bubble move time
and density factor, we then estimate the complexity of the algorithm to be
approximately O(N3/ 2 JogP(N)} with p ::; 2. Of course, the search for the
optimal configuration will require exponential time. The algorithm does not
guarantee convergence to anything but a local minimum. In practice, the
algorithm does perform very well, -roughly an order of magnitude faster
on a one Mftop machine than a very good designer to achieve smaller final
areas.

189

4 Experimental Results and Analysis

This section describes a subset of the experiments performed using the Monte
Carlo compactor. Additional experiments chosen to analyze and optimize
the parameters in the cost function are described elsewherei7J. The next
subsection gives some results indicating the run time sensitivity to membrane
position. After that, some rough measures of average complexity of the
compaction method are given using a controlled set of experiments for a
range of cell sizes. Some meaningful comparisons with hand designs are
shown. To show that the curvilinear framework can build working designs,
a chip consisting of three cells was fabricated and tested.

4.1 Choosing Membrane Position

The position of the membrane determines the strength of the central poten­
tial. To gain an idea of the effects of the central potential, we will show three
versions of a compacted cell, one without a central potential , one with an
overzealous central potential, and one with a normal central potential. Con­
sider the uncompacted cell shown in Figure 20. The cell, compacted without
a central potential, is shown in Figure 21. It is interesting to observe that
this cell is not very compact although the wires have been pulled to their
shortest lengths.

Figure 20 Input Cell

Now consider what happens when the central potential cost is too high
-see Figure 22. In this case, the transistors are deformed, and the wires
are overstretched by the bubbles pulled to the center. An interesting point
about the overzealous membrane is that it causes the running time to go up.

Finally a compacted version with a suitable central potential is shown
in Figure 23. Notice that the transistors are well formed, and the wires are
not overly stretched.

190

Figure 21 Compaction without central potential

Figure 22 Overzealous central potential

Figure 23 Suitable central potential

191

A properly positioned membrane will pull the bubbles inside the membrane
without undue distortion. The membrane perimeter is intended to enclose
the region of the final compacted cell and thus describe the final desired
shape.

An experiment was run to test the effect of the membrane position on
both the run time and the effectiveness of this compaction algorithm. A test
cell was compacted with the membrane set at a computed ideal 1 area. Then
the same cell was compacted again with the membrane dimensions increased
by a factor of two, then again with the membrane dimensions increased by a
factor of four, and again with the membrane dimensions increased by a factor
of six. The results are shown in Table 1. This indicates that positioning the
membrane at roughly two times the ideal minimum area dimensions gives a
good balance between a low CPU running time and good cell compaction.

Membrane scale Cpu time Compact size Actual/ Ideal

1 6:0:8 5451).2 1.76
79~ X 69~

2 4:49:17 5440~2 1.73
80~ X 68~

4 3:42:19 5762~2 1.86
86~ X 67A

6 4:40:58 6390~2 2.07
86~ X 67A

Table 1 Membrane Size Statistics

4.2 Run Time Experiments

To evaluate our estimates of how the complexity grows with the number
of bubbles, we have run a set of timing tests using larger and larger cells.
The base cell is the multiplexer cell shown earlier in Figure 3. To form a
sequence of increasingly larger cells, we combine this cell with itself. By
constructing the sequence in this way, we keep an approximately uniform
topology across the test set. The sensitivity of the run time to topology is
not clear. However, other experiments[7) have indicated that the dependence
is quite small.

The base cell has 60 bubbles. When two of the base cells are combined
to form Cell 2, the number of bubbles is not twice the bubbles in test cell
1. The bubbles that are along the seam of composition are absorbed, thus
slightly reducing the total bubble count.

1 The sum of the areas of the primitives plus the GDR regions around
them, minus a detailed estimate of the allowable overlaps.

192

Each cell uses the same annealing schedule. The membrane for each cell
is set at double the dimensions of the ideal minimum bounding rectangle.
The central potential, determined by this membrane position, is the most
critical parameter affecting the run time of this algorithm. The total running
time for each of the test cells is shown in Figure 24 with processor time in
hours plotted versus bubble count. The run time for each cell is shown by a
x. The continuous line is a plot of N 312 log2 (N), with a multiplying constant
chosen to make the line coincide with the run time of the 300 bubble cell.

60

55

50
~ 45
::J
0 40

.s= 35

::J 30

~h5
CD 20

E 15
;:: 10

5

o~~rT,-rr~-r~-rrT~~

" Bubble
Figure 24 Run time vs. bubble count

To evaluate the complexity estimates for average move time and for t ime
to reach equilibrium, we collected several statistics during these experiments.
To estimate the growth of move time separately from density considerations,
we looked at the final temperature of Stage 3 after the central potential was
removed. The average move time for this temperature is plotted as a function
of bubble count in Figure 25. The solid line shows the depth of the search
tree with a multiplying constant chosen to make the line coincide with the
time for the 300 bubble cell. By looking at these cells without the central
potential, we hoped to minimize the effects of higher density in the larger
cells.

50

.(5

.(0

~35
r 30

E2s
::J20
a.
u 15

Ql10

.s 5
1-

Figure 25 Average move time final temperature vs. bubble count

193

To measure the average move time including the density factor, we
computed the average move time over the entire compaction algorithm. This
time is plotted in Figure 26. In this plot, we included the line, log2 (N) , with
a multiplying constant chosen to make the line coincide with the time of the
438 bubble cell for comparison. This appears to bound the time growth.
Thus, for this set of cells, the density appears to contribute no more than
another factor of log(N).

Figure 26 Average move time vs. bubble count

Finally, to estimate the growth in the number of bubble moves in the
compaction process, we computed the total number of passes2 , minus the
minimum number of passes needed to indicate equilibrium at a single tem­
perature times the number of temperatures used in the entire compaction
process. The resulting value is an estimate of the number of passes needed
to reach equilibrium summed over all temperatures. This value is plotted in
Figure 27 against bubble count. For reference, kN112 is also plotted with a
multiplying constant k chosen to make the line coincide with the run time
of the 438 bubble cell for comparison.

Figure 27 Passes vs. bubble count

2 Recall that a pass is the attempt to move all N bubbles.

194

AB discussed in Section 3.4, this gives a rough indication of how close to a
linear function of N 112 is the time required for a bubble to move a given
distance.

4.3 Comparisons With Other Methods

The cells for this experiment were chosen for their diversity. The first two
cells shown in Table 2 are hand designed curvilinear cells, designed by Don
Speck at Caltech. The next four cells were taken from a quanternary multi­
plier chip design!l], and were compacted using the Rest!6J one dimensional
compactor system with human assistance. These last four cells used Man­
hattan geometry. An average of over a weeks worth of designer's time was
spent compacting each of the six cells.

Cell Bubbles Hand Size Compacted Size Actual/ Ideal

Muxl 60 1376).2 1216.A2 1.34
43). X 32). 38). X 32).

Mux4 200 5893).2 5396).2 1.63
83). X 71). 76). X 71).

C2 119 5891). 4760).2 1.68
137). X 43). 40). X 119).

Cg 174 5447.75).2 4340.A2 2.09
141.5). X 38.5). 35). X 124).

Bi1 307 14490.A2 12093. 75). 2 1.88
140). X 103.5). 93.75). X 129).

Stuff 302 16880.A2 14000.A2 2.26
105.5). X 160). 100). X 140).

Table 2 Compacted Cells Statistics

Notice that in all cases the automatically compacted cells are smaller
than the hand compacted cells. An important point to notice about the cell
figures is that the cells could be compacted still further if some topological
changes were introduced. Much of the time spent on the original design
of these four cells was spent finding a topology suited to their Manhattan
environment.

195

Figure 28 Hand compacted vs. Mux 4 annealed

Figure 29 Bil annealed vs. Hand compacted

196

4.4 Fabrication Experiment

A one-bit adder was designed using the representation described in Sec­
tion 2. Two topological instantiations of this design were compacted using
the Monte Carlo algorithm. One of these was stacked four times to make a
four bit adder and compacted again. These three cells were fabricated by
MOSIS[5]. Four chips were returned and functionally tested. All of them
worked perfectly.

5 Conclusions

In summary, we perform two-dimensional compaction on curvilinear geom­
etry to obtain a compacted layout that is independent of the initial entry.
The dependence on the topology is of course still there, but no other depen­
dence on the initial geometry should be left. As we have seen this requires
full two dimensional compaction plus automatic bending of wires. This is
achieved in our method by treating the wires as rubber bands that bend
around circular objects. Our desire has been to achieve layouts that are
comparable in density to human layouts. This stems from the exponential
dependence of the yield on the area. We also would like to have some con­
trol on the wire lengths. This is achieved through the cost function -higher
costs produce shorter wires- as discussed in Section 3. We also wanted
to have portability to other manufacturing technologies and scalability to
other lithographies. By modifying the tables describing the technologies
and rules, all of these features are automatically obtained with the Monte
Carlo algorithm described, provided that no topological changes are needed.

Only rough estimates of the CPU requirements and the growth of com­
plexity with cell size have been obtained. Including densiti variations, time
for a single move appears to grow on the order of O(log (N)) where N is
the number of primitives in a cell. An overall complexity growth estimate of
O(N312 1og2 (N)) seems consistent with experiments using a small number
of cells.

References

[1] A. Frey.
Rabbit Chip.
California Institute of Technology, Pasadena California, 1983.

[2] C. Kingsley.
"Earl: An Integrated Circuit Design Language".
Masters Dissertation, California Institute of Technology, Computer Sci­
ence Department, Technical Report #5021, Pasadena California,1981.

[3] S. Kirkpatrick, C.D. Gelatt, Jr. , M.P. Vecchi.
"Optimization by Simulated Annealing" .
SCIENCE, Volume 220, May 13, 1983, pages 671-680.

197

[4) Nicholas Metropolis, Arianna W. Rosebluth, Marshall N. Rosenblut h,
Augusta H. Teller, and Edward Teller.
"Equation of State Calculations by Fast Computing Machines".
The Journal of Chemical Physics, Volume 21 , Number 6, June 1953,
pages 1087- 1092

[5) The MOSIS Project.
The MOSIS System(what it is and how to use it).
USC/ Information Sciences Institute, 4676 Admiralty Way, Marina del
Rey, California 90292-6695, March 1984.

[6) R.C. Mosteller.
"A Leaf Cell Design System".
Masters Dissertation, California Institute of Technology, Computer Sci­
ence Department, Technical Report # 4317, Pasadena California, 1981.

[7) R.C. Mosteller.
Monte Carlo Methods for 2-D Compaction .
PhD Dissertation, California Institute of Technology, Pasadena Califor­
nia, 1986.

[8) Sarma Sastry and Alice Parker.
"The Complexity of Two--Dimensional Compaction of VLSI Layouts".
IEEE International Conference on Circuits and Computers, ICCC 82,
September 1982.

[9) Hiroyuki Watanabe.
IC Layout Generation and Compaction Using Mathematical Optimiza­
tion .
PhD Dissertation, Computer Science, The University of Rochester , New
York 1984.

[10) T .E. Whitney.
Hierarchical Composition Of VLSI Circuits.
PhD Dissertation, California Institute of Technology, Pasadena Califor­
nia, 1985.

[11) M. Schlag,Y.Z. Liao and C .K. Wong.
"An Algorithm for optimal two-dimensional compaction of VLSI lay­
outs".
North Holland INTEGRATION, the VLSI journal 1, 1983, pages 179-
209.

