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ABSTRACT 

The phonon viscosity mechanism, as it applies to screw dis-

locations moving on the ( 111} planes of face-centered-cubic crystals, 

is examined. Formulas are derived for changes in the elastic stiff-

nesses of cubic crystals with the impression of an arbitrary elastic 

strain. The result is specialized to the case of the strain field of a 

screw dislocation in a face-centered -cubic crystal. Lattice energy 

absorption from a moving screw dislocation is then considered 

through the relaxation of the elastic stiffnesses. Using the formula 

for energy absorption, a dislocation damping coefficient, B, is 

found. B is independent of temperature above the Debye temperature, 

and at lower temperatures has different forms for anisotropic and 

isotropic crystals. The damping coefficient for an edge dislocation 

is qualitatively similar to that of the screw dislocation. 

The results are consistent with recent measurements 

of the damping coefficient for dislocations in copper. 

* This work was supported by the U.S. Atomic Energy Commis sian 



-2-

1. INTRODUCTION 

Dislocation mobility in pure copper single crystals [ ll as well 

as in zinc [ 2, 3] and aluminum [ 4, 51 is characterized by two impor­

tant features: (a) the attainment of relatively high velocities for small 

applied stresses, and (b) decreasing interaction with the crystal lat­

tice with decreasing temperature in the temperature range from 

about 70°K to 300°K. This dislocation behavior was first proposed 

theoretically by Leibfried [6 ], nearly twenty years before direct ex­

perimental evidence was available. His model postulated that, in the 

absence of a large Peierls' barrier, dislocation motion was damped 

by the interaction of lattice thermal waves with the elastic properties 

of dislocations. Leibfried specifically considered how dislocation 

mobility is affected by the stress field of a thermal phonon. This, 

however, is not the only mechanism to be considered. Since 1950, 

theories have been put forward to explain thermal phonon-dislocation 

core and thermal phonon-dislocation strain field interactions. The 

inhe:..·ent complexity of the problem has required that many simplifying 

assumptions be made to obtain estimates of the dislocation drag coef­

ficient as a closed form function of lattice and dislocation properties. 

While the various theories predict the proper order of magnitude of 

damping in copper, the experimentally observed temperature de­

pendence of the damping coefficient of edge dislocations in the tem­

perature range from 66 °K to 373 °K could not be closely approximated 

by the predictions of one or a combination of mechanisms. 

The phonon viscosity theory developed by Mason and others is 

attractive because it alone predicts the high-temperature behavior 



-3-

{temperatures near the Debye temperature) of the damping coefficient 

that is experimentally observed. However, the theory has not been 

worked out in great detail, and there exists some confusion as to the 

validity of several of its arguments. 

The theory itself stems from the original work of Akhieser, 

who, in a fundamental paper [7], clearly demonstrated the lattice ab­

sorption of energy from acoustic {or strain) waves with long wave­

lengths relative to the thermal phonon mean free path. He reasoned 

as follows: the thermal phonons are highly localized with respect to 

the varying strain field; hence, they can be considered as traveling 

through a uniform medium with a slowly modulating strain field. The 

lattice thermal frequencies are changed as the result of the impression 

of the strain, creating temperature differences between phonon modes 

at any spatial point. The phonons relax to a new thermal equilibrium 

at some common temperature {adiabatic temperature) through phonon­

phonon collisions. Akhieser considered 3-phonon N-processes due to 

anharmonic lattice terms and showed, using the Debye approximation 

for phonon wave velocities, that the relaxation process was accompa­

nied by an increase of entropy of the system and a corresponding en­

ergy absorption from the strain wave. 

In a series of papers, Mason [8, 9], Mason and Bateman [ 10], 

and Mason and Rosenberg [ 11 J showed that the Akhieser effect was 

applicable to the absorption of energy from the strain field of a dislo­

cation traveling through an otherwise defect-free crystal lattice. 

Rather than calculate the entropy produced during the relaxation pro­

cess described above, they demonstrated that the elastic stiffnesses 
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of the crystal were altered by the perturbation from equilibrium. 

They · noted that a change in an elastic stiffness multiplied by the time 

required for the material relaxation was equal to a viscosity, which in 

turn could be related to energy absorption. In equation form: 

6C-r = Tl , ( 1. 1) 

where 6C is the difference between the unrelaxed and relaxed modu­

lus, T is the relaxation time, and Tl is the equivalent viscosity. A 

proof of equation (1. 1) is given in Appendix A. The complexity of the 

situation was therefore reduced to cal,culation of changes in the elastic 

stiffnesses at all points in the lattice caused by the strain field of a 

moving dislocation, and concurrently to find for each an appropriate 

relaxation time. 

Mason and Bateman [ 10] derived formulas for increases in the 

elastic stiffnesses of cubic crystals due to the impression of longitu­

dinal or shear strain in a cubic axis direction. However, in their 

derivation, an erroneous assumption was made, leading to overestima­

tion o£ these changes. In Section II the problem is reconsidered for 

an arbitrary applied strain in cubic crystals. In Section IV, employing 

the results of Section II, changes in specific moduli due to the motion of 

a screw dislocation in an fcc crystal are determined. 

The relaxation time for the process has been considered by 

severai authors [8, 11,12 ]. These investigators have concluded that the 

appropriate relaxation time constants are those derived from lattice 

thermal conductivity measurements. In Section III it is argued that the 

range of applicability of the above is limited to the temperature region 

close to the Debye temperature. 
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The formula for the dislocation damping coefficient for a screw 

dislocation is determined in Section V. However, limited knowledge of 

the temperature dependence of the relaxation time involved precludes 

a precise calculation of the damping coefficient except near the Debye 

temperature. 

Finally, in Section VI predictions of the theory are compared 

with the experimental evidence for damping forces on dislocations in 

copper [1]. 
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II. EFFECT OF ELASTIC STRAIN ON THE 

ELASTIC STIFFNESSES OF CUBIC CRYSTALS 

In the following, the conduction electrons (in the case of metals) 

are not considered. Electronic effects become important at very low 

temperatures. 

The internal energy per unit volume of a single crystal 1n 

thermal equilibrium is given by: 

U = W+ E, 

where W is the elastic strain energy and E is the energy of the 

thermal phonons. This elastic strain energy is: 

w = i~c .. s.s. 
. . 1J 1 J 
1, J 

(2. 1) 

(2. 2) 

where the C .. are the isothermal elastic stiffnesses, the S. are the 
1J 1 

elastic strains, and . i and j are summed from 1 to 6 . 

(2. 3) 

where the summation includes each possible lattice wavevector ..9. 

with polarization p. W is the frequency of mode (_g_, p) , and 
.9..• p 

(n (T)) is the phonon occupancy number of that mode at tempera-
..9.• p 

ture T. fl is . Planck's constant. 

Since the density of points in reciprocal space is large, the 

sum over .9.. in equation (2. 3) can be replaced by an integral. Then: 

E=L:J<<n (T))-+~)1lw S{q,9,cp)q
2
sin9d9dcpdq, (2.4) 

p q, p q, p 

where e and <Pare polar angles and S(q, e. cp) 1S the density of points 
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in reciprocal space per unit volume. Equation (2. 4) can be simplified 

by the following Debye approximation: 

(a) S(q,e,<P) = l/(21f)
3 

(b) w..9.•P = qv..9.•P' where v..9.•P istheDebyevelocityof 

mode (_9.. p) 

(c) the phase velocities inthe (100), (110), and (111) direc-

tions only are considered. For these directions, propa-

gating waves can be either pu:~;ely longitudinal or trans-

verse. Reciprocal space is divided into equal volumes 

about each of these 26 directions, and for each volume the 

phase velocity is assumed to be equal to that in the prin-

cipal direction it surrounds. 

Equation (2. 4) then reduces to: 

E = ) vk p r ( (nq p(T)) + ~) ~ q 3
sin9 d9 ckpi.Ciq t"t . k • (21f) 

(2. 5) 

where k extends from 1 to 26. 

Consider a small instantaneous change of the elastic strains 

in the crystal. The process is adiabatic in the sense of no spatial heat 

flow. In addition, since the change is instantaneous, it occurs in the 

absence of phonon-phonon collisions. Hence the phonon occupation 

numbers remain unperturbed. In equation form: 
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a(~ . (T)) a(n.k, (T)) 
d(~,p(T)) = a'l dW + aTP dT = 0 • (2. 6) 

(n. (T )) is given by Planck's distribution function. That is: 
K.,p 

= 1 
(2. 7) 

where kB is Boltzmann's constant. 

Substitution of Planck's function for (nk (T)) in equation (2. 8) gives: ,p 

dWk ,p 
w k,p 

dT 
= T 

The Gruneisen relations [ 13 J require that the phonon frequen-

cies change according to: 

w = w 0 /1 + 2: 'Yj s ~ 
.9.• P .9.• P \ j q, P j I (2. 9) 

where W 
0 

is the frequency of mode (_g,, p) for the state of no strain, 
.9.• p 

and the "{j are the appropriate Gruneisen numbers. The tempera-
S.• p 

ture change for the mode (k, p) is then: 

dT = T = T 

:E j dS . . 'Yk, p J 
J 

1 + L"~Jk. s. 
. • p J 
J 

(2.10) 

where the dS. are the small perturbations in strain. Because of the 
J 

variety of the Gruneisen numbers [ 10], it is obvious that each pho-

non mode, in general, has a different temperature change. 

Using equations (2. 5) and (2. 9), one finds the change in ther-

mal energy to be: 
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AE = L: oE dS. . a.,s. 1 
1 1 

2:L ~vk E 
= d~ k,E dS. 

as. v 1 
i k,p 1 k,p 

2:L 
yi 

= k,E 
Ek dS. 

i k,p 
+ ~y~ s. 

• p 1 
1 

i • p J 

~ I: Z:vki Ek dS. 
. k • p 'p 1 

- L Z:vki Ykj s. Ek dS .. 
. . k ,p ,p J ,p 1 

1 • p 1, J 'p 

(2. 11 ) 

The first term on the right-hand- side of equation (2. 11) represents 

the variation with strain of the lattice thermal expansion. Accordingly, 

the second term is an addition to the elastic strain energy, since the 

total energy remains unchanged for the process. The total change in 

elastic strain energy is then found from equations (2. 2) and (2. 11) 

and is given by: 

Aw = Lc .. S.ds. + L Z:vki Ykj s. Ek ds. 
. . 1J J 1 . . k • p • p J ' p 1 1,J 1,J ,p 

= L [ c.. + ~ Y.ki ykj Ek J s. d s. 
. . 1J ' p • p ' p J 1 
1, J • p 

L C!. S.dS .• 
. . 1J I J l. 
l.. J -

( 2. 12 ) 

where the C!. are the effective elastic stiffnes ses for the process, 
1J 

and are defined by: 

c~. = 
1J 

C .. + L"-i yj E 
lJ k k, p k, p k, p . 

,p 
(2. l3) 
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The C!. are to be distinguished from the so-called adiabatic 
lJ 

stiffnesses, which can be derived from thermodynamic arguments on 

the basis of no spatial heat flow with the impression of strain, but with 

the assumption of thermal equilibrium between phonon modes at any 

point [1 5, 16 ] . 
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III. RELAXATION OF THE ELASTIC STIFFNESSES 

The elastic stiffnesses altered by the small change in strain 

relax to their isothermal values through a two-stage process. The 

first step is the equilibration to a common temperature of the phonon 

modes at each point. This occurs through phonon-phonon transitions. 

If the strain perturbation is spatially dependent, then, ac­

cording to equation (2.10), the temperature change of each phonon 

mode is a function of position in the crystal. Hence, in the general 

case, the common equilibration temperature of the relaxed phonons 

depends on position in the crystal. This is the adiabatic state mention-

ed in Section II. Return to the isothermal condition is now deter-

mined by the macroscopic parameters involved in heat flow between 

spatial points. The energy absorbed from a dislocation strain field 

in the adiabatic -isothermal transition has been determined exactly 

r 17, 18 ], and is negligibly small for metals. 

In the following, only the initial transition is considered. 

It is reasonable to assume that the elastic moduli will have a 

common relaxation time, because equilibration of the phonon modes 

will affect all the elastic stiffnesses simultaneously. The relaxation 

time, in turn, will be determined by the mean free path of thermal 

phonons. As understood in [7], the relaxation must include phonon 

N-processes; hence, the phonon-phonon contribution cannot be identi­

fied directly with the lattice thermal conductivity relaxation time, 

which is most influenced by phonon U-processes [19]. This is es­

pecially true at about one-half the Debye temperature and below, 

where the occupancy numbers of long-wavevector phonons (those re-
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sponsible for U-processes) are much smaller than the corresponding 

values for phonons of lower energy. In the range of the Debye tem­

perature, the occupancy numbers of all phonons become classical, 

the probability of occurrence of U-processes approaches that of N­

processes, and thus the lattice thermal conductivity relaxation time 

becomes a meaningful measure of that which can be applied to the 

Akhieser effect. The high-temperature value is proportional to the 

inverse temperature [20]. 
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IV. THE EFFECT OF THE STRAIN FIELD OF A 

SCREW DISLOCATION ON THE ELASTIC 

STIFFNESS OF FCC CRYSTALS 

In Figure la, a screw dislocation moving uniformly with ve-

locity v on a ( lll) plane of a fcc crystal is depicted. It is assumed 

that v is sufficiently small that the dislocation carries its static 

strain field with it. A moving cylindrical coordinate system (r, 9, z) 

is fixed to the dislocation, with the positive z-axis in the direction of 

the Burgers vector ~(Figure lb). In terms of (r, 9, z), and using 

isotropic elasticity, the dislocation strain field at any point is given by: 

= b cos e 
2'!T'r 

b sin 9 
s6 = - 2'JT'r 

( 4. 1) 

The elastic stiffness matrix for the coordinate orientation of Figure la 

is: 

ell c1z cl3 cl4 0 0 

c1z c 11 cl3 -Cl4 0 0 

cl3 cl3 c33 0 0 0 

cl4 -Cl4 0 c44 0 0 

0 0 0 0 c c 56 55 

0 0 0 0 CS6 c66 

The reader is referred to [21] for the explicit expressions of the 

C .. 'sin terms of the three independent elastic stiffnesses. From 
lJ 

equation ( 4.1) it is seen that the elastic moduli affected by the dis-
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location shear strains are c 55' c56' and c 66. using equation (2.13) 

one finds: ~ 5 2 
6C55 = L....J (-yk p) Ek p 

k, p • ' 

6C = f.; '\/5 '\/6 E 
56 1 k, p 1 k, p k, p ,p 

6C66 = I: y~ p yk p Ek p 
k,p ' ' ' 

(4. 2) 
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v. THE DISLOCATION DAMPING COEFFICIENT FOR 

SCREW DISLOCATIONS IN FCC CRYSTALS 

The rate of energy dissipation per unit volume due to a modu-

lus relaxation is: 

(5. l) 

where S is the time rate of change of strain and T) is the appropriate 

viscosity. For a screw dislocation, equation (5. l) becomes: 

(5. 2) 

where V is the total crystal volume where the mechanism applies. 

The rate of energy dissipation per unit length of dislocation is: 

(5. 3) 

where a is an inner cut-off radius. For values of r < a , as shown 
0 0 

below, the viscosity mechanism is inapplicable. The strain rates s
5 

and s6 are given by: 

s5 
bv cos 29 = - 21T" 2 

r (5. 4) 

86 
bv sin 29 

= 21T" 2 
r 

Substituting equations (5. 4) into equation (5. 3) and performing 

the integration yields: 

(5. 6) 

with the aid of equations (4. 2). 

A dislocation drag force, F, is defined by: 

F = Bv , (5. 7) 
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where B is the damping coefficient. Then: 

2 6 = Fv = Bv • (5. 8) 

Comparison of equation (5. 7) with equation (5. 8) provides: 

B = 2 
16'Tfa 

0 

(5. 9) 

For crystals with elastic isotropy, the expression for B can 

be somewhat simplified. Here, the transverse Debye velocity can be 

assumed independent of p olariz ati on, and both the longitudinal and 

transverse velocities are independent of crystallographic direction. 

From equation ( 2.19) it is seen that Ek has only two unique values, ,p 

one for each of the transverse and longitudinal modes. Equation (5. 9) 

reduces to: 

B = 

where E 1 and E 2 are the values of elastic energy in the longitudinal 

and transverse modes. The temperature dependence of B, calculated 

from equation (5. 10), can be expected to differ from that of (5. 9) in 

the general anisotropic case, where the lattice energy depends strong-

ly on the crystallographic direction. At high temperatures, as is 

shown below, this effect is unimportant, because here the lattice en-

ergies are independent of the Debye velocities. 

Near the Debye temperature: 

E k,p 
( 5. II ) 

where N is the number of atoms per unit volume, and kB is Boltz­

mann's constant. In this case, equation (5. 9) reduces to: 



B = 
2 

b NkBTT 

2 
41671'a 

0 
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L 
k,p 

( 5 + 6 ) 
Yk, p Yk, p (5. 12) 

which, according to the argument of Section IV, is in.dependent Of tem-

perature. 

A similar procedure can be followed to determine B for an 

edge dislocation. Again, the strain rates are proportional to the dis-

location velocity. The terms in the summation are different, but 

calculable, and at high temperature B is independent of temperature, 

as above. 

The viscosity concept, as discussed here, is valid only for 

those regions with small elastic strains. For example, in equation 

(2. 11), the perturbations in the elastic stiffnesses were derived on 

the basis of small applied strains. For a dislocation, there is a core 

region within which elastic strains are large and the phonon - dislo-

cation interaction cannot be described by a linear approximation. If 

one assumes that linear elasticity is valid for strains less than 0. l, 

then equation (4. 1) provides a core radius equal to 2b, where b is 

the magnitude of the dislocation Burgers vector. In this case, a = 2b. 
0 

There is general agreement in the literature with respect to this effect 

[9,12,22]. 

However, a second consideration must be under stood. The 

basis postulate of the viscosity theory requires that the relaxation time 

of the thermal phonons be less than the period of the applied strain 

field. It is difficult to determine a period (or frequency) for a moving 

dislocation strain field until it is Fourier analysed in terms of har-
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monic waves. Then the strain field at any point can be considered as 

a superposition of plane waves, with periods ranging from 0 to oo. 

The harmonic spectrum useful for the viscosity concept includes only 

those waves with periods greater than the phonon relaxation time. 

Several authors [ 9, 12, 22] have considered the problem, al-

though not on the basis of a Fourier decomposition of the moving 

dislocation strain field. The analyses postulate that an inner radius 

a can again describe the so-called cut-off radius, which can be 
0 

greater than the radius of the dislocation core. While the interpretation 

is not strictly correct, it is useful because it provides an estimate 

for the critical velocity, above which B is velocity-dependent. Suzuki, 

et al. [ 22 J defined the period of the strain field, 'T' s , at any point to be 

equal to two times the distance r from that point to the dislocation 

center divided by the dislocation velocity. This is a reasonable as-

sumption, for it is seen that the total shear strain for any point goes 

from a particular value at (r, 9) to the same value at (r, 180° -9). 

Then: 

T s = 
2r 
v 

The viscosity theory is valid in the region: 

,. > ,. 
s 

(5. 13) 

(5. 14) 

where ,. is the appropriate relaxation time for the elastic moduli. 

That is: 

a 
0 

= 1 zVT • (5. 15) 

Since ,. increases with decreasing temperature, so will a , accord­
o 

ing to equation (5. 15). However, the effect on B will be apparent 
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only if a becomes greater than Zb. Equation (5. 15) defines a criti­
o 

cal dislocation velocity, v c, above which a exceeds the radius of 
0 

the non-linear core ; 

4b 
v = c ,. ,(5. 16) 

For velocities greater than v 
c 

the increase in a . 
0 

B decreases in correspondence with 
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VI. THE COMPATIBILITY OF PHONON VISCOSITY 

WITH THE MEASUREMENTS OF DISLOCATION 

VELOCITY IN COPPER 

Recent dislocation mobility measurements in copper [ 1] , 

in the temperature range 66 °K to 373°K have lent qualitative support 

to the phonon viscosity theory. These measurements indicated that: 

(a) the damping coefficient becomes insensitive to temperature 

0 
above the De bye temperature ("'"' 340 K). 

(b) the damping coefficient is velocity dependent at low tempera­

tures ( < 1 00°K), and decreases with increasing velocity 

(the maximum velocity was about 9000 em/ sec at 66 °K). 

Observation (a) is in agreement with the prediction of equation (5. 12). 

This is, of course, at variance with the other proposed theories for 

dislocation damping by thermal phonons. Observation (b) is in accord 

with a cut-off radius that increases with increasing velocity (equation 

5. 9). However, the existence of a velocity-dependent cut-off radius 

will be confirmed theoretically only when a suitable phonon relaxation 

time at low temperatures is found (equation 5. 15). 
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VII. SUMMARY 

The concept of phonon viscosity as it applies to dislocations 

in fcc crystals was discussed in some detail. First, a general for­

mula for changes in the elastic stiffnesses of cubic crystals caused 

by an arbitrary applied strain was derived. Then the formula was 

specialized to the specific case of the strain field of screw disloca­

tions in an fcc crystal. 

With this knowledge, and following the work of Mason, a 

damping coefficient for screw dislocations was found. The weak 

point of the analysis was lack of knowledge of the elastic stiffness 

relaxation time well below the Debye temperature. However, at 

higher temperatures, a more precise expression for the magnitude 

and temperature dependence of B was determined. B was shown to 

be independent of temperature above the Debye temperature, as was 

predicted by Mason. However, the low-temperature dependence of 

B for anisotropic materials deviated from that of Mason's original 

analysis. 

The results were applied to recent direct mobility measure­

ments in copper [ l], and qualitative agreement with the viscosity 

concept was found in that the experimentally-detertnined damping 

coefficient behaved as predicted at high temperature (in sharp con­

trast to the predictions of other phonon mechanisms). 



APPENDIX A 

VISCOSITY OF THE STANDARD LINEAR SOLID 

Consider the standard linear solid shown in the figure. 

B 

' 

K 
1 

Figure 2. Standard Linear Solid. 

Ja F 

X 

K 1, K 2 are spring constants, and B is a dashpot viscosity. 

The equation of motion for this solid is: 

K 
dF +~ F = 
dt B 

(A-1) 

Zener [23] showed that this model corresponds to an anelastic 

solid with modulus relaxation. Zener defined: 

MR = relaxed modulus 

M = unrelaxed modulus 
u 

T = relaxation time of stress at constant strain 
e: 

,.a = relaxation time of strain at constant stress 

In terms of Zener's notation: 

'T' e 

= M ,. 
R a 

Using equations (A- 2), we find that: 

B = (Mu - MR),- e: 

(A-2) 
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