
A TWO'S COMPLEMENT PIPELINE MULTIPLIER 

Edmund K. Cheng* 
California Institute of Technology, Pasadena, California 91125 

Jet Propulsion Laboratory, Pasadena, California 91103 

Carver A. Mead 
California Institute of Technology, Pasadena, California 91125 

SUMMARY 

A serial-data pipeline multiplier was designed and implemented in 

p.channel silicon-gate MOS. It uses a radix-4 Booth algorithm for 
two's complement compatibility. The circuit is modular, and is 

configured to multiply one data word by two coefficient words 
simultaneously. 

INTRODUCTION 

The multiplier is often the most complicated arithmetic element 
in a digital signal processing system, and therefore it pays to find 
efficient ways of realizing this function. In fact, techniques using 
ROMs have been developed to avoid the use of multipliers entirely 
1] 42], highlighting the need for good multiplier design. 
There have been several recent reports of multipliers that are 

fabricated in a variety of large-scale integration technologies for 
different levels of performance 3].[6]. This paper will begin by 
pointing out some of the features in multiplier designs that are 
considered to be desirable for certain digital signal processing 
applications, and discuss a particular design that embodies these 
features. 

THE PIPELINE MULTIPLIER 

Multipliers can be divided into two major catagories, array 
multipliers and clocked or serial.data multipliers. The array 
multiplier uses extensive parallelism so that the final product is 
obtained without registering the partial products. It can therefore 
•form the product faster than the serial-data multipher. However, due 
to other considcrations such as complexities, pin count, testability, 
etc, serial-data multipliers are often chosen for digital signal 
processors. 

*Preaently with Intel Corp., Santa Clara, CA 95051. 

x 

Fig. 2. Variation of Fig. 1. 

The conventional serial-data multiplier is designed to simulate the 
pencil and paper method of binary multiplication, or the 
"shift-and-add gated multiplicand" algorithm. Fig. 1 shows a 
straightforward implementation of such a multiplier [4]-[7j, where 
X is the multiplicand word, and V is the multiplier word. This is a 
serial-parallel multiplier, and since all of the bits of V must be 
assembled in parallel before multiplication can proceed, it is an 
inconvenience in certain serial-data systems. 

Fig. 2 shows a different circoit configuration which can 
accommodate certain featurcs that arc desirable in serial-data digital 
signal processing systems, and they are described as foliows. 

In order to closely pack the serial data, successive words arc 
adjacent in time. Therefore, no more than N bits per word arc 
allowed at any point in the serial digital network. However, 
multiplying an N-bit multiplicand word by an M-bit multiplier word 
yields an (N+M)-hit product word. Since the product word is the 
output data word, it should be reduced to the same length as the 
input data word. 

As a partial product passes through a multiplier lection, it can 
grow in length by one bit via a carry-out of its high-order bit. The 
extra bit can be mistakenly added into the LSB of the succeeding 
partial product. Since it is preferable to preserve the high-order bits, the obvious solution is to truncate the entering partial product by 
setting its LSB to "0", thereby maintaining the length of a 
developing partial product to N bits throughout the multiplication. 

x 

-1 
xi,1 

PARTIAL 
PRODUCT 

IN 

xo us 

PARTIAL 
PRODUCT 

OUT 

Fig. 1. Serial-parallel multiplier. 

647 

Fig. 3. Pipeline multiplier bit section with truncation, 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216205751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 3 shows a single multiplier bit section of the pipeline 
multiplier [8J which is designed to accept positive data words that 
are closely packed in time and form products that are truncated (or 
rounded) to the same length, at the same rate. Truncation is 

accomplished by setting the truncation or timing signat T to "0" at 
the clock period when a partial product LSB is about to enter the 
bit section in question. The lower-order bits are removed as they arc 
generated, but the carries due to them are preserved. 

Since all the adders in the partial-product chain are connected in 
series, the progation delay is excessive, thereby slowing down the 
data rate. For high data rates, an extra set of delays is inserted 
between the multipbcr bit sections to resynchronize the partial 
product after each addition. This technique doubles the number of 
bit cycles in going through the multiplier, which is considered to be 
inconsequential in many digital processors. 

It should be clear that, by using appropriate latches, Y can be 
loaded one bit at a time, LSB first, simultaneously with X. The 

timing signal can be used as the latch-enable signals. It is also 

possible to vary F from one multiplicand word to the next. 

To correctly process the multiplicand word as a two's 
complement number, sign extensions should be used when the word 
is lengthened at the most significant end. Two's complement 
addition can cause output overflow; in order that such an overflow 
does not interfere with the succeeding addition, the carry input of 
each adder should be cleared between multiplicand words. These 
functions can also be performed using the timing signal. 

Fig. 4 illustrates a multiplier bit section that embodies all of the 
above modifications to that shown in Fig. 3; it is designed for 
realization in dynamic MOS. 

THE TWO'S COMPLEMENT MULTIPLIER 

Assuming that the binary point is to the right of the LSB, an 
M-bit two's complement number can be represented as: 

M-2 
= YMI ÷ (1) 

where each y1 is a bit in the number F, and y is the sign bit. 
Consequcntiy, in order to process the multiplier word as a two's 
complement number, the adder in the last multiplier stage should be 
replaced by a subtractor. Although this does not increase the 
amount of hardware significantly, it does destroy the modularity of 
the system, and makes it difficult to append more stages to 
accommodate longer multiplier words. The LSI implementation of 
such a multiplier would be greatly enhanced by modularity, and its 
application becomes much more flexible if each unit is expandable. 

Table t. Table ot operations for the basic Booth algorithm. 

The Booth algorithm [91 can be used in constructing a two's 
complement pipeline multiplier with a completely modular con- 

figuration. The basic Booth algorithm is outlined as follows. From 
Eq. 1, 

M-2 

+ 2 
j=O 

M2 

- 
y121 

E = 

j=s 5=5 

where y .1=0, one can write 

M-1 

Y=YI2i + 

M-1 

= E(x-i -F)2' (2) 

Therefore, instead of multiplying X by y, add to the partial 
product, shift X,_ and repeat, one can multiply X by (y1 -y) and so 
on. Table 1 shows the table of operations. Each multiplier bit y is 
examined together with its preceding bit y1 PP is the partial 
product which is set to zero initially, and y1 is defined to be zero. 

To extend the algorithm one step further [lOj, two multiplier 
bits y1÷1 and y1 are simultaneously examined with y1, and the 
table of operations for this radix-4 Booth algorithm is shown in 
Table 2. The hardware must now be able to perform addition and 
subtraction of X as well as 2X. The 2X word can easily be obtained 
by shifting the X word one bit to the left. In order for it not to 
interfere with the next multiplicand word, a one bit time slot must 
be inserted between words. This time slot serves as the LSB for a 
2X word, and should be filled with a "0"; however, it is also the 
MSB for an X word, and should be filled with a sign extension. 
These conditions arc simultaneously satisfied by inserting a sign 
extension to the multiplicand word at the input of the multiplier, 
and inserting zeros within the multiplier stages that are performing 
the 2X operation. As a result, each multiplicand word consists of a 

sign bit, (N-2) magnitude bits plus a "don't care" bit. 
The pipeline multiplier that was discussed earlier requires as many 

sections or stages as there arc bits in the multiplier word. This 
method requires only half as many stages, without doubling the 
hardware in each stage. 

Operation 
I I I I. I. 1.1. Net Operation i+1 1 i—i i+1 1 1 1—1 _____________ 

0 0 0 PP+O PP+O pp+O 

yi 
0 

yi—1 

0 

0 

1 0 

1 

Operation 

PP + 0 

PP + X 
PP - X 

1 PP—O 

M-2 

Y = -yftfJ2 - 

since 

x. 
In 

I- a 

PARTIAL 
PRODUCT 

IN 

T. 

Fig. 4. Sooped-op version of Fig. 3 in dynamic MOS. 

O 0 1 PP+O PP+X PP+X 
O 1 0 PP+2XPP—X PP+X 
O 1 1 PP+2XPP—O PP+2X 
1 0 0 pp—2XPP+O PP—fl 
1 0 1 pP—2XPP+X PP—K 

1 1 0 PP — 0 PP — K PP — K 

1 1 1 PP—O PP—O PP—O 

Table 2. Table of operations for the radix-4 Booth algorithm. 

648 



Although this method can be extended to three or more bits, it 
will be more trouble that' it is worth. For example, if three 
multiplier bits are simultaneously examined with their preceding bit, 
then the 3X word needs to be generated (it is no longer a simple 
shifting operation), and at least two adder-subtractors must be used 
per stage. Therefore, the radix-4 algorithm seems to be optimal for 
the application. 

Fig. 5 shows the functional block diagram of a pipeline multiplier 
that uses the radix-4 Booth algorithm. Since a sizable amount of 
combinatorial logic is required in implementing Table 2, the 
multiplier word is examined by a decoder which then generates the 
necessary control signals for all the multiplier stages that follow, 
Such a configuration amortizes the decoding logic over the entire 
pipeline multiplier, making it a minor overhead. 

THE DESIGN 

A simplified logic diagram for the multiplier decoder is given in 
Fig. - 6. Since the 'decoder examines two multiplier bits simul- 
taneously, it has two bit cycles for sending out the control signals 
that it generates, and they are summarized in Table 3. The 
multiplier stages simply latch in these time-muliplexed control 
signals at the appropriate times, and process the multiplicand word 
accordingly. Fig. 7 shows a functional diagram for such a multipller 
stage; it is simply a radix-4 version of that shown in Fig. 3, with the 
added capabilities for subtraction and two times the multiplicand. 

In several applications for which this pipeline multiplier is 
designed, such as digital filters and complex multiplication in FFT 
processors, a data word is simultaneously multiplied by two 
coefficients, and this fact can be used to realize additional savings in 
hardware by constructing two multipliers as one unit and 
eliminating the unnecessary redundancies. The double pipeline 
multiplier accepts one multiplicand word (X) with arbitrary length 
and two multiplier words (a, b) with length (M bits) limited by the 
number of stages. Fig. 8 shows a photomicrograph of such an 
experimental device. Using very conservative design rules, this 8XN 
bits double multiplier is implemented in silicon gate PMOS, and 
measures under 50X100 mils in chip area. 

649 

LSB 

J 
— 

MSB "0 

F 
r 

lM-1) BITS - LSB 
..çç 

ON'T CARE" BITS 

-r 
MSB 

tjfr. 

Fig. 9. Timing diagram. 

Within each multiplier stage, two-bit truncation and double 
sign-extension are performed using the timing signal. A set of extra 
delays is used in each stage to resynchronize the partial product 
signals, but only increasing the amount of delay in the output 
product by 50%. As a result, the throughput (or clocking) rate is 
independent of the number of stages, and there is no fan-out 
problem to limit the number of stages. Dynamic shift registers and 
latches are used throughout to reduce chip area. 

Fig. 9 shows the timing diagram for all the signals involved. The 
device has been tested at 2.9MHz bit rate. 

The two's complement pipeline multiplier has a delay of (3/2)M-1 
hits in generating the product word. When used in a digital filter 
circuit, this delay must be incorporated into a delay (z1) that 
precedes the multiplier. If the data words are closely packed in 
time, z1rlN. Therefore, the condition 

(3/2)M.1 ag N (3) 

must be satisfied. In a typical digital filter, data word length N 

ranges from 12 to 20 bits, while coefficient word length M is 8 to 
12 bits; obviously, Eq. (3) can be satisfied in most practical 
applications. A straightforward second-order digital filter imple- 
mentation using this multiplier circuit is shown in Fig. 10, where 
the length of the delays D1 -D5 are dependent upon the choice of N 
and M. 

It has been found that when two's complement arithmetic is 
used, overflow oscillations can occur in the feedback loop of 
second-order filter sections with certain coefficient values [11 . If 
such instabilities are not considered a threat, then this simple 
structure can be used as a high speed programmable filter without 
any multiplexing. Results from the experimental multiplier chip 
indicate that such a second-order filter section would occupy about 
100X 110 mils in chip area, using silicon gate PMOS. 

x. In xout 

MULTIPLIER STAGES 

Fig. 7. Functional diagram of radix-4 multiplier stage. 

n n 

Fig. 5. Block diagram of two's complement pipeline multiplier. 

T . .. 
LSB MSB 1"DON'T CARE" BIT 5" 

V. In 

II 

V 

PRODUCT 

t 

CONTROL 
SIGNALS 

Fig. 6. Simplified logic diagram for the multiplier decoder. 

APPLICATIONS 



REFERENCES 

[1] A. Peled and B. Liu, "A new hardware realization of digital filters," IEEE 
Trana. Acouat.. Speech, Sginal Procesaing, vol. ASSP.22, pp. 456-461, 
Dee. 1974. 

[2] B. Lin and A. Peled, 'A new hardware realization of high.speed fast 
Fourier transformers," IEEE Trans. Aconst., Speech, Signal &ocsssing, 
vol. .ASSP.23, pp. 543.547, Dcc. 1975. 

[3] G. W. Mclver, R. N. Miller, and T. C. O'Shaughnessy, "A monolithic 
16x16 digital multiplier," in 1974 mt. Solid.State Circuits Conf., D. 
Tech. Papsrs, pp. 54.55. 

[4 J S. A. White and T. Mitsutomi, 'The IC digital filter: a new lose-cost signal 
processing tool," Control Engineering, vol. 43, pp. 58-68, June 1970. 

[5] G. P. Edwards, P. J. Jennings, and T. Preston, "1 1105 LSI double second 
order digital filter circuit," in 1975 list. Solid-State Circuits Confi, Dig. 
Tech. Papers. pp. 20-21. 

[61 D. Bampel, K. F. Mchoire, and K. J. Prost, "CMOS/SOS serial-parallel 
multiplier," IEEE J. Solid-State Circuits, vol. SC-JO, pp. 307-314, Oct. 
1975. 

[7] R. K. Richards, 4rithmstic Operariona in Digital Computers. Princeton: 
Van Nostrand, 1955, p. 155. 

[8] L. B. Jackson, J. F. Kaiser, and H. S. McDonald. "An approach to the 
implementation of digital filters," IEEE Trans. ,4adio Elecrroacouat., vol. 
AU-J6, pp. 413-421, Sept. 1968. 

[9] A. 0. Booth, "A signed binary multiplication technique," Quart. J. 5/!eeh. 

Appl. Math., vol. 4, part 2, 1951. 
[JO] 0. L. MarSorley, "High-speed arithmetic in binary computers," &oc. IRE, 

vol. 49, pp. 67-91, Jan. 1961. 
[11] P.M. Ebert, J. E. Mazo, and Al. C. Taylor, 'Overflow oscillations in digital 

filters." Bell Syat. Tech. I., vol. 48, pp. 2999-3020, Nov. 1969. 
[12] H. L. Groginaky and Cs. A. Works, "A pipeline fast Fourier transform," 

IEEE Trans. Compue.. vol. C.J9, pp. 1015-1019, Nov. 1970. 

Fig. 8. Photomirrograph of 8XN hits double-multiplier. 

ACKNOWLEDGEMENTS 

The authors wish to thank R. F. Jurgens, R. T. Maaumoto, and 

G. A. Morris for their assistance; Intel Corp. for fabrication of the 

circuits; and in particular R. F. Lyon for his invaluable contributions 

during the butial phase of this work. 

Fig. tO. Second-order section using double multiplier. 

Two of these double multipliers can also be used in making a 

complex multipber. A pipeline FF'I' processor section [121 that 
consists of a complex multiplier, an adder, a subtractor, and some 

switching logic can be implemented in a single LSI chip that fits in 
a small DIP package. Ithen provided with appropriate shift register 
memories and coefficient ROMs, a straightforward pipcbnc FFT 

processor can be made with only a few of this LSI chip. 

let bit—cycle gpj4t—ccle 
1)1 

irrelevant 

1 noop 

2)1 
irrelevant 0 2)1 

1 noop 

± 0 addition 
1 subtraction 

Table 3. Control signals tor the multiplier stages. 

650 


