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Abstract

How we attend to and search for objects in the real world is influenced by a host of low-level and 

higher-level factors whose interactions are poorly understood. The vast majority of studies 

approach this issue by experimentally controlling one or two factors in isolation, often under 

conditions with limited ecological validity. We present a comprehensive regression framework, 

together with a matlab-implemented toolbox, which allows concurrent factors influencing saccade 

targeting to be more clearly distinguished. Based on the idea of gaze selection as a point process, 

the framework allows each putative factor to be modeled as a covariate in a generalized linear 

model, and its significance to be evaluated with model-based hypothesis testing. We apply this 

framework to visual search for faces as an example and demonstrate its power in detecting effects 

of eccentricity, inversion, task congruency, emotional expression, and serial fixation order on the 

targeting of gaze. Among other things, we find evidence for multiple goal-related and goal-

independent processes that operate with distinct visuotopy and time course.
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1 Introduction

Visual attention encompasses more-or-less automatic processes driven by sensory 

parameters, such as visual saliency (Itti and Koch, 2001), as well as processes informed by 

motivated volition, such as instructed search (Yarbus, 1967). On top of these, visual field 

location, the history of previous fixations to a given stimulus, and of the occurrence and 

arrangement of specific features (e.g., those influencing serial vs. parallel search) are bound 

to influence where gaze is directed. Although the study of attention is one of the oldest sub-
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disciplines of Psychology, when and how each of these putative factors exerts its effect 

remains unclear. Attention to faces has been a topic at the center of the controversy, with 

studies arguing both for (Theeuwes & Van der Stigchel, 2006) and against (Brown, Huey, & 

Findlay, 1997) efficient detection of faces from similar distractors. More recent work 

utilizing eye movement data has shown that saccades are preferentially targeted to faces 

over other non-face objects as early as 120 ms after onset of the stimulus (Cerf, Harel, 

Einhäuser, & Koch, 2008; Fletcher-Watson, Findlay, Leekam, & Benson, 2008; Kirchner & 

Thorpe, 2006). These studies, however, compare selection of faces over non-face objects, 

still leaving open the possibility that the responses are driven by lower-level image statistics 

associated with faces (Honey, Kirchner, & VanRullen, 2008; VanRullen, 2005) and leaving 

unanswered many other questions about the scope and specificity of peripheral face 

detection.

Small portions of the larger question, what information guides attention, have typically been 

addressed by experimentally manipulating factors in isolation. But even simple effects 

depend on their interactions with context (i.e., all of the other factors), leaving numerous 

questions unanswered when only one or two factors can be studied at a times. Eye-

movement responses hold the promise of a sensitive and detailed index of attentional 

behavior through which one might hope to resolve the tangle of possible influences. But the 

very richness of eye-movement data makes their proper statistical treatment a non-trivial and 

highly context-dependent problem. For this reason, no comprehensive framework for the 

analysis of eye movement data has yet emerged, which allows a large number of 

simultaneous effects to be modeled and compared across a wide range of conditions.

An optimal descriptive model ought to have a number of properties: sufficient flexibility to 

handle a variety of measures, robustness to bias, relative ease of implementation and 

interpretation, methods for hypothesis testing which minimize type I and type II errors, and 

reliable techniques for testing goodness of fit. Second, model fitting should generate 

statistics that may be interpreted in light of formal computational models of attention. We 

show that an approach fulfilling each of these criteria can be developed from the theory of 

point processes, and describe its implementation in a software toolbox for Matlab. Point 

process models have a well established track record of application to neural spiking data 

(Dayan & Abbott, 2001; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005), and spatial 

and spatiotemporal point process models have been among standard tools for modeling 

geophysical phenomena (Ogata, 1988) and ecological data (Stoyan & Penttinen, 2000). 

Their formal application to eye movement data has gained attention comparatively recently 

(Barthelmé, Trukenbrod, Engbert, & Wichmann, 2013; Kovach, 2008). Barthelmé et al. 

have reviewed the application of point process models to gaze selection, hilighting the 

flexibility of the approach, and giving a comprehensive overview of how point processes 

might be applied to fixation data. Our present aim is is narrower in scope, to demonstrate the 

implementation of a point process model as a generalized linear regression model (GLM) 

and to describe novel results from its application to visual search for faces.

A key goal of this work will be distinguishing the numerous simultaneously operating 

influences that may drive saccadic selection (Tatler, Hayhoe, Land, & Ballard, 2011). 

Models that readily account for concurrent influences allow for more efficient experimental 
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design and may be crucial for avoiding flawed interpretation (Simpson, 1951) (see also 

Discussion section 4.1.1). Commonly used approaches to modeling the distribution of 

fixations require some form of binning or smoothing of fixation density within the space of 

some dependent measures of interest, such as scene plane coordinates. In many instances, 

however, summary measures based on binning and smoothing may prove critically biased, 

making it necessary to discard large quantities of data (as, for example, in the common 

practice of discarding all fixations but the first in a trial in order to control for bias related to 

the serial dependence of fixations).

At its heart, modeling gaze response overlaps with the problem of modeling discrete choice 

behavior. Of the statistical models routinely applied to the latter, those that handle 

categorical outcomes, such as the conditional logit, have proven most useful (McFadden, 

1973). Such models have more recently been adapted to the analysis of visual fixations 

(Barr, 2008; Kovach, 2008). However, in the context of the gaze response, the requirement 

of a categorical dependent measure may impose certain limitations. The space of visual 

fixations is not inherently discrete, nor is there any reason to assume that stimulus properties 

influencing gaze should be bundled into discrete units. While binning is straightforward 

enough, the choice of bin location and dimension and the assignment of stimulus properties 

to bins may create implicit assumptions. The present application therefore generalizes the 

conditional logit to continuous decision spaces by way of a spatiotemporal point-process 

model. By doing so, it overcomes a number of limitation of discrete models, including the 

need to define a priori regions of interest in visual space.

The relationship to the conditional logit also links this approach to a broad family of formal 

decision models (Luce, 1959; Shepard, 1964), which encompass, among other things, a 

promising computational model of visual attention (Bundesen, 1990; 1998). These models 

share a common form that relates the probability of a given response to the proportional 

strength of a signal driving the response. The theoretical attraction of such models comes 

from the way in which they allow processes that compute signal strength for each option to 

operate independently from each other as well as from the process charged with selecting 

the outcome, leading to the property of independence of irrelevant alternatives (IIA)(Luce, 

1959). It is not hard to envision how such a model might be implemented in the brain by 

way of functionally specialized populations that compute a decision signal for stimuli within 

their receptive fields (Bundesen, Habekost, & Kyllingsbaek, 2005). Normalization of local 

responses with respect to the summed population activity is another ubiquitous property of 

neural responses in the cortex (Carandini & Heeger, 2012), pointing to the importance of 

proportional response coding. These considerations offer some reason to hope that 

conditional logit models, beyond providing a useful descriptive framework, may at least 

loosely approximate dynamics of underlying mechanisms and so yield measures with 

physiological relevance. Although violations of IIA are well known and the conditional logit 

takes IIA as a starting assumption, in principle, the regression framework may also allow 

many types of deviations from IIA to be evaluated by way of appropriately constructed 

interactions terms.

As a test case, we applied the conditional logit model to an investigation of the factors that 

guide attention to faces during visual search. We found that saccades may select target faces 
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from among inverted distractors, showing that attentional shifts can be guided by the 

configural information that distinguishes face orientation. On top of the target selection 

effect, we observed a weaker intrinsic bias towards upright faces, which evolved with a 

time-course and visual field distribution distinct from the task-related effect. The influence 

of memory manifested as strong inhibition of return to previously visited distractors, with 

variable inhibition and facilitation to previously visited targets. These results address a 

number of open questions and emphasize the dependence of effects on time, visual field 

location and the history of prior fixations, whose separate influences can be distinguished 

with the current method. Beyond showcasing the promise of this framework, we also 

provide a matlab toolbox for its implementation and for visualization of the results.

2 Materials and Methods

2.1 Statistical framework and analysis

Fixations are treated as discrete events in space and time, whose occurrence is governed by a 

spatiotemporal point process with an intensity function, λ, that gives the rate and density of 

events. The most basic point process models assume that events are mutually independent; 

by the Poisson formula, the probability PA of observing n independent events within a 

region of the sampling space, A, is

(1)

Further elaborations of the point process framework address various forms of dependence 

among the events, generally by making the dependence between events explicit in the 

model. In the case of serial dependence in time, this extension is straightforward, as past 

events can be assumed to affect future events but not vice versa. Thus one may specify an 

intensity function, λ, conditioned on the history of events up to the point of observation 

(Daley & Vere-Jones, 2005)

(2)

Adding a vector of model parameters, θ, the log likelihood function for model M is given by

(3)

where N is the number of observations in{xi,ti} and A is the extent of the spatiotemporal 

sampling space. For linear and log linear models, the log likelihood function is well 

behaved, exhibiting at most a single unique maximum, which can be found using algorithms 

for numerical maximization (Ogata, 1978). Here we consider log linear models, of the form:

(4)
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where {ϕk} is a set of known regressors, yielding a generalized linear model, with canonical 

parameters θ.

In order to make model estimation more computationally tractable, various approaches can 

be taken to simplify the form of the intensity function λ. Under the assumption that the rate 

of events is independent of their spatial distribution, spatial effects can be treated separately 

from rate, while still allowing the dependence of spatial distribution on time. In the present 

case, for the sake of simplicity, we will consider the serial temporal order of fixations and 

their spatial distribution, but not their precise arrangement in absolute time.

The model may be further simplified under a discrete piecewise constant approximation for 

λ, yielding a conditional logit, according to which the probability of fixating region j is 

given by

(5)

Concretely, parameter estimate θk̂ represents the influence of regressor ϕk on the log odds 

ratio of fixating a target with respect to some baseline. ϕk may represent main effects or 

interactions among any of a large number of regressors representing nominal, ordinal or 

continuous measures (Agresti, 2014). The term µj is equal to log area of bin j and is needed 

to correct for variations of bin area when bins are not uniform in area. A more detailed 

derivation is provided in the Supplementary Material.

Conditional logit models have long been applied to various kinds of decision behavior 

involving discrete choice sets (Luce, 1959; McFadden, 1978) and are related to logistic 

regression, which addresses the case of dichotomous outcomes. In their application to gaze 

patterns they typically require coarse binning of visual space in order to avoid model 

overparameterization (Barr, 2008), which in turn requires some a priori assumptions about 

where gaze is likely to be distributed . We overcome this limitation in the present 

application and extend the conditional logit model to serial choices over a continuous 

decision space using continuous spatial basis functions.

2.1.1 Binning—While spatial basis functions allow the underlying distribution to be 

continuous, bins are still necessary to cast the data into the space of discrete outcomes 

handled by the conditional logit, with the density of spatial sampling limited by 

computational cost. In this context, equation 5 becomes a piecewise-uniform approximation 

to a continuous exponential-family distribution over the space encoded by the regressors. 

The summation over bins in the denominator of equation 5 is then equivalent to numerical 

integration with the rectangle rule. A more formal discussion of this relationship is given in 

the Supplementary Material.

A question worth considering in this context is how to optimally construct bins to minimize 

approximation error. Smaller and more compact bins might naturally be expected to result in 

a better approximation, however for a given number of bins, optimal bin size will not be 

uniform, in general, but vary according to distribution. A closely related problem is that of 
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signal block quantization (Lloyd, 1982), which addresses how to optimally select thresholds 

when digitizing a continuous multivariate signal. For a two dimensional signal, such as gaze 

coordinates recorded by an eye tracker, squared error is minimized when bin size varies 

according to the square root of the probability density of the signal (Gersho, 1979). In the 

context of linear model estimation, optimal binning also depends on properties of the 

regressors and the expected Fisher information (see Supplementary Material). As average 

expected fixation density will typically be unknown at the outset, optimization must proceed 

iteratively (Du, Faber, & Gunzburger, 1999). The usefulness of any such approach depends 

on whether the added computational complexity improves on simpler alternatives, such as 

uniformly increasing bin density at the outset. Although we hope to address optimal binning 

in future work, for the present application we do not attempt any formal optimization of this 

sort, rather we use these results to inform general rules of thumb for constructing bins. In 

particular, they provide the rationale for placing bins more densely around salient targets.

A simple method to construct suitably compact bins involves selecting a set of points spaced 

according to the anticipated or observed fixation density and applying a Delaunay 

tessellation or Voronoi diagram to construct bins (Du et al., 1999). The Delaunay 

tessellation assigns 3 points as the vertices of a triangular bin if their circumcircle does not 

enclose any other point, and the Voronoi diagram creates polygonal bins containing the area 

that is closer to the associated point than any to other. Whereas the Voronoi diagram 

provides better control of the placement of bin centers and creates optimally compact bins, 

the Delaunay tessellation allows for somewhat greater control of bin edges, and the 

triangular bins it generates may be simpler to handle during analysis than the irregular 

polygons returned by the Voronoi diagram. Both algorithms are routinely implemented in 

software packages for scientific computing, and the application of Voronoi diagrams in 

optimal binning has been extensively studied (Du et al., 1999).

2.1.2 Hypothesis testing and model comparison—Conditional logit models come 

with the family of likelihood-based inferential procedures that apply broadly to generalized 

linear models. For nested models, the log likelihood ratio test derives from the asymptotic 

convergence of the log ratio of the maximum likelihoods to a chi-squared distribution 

(Agresti, 2014). A somewhat less reliable but often more easily computed statistic, the Wald 

statistic, may also be used for hypothesis testing and confidence intervals (Pawitan, 2000). 

The latter is based on the asymptotic normal distribution of the likelihood function with 

variance-covariance matrix given by the inverse Fisher information at θ̂. When the 

likelihood function deviates from the normal distribution, as when sample sizes are small, 

the Wald tests tend to elevate type II errors (Pawitan, 2000).

Alternatives to classical null-hypothesis testing include model comparison techniques that 

estimate the posterior probability of alternate models under different kinds of prior 

assumptions. Two commonly used criteria are the Bayes-Schwartz information criterion 

(BIC) (Schwarz, 1978) and Akaike information criterion (AIC) (Akaike, 1974). The 

difference of BIC between two models approximates the posterior log Bayes factor 

comparing them, while AIC asymptotically approaches decision criterion obtained with 

cross-validation (Stone, 1977).
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2.1.3 Hierarchical modeling—Such inferential tests depend critically on the assumption 

of conditional independence, and data are often clustered in ways that may give rise to 

obvious violations of this assumption. For example, inference at the group level requires 

accounting for subject-related random effects. The most general form of the problem is 

addressed through hierarchical modeling (Barr, Levy, Scheepers, & Tily, 2013). Model 

fitting for hierarchical models is computationally more intensive than for simple fixed-

effects models, and may quickly become intractable for highly parameterized nongaussian 

GLMs (Barr, 2008). Recent advances in statistical modeling of latent Gaussian models, 

show considerable promise in the efficient handling of random effects for hierarchical point-

process models (Rue, Martino, & Chopin, 2009), which may prove valuable for modeling 

fixation data (Barthelmé et al., 2013).

In the present case, we turn to a computationally and conceptually simpler approximation, 

the summary statistic procedure (Penny, Holmes, & Friston, 2003), which applies univariate 

or multivariate statistics at the second level to parameter estimates for clusters obtained at 

the first. While this procedure assumes equal variance of the first level of estimates across 

clusters, it is generally robust to deviations from this assumption even at modest sample 

sizes (Penny et al., 2003). In the present case, summary statistics were computed for 

univariate contrasts, which represent spatially localized effects at points in the visual field, 

as fitted by basis functions. In order to account for the resulting large number of multiple 

comparisons, we applied the false discovery rate (FDR) (Benjamini & Hochberg, 1995) 

correction to p-values at each point, which avoids overly penalizing multiple comparisons 

among correlated tests.

2.1.4 Non-parametric model fitting—Likelihood-based decision criteria can be used 

with non-parametric model fitting as well (Karabatsos, 2006). When {ϕk} represents a basis 

set chosen in a manner that asymptotically spans the set of all functions meeting basic 

criteria of differentiability, then model fitting is non-parametric, asymptotically approaching 

the unknown true model. In the present analysis, non-parametric modeling of spatial effects 

was carried out by choosing the lowest order of polynomial and sinusoidal basis functions 

that minimized AIC across subjects.

2.1.5 Application of the point-process framework to visual search—In the 

present case, we sought to model the influences of task relevance, stimulus orientation, 

distance from the fovea, and memory for previously fixated locations on the probability of 

generating a fixation to a given location. These effects were modeled as linear terms in a 

conditional logit regression over a discretized sampling of the visual field. Interactions 

between inversion and facial expression were also included in the model. The model was fit 

separately for each of 26 subjects, and group-level statistical tests were carried out on 

parameter estimates across subjects. The visuotopic spatial dependence of these effects was 

estimated with polynomial basis functions that included a semi-parametric spatial function, 

modeled with additive radial and angular components. The radial component, modeling 

eccentricity from the fovea, was fit with a 3rd order polynomial, and the angular component, 

representing clock-face angle relative to the fovea, was fit with a first order sinusoid (that is, 

the simple sine and cosine over angle). Interactions among radial and angular components 
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were included as well, allowing differences across hemifields to be distinguished. The 

respective polynomial and sinusoid orders were selected based on lowest observed AIC, 

combined across subjects, for different orders.

2.1.6 GazeReader—All GLM analysis of the current data were carried out using a 

software toolbox (the GazeReader toolbox developed by the first author under Matlab 

(Mathworks, Nattick, MA), which may be downloaded at http://www.nitrc.org/projects/

gazereader/. Data loading, model specification, fitting and review are organized into a 

sequence of events, each of which is handled by a separate module in the toolbox. Figure 1 

illustrates the steps as they are implemented in the toolbox and gives an example of the 

graphical interface developed in Matlab (Kovach, 2008).

2.2 Procedure

2.2.1 Subjects—Subjects for experiment 1 were recruited from the University of Iowa 

Hospitals and Clinics community and participated following voluntary informed consent in 

accordance with requirements of the University of Iowa biomedical internal review board 

and the Code of Ethics of the World Medical Association (Declaration of Helsinki). 24 

healthy subjects (12 female, 2 left handed and 5 unknown handedness) participated with 

median age of 27 and range 20 to 58. Median education was 16 years with a range of 12 to 

19. Data for three subjects were excluded due to technical failures or poor signal quality. 

This left a total of 21 subjects in Experiment 1.

For experiment 2, 5 subjects (3 female, 1 left handed) were recruited from the University of 

Iowa student community, 4 of whom received course credit for participating. Median age 

was 18. One of the participants was an author (CK) of the present study.

2.2.2 Task—In experiment 1, 24 subjects participated in two versions of a task requiring 

visual search for upright and inverted faces (Figure 2). Each trial began with a fixation cross 

for 500 ms followed by a field containing 6 pseudo-randomly arranged faces, 3 upright and 

3 inverted, presented against a background equated in spectral content and histogram with 

the faces (Fig. 2). The search field remained visible for 4 seconds and was followed by a 

probe face after a 500 ms delay. The probe remained visible for 1000 ms, after which a 

prompt appeared. Following the prompt, subjects identified with a yes or no button response 

whether the probe face had been among those in the search field. Trials were divided 

between two blocks. In block 1 all probe faces were upright, and in block 2 probe faces were 

inverted. Before each block subjects were informed of the orientation of probe faces for that 

block, thus faces of the same orientation as the probe were target stimuli while faces of the 

other orientation served as distractors. Each block contained 72 trials, and block order was 

counterbalanced across subjects.

The task for the 5 participants in experiment 2 was the same as for experiment 1 excepting 

one modification: because the use of pseudo-random stimuli in experiment 1 may raise the 

concern that comparisons pooled across subjects will amplify random differences between 

the stimulus sets, face positions were re-randomized online before each trial.
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2.2.3 Stimuli—Stimuli were constructed by converting face images to gray-scale, 

normalizing the mean spectral power of each image to the average spectral power, followed 

by matching the histogram distribution of pixel values to the average histogram. Faces were 

randomly arrayed on a background composed of phase randomized noise matched in 

spectral power and pixel distribution (Figure 2). This design served to increase the difficulty 

of visual search and decrease the influence of elementary scene statistics on saccade targets. 

Each search field contained 3 upright and 3 inverted faces. Within each orientation, faces 

were of three different identities expressing each of 3 basic emotions: fear, neutral and 

happy. All faces were modified from the MacBrain Face Stimulus Set developed by Nim 

Tottenham and supported by the John D. and Catherine T. MacArthur Foundation Research 

Network on Early Experience and Brain Development, downloaded from http://

www.macbrain.org/resources.htm/. The search array stimuli sets were generated using 

Matlab (Nattick, MA).

For experiment 1 stimuli were displayed using Presentation® software (Version 0.70, 

www.neurobs.com). Two sets of pseudo-random stimuli were used and participants were 

tested using a randomly chosen set, with the order of search arrays randomized for each 

subject. Stimuli were presented on a 21 inch CRT monitor at 40 inches distance. Faces 

subtended approximately 3.0 degrees of visual arc, while the scene plane covered 18 by 23 

degrees. Faces were spaced with a minimum center-to-center distance of 4 deg.

Stimuli for experiment 2 were presented using the Matlab psychophysics toolbox on a 17 

inch CRT monitor at 27 inches distance. Faces subtended approximately 3.5 degrees of 

visual arc, while the scene plane covered 21 by 28 degrees. Faces were spaced with a 

minimum center-to-center distance of 4.5 deg.

2.2.4 Eye tracking—For the group of 24 subjects in experiment 1, eye movements were 

recorded with a video based Purkinje eye tracking system (Applied Science Laboratories, 

Bedford, MA) with 60 Hz sampling rate and 1–2 degrees of resolution. Fixation extraction 

was carried out offline using dispersion criteria and visually checked against the raw trace of 

gaze position to ensure that fixations were accurately identified. The onset of a fixation was 

marked when the standard deviation of any sequence of 6 data points fell within 0.5 deg, and 

termination was marked when at least three sequential samples fell beyond 1 deg from the 

average following fixation onset. Fixation position was computed as the average coordinate 

of points between onset and termination, excluding outliers falling more than 1.5 deg. from 

the initial fixation position.

For the group of 5 subjects in experiment 2, data were recorded with an Eyelink 1000 

system (SR Research, Ottawa, Ontario), using a chin rest for head stabilization to reduce 

measurement error and data dropout. Data were sampled at 1000 Hz and typical resolution 

was .5 deg or better. Fixation extraction was carried out by Eyelink vendor software, which 

applied velocity, acceleration and distance thresholds to determine saccade onsets. Onsets 

were marked when eye rotation velocity exceeded 30 deg/s or when acceleration exceeded 

8000 deg/s2, and position deviated at least 0.15 deg. from the previous point of fixation. 

Fixation onsets were marked at saccade termination. The use of different equipment from 

experiment 1 in this case was motivated by the wish to verify that results are robust to 
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details of sampling, signal quality and fixation criteria, in addition to stimulus 

randomization.

2.3 Model construction

2.3.1 Sampling—For each trial, the scene plane was sampled according to an irregular 

tessellation, constructed in the following manner. An array of hexagonally spaced vertices 

was placed on the scene plane with inter-vertex distance of approximately 5.4 degrees of 

visual arc. Additional vertices were added around each face, one at the center of the face and 

six at the vertices of a hexagon with edges of approximately 2.2 degrees. Triangular 

sampling bins were generated by applying a Delaunay tessellation to vertices, using the 

DELAUNAY function in Matlab. Optimal binning requires the density of bins to vary with 

the square root of the density of fixations (see Supplementary Material); although we did not 

attempt formal optimization, the present binning procedure was devised to bin more densely 

around faces, where we anticipated the greatest density of fixations, which was subsequently 

verified in the model (see section 3.2.2). The Delaunay tessellation connects vertices such 

that the circumcircle enclosing each simplex contains no other vertex, thus dividing the 

scene into compact triangular bins. All resulting bins whose centers fell within the hexagon 

of points surrounding each face were associated with the face. In most cases, the bins 

associated with each face corresponded to the original six simplexes within the hexagonal 

array of points added to the face in the previous step. Bins that were not associated with any 

face following this procedure were regarded as belonging to the background. An example of 

the resultant binning is shown in Figure 3.

2.3.2 Spatial Basis Function—GLM covariates modeled effects of interest as a function 

of visual field location using spatial basis functions. Basis functions were chosen to be 

polynomials of eccentricity and sinusoids of azimuth:

(6)

where r is the eccentricity of the sampling bin from the current point of fixation, α is the 

azimuthal angle in the scene plane, increasing clockwise from vertical upward meridian, and 

the symbol ⊗ denotes the Kronecker tensor product, whose output is a 12 dimensional 

vector in which each element is a product of two elements of the operands. The order of 

basis functions was chosen by adjusting the polynomial and sinusoidal order and refitting 

the model until minimum AIC was found; the chosen values gave minimum AIC in a 

majority of subjects.

2.3.3 Modeling effects of stimulus type—The properties of the face associated with 

each bin, such as orientation and task relevance, were modeled in their interactions with the 

spatial basis function, thus treating them as a function of visual field location. Properties 

associated with faces were represented by indicator variables, which were centered across all 

faces by subtracting the mean value for all face bins. For example the regressor target 

assumed a value of .5 for bins associated with task-relevant (target) faces and −.5 for bins 

associated with irrelevant distractor faces. Bins associated with the background were given a 

value of zero for all of the face properties; therefore fixations that fell within background 
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bins did not contribute to the estimation of effects nested in the face bins. The regressor face 

indicated bins associated with faces, and had a value of 1 for face bins and 0 for background 

bins. The following additional indicator variables were specified for each face: orientation, 

facial expression, block and previous fixations. Each of these indicator regressors was 

incorporated into the model through the interaction with the spatial basis set, where si is the 

vector of indicator variables for the ith object:

(7)

Interactions among the indicator variables, such as the interaction of previous fixation with 

task relevance or facial expression with orientation were likewise incorporated by 

computing the three-way interaction between the two indicator variables and the spatial 

basis set. Table 1 provides a list of all of the terms in the model and the number of 

parameters accounted to each.

2.3.4 Revealing spatial effects—From fitted model parameters, spatial dependence of 

effects may be shown by applying the value of spatial basis functions at given locations as 

contrasts on the parameter estimates, and error estimates can similarly be obtained by 

applying the contrast to the inverse Fisher information matrix. To examine dependence on 

visual field location in greater detail, we plot effects in polar coordinates as a function of 

eccentricity and azimuth with respect to the point of fixation. Terms that represent 

interactions with eccentricity show effects averaged over all azimuthal angles, a 

consequence of the fact that the sinusoidal basis functions integrate to zero over azimuths. 

While this analysis may show dependence on visual field, to support the claim that any 

apparent differences are statistically significant it is necessary to also compute a direct 

contrast. We address visual field differences with two contrasts: the Left-Right (LR) -

contrast gives the difference of log odds ratios between points equidistant from the vertical 

meridian, which represents the contribution of the antisymmetric azimuthal interactions (in 

this case with sin(α)):

(8)

The π-contrast gives the difference between points equidistant along the line intersecting the 

origin, offset from each other by π radians. It therefore represents the combination of 

symmetric and antisymmetric azimuthal interactions:

(9)
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3 Results

3.1 Individual fits

For individual subjects, Table 2 shows the result of omnibus likelihood ratio tests and 

pseudo-R2 statistics for each main group of regressors. Statistical thresholds were adjusted 

for multiple comparisons across subjects using FDR. In every individual, the full model is 

heavily favored over the null model, which assumes uniform selection probability across all 

bins. The following effects were significant at false discovery rate (FDR Q <0.01) in all 

subjects: the main effect of visual field location, the effect of distance from the previous 

point of fixation, and the effect of the presence of a face. The effect of task relevance 

reached significance in 23 participants, and the effect of inversion, separate from the task-

relevance effect was also significant (Q < .05) in 9 subjects, while the effect of experimental 

block was significant in 18 subjects. The effect of previous fixation on the likelihood of 

fixation was likewise significant (Q < .01) in all subjects, and the interaction of previous 

fixation and other modeled effects is significant in 24 of 26 subjects. The effects of facial 

expression and interactions between facial expression and orientation or task relevance 

approached significance in 2 subjects.

3.1.1 Comparison of Experiment 1 and Experiment 2—The purpose of Experiment 

2 was to verify that the results in Experiment 1 were robust to the use of pseudo-randomized 

stimuli and to differences in sampling rate, signal quality and processing stream between eye 

tracking systems. The pattern of results were broadly consistent between the two 

experiments (Table 2). In keeping with higher sampling rate and superior average spatial 

resolution of the Eyelink system relative to the ASL, model fits on average were better in 

data collected with the Eyelink systems. Measured as pseudo-R2, the average goodness of fit 

for the full model was .232 for Experiment 1 and .355 for Experiment 2 (Wilcoxon rank-

sum P<.001). The separate contributions of regressor groups, visual field main effect and 

face × visual field interaction differed significantly (Wilcoxon rank-sum P < .01), in both 

cases with better average fit for data from Experiment 2. A corresponding group-level 

difference is visible in Figure 4B, which shows at eccentricities below 10 deg, the log odds 

ratio for fixations to faces over background regions is consistently greater for subjects in 

experiment 2. None of the other terms in the model differed between experiments with 

respect to both goodness of fit measures and group level effects. Therefore, for the group-

level analyses to follow, we present data pooled over Experiments 1 and 2.

3.2 Group-level results

3.2.1 Saccades are biased towards locations near the fovea—The main effect of 

eccentricity, which represents the relative risk of a fixation falling within a bin as a function 

of eccentricity, reveals a monotonically decreasing curve (Figure 4A). The mean slope 

across subjects (Figure 4B) was negative and convex over the fitted range, with a minimum 

magnitude near eight degrees. This result indicates a strong bias towards locations near the 

current point of fixation, irrespective of other stimulus attributes.

3.2.2 Selectivity for faces over background is similar across eccentricities—
The model confirmed that saccades are targeted more frequently to faces than background at 
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all eccentricities (Figure 4C). In contrast to the main effect of eccentricity, face selectivity 

showed only modest dependence on eccentricity (Figure 4D), with average log odds ratio 

varying between 2 and 4 in natural base units across all observed eccentricities and no sign 

of a trend with respect to eccentricity.

3.2.3 Saccades select the target orientation with increasing efficiency as a 
function of eccentricity—Saccades select the task relevant orientation over the distractor 

orientation (upright or inverted) both for faces that have been previously fixated and for 

faces that have not (Figure 5). This effect increases substantially for return fixations, shown 

by the interaction of task relevance and previous fixation (Figure 5B). A second noteworthy 

observation is that selectivity for the target orientation is an increasing function of 

eccentricity. This fact is confirmed in Figure 5C, which shows that the mean derivative of 

the task-relevance effect is significantly positive at all eccentricities. Across eccentricities, 

the ratio of the effect for first and return fixations in the group average is nearly constant 

(Figure 5D), thus the effect of previous fixation resembles a multiplicative 3- to 4-fold gain 

on the effect for first fixation. Breaking the effect down further by visual field shows it to be 

uniformly positive both for initial (Figure 6A) and return (Figure 6D) fixations and 

uniformly greater for return fixations (Figure 6G). As described next, hemifield contrasts in 

Fig. 6 also reveal noteworthy difference between LVF and RVF.

3.2.4 Target selectivity is greater in the LVF than in the RVF for previously 
unfixated faces but not previously fixated faces—For initial fixations on previously 

unfixated faces, both the LR- and π-contrasts reveal significantly greater selectivity for 

targets in the LVF compared to RVF (Figure 6B,C). On the other hand, no points in the 

hemifield contrasts reach significance for return fixations (FDR Q > .22) (Figure 6E,F). The 

hemifield contrasts for the interaction between previous fixation and task relevance are 

significant (Figure 6H,I), verifying that hemifield differences are less for return fixations 

than first fixations. The results of these tests therefore show a left visual hemifield advantage 

for previously unfixated target faces, which disappears for return fixations.

3.2.5 Memory affects saccadic guidance through suppression of return 
fixations to previously visited distractors—The interaction of previous fixation and 

target selectivity can also be combined with the previous fixation main effect to give the 

contrast that represents the previous fixation effect within each target category. Having 

previously fixated a face results in a negative log odds ratio of returning across all 

eccentricities in the main term (Figure 7A), implying a net suppression of return fixations 

across face types. As described in section 3.2.3, previous fixation also produces a large 

increase in the effect of task relevance, which offsets the suppression of return fixations to 

faces of the target orientation. While return fixations to distractors are suppressed, there is 

little net suppression for targets in the periphery (Figure 7B). For distractor faces, on the 

other hand, prior fixation results in large suppression of return fixations. For target faces, 

suppression is present perifoveally at eccentricities less than about 8 deg. The combination 

of these effects thus implies that memory exerts a role largely through the suppression of 

return fixations to task irrelevant locations, resembling inhibition of return (Klein & 

MacInnes, 1999; Rafal, Calabresi, Brennan, & Sciolto, 1989).
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3.2.6 Fixations to targets in the RVF are biased towards previously visited 
faces—Breaking down the effect in the previous section by visual field location reveals a 

hemifield-dependence for target objects (Figure 7C). Among fixations directed to target 

stimuli in the periphery of the LVF, there is no apparent bias towards or away from 

previously fixated faces. On the other hand, for fixations directed to targets in peripheral 

RVF, there is a bias towards previously fixated faces. Among distractors, a modestly greater 

suppression is present in the LVF for small eccentricities of five degrees and less (FDR Q 

< .01), while for all other eccentricities the effect does not reach FDR-corrected significance 

(Q>.1).

3.2.7 No evidence for saccadic bias related to facial expression—To examine 

whether any effects related to facial expression were discernible at the group level, two 

contrasts were computed across eccentricities: an arousal contrast, .5*(H+F)-N, and a 

valence contrast H-F, where H,F, and N represent the categorical variables for happy, fearful 

and neutral, respectively. None of the contrasts reached FDR-corrected significance at any 

eccentricity (Q > .05), and neither did the interactions with respect to orientation or previous 

fixation. Thus the data provide no evidence that saccade targeting was influenced by facial 

expression.

3.2.8 Saccades are biased towards upright faces—At the group level, there is a 

bias towards the upright faces among previously unfixated faces, reaching statistical 

significance (Q < .05) in the periphery, beyond 7 degrees (Figure 8). For return fixations, no 

significant effect (Q > .1) was observed at any eccentricity. However, because the 

interaction of previous fixation and orientation was also not significant at any eccentricity 

(Q > .1), it can’t be concluded that the effect differed for first and return fixations. As 

described in following sections, a stronger effect emerged when fixation order was taken 

into account.

3.2.9 Effects specific to early fixations—The first fixation in each trial happens under 

very different conditions from all the others, as it follows a change of the visual stimulus 

from the fixation cross to the search array with an accompanying widely distributed visual 

transient. In order to examine the dependence of specific effects on early fixations, the data 

from the first 3 fixations were fit separately to a model that included the main effects of 

visual field and the task relevance and orientation interactions.

The first fixation in each trial was strongly biased towards the LVF (Figure 9), consistent 

with a left-to right scanning strategy, as has been commonly observed in western subjects 

accustomed to left-to-right reading (Abed, 1991; Spalek & Hammad, 2005). With respect to 

stimulus selectivity, an initial bias towards upright faces in the LVF appears for the first 

fixation at 5 deg. eccentricity and diminishes over the second and third (Figure 10, top row). 

Meanwhile, the first fixation shows no sign of a task-relevance effect, which first emerges 

over the second and third (Figure 10, second row). The time courses of these effects are 

confirmed as statistically significant in the contrasts between third and first fixations, as are 

the differences between orientation and task-relevance effects (Figure 10, 4th column). The 

orientation, task relevance and eccentricity effects strongly imply a qualitative difference 

between the first saccade and subsequent saccades, a fact which is likely to be important in 
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interpreting studies that rely on the initial saccade within the trial, e.g. (Brown et al., 1997) 

and (Parkhurst, Law, & Niebur, 2002).

3.2.10 Effect of block—In fifteen participants, the likelihood ratio test revealed 

significant interactions with block, indicating that spatial interactions with the face regressor 

differed between experimental blocks. At the group level, none of the planned spatial 

contrasts approached significance (FDR Q > .1), nor did any univariate tests on parameters 

across individuals, yielding no evidence that effects were systematic across individuals.

4 Discussion

We have applied a generalized linear regression framework developed from a log-linear 

point process model towards revealing the influence of visuotopic location, task relevance, 

orientation, and facial expression on the probability of fixating face stimuli. Viewed as a 

conditional logit, our approach generalizes methods that employ logistic regression (Barr, 

2008). It improves upon these by allowing for both discrete and continuous variables to 

serve as both dependent and independent measures. Although the dependent measure is 

binned, bins can be arbitrarily small, as computational limits allow. As a result, the 

distribution modeled over the dependent measure may be decoupled from binning scheme, 

while model complexity can be optimally adjusted through semi-parametric model selection 

of basis functions. Although amenability to full hierarchical modeling is bound to be more 

limited than for simpler parametric GLMs, we have addressed subject-level random effects 

by way of the summary-statistic procedure (Penny et al., 2003) applied to spatial contrasts. 

In addition, many sources of conditional dependence, such as serial dependence of gaze 

position, can be directly addressed within the point-process framework by modeling 

conditional intensity.

Beyond demonstrating the application of the method, we obtained several intriguing results 

that deserve further consideration. Among these is evidence for pre-saccadic detection of 

face-like objects in the periphery over similar but inverted distractors (Figure 6), a question, 

which has generated conflicting answers in the past (Brown et al., 1997; Theeuwes & Van 

der Stigchel, 2006; Wolfe & Horowitz, 2004). The present work suggests a possible 

resolution, that targeting of saccades to faces based on configural information depends on a 

low threshold process, which still performs substantially better than chance, and which 

varies across the visual field. Moreover, we find clear evidence for at least two mechanisms 

that use configural information distinguishing upright from inverted faces: the guidance of 

saccades in accordance with momentary task-related goals, and a task-independent bias 

towards certain stimuli over others, in this case towards upright over inverted faces, which 

operate with distinct time courses with respect to the onset of the stimulus (Figure 10), 

showing also differing dependence on visual field. The view suggested by the present study 

is that attentional control towards faces encompasses multiple separable systems, which 

handle different aspects of orienting towards relevant information in the visual environment 

(Kovach, Sutterer, Rushia, Teriakidis, & Jenison, 2014; Morton & Johnson, 1991). Our 

results emphasize the non-uniformity of these effects over the visual field with respect to 

both laterality and eccentricity, as well in their evolution over time.
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These effects may be a source of significant unaccounted variability in studies that neglect 

to consider them, affecting both the power and interpretation of results (Simpson, 1951). We 

have demonstrated the viability of the GLM approach as a means of disentangling multiple 

factors influencing attention, allowing the actions of respective systems to be more clearly 

distinguished. One potential advantage of this approach that may benefit future applications 

is that it allows effects to be studied under more ecologically meaningful conditions than are 

often required to gain experimental control of the same variables.

4.1.1 Relevance to visual search and orienting to faces

A number of the findings deserve further comment. With respect to foveal eccentricity, we 

found that the visual field is segmented into distinct zones wherein goal-related and 

stimulus-related effects influence gaze orienting to different degrees. Contrary to what might 

be expected, accuracy of saccade targeting to task-relevant stimuli is not a simple function 

of stimulus discriminability; this is shown by the fact that the bias towards task-relevant 

stimuli was lowest near the fovea where discriminability ought to be greatest, increasing 

smoothly towards the periphery (Figure 5). At first glance, this result may seem paradoxical, 

but given that the costs of generating a saccade, in metabolic terms and in the degree and 

duration of the visual disruption, are bound to scale with amplitude (Stevenson, Volkmann, 

Kelly, & Riggs, 1986), this finding might plausibly be explained by a higher threshold of 

certainty about the target identity, which needs to be overcome to trigger larger amplitude 

saccades. It therefore points towards an evaluation of biological cost in target selection 

during visual search, which also accords with the large bias towards targets near the fovea 

(Figure 4).

A second observation is that the biases towards upright and task-relevant faces emerge with 

distinct time courses Figure 10. The first fixation in the trial is biased towards upright faces 

lying near the fovea, particularly in the LHF, regardless of task relevance. At the second 

fixation the effect of orientation spreads towards the periphery to 10 degrees, while effects 

of task relevance emerge closer to the fovea. By the 3rd fixation, task relevance becomes the 

dominant effect. These observations suggest early pre-attentive parafoveal selection of 

upright faces that spreads to the periphery concurrently with the emergence of a task-

relevance effect near the fovea, which also then spreads peripherally.

The current results also have bearing on the controversial topic of the role of memory in 

visual search (Horowitz & Wolfe, 2003; Horowitz & Wolfe, 1998; Klein, 2000). Previous 

fixations clearly affected the likelihood of return fixations, which took the form both of 

inhibition of return (IOR) to distractors and facilitation of return (FOR) to target stimuli. 

IOR to irrelevant distractors spanned the visual field while FOR to task-relevant stimuli 

depended on laterality. IOR to distractor faces was reflected in a large, uniform, 

approximately 3-fold negative gain observed in the interaction of task relevance and 

eccentricity (Figure 7D). For targets, IOR appeared perifoveally, within 10 degrees, but not 

beyond, with instead modest FOR in the RVF (Figure 7C). It is possible that parafoveal 

inhibition in this case reflects an unmodeled dependence of IOR on recency of fixation, 

which future work may consider in greater detail.
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Finally, among the most striking effects were those of laterality, revealed by interactions 

with azimuth (clock-face angle). First, for faces that had not previously been foveated, a 

clear left hemifield advantage was observed in target selection: saccades targeted to the left 

were more likely to be directed to task-relevant faces than those to the right. Such an LHF 

advantage for previously unfoveated targets agrees with a right-hemispheric advantage in 

face perception (Hay, 1981; Hillger & Koenig, 1991; Perrett et al., 1988) and with 

hemispheric specialization for guiding attention to previously unattended targets (Corbetta 

& Shulman, 2002; Mangun et al., 1994). Less expected is the reversal of hemifield 

advantage for return fixations, for which the model implies a rightward bias towards targets 

and, to a lesser extent, distractors. A handful of studies have found RHF perceptual 

advantages in the context of face naming (Marzi & Berlucchi, 1977) and in the “analytic” 

processing of isolated facial features (Patterson & Bradshaw, 1975; Sergent & Bindra, 

1981), yet none of these seem directly related to the present observation. A study of 

lateralized visual search for simple shapes in callosotomy patients found RHF advantage 

when the target belonged to a subset of items identified by a common feature (Kingstone, 

Enns, Mangun, & Gazzaniga, 1995). Such an effect could arise from left hemispheric 

specialization for tracking the properties of attended objects during visual search, as 

suggested in the present case, a possibility that deserves further investigation. Finally, 

studies have also shown culturally dependent patterns of laterality in scanning and inhibition 

of return (Abed, 1991; Spalek & Hammad, 2005), related to scan-direction during reading. 

Although the present result has no obvious explanation in simple biases of scan pattern, 

neither can a relationship be ruled out, warranting further study, as well.

4.1.2 An example of Simpson’s paradox

Linear regression affords a way to distinguish among otherwise confounded effects, one of 

the main reasons regression analyses have become a staple of behavioral research. Failing to 

account for important effects may have a number consequences, of which the most severe is 

“Simpson’s paradox,” the situation in which excluding a given independent measure from 

the analysis results in a drastic change of the apparent effect related to another measure, 

possibly leading the researcher to an entirely different and erroneous set of inferences 

(Blyth, 1972; Simpson, 1951). Simpson’s paradox comes about through correlations among 

the predictors, as a result of which variance properly explained by one loads onto the other if 

the first is not included in the model. The complexity of gaze behavior easily creates many 

such correlations, which are difficult to disentangle outside a regression framework. 

Moreover, in contrast to the normal linear model, such correlations for non-normal 

generalized linear models may depend on the parameters of the distribution, and therefore 

often cannot be predicted or controlled in advance through experimental design, which 

requires adaptive optimization (Chaloner & Verdinelli, 1995).

We highlight an example of Simpson’s paradox to illustrate some strengths of our approach. 

As described in section 3.2.5, having previously fixated a face leads to inhibition of return, a 

net decrease in the relative log-odds of a return fixation, all other factors equal (Figure 7). At 

the same time, we observe a strong bias towards objects near the fovea (Figure 4). In 

general, the large foveal bias dominates the previous fixation effect, meaning that a 

previously fixated face lying near the fovea will often remain a more probable target for the 
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subsequent fixation than an unfixated face lying in the periphery. As a consequence of the 

same foveal bias, previously fixated faces lie on average closer to the fovea than previously 

unfixated faces. As shown in Figure 11, if one neglects to model eccentricity effects, this 

correlation creates a positive bias in the previous fixation effect, which may result in an 

apparent reversal of the effect, particularly when trials contain only a small number of 

fixations. In other words, previously visited faces may appear more likely to be selected than 

previously unfixated faces due not to a bias towards previously fixated faces but to their 

proximity to the current point of foveation. This effect will tend to mask inhibition of return 

in any analysis that does not account for eccentricity. By correcting for foveal bias through 

the eccentricity main effect, IOR emerges as a large and unambiguous effect in the GLM 

even when only the first three fixations are included, the minimum needed to observe return 

fixations. Thus, an appropriate regression model recovers this effect when fixations per trial 

are sparse and the distribution of fixations within each trial highly non-ergodic due to 

sequential dependence. This example illustrates the usefulness of the current approach in 

both distinguishing otherwise confounded effects and making efficient use of the data.

4.1.3 Limitations

While comprehensive in principle, our approach, as with any regression analysis, requires 

some judicious reductions in complexity. For instance, we did not model all possible higher-

order interactions, nor the detailed interactions with time among all fixations. Portions of 

each of these additional components could, in principle, be added to the model, illustrating 

its flexibility—but at the cost of increased model complexity, which may lead to 

overparameterization and interpretive difficulties or run into computational constraints on 

model fitting. As with any regression analysis, it generally will be neither feasible nor 

desirable to model all higher-order interactions, and one will limit interactions to a given 

order or to those that are most relevant for a given question

Our approach also incorporates a number of more specific assumptions, which may be 

subject to doubt. The log-linear model we have adopted relates the linear component of the 

model to the logarithm of the mean of the response variable. Other link functions might 

more accurately reflect how regressors influence fixation probability. Likelihood-based 

inference assumes conditional independence among events, which is strictly true only if the 

explicit model of conditional dependence is correct and complete. There may be numerous 

unmodeled sources of dependence with the potential to affect the validity of any inferential 

procedure. Moreover, standard inferential tests apply asymptotic assumptions, and non-

Gaussian generalized linear models tend to be less robust to these assumptions than their 

Gaussian counterparts (Pawitan, 2000). For these reasons, such tests should be treated with 

due caution. Although, the ratio of data points to model degrees of freedom should ideally 

be large enough to meet the asymptotic assumptions of any employed hypothesis tests, well-

known approaches to regularization or Bayesian model estimation allow fitting over-

parameterized models, while robust alternatives to asymptotic hypothesis tests, such as 

permutation tests, remain valid when asymptotic assumptions are not met. Caveats of this 

sort apply to any regression analysis, but they tend to be amplified in the GLM setting, 

where robustness to deviations from modeling assumptions is less well understood. As these 

topics apply generally to regression analyses and are addressed at length in standard 
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textbooks (Agresti, 2014), we do not review them here in further detail. Finally, some of 

these limitations might be addressed, at the price of added complexity, by more flexible 

variants of the point-process framework, such as those that apply recent advances in 

modeling Gaussian latent variables (Barthelmé et al., 2013; Rue et al., 2009).
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We describe a way to distinguish influences on attention during visual search.

• We apply the method to visual search for faces.

• Orientation, task, memory and visual field influence the targeting of gaze.

• These influences depend differently on time course and visual field.
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Figure 1. 
Overview of the GazeReader toolbox, with a schematic diagram of processing steps 

implemented in the toolbox (right panel) and an illustration of the user interface (left panel).
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Figure 2. 
Structure of the task. Probe faces were either upright or inverted depending on experimental 

block.
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Figure 3. 
Example of the binning and scanpath for a single trial. Fixations over the course of the trial 

are binned within outlined simplexes. A sample scanpath is shown by the white line with 

relative fixation duration indicated by yellow circles. Colors indicate the value of the 

regressor, Target, for each bin: .5 is red, −.5 is blue, and 0 is unshaded. Numbers show 

screen coordinates in degrees of visual arc.
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Figure 4. 
Effects related to eccentricity and gaze bias towards faces over background. A. The main 

effect of eccentricity is shown as log relative risk of fixation averaged over all azimuthal 

angles, normalized to 10°. B. The interaction between eccentricity and face shows the log 

odds ratio of selecting a face bin over a non-face bin as a function of eccentricity. 

Derivatives of the respective curves reveal a monotonically decreasing trend in the main 

effect (C) but no monotonic trend in the face interaction (D). Group averages (thick black 

lines) and ± 2 SEM (thick dashed lines) are computed from model fits to individual subject 

data (gray and dotted lines). Units are in natural log base.
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Figure 5. 
Effect of task relevance with respect to eccentricity. A. Individual fits for experiment 1 

(gray) and experiment 2 (dotted line) and group averages ±2 SEM (black) for previously 

unfixated faces. B. Group average and ±2 SEM for previously unfixated faces (black) in 

comparison to fixated faces (gray). C. Individually fitted curves and group average ±2 SEM 

for the slope of the task-relevance effect (as shown in panel A) with respect to eccentricity. 

D. Ratio of the task-relevance effect for return and initial fixations in the group averages (as 

shown in B); lines represent quantiles of a bootstrapped distribution for the ratio computed 

on group means, using 10,000 boostrap samples.
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Figure 6. 
Target selectivity as a function of visual field for initial and return fixations. A. For initial 

fixations, target faces are more likely to be selected across the visual field. Both hemifield 

contrasts, comparing log odds ratios between points offset by 180° azimuth (B) and 

comparing points equidistant from either side of the vertical meridian (C) reveal greater 

target selectivity in the LVF. D. Return fixations similarly show uniformly positive target 

selectivity, however hemifield contrasts (E,F) reveal no evidence for hemifield differences 

(FDR Q > .22). G. As shown by the interaction term, selectivity is uniformly greater for 

return fixations compared to initial fixations across the visual field. Hemifield contrasts 

(H,I) reveal a relatively larger difference in the RVF implying that the difference of 

hemifield effects for target and distractor stimuli is significant. Color scales represent natural 

log units thresholded at FDR Q ≥ .1, and contours indicate FDR significance regions of .1, .

05, .01, and .001. In panels D, C, H, I, the color scale represents the difference of log odds 

ratios between corresponding points of the hemifields.
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Figure 7. 
Effect of previous fixation on the log odds ratio of refixation for target and distractor faces. 

A. Main effect of previous fixation with respect to eccentricity for individual subjects (gray 

and dotted lines) and the group average ± 2 SEM (thick black lines). B. Effect of previous 

fixation ± 2 SEM separated by category: target (gray) and distractor (black). C,D. Previous 

fixation effect within the target (C) and distractor (D) categories broken down by visual 

field and hemi-field contrasts below. The effect for target faces is characterized by RVF 

lateralized facilitation of return, whereas return to distractors is inhibited in both fields. 
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Color scale shows log odds ratio thresholded at FDR≥ .1 and contours show FDR 

significance thresholds of .1, .05, .01, and .001.
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Figure 8. 
The effect of face orientation for initial fixations on previously unfixated faces. Color scale 

indicates log odds ratio of fixating upright faces over inverted faces.
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Figure 9. 
A. Main effect of visual field location for the first fixation in the trial. A large LVF bias is 

apparent in the LR-contrast (B) and π-contrast (C).
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Figure 10. 
Orientation and task-relevance effects evolve over the first three fixations. At the first 

fixation, a prominent bias towards upright faces appears in the LVF at 5 deg. eccentricity, 

and diminishes over subsequent fixations (top row). The growing task-relevance effect 

emerges at the second fixation (second row). The far right column and bottom row represent 

contrasts of these effects between, respectively, the first and third fixation and orientation 

and task relevance terms. Plots are thresholded as previously. Effects are plotted relative to 

the point of fixation (center), and circles mark radial distance at 5 deg. intervals.
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Figure 11. 
Foveal bias can mask inhibition of return (IOR) when the effect of eccentricity is neglected. 

IOR manifests as diminished odds of fixating a previously visited face relative to unfixated 

faces at the same eccentricity. Markers show a comparison of the previous fixation effect as 

estimated by two models; the first (model A, shown on the y-axis), includes only the 

intercepts for previous fixation, target and face regressors, and the second (model B, shown 

on the x-axis) includes, in addition, the main effect of foveal eccentricity as a 3rd order 

polynomial. To ensure that effects in both models are related to transitions between faces 
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rather than refixations to the most recent target, fixations following saccades of less than 3 

deg. amplitude were excluded from model fitting. Model A’s failure to correct for foveal 

bias results in a positive displacement in the previous fixation effect, a consequence of the 

fact that previously fixated faces tend on average to be closer to the current point of fixation. 

This displacement decreases as the number of fixations per trial increases due to 

convergence towards ergodicity. With three fixations per trial, the minimum required to 

observe any return fixations, model B still reveals IOR, while model A shows an effect with 

reversed (positive) sign, an example of Simpson’s paradox.
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Table 1

List of regressors in the individually fitted models, with number of associated terms.

Regressor Label # Par Description Group

1 Rad3_nodc 3 Eccentricity polynomial (no DC term)

Visual Field
Main Effect

2 Ang1 2 Azimuth sinusoid

3 Rad3 * ang1 6 Eccentricity × Azimuth

4 Prev. Fix. * rad3_dc 4 Eccentricity × Previous Fixation

5 Prev. Fix. * ang1 2 Azimuth × Previous Fixation

6 Prev. Fix. * rad3_nodc * ang1 6 Eccentricity × Azimuth × Previous
Fixation

7 Target * rad3_dc 4 Target × Eccentricity

Target ×
Visual Field
interaction

8 Target * ang1 2 Target × Azimuth

9 Target * rad3_nodc * ang1 6 Target × Eccentricity × Azimuth

10 Target * rad3_dc * Prev. Fix. 4 Target × Eccentricity × Previous Fixation

11 Target * ang1 * Prev. Fix. 2 Target × Azimuth × Previous Fixation

12 Target * rad3_nodc * ang1 * Prev.
Fix. 6 Target × Eccentricity × Azimuth ×

Previous Fixation

13 Upright * rad3_dc 4 Orientaion × Eccentricity

Orientation ×
Visual Field
interaction

14 Upright * ang1 2 Orientaion × Azimuth

15 Upright * rad3_nodc * ang1 6 Orientaion × Eccentricity × Azimuth

16 Upright * rad3_dc * Prev. Fix. 4 Orientaion × Eccentricity × Previous
Fixation

17 Upright * ang1 * Prev. Fix. 2 Orientaion × Azimuth × Previous
Fixation

18 Upright * rad3_nodc * ang1 *
Prev. Fix. 6 Orientaion × Eccentricity × Azimuth ×

Previous Fixation

19 Face * rad3_dc 4 Face × Eccentricity

Face × Visual
Field
interaction

20 Face * ang1 2 Face × Azimuth

21 Face * rad3_nodc * ang1 6 Face × Eccentricity × Azimuth

22 Block * Face * rad3_dc 4 Block × Eccentricity

Block × Face
× Visual
Field
interaction

23 Block * Face * ang1 2 Block × Azimuth

24 Block * Face * rad3_nodc * angl 6 Block × Eccentricity × Azimuth

25 Block * Face * rad3_dc * Prev. 4 Block × Eccentricity × Previous Fixatio
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Regressor Label # Par Description Group

Fix.

26 Block * Face * ang1 * Prev. Fix. 2 Block × Azimuth × Previous Fixation

27 Block * Face * rad3_nodc * angl
* Prev. Fix. 6 Block × Eccentricity × Azimuth ×

Previous Fixation

28 Emotion * rad3_dc 8 Emotion × Eccentricity

Emotion ×
Visual Field
interaction

29 Emotion * ang1 4 Emotion × Azimuth

30 Emotion * rad3_nodc * ang1 12 Emotion × Eccentricity × Azimuth

31 Emotion * rad3_dc * Prev. Fix. 8 Emotion × Eccentricity × Previous
Fixation

32 Emotion * ang1 * Prev. Fix. 4 Emotion × Azimuth × Previous Fixation

33 Emotion * rad3_nodc * ang1 *
Prev. Fix. 12 Emotion × Eccentricity × Azimuth ×

Previous Fixation

34 Emotion * Upright * rad3_dc 8 Emotion × Orientation × Eccentricity

Emotion ×
Orientation ×
Visual Field
× Previous
Fixation
interaction

35 Emotion * Upright * ang1 4 Emotion × Orientation × Azimuth

36 Emotion * Upright * rad3_nodc *
ang1 12 Emotion × Orientation × Eccentricity ×

Azimuth

37 dist to −2 fix 2 Distance to the penultimate fixation

38 dist to −3 fix 2 Distance to the antepenultimate fixation

39 Face Grid Poly. 2 Distribution within face

Total 185
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