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Abstract
This work considers recovery of signals that are sparse

over two bases. For instance, a signal might be sparse in
both time and frequency, or a matrix can be low rank and
sparse simultaneously. To facilitate recovery, we consider
minimizing the sum of theℓ1-norms that correspond to
each basis, which is a tractable convex approach. We
find novel optimality conditions which indicates a gain
over traditional approaches whereℓ1 minimization is done
over only one basis. Next, we analyze these optimal-
ity conditions for the particular case of time-frequency
bases. Denoting sparsity in the first and second bases
by k1, k2 respectively, we show that, for a general class
of signals, using this approach, one requires as small
as O(max{k1, k2} log log n) measurements for success-
ful recovery hence overcoming the classical requirement
of Θ(min{k1, k2} log( n

min{k1,k2} )) for ℓ1 minimization
when k1 ≈ k2. Extensive simulations show that, our
analysis is approximately tight.
Index Terms—basis pursuit, compressed sensing, phase re-
trieval, duality, convex optimization

I. Introduction
Compressed sensing is concerned with the recovery of

sparse vectors and has recently been the subject of im-
mense interest. One of the main methods is Basis Pursuit
(BP) where theℓ1 norm is minimized subject to convex
constraints. Assumingx has a sparse representation over
the basisU (i.e.Ux is a sparse vector) and assuming we
get to see the observationsAx, Basis Pursuit performs
the following optimization to get back tox.

min
x̂

‖Ux̂‖1 subject to Ax = Ax̂ (BP)

In this work, we’ll be investigating recovery of vectors
that can be sparsely represented over two bases. For
example, a vector such as a Dirac comb can be sparse in
time and frequency. Similarly, we can consider a low rank
matrix which is supported over an unknown submatrix and
zero elsewhere and hence sparse. Assumingx is sparse
over U1,U2, in order to induce sparsity in both bases,
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we will be considering the following approach, which we
call Joint Basis Pursuit (JBP).

min
x̂

‖U1x̂‖1 + λ‖U2x̂‖2 s.t. Ax̂ = Ax (JBP)

For the case of a matrixX that is simultaneously sparse
and low rank, we may minimize the summation ofℓ1
norm and the matrix nuclear norm, which is denoted by
‖ · ‖⋆ and is equal to summation of the singular values.
Assuming, we observe linear measurementsA(X), we
propose solving the following problem (JBP-Matrix) to
recoverX.

min
X̂

‖X̂‖⋆ + λ‖X̂‖1 s.t. A(X̂) = A(X) (JBPM)

While it is possible to come up with relevant problems,
this paper will focus on JBP and JBPM. Our motivations
are,

• Investigating whether JBP can outperform regular
BP.

• The sparse phase retrieval problem, in which one
has measurements of a sparse vectorx and observe
| 〈ai,x〉 |2 as measurements [7], [8]. While it is not
possible to cast this as a regular compressed sensing
problem, it can be cast as JBPM where we wish
to recover sparse and low rank matrix,xx∗. This
problem is known to have applications to X-Ray
crystallography [6] and has recently attracted interest
[7]–[10].

Background: It should be emphasized that, recently, there
has been significant interest in using a combination of
different norms to exploit the structure of a signal. While
this paper deals with signals having sparse representations
in both bases, [3]–[5] considers the problem of separating
the signals that are combinations of sparsely representable
incoherent pieces.
Contributions: In this work we provide sharp recovery
conditions that guarantees success of JBP and JBPM.
Next, we cast these conditions in adual certificateframe-
work to facilitate analysis. For the case of time-frequency
bases, we analyze the dual certificate construction to
find that for the class of “periodic signals”, one needs
at mostO(max{k1, k2} log logn) measurements where
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k1, k2 represents the sparsity inU1,U2. This shows that
JBP can indeed outperform regular BP which requires
Θ(k log n

k ) measurements for recovery of ak sparse vec-
tor [12], [13]. Finally, simulation results indicate that our
results are sharp. We believe that, the result of this paper
can be seen as negative in nature. While, JBP provides
an improvement, it is not a significant improvement when
we consider the fact that signals that are simultaneously
sparse arefew in number.

II. Problem Setup
We begin by considering the (JBP) problem and as-

sume x ∈ Cn is a signal that is sparse over two
complete bases,U1,U2. Later on we will briefly extend
our approach to (JBPM) and the recovery of matrices that
are simultaneously sparse and low rank.

The basic question we would like to answer is whether
one can do better in recoveringx from measurementsAx

by exploiting the joint sparsity ofx.
Before, going into technical details, we’ll introduce the

relevant notation. Denote the set{1, 2, . . . , n} by [n]. Let
S1, S2 ⊆ [n] denote the supports ofx in the basesU1

and U2, i.e., locations of nonzero entries ofU1x and
U2x respectively. Further, letS1(·) : Cn → C

|S1|,S2(·) :
Cn → C|S2| denote the operators that collapse a vector
ontoS1, S2 respectively. sgn(·) : Cn → Cn is the function
that returns entry wise signs of a vector, i.e.,0 is mapped
to 0 and a 6= 0 is mapped to a

|a| . I will be the identity
matrix of the appropriate size. Null space of a linear op-
eratorA is denoted byN (A). R(·), I(·) : Cn → Rn are
the functions that returns entry-wise real and imaginary
parts of a vector. Denote

√
−1 by i. D is the Discrete

Fourier Transform (DFT) matrix of the appropriate size
and given as follows,

Di,j =
W (i−1)(j−1)

√
n

1 ≤ i, j ≤ n (1)

whereW is alwaysexp(− 2πi
n ). We will useλ1, λ2 and

1, λ alternatively.
Remark: Proofs that are omitted can be found in the
appendix.
A. Recovery Conditions for JBP

We will start with explaining our approach. LetA ∈
Cm×n where m is the number of measurements. The
following lemma gives a condition that guaranteesx to
be the unique optimum of (JBP).

Lemma II.1 (Null Space Condition). Assume, for allw ∈
N (A), the following holds,

2
∑

i=1

λi(R(〈sgn(Uix),Uiw〉) + |S̄i(Uiw)|1) > 0 (2)

Then,x is the unique optimizer of (JBP).

Proof: Let f(x̂) be the cost of (JBP) , i.e.,f(x̂) =
∑2

i=1 λi‖Uix̂‖1. Then, for anyw ∈ N (A), f(x+w)−
f(x) is lower bounded by the left hand side of (2), which
follows from the sub gradient of theℓ1 norm. Hence
f(x̂) > f(x) for all Ax̂ = Ax, x̂ 6= x.

Based on (2), the following lemma connects success
of (JBP) to the existence of dual certificates.

Lemma II.2. Assumes1, s2 ∈ Cm, s ∈ Cn satisfying the
following conditions exist:

• S1(U
−∗
1 (A∗s1 + s)) = S1(sgn(U1x))

• ‖S̄1(U
−∗
1 (A∗s1 + s))‖∞ < 1

• S2(U
−∗
2 (A∗s2 − s)) = λS2(sgn(U2x))

• ‖S̄2(U
−∗
2 (A∗s2 − s))‖∞ < λ

• A is invertible over
⋂2

i=1{v
∣

∣Si(Uiv) = Uiv}.

Thenx is the unique optimum of (JBP).

Proof: What we need to show is that if suchs1, s2, s
exist and the invertibility assumption holds then the left
hand side of (2) is strictly positive for allw ∈ N (A).
Assume suchs1, s2, s exist and letv1,v2 ∈ Cn to be:
v1 = U−∗

1 (A∗s1+s) and v2 = U−∗
2 (A∗s2−s∗) (3)

Observe that for anyw ∈ N (A), usingAw = 0,
2

∑

i=1

〈Uiw,vi〉 =
2

∑

i=1

w∗A∗si +w∗s−w∗s = 0 (4)

To end the proof observe thatv1,v2 satisfies the condi-
tions listed in Lemma II.2 which implies that the LHS
of (2) is strictly positive when combined with (4). This
follows from the fact that either̄S1(U1w) or S̄2(U2w)
is nonzero due to invertibility assumption.

The dual certificate approach for regular BP has
been used in [1], [2], [5]. LettingU = U1, com-
pared to Lemma II.2, it requires invertibility ofA over
{v

∣

∣S1(U1v) = U1v} rather than the intersection and it
requires‖S̄1(U

−∗
1 A∗s1)‖∞ < 1, while Lemma II.2 can

overcome this by making use of the extra variables. From
this perspective, JBP can be viewed as a combination of
two regular BP’s that are allowed to “help” each other via
s.

III. Main Results
Our main result is concerned with the time-frequency

bases, i.e., Identity and the DFT matrices. Before stating
the main result, let us first describe the setting for which
it holds.

Definition III.1. S is a l periodic subset of[n] if n is
divisible byl and for anyi ∈ [n], we have,

i ∈ S ⇐⇒ j ∈ S for all j such thatj ≡ i (modl) (5)

Observe that ifS is a l periodic support,|S| is divisible
by n/l.



Theorem III.1. Let U1 = I, U2 = D, 1 > α ≥ 0 be an
arbitrary constant and without loss of generality assume
|S1| ≤ |S2|. Further, assume the followings hold,

• |S1| ≤ n
logn .

• S1, S2 are n1, n2 periodic supports, wheren =
n1n2.

• |S2| ≤ |S1| logα(n).
Then, for the following scenarios,x can be successfully
recovered via JBP with high probability (for sufficiently
large n) when the matrixA ∈ Cm×n is generated with
i.i.d complex Gaussian entries.

• If |S2| ≤ |S1| log logn settingλ = 1 and usingm =
O(|S2| log logn) measurements.

• If |S2| ≥ |S1| log logn, settingλ = log−1(n) and
usingm = O(|S2|) measurements.

Remark: Our proof approach will inherently re-
quire m ≥ max{|S1|, |S2|}. Consequently, if|S2| ≥
|S1| log(n), then one can already perform the regular
ℓ1 optimization overU1 = I to ensure recovery with
m = O(|S2|) measurements. Hence,|S2| ≤ |S1| logα(n)
is a reasonable assumption.

A. Signals with Periodic Supports
Theorem III.1 holds for signals whose supports are

periodic with n1, n2 over I and D respectively, where
n = n1n2. Here, we give a family of such signals
that satisfy this requirement. LetT be the set of signals
v ∈ Cn such that for somel ≤ n1 and0 ≤ t < n,

vj =

{

0 if j 6≡ l (modn1)

W jt else
(6)

Basically,T is the set of Dirac combs with periodn1 and
hence for anyv ∈ T , Dv will have n

n1

periodic support.
In general, almost allx of the form,

x =
∑

vi∈T

αivi (7)

will have n1 periodic support andDx will have n
n1

periodic support. The reason we say almost all is because
cancellations may occur whenvi’s are added. However, if
αj ’s are chosen from a continuous distribution, the chance
of cancellation is0.

B. Converse Results
We should emphasize that, the main reason we have

considered theI,D pair is the fact that almost all bases
U1 andU2 do not permit signals that are sparse in both.
The following lemma illustrates this.

Lemma III.1. AssumeU−1
1 ,U−1

2 have i.i.d entries cho-
sen from a continuous distribution. Then, with probability
1, there exists no nonzero vectorx satisfying|S1|+|S2| ≤
n.

An interesting work by Tao shows that, such results are
true even for highly structured bases, [14]. In particular,
if n is a prime number, we still have|S1| + |S2| > n
requirement for a signal overU1 = I andU2 = D bases.

IV. Proof of Theorem III.1
This section will be dedicated to the analysis of Lemma

II.2 to prove Theorem III.1. We start by proposing a
construction fors1, s2, s that certifies optimality ofx.
A. Construction of s1, s2, s

For the following discussion, we’ll be using(U1,U2)
and (I,D) and (1, λ) and (λ1, λ2) interchangeably. The
construction ofs1, s2 will follow a classical approach
previously used in [2], [5], [7]. LettingAS1

∈ Cm×|S1|

denote the submatrix by choosing columns corresponding
to S1 andB = AD∗, we will use the followings1, s2.

s1 = AS1
(A∗

S1
AS1

)−1S1(sgn(x)) (8)

s2 = BS2
(B∗

S2
BS2

)−1λS2(sgn(Dx)) (9)

SinceI,D are unitary we haveU−∗
i = Ui. By construc-

tion s1, s2 already satisfies,

Si(UiA
∗si) = λiSi(sgn(Uix)) i ∈ {1, 2} (10)

However, one has to control the term‖S̄i(UiA
∗si)‖∞

and we will make use ofs to achieve this. DenoteUiA
∗si

by yi. Define the vectors{b1,b2} as follows:

R(bi,j) =











0 if j ∈ Si

0 if j ∈ S̄i and |R(yi,j)| ≤ λi/4

R(yi,j)− λisgn(R(yi,j))/4 else

(11)

and imaginary partI(bi,j) is obtained fromI(yi,j) in the
same way. Observe that,‖S̄i(yi − bi)‖∞ < λi/2. Based
on {bi}2i=1 constructs as follows,

s = D∗(b2 − c2)− I(b1 − c1) where (12)

c1 = D∗IS2
Db1, c2 = DIS1

D∗b2

Here, IS1
, IS2

are diagonal matrices whose diagonal
entries corresponding toS1, S2 are1 and the rest are zero.

Lemma IV.1. Assumex, {yi,bi, ci}2i=1 are the same as
described previously. Then, one has the following:

S1(y1 + s) = S1(sgn(x))

S2(y2 −Ds) = λS2(sgn(Dx))

‖S̄1(y1 + s)‖∞ <
1

2
+ ‖S̄1(c1)‖∞ + ‖S̄1(D

∗b2)‖∞

‖S̄2(y2 −Ds)‖∞ <
λ

2
+ ‖S̄2(c2)‖∞ + ‖S̄2(Db1)‖∞

Based on Lemma IV.1 and Lemma II.2, JBP recovers
x if we have,‖S̄1(c1)‖∞ + ‖S̄1(D

∗b2)‖∞ ≤ 1/2 and
‖S̄2(c2)‖∞ + ‖S̄2(Db1)‖∞ ≤ λ/2.



As a next step, we can analyze‖S̄1(D
∗IS2

Db1)‖∞
and‖S̄1(D

∗b2)‖∞ and find the conditions that guarantees
their sum to be small. The analysis forS2 will be identical
to S1 and hence is omitted.
B. Probabilistic Analysis

AssumeA is i.i.d complex normal with variance1m
andm ≥ 64max{|S1|, |S2|}. This will guarantee,

σmin(AS1
) ≥ 1/

√
2 andσmin(BS2

) ≥ 1/
√
2 (13)

with probability1− exp(−Ω(m)), [11].
Now, conditioned onAS1

,BS2
satisfy (13),

‖si‖22 = s∗i si = λ2
i sgn(x)∗(A∗

S1
AS1

)−1sgn(x) ≤ 2λ2
i |Si|

and S̄i(yi) is an i.i.d Gaussian vector whose entries hav-
ing variance‖si‖2

2

m . Given these, we need to understand,
when can we make sure,

‖S̄1(D
∗IS2

Db1)‖∞ ≤ 1

4
and‖S̄1(D

∗b2)‖∞ ≤ 1

4

From (11), observe that̄Si(bi) is a function of S̄i(yi)
which is i.i.d. random Gaussian. The next lemma, gives
a characterization ofbi.

Lemma IV.2. Assumem ≥ 64max{|S1|, |S2|}. Then, the
entries{S̄i(bi)j}|S̄i|

j=1 of S̄i(bi) are i.i.d. random variables
with the following distribution,

S̄i(bi)j is

{

0 with probability at least1− 4 exp(− m
16|Si| )

otherwise distributed asz
(14)

where z is 0 mean and subgaussian norms (see [11])

of R(z), I(z) are upper bounded byc0λi

√

|Si|
m for an

absolute constantc0 > 0.

1) Analysis of‖S̄1(c1)‖∞: We need to show,

‖S̄1(D
∗IS2

Db1)‖∞ ≤ 1

4
(15)

Calling C = D∗IS2
D, from Lemma VII.1, each row of

C has energy|S2|
n . Let ci be thei’th column ofC∗. Then,

using Lemma IV.2 and Proposition5.10 of [11], for any
i and an absolute constantc > 0,

P(|c∗ib1| ≥
1

4
) ≤ 12 exp(− mc

27c20|S1|‖ci,T ‖22
) (16)

= 12 exp(− mnc

27c20|S1||S2|
) (17)

Using a union bound over alli’s, shows (15) reduces
to arguingnP(|c∗ib1| ≥ 1

4 ) → 0 which is equivalent to
ensuring,

mnc

27c20|S1||S2|
− logn → ∞ as n → ∞ (18)

Usingn ≥ min{|S1|, |S2|} logn in the statement of Theo-
rem III.1, (18) holds form ≥ 28c−1c20 max{|S1|, |S2|} =
O(max{|S1|, |S2|}) as desired.

2) Analysis of‖S̄1(D
∗b2)‖∞: In a similar fashion,

we would like to show,

‖S̄1(D
∗b2)‖∞ ≤ 1

4
(19)

holds with high probability, to conclude. Each row ofD∗

has unitℓ2 norm and nonzero entries ofb2 are i.i.d sub-
gaussians from Lemma IV.2. Letting,p = 4 exp(− m

16|S2| )
and applying a Chernoff bound w.p.a.l1 − exp(−np/4),
number of non zeros inb2 is at most2np. Considering
the inner products between each row ofD∗ andb2, and
using a union bound, (19) holds, with probability at least,

1− 12n exp(− mc

28c20λ
2|S2|p

)− exp(−np/4) (20)

Assumingm = O(|S2| logα(n)) for someα < 1, we have
exp(−np/4) → 0. Finally, to show the second term in
(20) approaches0, for some absolute constantsc1, c2 > 0,
we need to argue,

m

c1λ2|S2|
exp(

m

c2|S2|
)− logn → ∞ as n → ∞ (21)

Following the same arguments for the other basis will
yield,

mλ2

c1|S1|
exp(

m

c2|S1|
)− logn → ∞ as n → ∞ (22)

By choosing m = O(max{|S1|, |S2|} log logn) and
λ = 1 one can always satisfy these. In case|S2| ≥
|S1| log logn, chooseλ = log−1(n) and m sufficiently
large butO(|S2|) to still satisfy both.

V. Empirical Results
While Theorem III.1 shows that JBP can indeed out-

perform BP it is important to understand how good it
actually is. We considered the following basic setup: Let
k be a positive integer andn = k2. Then, letx ∈ Rn be
the following dirac comb,

xi = 1 if i ≡ 1 (mod k) and0 else (23)

It is clear thatDx = x hence the signal is only
√
n

sparse in both domain and the optimal weight in JBP is
λ = 1 by symmetry. Simulation for JBP is performed for
k = {2, 4, 6, . . . , 32} and for1 ≤ m ≤ 30. Interestingly,
in order to achieve50% success, JBP requiredk2 ≤ m ≤
3k
5 and m

k slightly increased as a function ofk. This is
shown as the straight line in Figure1. These results are
quite consistent with Theorem III.1 from which we expect
to havem = O(k log log k) measurements.

On the other hand,50% success curve for BP is shown
as the dashed line in Figure1 and obeysm = O(k log k)
as expected from classical results onℓ1 minimization. In
particular m

k increases from1 to 2.4 as k moves from
2 to 32. While JBP outperforms BP in this setting, the
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Fig. 1. Phase transitions of JBP vs BP where sparsityk varies between
2 to 32 andn = k

2. Dark region indicates failure for JBP while light
region corresponds success. Straight and dashed lines are50% success
curves for JBP and BP respectively. While JBP outperforms BP, it still
requiresΩ(k) measurements.

fact that it requiresΩ(k) samples to recover a highly
structured signal is disappointing. It would be interesting
to see whether a greedy algorithm can be developed to
attack this problem.

VI. Extension to Matrices
As it has been discussed in the introduction, similar to

jointly sparse signals one might as well consider matrices
that are sparse and low rank. The motivation is the sparse
phase retrieval problem wherex is a sparse vector to
be recovered from observations{| 〈ai,x〉 |2}mi=1 where
{ai}mi=1 ∈ Cn are the measurement vectors. Although,
these measurements are not linear inx, they are linear in
xx∗ as | 〈ai,x〉 |2 = a∗ixx

∗ai. Using the fact thatxx∗ is
rank 1 and sparse, JBPM can be used in order to recover
X = xx∗ as it will enforce a low-rank and sparse solution.

Although, this work will not deal with the analysis of
this problem, we’ll point out that our framework for JBP
can be used for JBPM as well. In general, assume matrix
X is low-rank and sparse and we wish to recover it from
observationsA(X). Let us first introduce notation relevant
to structure ofX ∈ Cn×n.

• Let S ∈ [n] × [n] be the usual support ofX and
S : Cn×n → C|S| be the projection ontoS.

• Assuming X has singular value decomposition
UΣV∗, Define the subspaceL ∈ Cn×n as,

L = {Y ∈ C
n×n

∣

∣ (I−UU∗)Y(I −VV∗) = 0}
• L̄ denotes complement ofL and projection ontoL

is denoted byL(·) : Cn×n → Cn×n.
• A∗(·) : Cm → Cn×n denotes the adjoint operator.

Operator norm is denoted by‖ · ‖.

The following lemma is effectively equivalent to
Lemma II.2 and characterizes a simple condition forX

to be unique optimizer of JBPM.

Lemma VI.1. AssumeS1,S2 ∈ Cm,S ∈ Cn×n satisfy-
ing the following conditions exist:

• L(A∗(S1) + S) = UV∗.
• ‖L̄(A∗(S1) + S)‖ < 1.
• S(A∗(S2)− S) = λ · S(sgn(A)).
• ‖S̄(A∗(S2)− S)‖∞ < λ.
• A(·) is invertible over{Y

∣

∣L(Y) = S(Y) = Y}.

ThenA is the unique optimum of (JBPM).

Finally, it would be interesting to see whether similar
or better improvements can be shown for JBPM over reg-
ular BP or regular nuclear norm minimization algorithms.
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VII. Appendix
We will start by proving Lemma III.1 using a classical

argument.
Proof of Lemma III.1: Let us first fixS1, S2 and

consider these particular supports. LetCi ∈ Rn×|Si| be
the matrix obtained by taking columns ofU−1

i , overSi.
If z1 = U1x and z2 = U2x are supported overS1, S2,
we may write:

0 = U−1
1 z1 −U−1

2 z2 = [C1 C2][S1(z1)
∗ − S2(z2)

∗]∗

(24)
By assumption,[C1 C2] ∈ Rn×(|S1|+|S2|) has i.i.d.
entries from a continuous distribution and hence full
column rank with probability1 whenever|S1|+ |S2| ≤ n.
It follows that only(z1, z2) satisfying (24) is(0, 0). There
are finitely manyS1, S2 pairs satisfying|S1|+ |S2| ≤ n
hence a union bound will still give, with probability
1, there exists no nonzero vectorx having combined
sparsities ofU1x andU2x at mostn.

Following lemma gives a simple but useful property of
the DFT matrix.

Lemma VII.1. Let n = n1n2 and S1, S2 be n1 and n2

periodic supports. LetD ∈ Rn×n be the DFT matrix as
previously. Further, letC = D∗IS2

D. Then,

1) Ci,j = 0 for any (i, j) with i 6≡ j (modn1).
2) For any i, i’th row ri of C satisfies‖ci‖22 = |S2|

n .
3) For any x that is supported onS̄1, we have,

S1(Cx) = 0.
4) First three results similarly hold forC = DIS2

D∗.

Proof: Let us start by analyzing the matrixD∗IS2
D.

Let di be thei’th column ofD. Then,

Ci,j = d∗
i IS2

dj =
∑

k∈S2

d∗
i,kdj,k (25)

UsingS2 is n2 periodic, for some setT ∈ [n1] (which is
simply S2 (modn1)), we may write,

Ci,j =
∑

t∈T

n1
∑

c=1

c∗i,t+cn2
cj,t+cn2

(26)

Next, for anyi 6≡ j (modn1) and anyt ≤ n1,

n1−1
∑

c=0

c∗i,t+cn2
cj,t+cn2

=

n1−1
∑

c=0

W (j−i)(t+cn2)

= W (j−i)t
n1−1
∑

c=0

W c(j−i)n2

= n1W
(j−i)tδ(i − j (modn1))

where δ(k) = 1 ⇐⇒ k 6= 0. This proves the first
statement. To show the second,ri = d∗

i IS2
D implies:

‖ri‖22 = r∗i ri = d∗
i IS2

DD∗IS2
di = d∗

i IS2
di =

|S2|
n

Third result will be a direct consequence of the first one:
If x ∈ S̄1, then

(Cx)i =

n
∑

j=1

Ci,jxj =
∑

j∈S̄1

Ci,jxj (27)

When i ∈ S1, j ∈ S̄1, we havei 6≡ j(mod n1) by
definition, which impliesCi,j = Ci,jxj = 0 due to the
first result. Fourth result can be shown by repeating these
arguments forDIS2

D∗.
Using Lemma VII.1, we’ll now proceed with the proof

of Lemma IV.1.

A. Proof of Lemma IV.1
Proof: S1 and S2 components will be analyzed

seperately.
Analyzing S1: We may start by considering,y1 + s and
write,

y1 + s = y1 +D∗(b2 − c2)− (b1 − c1)

= y1 +D∗b2 − IS1
D∗b2 − b1 +D∗IS2

Db1

First, we’ll consider,S1(y1 + s). We have the following,

S1(y1) = S1(sgn(x)) by construction ofy1 (28)

S1(D
∗b2 − IS1

D∗b2) = S1((I− IS1
)D∗b2) = 0 (29)

S1(b1) = 0 by construction ofb1 (30)

S1(D
∗IS2

Db1) = 0 from Lemma VII.1. (31)

Hence, we find,S1(y1 + s) = S1(y1) = S1(sgn(x)).
To upper bound‖S̄1(y1 + s)‖∞, we may simply use
‖S̄1(y1 − b1)‖∞ < 1/2 and write,

‖S̄1(y1+s)‖∞ ≤ ‖S̄1(y1−b1)‖∞+‖S̄1(c1)‖∞+‖S̄1(D
∗b2)‖∞

Analyzing S2: Similarly, for S2(y2 +Ds), we have the
following,

S2(y2) = λS2(sgn(Dx)) by construction (32)

S2(Db1 − IS2
Db1) = S2((I− IS2

)Db1) = 0 (33)

S2(b2) = 0 by construction (34)

S2(DIS1
D∗b2) = 0 from Lemma VII.1. (35)

Hence,S2(y2 −Ds) = λS2(sgn(Dx)) as desired.
To upper bound‖S̄2(y2−Ds)‖∞, we may use‖S̄2(y2−
b2)‖∞ < λ/2 and write,

‖S̄2(y2 −Ds)‖∞ <
λ

2
+ ‖S̄2(c2)‖∞ + ‖S̄2(Db1)‖∞



B. Proof of Lemma IV.2
Proof: We start by stating a useful lemma on Gaus-

sian variables, [11].

Lemma VII.2. Let g be a real standard normal random
variable. Then, for anyt ≥ 0

P(|g| > t) ≤ 2 exp(−t2/2) (36)

Our discussion will be forS1 only. Proof for S2 is
identical.
Case 1: EstimatingP(S̄1(b1)i = 0)
Observe thatAS1

andAS̄1
are independent matrices with

i.i.d. Gaussian entries. Hence, for fixedAS1
, AS̄1

is i.i.d.
S̄1(y1) is a vector with i.i.d. complex Gaussian entries
with variance‖s1‖2

2

m . Next, from (11) it can be seen that
S̄1(b1) is an entry wise function of̄S1(y1) and hence i.i.d.
Using Lemma VII.2 and conditioned onσmin(AS1

) ≥
1/

√
2 for any i ∈ S̄1

P(R(b1,i) = 0) = P(|R(y1,i)| <
1

4
) ≥ 1−2 exp(− m

16|S1|
)

(37)
as variance ofR(y1,i) is at most |S1|

m . Using a union
bound over real and imaginary parts ofbi,j, we find,

P(R(b1,i) = 0) ≥ 1− 4 exp(− m

16|S1|
) (38)

Case 2: Subgaussian norm when̄S1(b1)j 6= 0
Let us first define a subgaussian random variable and its
norm.

Definition VII.1. Letz ∈ R be a scalar random variable.
Assume for someK < ∞,

(E[|z|n])1/n ≤ K
√
n for all integersn ≥ 1 (39)

Then,z is a subgaussian random variable and smallest
K satisfying (39) is norm ofz.

Assumei ∈ S̄1. This time, we consider the case where
|y1,i| > 0. Clearly real and imaginary components of
b1,i are independent as it is the case fory1,i. Without
loss of generality consider the real part. Observe that, if
R(b1,i) 6= 0 then it is R(y1,i) − 1

4sgn(R(y1,i)) where
var(R(y1,i)) ≤ |S1|

m ≤ 1
64 by assumption. Hence, using

following lemma we can conclude that subgaussian norm
of b1,j is upper bounded byc0

√

|S1|/m as1/4 >
√
2/8.

Lemma VII.3. Let c ≥
√
2 be a scalar,x be a standard

normal random variable and,

z = x− c · sgn(x) conditioned on|x| ≥ c (40)

Then, z has subgaussian norm at mostc0 for some
absolute constantc0.

Proof: Following inequality is true for tail of Gaus-
sian p.d.f,

1√
2πx

(1− 1

x2
) exp(−x2/2) < Q(x) <

1√
2πx

exp(−x2/2)

Hence, usingc ≥
√
2, for t ≥ 0 we have,

P(|z| > t) =
Q(t+ c)

Q(c)
≤ c exp(−(t+ c)2/2)

(t+ c)(1− c−2) exp(−c2/2)

≤ 2 exp(−t2/2)

Result immediately follows from Lemma 5.5 of [11] and
from the bound onP(|z| > t).

Finally, b1,i is zero mean asy1,i is distributed sym-
metrically around0 and construction ofb1,i preserves the
symmetry.

C. Proposition 5.10 and sums of sub-gaussians
Next, we state Proposition5, 10 of [11] for com-

pleteness, which gives a bound on weighted sum of
subgaussians.

Theorem VII.1 (Proposition5.10 of [11]). Let z1, . . . , zl
be subgaussian random variables with subgaussian norms
upper bounded byc0 > 0. Let a ∈ Rl be an arbitrarily
chosen vector. Then, for allt ≥ 0,

P(|
l

∑

i=1

aizi| ≥ t) ≤ 3 exp(− ct2

c2‖a‖22
) (41)

wherec > 0 is an absolute constant.

Based on this, we can obtain (16) asR(S̄1(b1)) is
i.i.d. subgaussian with norm at mostc0

√

|S1|/m and we
need to argue both contributions from real and imaginary
parts are at most 1

4
√
2

with high probability. In particular
for j’th row of C,

P(|
∑

i

R(cj,i)R(b1,i)| >
1

8
√
2
) ≤ 3 exp(− cmn

128|S1||S2|
)

(42)

Writing similar bounds for |∑i I(cj,i)R(b1,i)|,
|∑i R(cj,i)I(b1,i)|, |

∑

i I(cj,i)I(b1,i)| we can conclude
in (16). Similarly, to obtain, (20), we again use bounds
on real and imaginary parts. This time we consider only
the nonzero entries which are at most2np with high
probability. Then, denoting, forj’th row of D∗ we can
write,

P(|
∑

i
∣

∣b2,i 6=0

R(rj,i)R(b2,i)| >
1

8
√
2
) ≤ 3 exp(− cm

28p|S2|λ2c20
)

Doing this for all components and union bounding simi-
larly yields (20).



D. Proof of Lemma VI.1
Finally, we give the proof of Lemma VI.1 which is

quite similar to the proof of Lemma II.2.
Proof: Following the notation introduced for the

matrix case, we need to show if suchS1,S2,S exist then
a certain null space condition will hold forA which will
guarantee recovery. Let us state this condition based on
the sub gradients of nuclear norm andℓ1 norm: For all
W ∈ N (A) if the following holds thenA is the unique
optimum of JBPM.

f(W) :=λ[R(〈sgn(A),S(W)〉) + ‖S̄(W)‖1] (43)

+R(〈UV∗,W〉) + ‖L̄(W)‖⋆ > 0 (44)

Now, assume suchS1,S2,S exist and considerv1,v2

where:

v1 = A⋆(S1) + S and v2 = A⋆(S2)− S (45)

Observe that for anyW ∈ N (A), we have
〈v1 + v2,W〉 = 0. Now, using this:

0 = R(〈v1 + v2,W〉) (46)

= R(λ · 〈sgn(A),S(W)〉 +
〈

S̄(A⋆(S2)− S),W
〉

)

+R(〈UV∗,W〉+
〈

L̄(A∗(S1) + S),W
〉

)

To end the proof, using invertibility ofA(·) on L∩S we
can concludeL̄(W) 6= 0 or S̄(W) 6= 0 hence:

R(
〈

L̄(A⋆(S1) + S),W
〉

) < ‖L̄(W)‖⋆ or (47)

R(
〈

S̄(A⋆(S2)− S),W
〉

) < λ‖S̄(W)‖∞ (48)

Overall, existence ofS1,S2,S implies the desired null
space condition, i.e.,f(W) > 0 for all W ∈ N (A).
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