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Abstract we will be considering the following approach, which we
This work considers recovery of signals that are sparse call Joint Basis Pursuit (JBP).
over two bases. For instance, a signal might be sparse in | . R R
both time and frequency, or a matrix can be low rank and  min [UiX[[i + A[U2%[2 st Ax=Ax  (JBP)
sparse simultaneously. To facilitate recovery, we comside
minimizing the sum of thé;-norms that correspond to  For the case of a matriX that is simultaneously sparse
each basis, which is a tractable convex approach. We and low rank, we may minimize the summation &f

find novel optimality conditions which indicates a gain o and the matrix nuclear norm, which is denoted by
over traditional approaches whefe minimization is done ; X .
over only one basis. Next, we analyze these optimal- ||l and is equal to summation of the singular values.

ity conditions for the particular case of time-frequency Assuming, we observe linear measuremed{X), we
bases. Denoting sparsity in the first and second basespropose solving the following problem (JBP-Matrix) to
by k1, ko respectively, we show that, for a general class recoverX.

of signals, using this approach, one requires as small . . .

as O(max{ky, ko } loglogn) measurements for success- min || X[, +A[X][; st AX)=AX) (JBPM)

ful recovery hence overcoming the classical requirement X

of ©(min{ki, k2} log(Grrirzzy)) for 1 minimization  while it is possible to come up with relevant problems,

when k; ~ k;. Extensive simulations show that, our this paper will focus on JBP and JBPM. Our motivations
analysis is approximately tight.

Index Terms—basis pursuit, compressed sensing, phase re- are, L

trieval, duality, convex optimization « Investigating whether JBP can outperform regular
BP.

|. Introduction » The sparse phase retrieval problem, in which one

has measurements of a sparse vest@nd observe

| (a;,x) |* as measurements][7],1[8]. While it is not
possible to cast this as a regular compressed sensing
problem, it can be cast as JBPM where we wish
to recover sparse and low rank matrixx*. This
problem is known to have applications to X-Ray
crystallographyl[5] and has recently attracted interest

Compressed sensing is concerned with the recovery of
sparse vectors and has recently been the subject of im-
mense interest. One of the main methods is Basis Pursuit
(BP) where the/; norm is minimized subject to convex
constraints. Assuming has a sparse representation over
the basisU (i.e. Ux is a sparse vector) and assuming we
get to see the observatiodsx, Basis Pursuit performs
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the following optimization to get back te. [71-10).
Background: It should be emphasized that, recently, there
min ||U%[|; subjectto Ax = Ax (BP) has been significant interest in using a combination of

different norms to exploit the structure of a signal. While
In this work, we'll be investigating recovery of vectors  this paper deals with signals having sparse represengation
that can be sparsely represented over two bases. Foin both bases[]3]5]5] considers the problem of separating
example, a vector such as a Dirac comb can be sparse inhe signals that are combinations of sparsely representabl
time and frequency. Similarly, we can consider a low rank incoherent pieces.
matrix which is supported over an unknown submatrix and Contributions: In this work we provide sharp recovery
zero elsewhere and hence sparse. Assuming sparse  conditions that guarantees success of JBP and JBPM.
over Uy, Uy, in order to induce sparsity in both bases, Next, we cast these conditions irdaal certificateframe-

work to facilitate analysis. For the case of time-frequency

This work was supported in part by the National Science Fatiod bases, we ana|yze the dual certificate construction to
under grants CCF-0729203, CNS-0932428 and CCF-1018921heby

Office of Naval Research under the MURI grant N0O0014-08-4707 find that for the class of “perIOdIC S|gnals”, one needs
and by Caltech’s Lee Center for Advanced Networking. at mostO(max{ki, k2}loglogn) measurements where
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k1, ko represents the sparsity Id;, Us. This shows that
JBP can indeed outperform regular BP which requires
O(klog ) measurements for recovery ofkasparse vec-
tor [12], [13]. Finally, simulation results indicate thatiro

results are sharp. We believe that, the result of this paper f(x) > f(x) for all Ax = Ax, X # x.
can be seen as negative in nature. While, JBP provides

an improvement, it is not a significant improvement when

we consider the fact that signals that are simultaneously

sparse aréewin number.

Il. Problem Setup

We begin by considering the (JBP) problem and as-
sumex € C™ is a signal that is sparse over two
complete basedJ;, U,. Later on we will briefly extend
our approach to (JBPM) and the recovery of matrices that
are simultaneously sparse and low rank.

The basic question we would like to answer is whether
one can do better in recoveriggfrom measurementAx
by exploiting the joint sparsity ok.

Before, going into technical details, we’ll introduce the
relevant notation. Denote the sgtt, 2,...,n} by [n]. Let
51,52 C [n] denote the supports of in the basedU;
and U,, i.e., locations of nonzero entries &f;x and
U,x respectively. Further, le§;(-) : C* — CI51l Sy (1) -

C" — C!%:I denote the operators that collapse a vector
onto .Sy, S, respectively. sgf) : C* — C™ is the function
that returns entry wise signs of a vector, iis mapped

to 0 anda # 0 is mapped t%. I will be the identity
matrix of the appropriate size. Null space of a linear op-
eratorA is denoted byV'(A). R(+),Z(-) : C* — R™ are

the functions that returns entry-wise real and imaginary
parts of a vector. Denotg/—1 by i. D is the Discrete
Fourier Transform (DFT) matrix of the appropriate size
and given as follows,
Wwi—DE-1)

NG

whereW is alwaySexp(—QT”i). We will use A1, A2 and
1, A alternatively.
Remark: Proofs that are omitted can be found in the
appendix.
A. Recovery Conditions for JBP

We will start with explaining our approach. L&t €
C™*™ where m is the number of measurements. The
following lemma gives a condition that guaranteeso
be the unique optimum of (JBP).

Di,j: 1§Z,]§n

1)

Lemma Il.1 (Null Space Condition)Assume, for aliv €
N (A), the following holds,

2

DO A(R((sgNUX), Uiw)) + |Si(Uiw)[1) > 0 (2)

i=1

Then,x is the unique optimizer of (JBP).

Proof: Let f(%x) be the cost of (JBP) , i.efi(X) =
S22 \illUK]|[1. Then, for anyw € N(A), f(x+w) —
f(x) is lower bounded by the left hand side DF (2), which
follows from the sub gradient of thé; norm. Hence
[ |
Based on[(R), the following lemma connects success
of (JBP) to the existence of dual certificates.

Lemma 11.2. Assumes;, s, € C™,s € C" satisfying the
following conditions exist:

S1(Uy " (A%sy +5)) = Si1(sgn(Usx))

[S1 (U (A%s1 +5))|loc <1

S2(U5 " (A%s2 —8)) = AS2(sgn(Usx))
[S2(U3 " (A%s2 — 5)) ][00 < A

A is invertible over;_, {v|S;(U;v) = U;v}.
Thenx is the unique optimum of (JBP).

Proof: What we need to show is that if sush, s», s
exist and the invertibility assumption holds then the left
hand side of[(R) is strictly positive for alv € N (A).
Assume suchs, so, s exist and letvy, vy, € C™ to be:

vi =U7"(A%s;+s) and ve =U;"(A%s;—s") (3)
Observe that for anw € N (A), usingAw = 0,

2 2

Z (U,w,v;) = Zw*A*si +w's—w's=0 (4)
=1 =1

To end the proof observe that, v, satisfies the condi-

tions listed in LemmaI[2 which implies that the LHS

of (@) is strictly positive when combined witf](4). This

follows from the fact that eithes; (U;w) or Sz(Uaw)

is nonzero due to invertibility assumption. [ ]

The dual certificate approach for regular BP has
been used in[]1],[]2],[]5]. LettingU = U;, com-
pared to Lemmall2, it requires invertibility oA over
{v|81(Uyv) = Uyv} rather than the intersection and it
requires||S; (U *A*s;) |l < 1, while Lemme[IL.2 can
overcome this by making use of the extra variablErom
this perspective, JBP can be viewed as a combination of
two regular BP’s that are allowed to “help” each other via
S.

lll. Main Results

Our main result is concerned with the time-frequency
bases, i.e., Identity and the DFT matrices. Before stating
the main result, let us first describe the setting for which
it holds.

Definition 1Il.1. S is al periodic subset ofn] if n is
divisible byl and for anyi € [n], we have,

i€S <= je Sforall j such thatj = ¢ (modi) (5)

Observe that ifS is a ! periodic support|S| is divisible
by n/l.



Theorem lll.L1. LetU; =1, Uy, =D, 1> «a > 0 be an
arbitrary constant and without loss of generality assume
|S1] < |S2|. Further, assume the followings hold,

° |Sl| — logn o
e 51,52 are ni,ny periodic supports, wheren =
ning.

o [S2f < [S1[log®(n)
Then, for the following scenariox can be successfully
recovered via JBP with high probability (for sufficiently
large n) when the matrixA € C™*" is generated with
i.i.d complex Gaussian entries.
o If |S2| < |S1|loglogn settingA = 1 and usingm =
O(]S2]loglogn) measurements.
o If [So| > |Si|loglogn, setting\ = log™*(n) and
usingm = O(]S2|) measurements.

Remark: Our proof approach will inherently re-
quire m > max{|S1],|S2|}. Consequently, if|Ss| >
|S1]log(n), then one can already perform the regular
¢; optimization overU; = I to ensure recovery with

= O(]S2|) measurements. Henclsz| < |S1]log”(n)
is a reasonable assumption.

A. Signals with Periodic Supports

Theorem[I[.1 holds for signals whose supports are
periodic with ny,ny over I and D respectively, where
n = ning. Here, we give a family of such signals
that satisfy this requirement. L&t be the set of signals
v € C™ such that for somé < n; and0 <t < n,

0if j 1 (modn,)
Uj = it (6)
Wit else
Basically, T is the set of Dirac combs with periog, and
hence for anyw € T', Dv will have " periodic support.
In general, almost alkk of the form,

X = E ;' Vi

v; €T

(7)

will have n; periodic support andDx will have e

An interesting work by Tao shows that, such results are
true even for highly structured bases, |[14]. In particular,
if n is a prime number, we still havgs;| + |Se| > n
requirement for a signal ov@y; = I andU,; = D bases.

IV. Proof of Theorem MI.1]

This section will be dedicated to the analysis of Lemma
[T2] to prove Theoreni IIIJ1. We start by proposing a
construction forsy, so, s that certifies optimality ofk.

A. Construction of sq,s9,s

For the following discussion, we’ll be usin@J;, Us)
and (I,D) and (1, A) and (A1, A2) interchangeably. The
construction ofs;, s, will follow a classical approach
previously used in[[2],[15],[[7]. LettingAs, € C™*!51l
denote the submatrix by choosing columns corresponding
to S; and B = AD*, we will use the followingsy, ss.

5, As,) 7 S1(sgn(x)) (8)
5,Bs,) 7' AS2(sgn(Dx)) 9)

= U;. By construc-

S1 = AS1(
So = B52(

Sincel, D are unitary we havéJ; ™
tion s;, so already satisfies,

However, one has to control the terii®;(U; A*s;)|o0
and we will make use of to achieve this. Denot¥; A*s;
by y;. Define the vector§b;, bs} as follows:

0if j €5,

0if j €S, and|R(y; ;)| < \i/4
R(yi ;) — MiSANR(yi,;))/4 else
and imaginary parZ(b; ;) is obtained froniZ(y; ;) in the

same way. Observe thakS;(y; — b;)||« < \i/2. Based
on {b;}?_, constructs as follows,

R(bij) = (11)

S = D*(bg — CQ) — I(bl — Cl) where
C; = D*IS2Db17 Co = DISID*bQ

12)

Here, Is,, Is, are diagonal matrices whose diagonal

periodic support. The reason we say almost all is becauseentries corresponding t§;, So arel and the rest are zero.

cancellations may occur whan's are added. However, if

a;'s are chosen from a continuous distribution, the chance

of cancellation ).
B. Converse Results

We should emphasize that, the main reason we have S,(y, — Ds) =

considered thd, D pair is the fact that almost all bases
U; andU, do not permit signals that are sparse in both.
The following lemma illustrates this.

Lemma lIl.1. AssumeU;*, U, ! have i.i.d entries cho-
sen from a continuous distribution. Then, with probability
1, there exists no nonzero vectorsatisfying|Sy |+ [S52| <

n.

Lemma IV.1. Assumex, {y;,b;,c;}?_, are the same as
described previously. Then, one has the following:

— S)(sgnx))
AS2(sgnDx)

_ 1 _ _
1S1(y1 +8)lloc < 5 + [IS1(€1)lloc + [151(D™b2) |

Si(y1+5s)

_ A _ _
152(y2 = Ds)lec < 5 + [[S2(e2)llc + [[S2(Db1)]l

Based on Lemma 1M1 and Lemrha 1.2, JBP recovers
x if we have,||§1(c1)|\OO + [|IS1(D*b2) || < 1/2 and
[[S2(c2)lloc + [[S2(Db1)llec < A/2.



As a next step, we can analyZ&; (D*I5,Dby)||
and||S; (D*bs) ||« and find the conditions that guarantees
their sum to be small. The analysis 85 will be identical
to S; and hence is omitted.

B. Probabilistic Analysis

AssumeA is i.i.d complex normal with variancén—

andm > 64 max{|S1|, |S2|}. This will guarantee,

Omin(Ag,) > 1/V2 andopnin(Bs,) > 1/v2
with probability 1 — exp(—Q(m)), [11].

Now, conditioned onA ,, Bg, satisfy [13),
Isill3 = sisi = APsgr(x)"(A§, As,)~'sgn(x) < 2X7|S;|
andS;(y;) is an i.i.d Gaussian vector whose entries hav-

. . 12 .
ing vanance%. Given these, we need to understand,
when can we make sure,

(13)

_ 1 B 1
151 (DT, Dby ) oo < 7 @nd [|S1(D*b2) o0 <

From [11), observe tha$;(b;) is a function ofS;(y;)

which is i.i.d. random Gaussian. The next lemma, gives

a characterization db,.

Lemma IV.2. Assumen > 64 max{|Si|, |S2|}. Then, the

entries{S;(b;), }'f;'l of S;(b;) are i.i.d. random variables

with the following distribution,

- 0 with probability at leastl — 4 —

Si(bi)j is p . .ty exp(
otherwise distributed ag

161\7?9i|)

(14)
where z is 0 mean and subgaussian norms (seel [11])
of R(z),Z(z) are upper bounded byo)\“/‘s—w;" for an
absolute constant, > 0.

1) Analysis of||Si(c1)||~: We need to show,

- 1
|81(D*T5, Dby < (15)

Calling C = D*I5,D, from Lemma[VIL1, each row of
C has energ)}Sn—ﬂ. Let c; be thei'th column of C*. Then,
using Lemma VP and Propositioh10 of [11], for any
¢ and an absolute constant> 0,
mc
27cg|Sh|llei.r I3
mnc )
27¢3|S11S|
Using a union bound over alf's, shows [(Ib) reduces
to arguingnP(|c;bi| > ) — 0 which is equivalent to
ensuring,
mnc
27c|S1||S2|
Usingn > min{|S1|, |S2|} logn in the statement of Theo-
rem[ILT, (I8) holds form > 28¢~1c3 max{|S1], |S2|} =
O(max{|S1],]S2|}) as desired.

P(lciba| > 1) < 12exp(~ ) ()

= 12exp(— a7

—logn 00 as n— oo (18)

2) Analysis of||S;(D*bs)|l~: In a similar fashion,
we would like to show,

- 1

151D b2 )llo < 7

(19)

holds with high probability, to conclude. Each row bf*
has unit/s norm and nonzero entries b are i.i.d sub-
gaussians from LemniaV.2. Letting,= 4exp(—1475;7)
and applying a Chernoff bound w.p.a.F exp(—np/4),
number of non zeros i, is at most2np. Considering
the inner products between each rowIaf andb,, and
using a union bound[_(19) holds, with probability at least,
mc

28C%A2|Sg|p)

Assumingm = O(]S2]log®(n)) for somea < 1, we have
exp(—np/4) — 0. Finally, to show the second term in
(20) approacheg, for some absolute constants c; > 0,
we need to argue,

1—12nexp(— —exp(—np/4)  (20)

m m
ex —logn —o00 as n— oo (21
C1)\2|S2| p(C2|S2|) g ( )
Following the same arguments for the other basis will
yield,

mA?

01|S1

By choosingm = O(max{|S1],|S2|}loglogn) and
A = 1 one can always satisfy these. In cdsg| >
|S1|loglogn, choose\ = log™*(n) andm sufficiently
large butO(]Ss|) to still satisfy both.

exp( m )—logn —>o00 as n— oo (22)
| c2|S1]

V. Empirical Results

While Theoren{1Il.1 shows that JBP can indeed out-
perform BP it is important to understand how good it
actually is. We considered the following basic setup: Let
k be a positive integer and = k2. Then, letx € R" be
the following dirac comb,

x; =1if i=1 (modk) and0 else (23)

It is clear thatDx = x hence the signal is only/n
sparse in both domain and the optimal weight in JBP is
A =1 by symmetry. Simulation for JBP is performed for
k=1{2,4,6,...,32} and for1 < m < 30. Interestingly,
in order to achievé0% success, JBP requiré;ig m <
% and 7+ slightly increased as a function éf This is
shown as the straight line in Figude These results are
quite consistent with Theorem11l.1 from which we expect
to havemn = O(kloglog k) measurements.

On the other hand0% success curve for BP is shown
as the dashed line in Figuteand obeysn = O(k log k)
as expected from classical results @nminimization. In
particular 7> increases froml to 2.4 as k moves from
2 to 32. While JBP outperforms BP in this setting, the
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Fig. 1. Phase transitions of JBP vs BP where spafsitgries between
2 to 32 andn = k2. Dark region indicates failure for JBP while light
region corresponds success. Straight and dashed liné®)&esuccess
curves for JBP and BP respectively. While JBP outperformgsitBsill
requires(2(k) measurements.

fact that it requires2(k) samples to recover a highly
structured signal is disappointing. It would be interegtin

to see whether a greedy algorithm can be developed to

attack this problem.

VI. Extension to Matrices

As it has been discussed in the introduction, similar to

The following lemma is effectively equivalent to
Lemma[ll.2 and characterizes a simple condition Xor
to be unique optimizer of JBPM.

Lemma VI.1. AssumeS;,S, € C™ S € C"*" satisfy-
ing the following conditions exist:

. L(A*(Sy) +8) = UV".
[ £(A*(S1) +S)[| < 1.

S(A*(S2) — 8) = A - S(sgn(A)).
[S(A*(S2) = S)[lec < A

o A(-) is invertible over{Y|L(Y) = S(Y) =

Then A is the unique optimum of (JBPM).

Y).

Finally, it would be interesting to see whether similar
or better improvements can be shown for JBPM over reg-
ular BP or regular nuclear norm minimization algorithms.
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VII. Appendix

We will start by proving LemmaTIIl1 using a classical

argument.

Proof of Lemma[ll.I] Let us first fixS;,.S> and
consider these particular supports. 1@ € R™*I% pe
the matrix obtained by taking columns I)I;l, over S;.
If zz = U;x andz,; = Uyx are supported oves, Ss,
we may write:
0= Ul Z] — U2 Zy — [Cl CQ][Sl(Zl) - SQ(ZQ)*]*

(24)
By assumption,[C; C,] € R™*S1+1S:) has i.i.d.

entries from a continuous distribution and hence full

column rank with probabilityt whenevelS;|+|Sz2| < n.

It follows that only(z, z>) satisfying [2#) i50, 0). There
are finitely manysS;, S pairs satisfying S1| + |S2| < n
hence a union bound will still give, with probability
1, there exists no nonzero vectar having combined
sparsities ofU;x and U,x at mostn. [ |

Following lemma gives a simple but useful property of

the DFT matrix.

Lemma VII.1. Letn = niny and Sq, 52 ben; andns
periodic supports. LeD € R"*"™ be the DFT matrix as
previously. Further, [eilC = D*Is,D. Then,

1) C,,; =0 for any (i,j) with i # j (modn;).

2) For anyi, i'th row r; of C satisfies||c; |5 =

3) For any x that is supported onS;, we have,
Sl(CX) = O

4) First three results similarly hold foC = DIg, D*.

\52|

Proof: Let us start by analyzing the matm*Is,D
Let d; be thei'th column of D. Then,

Ci; =djIs,d; = Y di,d;
keSs

(25)

Using Ss is ng periodic, for some set’ € [nq] (which is
simply S (mod n1)), we may write,

ny
— * .
Ci,j= E E Ci t+cno Cjit+cns

teT c=1

(26)

Next, for any: # j (modn;) and anyt < n;,

n1—1 77,1—1
* . _ j—1i)(t+cn
E Ci,t+cnzc.77t+cn2_§ W= 2)
c=0 c=0
n1—1
:W(j*i)ti Weli—in:
c=0

=n,WUD5( — j (modny))

whered(k) = 1 <= k # 0. This proves the first
statement. To show the second,= d}Is,D implies:

S
il = rir; = d!Ts,DD" L, d; = d;Ts,d; = 12

Third result will be a direct consequence of the first one:
If x € Sy, then

Cxl—ZC”xJ

Wheni € S;,5 € S;, we havei # j(mod n;) by
definition, which impliesC; ; = C; ;x; = 0 due to the
first result. Fourth result can be shown by repeating these
arguments fodDIg,D*. [ |

Using Lemma VIL.1, we’ll now proceed with the proof
of Lemma[1V].
A. Proof of Lemmal[lV.1]

Proof: S; and S; components will be analyzed

seperately.
Analyzing S;: We may start by considering;; + s and
write,

Z Cijx;

Jj€SL

(27)

yi+s=y1+D"(bs —c3) — (b; —c1)
=Y + D*bg — ISID*bQ — bl + D*IS2Db1

First, we'll considerS; (y1 +s). We have the following,

S1(y1) = S1(sgnx)) by construction ofy; (28)

(
S1(D*by — Ig,D*by) = 8, (I — Ig,)D*by) = 0 (29)
S1(by) = 0 by construction ofb, (30)
S1(D*Is,Db;) = 0 from LemmaVIL]. (31)
Hence, we findS;(y1 +s) = S1(y1) = S1(sgn(x)).

To upper bound||Si(y1 + s)|l«, We may simply use
[IS1(y1 — b1)]leo < 1/2 and write,

181(y1+8) 00 < [S1(y1=b1) oo+ S1(€1) oo+ 51 (D" b2)l|oc

Analyzing Ss: Similarly, for Sa(y2 + Ds), we have the
following,

Sa(y2) = AS2(sgnDx)) by construction (32)

S2(Dby —Is,Dby) = S3((I—1s,)Db1) =0 (33)
Sz (b2) = 0 by construction (34)

S3(DIg, D*bs) = 0 from LemmaVIL]. (35)

Hence,Sa(y2 — Ds) = AS2(sgn(Dx)) as desired.
To upper bound|Sz(y2 — Ds)|| o0, We may use|Ss(y2 —
b2)llee < A/2 and write,

_ N ~
[S2(y2 — Ds)lloc < 5T [S2(c2) [0 + [|S2(Db1) |l



B. Proof of Lemmal[lV.2]

Proof: We start by stating a useful lemma on Gaus-
sian variables/[[11].

Lemma VII.2. Let g be a real standard normal random
variable. Then, for any > 0

P(lg| > t) < 2exp(—t/2) (36)
Our discussion will be forS; only. Proof for.S; is

identical.

Case 1: EstimatingP(S; (b1); = 0)

Observe thaA s, andA 5, are independent matrices with

i.i.d. Gaussian entries. Hence, for fixéds,, A g isi.i.d.

S1(y1) is a vector with i.i.d. complex Gaussian entries

with variance%. Next, from [11) it can be seen that
Si1(by) is an entry wise function af; (y;) and hence i.i.d.
Using Lemmd‘V_ﬂ_T?. and conditioned of;,; (Ag,) >
1/4/2 for anyi € S,

P(R(b1,:) = 0)

=P(R(y1.0)| < )

1 m
) > 1-2exp(———
1)z 172exp(- g
37
as variance ofR(y; ;) is at most%. Using a union

bound over real and imaginary parts tgf;, we find,

P(R(b1,i) =0) > 1 —4exp(— ) (38)

m
16[51 |

Case 2: Subgaussian norm wheis; (b1); #0

Let us first define a subgaussian random variable and its

norm.

Definition VII.1. Letz € R be a scalar random variable.
Assume for som& < oo,

(E[|z|"])Y/™ < K+/n for all integersn >1  (39)

Then,z is a subgaussian random variable and smallest
K satisfying [(3P) is norm of.

Assumei € S;. This time, we consider the case where
ly1,:] > 0. Clearly real and imaginary components of
b1,; are independent as it is the case far;. Without

Proof: Following inequality is true for tail of Gaus-
sian p.d.f,

1 1
V2w V2w

Hence, using: > /2, for t > 0 we have,

Q@t+c) cexp(—(t +c¢)?/2)

P> ="00" = o0 -c D exn(-2/2)
< 2exp(—t*/2)

2?/2) < Q(z) < z?/2)

(1-—g) exp(~ exp(~

Result immediately follows from Lemma 5.5 of [11] and
from the bound orP(|z| > t). [ |
Finally, b, ; is zero mean ag; ; is distributed sym-
metrically around) and construction o, ; preserves the
symmetry. [ |

C. Proposition 5.10 and sums of sub-gaussians

Next, we state Propositios, 10 of [11] for com-
pleteness, which gives a bound on weighted sum of
subgaussians.

Theorem VII.1 (Proposition5.10 of [11]). Letzq,...,z;

be subgaussian random variables with subgaussian norms
upper bounded by, > 0. Leta € R' be an arbitrarily
chosen vector. Then, for all> 0,

2

l
ct
P(> aizi| > t) < 3exp(—m)

i=1

(41)

wherec > 0 is an absolute constant.

Based on this, we can obtaih {16) &S;(b;)) is
i.i.d. subgaussian with norm at mast,/|S1|/m and we
need to argue both contributions from real and imaginary
parts are at mosi— with high probability. In particular
for j'th row of C,

cmn
R(cji)R(b1, 3 —_
|Z CJa 1, | ) — exp( 128|S1||SQ|)
(42)
Writing  similar  bounds  for |, Z(c;j:)R(b1,)l,

loss of generality consider the real part. Observe that, if |52 RAe; ) Z(bra)ls | 32, Z(e;.)Z(bri)| we can conclude

R(b1,;) # 0 then it is R(y1,;) — $SIN(R(y1,;)) Where

var(R(y1,:)) < 'fﬁ‘ < 614 by assumption. Hence, using

in (I8). Similarly, to obtain,[(20), we again use bounds
on real and imaginary parts. This time we consider only

following lemma we can conclude that subgaussian norm the nonzero entries which are at mastp with high

of by ; is upper bounded byy+/|S1|/m as1/4 > v/2/8.

Lemma VII.3. Letc > /2 be a scalarz be a standard
normal random variable and,
z = x — ¢-sgn(z) conditioned onlz| > ¢ (40)

Then, z has subgaussian norm at mog} for some
absolute constant,.

probability. Then, denoting, foj'th row of D* we can
write,

> Rr)R(

i[b2,i70

cm

b ;)| > _
24| 28p|Sa|A2c2

)

1
ﬁ) < 3exp(—

Doing this for all components and union bounding simi-
larly yields [20).



D. Proof of LemmalVL1l

Finally, we give the proof of Lemma_VIl1 which is
quite similar to the proof of LemniaTl.2.

Proof: Following the notation introduced for the

matrix case, we need to show if sugh, So, S exist then
a certain null space condition will hold fod which will
guarantee recovery. Let us state this condition based on
the sub gradients of nuclear norm afdnorm: For all
W € N (A) if the following holds thenA is the unique
optimum of JBPM.

F(W) :=A[R((sgn(A), S(W))) + [|S(W)[.]  (43)
+R(UV, W) +[IL(W)]. >0 (44)

Now, assume sucl$;,S,,S exist and consider, vy
where:

Vi =A*(S1)+S and Vo :A*(SQ) -S (45)
Observe that for anyW € N(A), we have
(v1 4+ vo, W) = 0. Now, using this:

0= R(<V1 + Vo, W>) (46)

=R (sgn(A), S(W)) + (S(A*(S2) — S), W))

+ R((UV*, W) + (L(A*(S1) +S),W))
To end the proof, using invertibility ofi(-) on LN S we
can concludeC(W) # 0 or S(W) # 0 hence:

R((L(A*(S1) +8),W)) < [IL(W)]. or  (47)

R((S(A*(S2) = 8), W)) < AIS(W)l| (48)

Overall, existence 084,S,,S implies the desired null
space condition, i.ef(W) > 0 for all W e N (A). =
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