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Polarization Observations with the Cosmic Background Imager
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5Departamento de Ingenierı́a Eléctrica, Universidad de Concepción, Concepción, Chile.

6Departamento de Astronomı́a, Universidad de Chile, Santiago, Chile.
7Kavli Institute for Cosmological Physics, Department of Astronomy and Astrophysics,

University of Chicago, Chicago, IL 60637, USA.
8Department of Physics, 361 LeConte Hall, University of California, Berkeley, CA 94720–7300.

9Department of Physics, University of Alberta, Edmonton, Alberta, T6G2J1, Canada.
10NRAO, 520 Edgemont Road, Charlottesville, VA 22903, USA.

∗To whom correspondence should be addressed; E-mail: acr@astro.caltech.edu.

Science 306: 836-844. Published online October 7, 2004; 10.1126/science.1105598

Polarization observations of the cosmic microwave background with the Cosmic Back-
ground Imager from September 2002 to May 2004 provide a significant detection of
the E-mode polarization and reveal an angular power spectrum of polarized emission
showing peaks and valleys that are shifted in phase by half a cycle relative to those of
the total intensity spectrum. This key agreement between the phase of the observed
polarization spectrum and that predicted on the basis of thetotal intensity spectrum
provides support for the standard model of cosmology, in which dark matter and dark
energy are the dominant constituents, the geometry is closeto flat, and primordial
density fluctuations are predominantly adiabatic with a matter power spectrum com-
mensurate with inflationary cosmological models.

In recent years a wide variety of observations have providedsupport for a standard model of cosmology
and cosmic structure formation. In this model (1, 2, 3), the mass-energy density of the universe is domi-
nated by cold dark matter and dark energy, possibly in the form of Einstein’s cosmological constant, and
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conventional baryonic matter is only a minor component. As the universe expanded from its hot, dense
origins, all the structures seen in the universe today formed under the action of gravity on initial nearly
scale-invariant adiabatic gaussian density fluctuations.Observations of the anisotropy in the intensity of
the cosmic microwave background radiation (CMB) have provided much of the evidence for this model
and estimates of the values of the fundamental parameters, including the spatial curvature and the den-
sities of dark energy, cold dark matter, and ordinary matter. The two major ingredients of the standard
model, dark matter and dark energy, are far from understood,and their existence presents the most seri-
ous challenge to physics since the quantum and relativisticrevolutions of a century ago. It is therefore
essential to extract as much information as possible from the observations in order to test all aspects of
the standard model and to look for possible anomalies that might provide insights into the nature of these
two dark components of the cosmos.

In the 1980s successively more stringent limits were placedon the observed level of temperature
anisotropy in the CMB (4, 5), providing convincing evidence that the dominant matter constituent in
the universe is non-baryonic. These searches culminated inthe detection of anisotropies by the COBE
satellite (6), a confirmation of one of the major predictions of theoretical cosmology (7, 8, 9, 10, 11,
12). Rapid advances in experimental techniques have since delineated the prominent features in the
angular power spectrum (13,14,15,16,17,18). The spectrum of fluctuations on large angular scales [low
multipole numbers,l < 500 (19)] has been measured with high precision by theWilkinson Microwave
Anisotropy Probe(WMAP) (20), whereas precise and sensitive CMB observations from the ground and
from balloon-based platforms have extended the spectrum toangular scales as small as a few minutes of
arc (l ≈ 3500) (21,22,23,24,25).

The early universe was opaque to electromagnetic radiation, but as it expanded and cooled the hot
electron-baryon plasma combined into neutral hydrogen andhelium and the universe became transparent.
The microwave background photons that we detect today have passed freely through the universe since
they were last scattered by electrons in the ionized plasma.They thus provide a picture of the physical
conditions at the time of last scattering when the universe was about 400,000 years old. The angular
power spectrum of the CMB reveals the initial fluctuation spectrum modulated by the effects of acoustic
waves in the plasma (26), and it gives quantitative information about the physicalconditions in the
plasma.

The polarization of the CMB provides an independent way to test the standard model (27, 28, 29, 9,
30). Anisotropic Thomson scattering of photons at the time of last scattering gives rise to weak linear
polarization of the CMB. Measurement of the CMB polarization not only provides an additional way to
measure the parameters of the model, it can also verify the correctness of many of the basic assumptions
on which the model is founded. It is for this reason that many experiments are being designed to measure
the CMB polarization power spectra, despite the difficulty of the observations.

Angular power spectra give the varianceCl (usually expressed in terms of CMB temperature, and
with units ofµK2) as a function of multipole numberl (26). The intensity of polarized radiation can be
expressed by the four Stokes parametersI, Q, U , andV (31, 32). Total intensity is represented byI,
linear polarization byQ andU , and circular polarization byV . Thomson scattering does not generate
circular polarization, so we ignoreV . From the other parameters we can generate three power spectra
TT , EE, andBB, whereT is the total intensity (StokesI) andE andB are the curl-free and curl-like
components of the linear polarization field (StokesQ andU ) (33,34,35) and also three cross-spectraTE,

2



TB, andEB. Because of the parity properties of theT , E, andB signals, the only non-zero spectra
should beTT ,EE,BB, andTE. In the standard modelE-modes are generated from the primary scalar
density fluctuations, whereasB-modes are generated only by gravitational-wave tensor fluctuations and
secondary processes; the predictedBB power spectrum is undetectable with current sensitivity. Ahigh
level ofBB would require modifications to the standard model, or it could indicate that the observations
are contaminated by radiation from foreground sources, because these are epected to produce bothE and
B modes in equal measure. The polarization spectrum of the CMBis more difficult to study than the total
intensity spectrum because the fractional polarization ofthe CMB radiation is no more than10%. After
a number of experiments that placed upper limits on CMB polarization,EE power has been detected by
the DASI [Degree Angular Scale interferometer] experiment(with 6.3σ significance) (36,37,38) and the
CAPMAP [Cosmic Anisotropy Polarization Mapper] experiment (2.3σ) (39). TE cross-spectral power
has been detected by DASI and by WMAP (40).

TheTT spectrum arises from density and temperature fluctuations in the plasma, but polarized radi-
ation, which is caused by the local quadrupole at the time of last scattering, is sensitive to the velocity of
the plasma. Because velocity and density are out of phase in an acoustic wave, the maxima in theEE
spectrum are out of phase with those in theTT spectra. This phase shift between the spectra is a key fea-
ture of the standard model. It has been seen at large angular scales in theTE spectrum by WMAP (41),
but it has not yet been verified directly throughEE or at the small angular scales corresponding to
clusters of galaxies.

We report here observations made with the Cosmic BackgroundImager (CBI) that have sufficient
sensitivity and resolution to detect and measure the second, third, and fourth peaks in theEE spectrum
(42), determine theTT -to-EE phase shift, and thus further test the standard model.

The Cosmic Background Imager

The CBI (Fig. 1) has been making observations of the CMB from asite at 5000 m elevation on the
Chajnantor plateau in the Chilean Andes since late 1999. It is a 13-element radio interferometer receiving
radiation in 10 1-GHz frequency channels covering 26 to 36 GHz (43, 44). The individual antennas are
0.9 m in diameter, and the possible baselines range in lengthfrom 1.0 to 5.5 m. An interferometer
baseline of lengthd is sensitive to multipolesl around2πd/λ whereλ is the observing wavelength. The
CBI can thus measure the spectrum froml ∼ 300 to l ∼ 3500. The antennas are mounted on a platform
with azimuth and elevation axes that allow all the antennas to track a point on the sky. The platform can
also be rotated about the line of sight; this allows full sampling of all possible baseline orientations and
facilitates calibration of the instrumental polarizationeffects.

Each antenna is sensitive to a single sense of circular polarization, right (R) or left (L). Co-polar
baselines,RR andLL, are sensitive to StokesI ± V ≈ I (assuming circular polarization is negligible),
whereas cross-polar baselines,RL andLR, are sensitive to linear polarization, StokesQ ± iU (45). It
was thus straightforward to adapt the CBI to measure linear polarization by changing the sense of some
of the antennae to maximize the number of cross-polar baselines [Supporting Online Material (SOM)
Text].

The observations reported here were carried out between 22 September 2002 and 7 May 2004 using
7 antennae with polarizers set to left circular polarization (L), and 6 antennae with polarizers set to right
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circular polarization (R). To avoid contamination by the sun and moon, observations were made only at
night and at angles of greater than60◦ from the moon (supporting online text).

The size of the CBI antennae sets thel resolution of observations made in a single pointing to∆l ≈
300. To obtain the higher resolution inl necessary to resolve the expected structure in theEE spectrum,
we had to image a larger area by making a mosaic of overlappingpointings. From 2002 to 2004, we
observed a grid of pointings in four regions near the celestial equator that were separated by about
6 hours in right ascension and identified as the02h, 08h, 14h, and20h fields (Fig. 2). These fields
were centered on those we observed in 2000 and 2001 in order tomeasure theTT power spectrum
(46, 47, 48, 49, 50, 51, 24). The separation of the pointings was 45 arcmin, twice that of the earlier
observations, leading to modulation of the sensitivity across the field. For three of the fields we used
36 different pointing positions giving fields≈ 5◦ square, but for the 20h field we divided the available
integration time between six pointings in a row; these deeper observations should be more sensitive to
any potential systematics.

The largest source of diffuse foreground contamination over the 26- to 36-GHz band is synchrotron
radiation from the Galaxy. We chose the four CBI fields, whichwere constrained to be separated by
about 6 hours in right ascension, so as to minimize this contamination (Fig. 3). The CBI02h, 08h, and
20h fields, like the DASI polarization field, are in regions of lowsynchrotron emission (Fig. 3), but the
14h field is near the North Polar Spur, and the WMAP observations suggest that this has a higher level
of synchrotron foreground. The wide separation of the CBI fields provides some control on foreground
contamination, because foreground emission is unlikely tobe correlated over such large distances and if
it were a problem we would expect to see differences between the spectra of the different fields.

The largest systematic instrumental effect we have to eliminate is ground spillover. Although the
ground radiation is unpolarized it enters the CBI feeds after reflection off the inner surface of the shield
cans that reduce cross-talk between receivers (43) and therefore gives rise to a highly polarized contam-
inating signal. This signal is particularly strong on the shortest baselines at the lowest frequencies. To
eliminate the ground radiation, we observed sets of six fields separated by 3 min in right ascension at the
same azimuths and elevations, spending 3 min on each field, sothat if the ground emission is constant it
should make equal contributions to all six fields. When estimating the power spectrum we made use only
of the differences between the fields, ignoring the contribution that is common to all six. This strategy
requires that the ground be stable over the total scan duration of 18 minutes, but the penalty is only

√
6/5

in flux density sensitivity, equivalent to a factor of 1.2 in observing time.
The data were edited to remove data corrupted by instrumental or atmospheric problems. Amplitude

calibration was based on Jupiter (24) and polarization position-angle calibration was based onTau A, for
which we measured a polarization position angle (E vector) of−27.6◦ by comparison of CBI and Very
Large Array (52) observations of 3C 273 and 3C 279. Instrumental polarization leakage was measured
on Tau A and found to be negligible. The noise was estimated from the scatter of the measurements in
each 18-minute scan (SOM Text).

After the editing and calibration of the data we made images of the four fields and of all the calibration
sources in order to check for possible anomalies (48). As an example, theI image of the 14h field (Fig. 4),
made without any subtraction of ground spillover or foreground sources, shows significant power above
the level of the noise. This is due to both CMB emission and ground spillover. In theQ andU images
(Fig. 4) the signal from the CMB is too weak to identify, and these images are dominated by the regular
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pattern due to ground spillover. The level of the ground spillover in Q andU indicates that there is
some ground contamination in theI images as well, although it is somewhat weaker than the CMB
signal. When we estimate power spectra, the ground spillover is removed from the data by projecting
out (53, 21) the common mode in the six matched pointings, so the visibility data set from which the
images of Fig. 4 were made is the data which we use in the CMB spectrum determination. But in
order to check our procedures we have also made images from the differences of visibilities measured
in pointings separated by 9 min in right ascension; these images should be free of ground contamination
(Fig. 5). The total intensityI image shows power well in excess of the noise level, whereas theQ andU
images show only noise, the sensitivities per resolution element being too low to reveal the polarization
of the CMB. These images also show that leakage of total intensity into the polarization data is small
compared to the noise.

Power Spectrum Estimation

To estimate power spectra from the interferometer visibility measurements we used maximum-likelihood
procedures similar to those adopted for earlier experiments (54,37,55). To process the CBI data, we have
extended the gridding-based procedure used in our earlier work (49) to deal with mosaicked polarization
observations. A given correlator output sample, or visibility, can be one of the four polarization products
RR,RL,LR, orLL. These can be related to the fundamental CMB polarization modesT (temperature),
E, andB (polarization) (37). The covariances between the measurements depend on the six CMB
covariancesTT ,EE,BB, TE, TB, andEB. Because the CBI measures circular polarization products,
which are orientation independent (depending only on the handedness of the wave polarization), the CBI
(or any interferometer using circularly polarized receptors) is sensitive to theE andB modes directly.
This simplifies the power spectrum analysis (SOM text).

The principal foreground contamination in total intensityfor the CBI is that due to extragalactic
radio sources (47). For the total intensity spectrum, in which discrete sources have a substantial impact,
our approach is similar to that used in earlier CBI analyses (47, 48, 24, 49), with minor modifications.
Some 3727 NRAO Verly Large Array (VLA) Sky Survey (NVSS) (56) sources withS1.4GHz ≥ 3.4mJy

were projected out of the data. In previous work we used separate covariance matrices with different
projection factors for sources that were detected at 32 GHz on the OVRO 40-meter telescope and for
those that were not. Because in the end there was no gain from this approach, in the present analysis we
combined all sources into a single covariance matrix with a single projection factor. For this analysis we
assume a uniform variance of 1 Jy2 for each source, rather than adjusting the variance for eachsource.
We find that this yields matrices that are numerically more stable under the action of our procedure of
completely projecting the source modes out of the data. After a number of tests, we adopted a value of
qsrc = 100 for the pre-factor (equivalent to setting the variance on each source flux density to 100 Jy2).

However, because non-thermal extragalactic radio sourcesare weakly polarized (P ≤ 10%) and
furthermore only a small fraction of them haveP > 2%, only a few of the sources that we projected out
in the total intensity spectrum can affect the polarizationspectrum. When estimatingEE andBB, we
therefore projected out only a subset of the NVSS sources with S1.4 > 3.4 mJy. In total 556 of these
potentially troublesome point sources need to be considered. These include (i) NVSS sources with> 3σ

detections of polarized flux density at1.4GHz and (ii) sources detected by the 30-GHz OVRO survey of
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the 2000-to-2001 CBI total intensity fields (24). The projection of 556 sources out of the CBI data has
only a small effect on theEE power spectrum: in all bins the effect is≪ 1σ. In the first two bins, where
the polarization detection is strongest, the effect is lessthan3µK2 for each bin. Both with and without
projection, theBB power spectrum is consistent with zero, and theEE spectrum changes very little.
Therefore, the sources that we have identified as potentially troublesome (with the criteria described
above) have a negligible effect. If we have failed to identify some sources (highly polarized sources
just below the NVSS detection limit, for instance), they should add a characteristicl(l + 1)Cl ∝ l2

contribution to bothEE andBB power spectra, and show up more strongly in the lower frequency
channels. No such signature is evident in the CBI data.

We have also studied the effects of point sources using MonteCarlo simulations. To do so we
used the NVSS source statistics to characterize the fractional linear polarization of sources, finding a
mean1.4GHz polarization of2.7%. Most sources had polarizations less than this;4% had polarizations
greater than10%, and1% had polarizations greater than15%. Because the fractional polarization of
CMB anisotropies is∼ 10%, the discrete source foreground will be relatively weaker in polarization
than in total intensity. In theEE power spectrum analysis of the simulated data, we find that the first
two bins change by less than4µK2 when the source projection is turned on, similar to what is seen in
the real CBI data.

The common-mode signal from the ground was removed by constructing a scan covariance matrix
assuming a unity correlation between identical visibilities coming from the same scan (e.g., for the six
visibilities taken in the consecutive 3 minute integrations that constitute a scan), then passed through the
gridding operation. The modes defined by this scan covariance matrix were projected out of the data (53)
by applying a large prefactor to this matrix in the likelihood maximization procedure (essentially setting
the variance of these modes to be infinite), in the same manneras for the point sources. We used simulated
data to determine the best value of the prefactor, and found that too small a value did not completely
eliminate the ground spillover, whereas too large a value caused numerical problems. Because there are
a large number of sources in the list used for theTT projection, there is an interaction between the source
and scan projection matricesqsrc Csrc andqscan Cscan when the pre-factorsqsrc andqscan become large.
We explored a range of values for these, and found that for thevalue ofqsrc = 100 a valueqscan = 100

was in the center of the range for which theTT band powers were stable (there was no significant change
in TT amplitude fromqscan = 10 to qscan = 100). Similar tests on the real data also showed that the
ground signal was eliminated whereas the band powers remained stable.

Polarization Power Spectra

The CBI measurements for all 10 frequency channels and all four fields observed from 2002 to 2004
have been combined in the maximum likelihood procedure to estimate theTT ,EE, TE andBB power
spectra (Table 1 and Fig. 6). The scan means (for ground contamination) and point sources have been
projected out as described in the previous section. We divided thel range into seven bands, with most of
the bins having width∆l = 150. Adjacent bands are anticorrelated at the 10 to 20% level (fig. 9). Finer
binning is possible, but this gives larger band-to-band correlations and is less satisfactory for presenta-
tion. For the quantitative analysis below, we have used binsof width ∆l ≈ 75 and taken into account
the band-to-band correlations. The results from both binnings are consistent. We have also calculated
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window functions that can be used to calculate the expected band powers in our bands from a theoretical
model spectrum (fig. 10).

We compare our results with a fiducial model spectrum (Fig. 6), for which we have chosen the
theoretical model (57) with a power law for the primordial spectral index which best fits the first-year
WMAP, 2000 CBI, and ACBAR [Arcminute Cosmology Bolometer Array Receiver] CMB total-intensity
data [the “WMAPext” data set (1)]. Our results are consistent with the predictions of this model. We
have checked this by calculatingχ2 for a comparison of our measured band powers and the band powers
predicted by the model, with the CBI window functions and thefull band-to-band covariance (estimated
from the Fisher matrix). The values ofχ2 [for 7 degrees of freedom (df)], with the probabilities of
obtaining larger values under the null hypothesis in parentheses, are: forTT , 7.98 (probability = 0.33);
for EE, 3.77 (probability = 0.80); forBB, 4.33 (probability = 0.74); and forTE, 5.80 (probability =
0.56).

TheTT spectrum shows the same features that we saw in the CBI 2000-to-2001 observations (24),
the most prominent being the drop in power between the third and fourth acoustic peaks. TheTT
spectrum from 2002–2004 is slightly higher than the fiducialmodel, but the difference is not significant.
Both theEE andTE spectra are consistent with the predictions of the fiducial model. TheEE spectrum
shows detection of power atl < 800, whereas theTE spectrum is not sufficiently sensitive to show a
positive detection. No power is detected in theBB spectrum, as expected on the standard model. The
95% confidence upper limit onBB power (assuming flat band power in a singlel bin) is 7.1µK2

with source projection or 2.7µK2 without source projection. Because ground radiation and foreground
sources are expected to contribute equally toEE andBB, this low limit on a possibleBB component
at multipolesl < 1000 demonstrates that there is no significant ground or point source contamination at
these multipoles and gives confidence in the reliability of theEE spectrum.

At present, the addition of polarization data to CMBTT data has little effect on the values and
precision of cosmological parameter estimates, because ofthe weakness of the polarized signal relative
to the total intensity signal. Rather, the strength of the measurement ofEE lies in its ability to test a
different aspect of the theory. It is nonetheless interesting to explore the effect of the new polarization
results on cosmological parameter estimation and to check consistency. As sensitivities improve, future
polarization data will have a bigger impact on parameters (58). In this initial investigation including CMB
EE polarization data, we explore a limited set of cosmologicalparameters that has been successful in
describing all aspects of CMB data. The model has its basis inthe simplest inflationary paradigm,
characterized by the following basic set of six parameters:ωb ≡ Ωbh

2, the physical density of baryons;
ωc ≡ Ωch

2, the physical density of cold dark matter;θ ≡ 100l−1
s , parameterizing the angular scalel−1

s

associated with sound crossing at decoupling, which definesthe overall position of the peak–dip pattern;
ns, the spectral index of the scalar perturbations;lnAs, the logarithm of the overall scalar perturbation
amplitude; andτc, the Thomson scattering depth to decoupling. We do not consider any gravitational-
wave induced components because they are not expected to be detectable by the CBI.

The strongest prior we impose is that we only consider flat models (Ωtot = 1), as expected in most
inflation models. We note that the parameters we derive can change significantly when this prior is
relaxed (59,24). We also impose a weak-h prior comprising limitations on the parameterh (0.45 < h <

0.90, whereh ≡ H0/(100 km s−1 Mpc−1) andH0 is the Hubble constant) and on the age of the universe
(t0 > 10Gyr). Within the context of flat models the weak-h prior influences the results very little. We

7



do note, however that extreme models with high Thomson depthare excluded by this prior.
In our analysis we consider three combinations of data: (i) WMAP1 onlyTT andTE results from the

first year WMAP data (40), using the likelihood procedure described in (60); (ii) CBI pol plus WMAP1
obtained by adding 14 band powers in each ofTT , TE, andEE obtained from an analysis of the 2002-
to-2004 CBI data with a bin width∆l ≈ 75; and (iii) CBI pol plus CBIext plus WMAP1, consisting of
all of the CBI polarization data and the addition of high-l bands from our combined mosaic and deep
fieldTT results (24), covering the rangel = 600 to l = 1960 [bands 5 to 14 of table 1 of (24)]. This third
combination extends the data well into the region known as the damping tail, where power is suppressed
by photon diffusion and the finite thickness of the last scattering surface.

We use a modified version of the Markov chain Monte Carlo (MCMC) package COSMOMC (61,62)
to evaluate probability distributions of the various parameters with respect to the CMB data. We have
extended our earlier procedures (24,59) to include polarization spectra and the cross correlationbetween
TT andEE spectra (63). In addition to estimating the six cosmological parameters defined above, we
determined the distributions of six other derived parameters from the same Markov chains:ΩΛ the energy
density in a cosmological constant in units of critical density, the total age of the universe in Gyear; the
total energy density of matter,Ωm; the present-day RMS mass fluctuation on8h−1 Mpc scales,σ8;
the redshift of reionization,zre (related toτc andΩb); and lastly the Hubble parameterH0 in units of
km s−1 Mpc−1. ΩΛ is a derived quantity determined fromθ. The amplitude parameterσ8 is related to
lnAs and has more relevance for comparison with large scale structure data. As expected the inclusion
of our polarization results does not have a large impact for this limited parameter set (Table 2). However
when including the CBIextTT band powers we obtain significant reduction in the uncertainties, in
agreement with (24).

Significance of detection. Our standard CMB power spectrum analysis (64) involves the use of a
fiducialCl shape against which the band powers are evaluated. The gridding procedure breaks the power
spectrum into top-hat bands inl, and thus the (multiplicative) band powersqB effectively break the
spectrum into piecewise continous bands that follow the shapeCBl = qB Cl for l within each bandB.
The most conservative choice for a shape is the flat spectrumCl = 2π/l2, but one can use a matched
shape derived from an actual CMB power spectrum and thus optimally check for deviations from that
model. This also allows the use of widerl bands. If we use the fiducial model fitted to the WMAPext
dataset (Fig. 6) as our shape, and only project point sourcesfrom theTT sector, we find for the CBI data
in a singlel band a maximum likelihood value band power forEE of qB = 1.22 ± 0.21 (68%) with
respect to the WMAP-normalized spectrum, with a value for the log-likelihood with respect to zero of
39.8 (equivalent to an8.9σ detection, whereσ =

√
2∆ logL). This can be compared with the detection

of 6.3σ reported for the DASI 3-year results (38). Although there is no indication that the polarization
of the foreground point sources is affecting our data, we canalso adopt a conservative approach and
project out the subset of the brightest sources, as described above. In that case, the best-fit band power
qB is 1.18 ± 0.24 (68%) with log-likelihood with respect to zero of 24.3 (equivalent to7.0σ). This
reduction in significance is due to the increase in uncertainties from the lost modes in this projection,
i.e., the drop in band powers is negligible, which again suggests that point sources are not a problem in
theEE spectrum. Although we find no evidence for point sources affecting ourEE spectrum, we adopt
this more conservative value as our estimate of the significance of our detection.
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Phase of the acoustic oscillations. The measurement of the phase of the polarizationEE spectrum
can, in principle, provide one of the fundamental pillars ofthe standard model because it tests a unique
aspect of the acoustic waves in the photon-baryon fluid. The peak positions inTT are proportional to
πlsj, whereas forEE polarization they are proportional toπls(j + 1/2), with some corrections from
projection effects. To test this, we devised phenomenological models in which the phase-relationship be-
tweenTT andEE is changed. For these models, we first approximated the fiducial modelEE spectrum
as a function:

l(l + 1)CEEl = f(l) + g(l) sin(kl + φ) (1)

wheref andg are smooth, non-oscillating functions (we used rational functions with quadratic numerator
and denominator) andk is a constant. We then variedφ to get a range of phase-shifted spectra (Fig. 7A).
To determine the goodness-of-fit of the phase-shifted models, we calculatedχ2 as a function of the phase
φ and a scaling amplitudeA, taking into account bin-to-bin correlations using the inverse Fisher matrix
(Fig. 7B). For this exercise we used the∆l ≈ 75 binning of the CBI power spectrum. The best-fit phase
is 24◦ ± 33◦ with amplitude 0.94 relative to the fiducial model. The fiducial model is well within the 1σ
(68%) confidence region (the difference inχ2 between the fiducial model and the best-fit model is 0.64
for 2 df). The actual data and the best fit model are shown in Fig. 7C. This test shows that our data are
entirely consistent with the model predictions, and that wecan rule out (at≈ 3σ) a pathological model
in which theEE oscillations are in phase withTT rather than out of phase.

An alternate, and more physically motivated, way to look at the phase of the peaks inEE is to use
fits to the fiducial model spectrum of the form

l(l + 1)CEEl = (As/As0) (f(lθ/θ0) + g(lθ/θ0) sin(klθ/θ0)) . (2)

This parameterizes the models in terms of two of the cosmological parameters discussed earlier,As
andθ. The values of these parameters in the fiducial model areAs0 andθ0 (θ0 = 1.046). Changing
θ scales the whole function, including the envelope, rather than just the phase. We now examine the
variation ofχ2 as these two parameters are changed, the other four cosmological parameters being fixed
at their fiducial values. There is a minimum ofχ2 near the fiducial model, withθ/θ0 = 1.02 ± 0.04 and
As/As0 = 0.93. (A second minimum in which the third polarization peak is shifted and scaled to fit the
second fiducial peak is incompatible with theTT data.) This test also shows that theEE data strongly
prefer the fiducial model, and demonstrates that theEE data alone have the power to place constraints
on cosmological parameters.

Tests for systematics. We have carried out a number of data quality tests to look for possible systematic
contamination by foreground emission, residual ground emission, or other instrumental effects. We have
found no evidence of significant residual instrumental or foreground effects after correcting for the point
sources and projecting out the common ground spillover mode.

Foreground emission is likely to have a different spectrum from the CMB, and ground contamination
is frequency-dependent because it depends strongly on the baseline length in wavelengths, and thus
shows up most on the shortest baselines at the lowest frequency. To look for these effects we estimated
power spectra separately from the data taken in the lower andupper halves of our frequency band, i.e.,
26 to 31 and 31 to 36 GHz (fig. 11). We have compared the two spectra by usingχ2 (including the
bin-to-bin correlations). ForEE andBB the measurements are dominated by thermal noise (rather than
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sample variance) so theχ2 results are valid. The results are:χ2 = 8.43 (7 df) for EE, andχ2 = 8.30

(7 df) for BB. The probability of obtaining a largerχ2 by chance is 0.30 forEE and 0.31 forBB.
The power spectra thus show no indication of strong contamination by foreground emission or residual
ground emission. Note that forTT andTE the maximum likelihood error estimates include the effectsof
sample variance, and, because sample variance is correlated between the two frequency bands, a simple
χ2 test is not valid.

In addition to dividing the data into two frequency bands, wecarried out jackknife tests in which we
compared the following subsets of the data. (i) We compared all subsets of three of the four fields. This
would indicate whether any of the fields is anomalous and is a good test for foreground contamination.
No significant differences were found, and in particular the14h field (which lies in the North Polar
Spur region) was not anomalous. (ii) We compared all subsetsof 12 of the 13 antennae. This would
show up problems associated with particular antennae or receivers. (iii) We compared theTT spectra
derived from theR andL antennae separately, to check for calibration discrepancies. (iv) We compared
spectra estimated from the first and second halves of the dataset, to check for effects based on season,
distance from the primary calibrator, and other time-dependent parameters. None of these tests showed
any significant differences between the data subsets.

The DASI results increase our confidence that diffuse synchrotron emission is not a significant con-
taminant in ourEE spectrum. The fields that we have observed appear to be comparable to the DASI
fields (Fig. 3), and the DASI 95% confidence upper bound of0.91µK2 on EE contamination should
also apply to the CBI observations, which were made at higherl where the contribution of synchrotron
emission is expected to be lower.

Conclusions

OurEE results are shown in comparison with the recent results fromDASI and CAPMAP in Fig. 8. We
have detected the polarized CMB (EE) emission with high confidence (8.9σ when foreground sources
are ignored and7.0σ when potentially contaminating sources are projected out), and we have also mea-
sured the phase of theEE spectrum and shown that it is consistent with a phase-shift of π relative to the
TT , as expected if acoustic waves are the origin of the featuresin theTT andEE spectra on the scales
of clusters of galaxies. The results from the CBI and DASI experiments are a powerful confirmation of
the predictions of the standard model. The CBI continues to observe the polarized CMB emission, and
we expect by the end of 2005 to have more than doubled the data set, leading to a decrease of over a
factor two in the uncertainties ofCl.
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Supporting Material

Modifications for polarization measurement The polarization observations reported in this paper
were made between September 2002 and May 2004. Earlier testsof the technique were made using
a single cross-polarized antenna (65, 66). The CBI was upgraded in 2002 to enhance its polarization
capability. This involved replacement of the existing polarizers with new broadband achromatic po-
larizers, replacement of the high-electron-mobility-transistor (HEMT) amplifiers with new lower-noise
amplifiers, and reconfiguration of the antennae into a more compact array.

The circular polarization mode (R or L) received by each antenna can be selected by changing the
orientation of a quarter-wave plate in front of the low noiseamplifier. The original CBI quarter-wave
plates were replaced by achromatic DASI-style polarizers (67, 36) that could be rotated under computer
control so that the polarization in any antenna can be changed in < 5 s. An important design goal for
polarization observations is to limit the polarization impurity: if an antenna does not receive pureR or
L polarization the linear polarization measurements will becorrupted by an admixture of total intensity
I. The fraction ofI that appears in theRL or LR visibility measurement is called the leakage. This is
a complex number (amplitude and phase) that must be measuredfor each antenna. The new polarizers
reduced the leakages from∼ 5–15% to ∼ 1–3%. The leakages are stable, and typically exhibit changes
of < 0.2% over periods of a few months.

In the first two years of operation of the CBI (2000 and 2001) weused sparse configurations of
the antennae in order to cover a wide range of multipoles (300 < l < 3500). For the polarization
observations we decided to concentrate on the multipole range300–2000 in order to provide maximum
sensitivity in the region where the CMB polarizedEE signal is expected to be the greatest. For this
reason we adopted the close-packed configuration shown in Fig. 1 This configuration provides the highest
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concentration of short baselines possible with the CBI and provides an excellent match to thel range of
the expected maximumEE signal.

Data calibration and editing. During the observations and initial data analysis, we inspected each
night’s observations to look for instrumental and other problems. For the final analysis, we used auto-
matic procedures to remove data with known problems (warm orunstable receivers, for example) and
with higher than normal noise levels. This last check eliminated≈ 1% of the data that had been corrupted
by clouds or instrumental problems.

Amplitude calibration. For the CBI, the amplitude and phase calibration of the co-polar visibility
data (RR orLL) was carried out using the same procedures as for the 2000–2001 observations (47). The
refinement of the CBI flux density scale using the WMAP observations of Jupiter has been described
in (24). The uncertainty in the revised scale is 1.3% in flux density(2.6% in the power spectrum,Cl).
On most nights one or more of the primary calibration sourcesTau A (the Crab Nebula), Jupiter, Saturn,
and 3C 274 was observed. All of these gave consistent results, except for 3C 274: we found that the
flux density of 3C 274 declined by7% over the period of these observations. The model for 3C 274 was
adjusted to take this secular variation into account beforethe final calibration of the data.

The majority of CBI data are calibrated using measurements of Tau A and Jupiter, as in (24). When
none of the primary calibration sources was available we used secondary calibration sources, such as the
variable quasar J1924−293, for which we obtained flux densities by interpolating from adjacent days
calibrated against the primary calibrators.

Polarization calibration. The calibration measurements on the co-polar baselines yield complex gain
factors for each antenna. These gain factors are sufficient to calibrate the cross-polarized baselines (LR

andRL) except for an unknown phase difference between theR antennae and theL antennae, equivalent
to an unknown rotation of the plane of linear polarization (36, 45). We determine the unknownL − R

phase difference by observations of a strong, polarized calibration source, Tau A, for which we assume
the polarization position angle (E-vector) is−27.6◦. This value was derived (65, 66) by comparison of
CBI and Very Large Array (52) observations of 3C 273 and 3C 279, both of which vary but are observed
regularly with the CBI at 26–36 GHz and the VLA at frequenciesstraddling the CBI band (22 GHz and
44 GHz) (68). It is close to the angle measured with other instruments atlower frequencies. TheL−R

phase difference is very stable unless receivers or cables are modified, so on nights when no measurement
of Tau A was available we used the average of all the Tau A measurements.

Leakage measurement We measured the instrumental polarization leakage factorson each night when
either Tau A or Jupiter could be observed. These observations were made at a number of different
parallactic angles, by rotating the CBI platform, to enablethe source and instrumental polarization to be
separated. The instrumental leakage was found to be in the range 1%–3% on most baseline–channels,
with a few baseline–channels showing leakages as high as 5%.We determined that leakage did not vary
significantly across the field of view by making observationsof Tau A at a number of offset positions.
This low level of instrumental polarization and our strategy of rotating the deck so that many antenna
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pairs contribute to the same(u, v) point ensures that any instrumental polarization in our final data set is
negligible (< 1%). We have therefore ignored the instrumental polarizationin the present analysis.

Noise calculation. In order to ensure that the ground contamination was identical in each of a set
of six pointings, we deleted all visibility samples that didnot have counterparts observed at the same
hour angle (within the tolerance of the integration time, 4.2 s) in all of the six fields. After selecting
matched data points in this way, we calculated the noise fromthe scatter of the visibility measurements.
As an error in the noise estimate will bias the final power spectrum estimate, it is important to obtain
an accurate estimate of the noise in the data. In one scan, comprising observations of 6 fields, we
recordm = 1, . . . ,M (M varies, but is usually about 37) data points (complex visibilities) for each of
n = 1, . . . , N fields (N = 6) . The observed visibilityVnm is related to the true visibilityXn and the
ground contributiongm by

Vnm = Xn + gm + rnm, (3)

wherernm is the noise in the measurement. Note thatXn is the same for allm (we do not change the
baseline length or orientation relative to the sky during the scan), andgm is the same for alln (the ground
contribution is assumed to be the same in each field, i.e., constant for the duration of the scan at a given
elevation and azimuth). An estimator for the noise varianceis

1

(M − 1)(N − 1)

N∑

n=1

M∑

m=1

Ψ2
nm. (4)

whereΨnm is derived fromVnm by subtracting the mean of theN measurements from allN obtained
at each timem, and the mean of theM measurements from allM obtained on each fieldn. Our best
estimator is the average of the two estimates obtained by treating the real and imaginary parts of the
visibility separately. We obtained a single noise estimatefor each baseline–channel that applies to a
whole 18 min scan. The variance of the estimator is

Var(σ̂2) =
σ2

(M − 1)(N − 1)
. (5)

The uncertainty in the noise estimate in each scan is small enough that noise bias (47) is not a concern
in the present observations. Scans with rms noise more than three times that expected for normal system
temperatures were deleted; in most cases the high noise was due to clouds.

Power spectrum estimation The principles of estimating polarization power spectra from interfer-
ometer visibility measurements are described by (37). To process the CBI data, we have extended the
gridding-based procedure used in our earlier work (49) to deal with mosaicked polarization observations.
A given correlator output sample, or visibility, can be one of the four polarization productsRR,RL,LR,
or LL. These can be related to the fundamental CMB polarization modesT (temperature),E, andB
(polarization) through the expressions given in Equations3 and 4 of (37). The resulting power spectra
are decomposed into the six possible covariancesTT , EE, BB, TE, TB, andEB. Note that because
the CBI measures circular polarization products, which areorientation independent (depending only
on the handedness of the wave polarization), the CBI (or any interferometer using circularly polarized
receptors) is sensitive to theE andB modes directly. This simplifies the power spectrum analysis.
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The co-polarRR andLL visibilities are gridded together into an effectiveRR estimator (〈LL〉
and 〈RR〉 are identical in the absence of circular polarization) as in(49), while the cross-polarRL
andLR visibilities are gridded together, after conjugating and reflecting theLR visibilities in theuv-
plane, into cross-polar estimators∆RL using the same gridding kernel as the co-polar data. The covari-
ance matrix elements are computed for the cross-polar estimators using a modified operatorPRL(v) =

P(v) ei 2 (χ−ψ) whereP is defined in Equation 12 of (49), ψ is the on-sky parallactic angle of the CBI
receivers (Equation 2 of (36)) andχ is the wave-vector angle corresponding to theuv pointv (Equation 3
of (37)). The band powers derived from the likelihood analysis arethen{qSB , B = 1, . . . , NS

B}; the dif-
ferent covariance productsS = TT,EE,BB, TE, TB,EB can have different numbers and locations
of bands. Point sources are handled in the same manner as in (49), with the option of projecting out the
sources from theRL andLR parts of the covariance. The new scanning procedure required the addition
of a scan projection matrixCscan constructed by building a “noiselike” matrix as in Equations 32 and 35
of (49), with the covariance elementsEkk′ = 1 if visibilities k andk′ are from the same scan (otherwise
zero); this is then projected out with a pre-factorqscan in the same way as the point sources are. Details
of this modified procedure will be given in (64).

The maximum likelihood estimation of the spectrum from the gridded estimators is done on the CITA
McKenzie cluster (69) which consists of 256 nodes with two 2.4 GHz Intel Xeon processors and 1 GB
of memory per node. The matrix operations are done using the SCALAPACK library (70). From an
initial guess of the spectrum, we iterate to the maximum likelihood solution using the Newton-Raphson
method. One modification to the procedure used in (53) provides a significant improvement. Rather than
use the standard approximation to the curvature, with whichthe number of expensive matrix operations
is proportional to the number of bins in the spectrum, we use an approximate curvature that requires
only a single matrix inversion (71). Using 32 nodes per mosaic, with104 estimators per mosaic, this
decreases the time per iteration from about an hour to one minute, without changing the solutions. The
total time for the spectrum to converge, once the estimatorsand correlations are read into memory, is
about 10 minutes, and is virtually independent of the numberof bins in the spectrum.
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Table 1: CBI Band Powers inµK2. The broad first band is not sensitive over the 0–600 range, but with
finer binning we have a detection in a band near 400.

TT EE BB TE
l-range Power Error Power Error Power Error Power Error

0 600 2882.0 276.8 13.7 6.5 -0.7 5.5 8.7 32.1
600 750 1865.8 275.8 38.9 11.6 7.2 8.1 -15.6 41.0
750 900 2413.4 342.7 2.4 17.9 -1.1 16.7 17.9 57.6
900 1050 1098.0 306.5 54.8 33.5 14.6 30.8 -96.7 76.6

1050 1200 1411.4 303.6 -22.1 26.8 20.8 30.7 -57.1 67.1
1200 1500 988.9 189.1 21.6 25.9 23.6 26.9 -49.6 54.2
1500 5000 191.4 164.2 -36.8 55.7 -55.5 51.8 29.4 91.4

Table 2: Cosmological constraints from the WMAP1 only, CBI pol plus WMAP1, and CBI pol plus
CBIext plus WMAP1 data compilations for an assumedΩtot = 1.0. Relaxation of this constraint opens
up the tight uncertainties onH0 andΩm. We included weak external priors on the Hubble parameter
(45 km s−1 Mpc−1 < H0 < 90 km s−1 Mpc−1) and the age of the universe (t0 > 10Gyear). The
flatness prior has the strongest effect on the parameters by breaking the geometrical degeneracy and
allowing us to derive tight constraints onH0 andΩm. The top six parameters are those used in the
Markov chain evaluations and the distributions of the bottom six are derived from the same chains. The
uncertainties are given as 68% confidence intervals.

WMAP1 CBIpol+WMAP1 CBIpol+CBIext+WMAP1

Ωbh
2 0.0243+0.0019

−0.0017 0.0240+0.0018
−0.0016 0.0233+0.0013

−0.0013

Ωch
2 0.119+0.016

−0.016 0.113+0.014
−0.015 0.109+0.012

−0.013

θ 1.049+0.007
−0.008 1.048+0.006

−0.006 1.044+0.005
−0.005

τc 0.188+0.037
−0.065 0.190+0.044

−0.067 0.164+0.027
−0.053

ns 1.01+0.06
−0.05 1.00+0.06

−0.05 0.98+0.04
−0.04

log[1010AS ] 3.3+0.2
−0.2 3.3+0.2

−0.2 3.2+0.2
−0.2

ΩΛ 0.72+0.08
−0.07 0.74+0.07

−0.07 0.75+0.06
−0.06

Age (Gyr) 13.3+0.4
−0.4 13.4+0.3

−0.4 13.5+0.3
−0.3

Ωm 0.28+0.07
−0.08 0.26+0.07

−0.07 0.25+0.06
−0.06

σ8 0.94+0.13
−0.13 0.91+0.10

−0.10 0.85+0.08
−0.08

zre 17.5+6.7
−6.2 17.5+6.7

−6.2 16.0+6.0
−5.5

H0 73.3+7.1
−6.4 74.5+7.7

−6.5 74.2+6.1
−5.5
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Figure 1: The Cosmic Background Imager. For the polarization observations, the 13 90-cm Cassegrain
antennae were arranged in this hexagonal close-packed configuration on the rotating, alt-az mounted plat-
form, with six adjusted to be sensitive to right-hand circularly polarized radiation and seven to left-hand
circularly polarized radiation. By correlating the signals from the antennae in pairs, 78 interferometer
baselines are obtained ranging in length from 1.0 to 3.5 m.
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Figure 2: The sky coverage of the four fields imaged by the CBI in polarization. The grey-scale shows
the noise-level achieved in total intensity,I, in the observations reported here. Three of the fields have
been mapped with 36 separate pointings, whereas the fourth,20h, has been mapped more deeply but
in only six pointings. The modulation of the sensitivity by the CBI primary beam is apparent. The ap-
proximate centers of the four fields are:02h49m30s, −02◦52′30′′; 08h47m30s, −02◦47′30′′; 14h45m30s,
−04◦07′30′′; 20h49m30s, −03◦30′00′′ (J2000 right ascension and declination).
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Figure 3: Location of CBI and DASI fields in relation to the Galaxy. The sky image is the Ka-band
synchrotron map derived fromWMAPfirst year data (72). Galactic longitude increases to the left, with
zero in the center of the image.
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Figure 4: Images of the 14h field mapped by the CBI in Stokes parametersI,Q, andU (StokesV , circular
polarization, is not measured and is assumed to be zero). Color is used to represent intensity, with the
same scale in each Stokes parameter. In these images the contaminating effects of ground radiation
and foreground emission have not been removed. The total intensity, I, image (left) is dominated by
CMB emission (modulated by the instrumental point-spread function); some foreground point sources
are visible (red spots). The linear polarization,Q andU , images (center and right) are dominated by
instrumental noise and ground pickup. Ground pickup, whichwith our observing strategy should be the
same in each pointing at the same declination, gives rise to apattern that repeats at intervals of 3 min in
right ascension.
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Figure 5: The effect of leadminustrail differencing. Here the data presented in Fig. 4 have been dif-
ferenced: each visibility measurement has had the corresponding measurement on a field 9 min later in
right ascension subtracted. Because the ground pickup is very similar for both measurements, ground
emission cancels out in the difference. In the resulting images foreground point sources may appear pos-
itive or negative inI depending on their right ascension. TheQ andU images show that ground pickup
has been removed with high accuracy.
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Figure 6: Power spectra of CMB polarization from the CBI measurements. The four panels show total
intensity power spectrumTT , grad polarization mode power spectrumEE, curl polarization mode power
spectrumBB, and cross-spectrumTE. Numerical values are given in Table 1. Theblack curveis the
theoreticalΛCDM model using a power law for the primordial spectral indexwhich best fits theWMAP,
CBI, and ACBAR CMB data (57). The predictions of this model for the CBI bands using the CBI
window functions are indicated by thestars.
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Figure 7: Sensitivity of the CBIEE power spectrum to the phase of the acoustic oscillations. (A) The
EE spectrum predicted by the fiducial model (black line) with a variety of “phase shifted” spectra with
similar envelopes calculated as described in the text. (B) Goodness-of-fit (χ2) for the model as a function
of two parameters: the phase shift (horizontal axis) and an overall scaling (vertical axis); the point at (0,1)
indicates the fiducial model corresponding to a standardΛCDM model. Contours are at 1, 2, and 3σ
intervals (i.e.,∆χ2 = 2.30, 6.17, and11.8 for 2 df). (C) Comparison of the fit of the fiducial model
(black line) and the minimum-χ2 phase-shifted model (red line) with the CBI data points (blue)and the
band powers predicted by the models (black and red stars).
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Figure 8: Comparison ofEE measurements from CBI, DASI (38), and CAPMAP (39). The fiducial
model curve is the same as in Fig. 6. The asterisks show the predictions of the fiducial model for the CBI
bands.

Figure 9: Normalized band-to-band correlations for the 7 bands shown in Table 1.
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Figure 10: Band-power window functions for the CBI polarization observations with the bands shown in
Table 1. The expected value of band power for a given model spectrum,Cl, is

∑
l [W (l)/l] l(l+1)Cl/2π.

The total area under each window function is equal to unity. The band powers for each spectrum also
contain contributions from the the others (EE band powers are affected by changes to the modelTT and
TE as well asEE, for example), but for the CBI these cross-polarized windowfunctions are small, with
peak amplitudes of no more than a few percent of the same-polarized window functions.
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Figure 11: CBI polarization power spectra obtained from low- and high-frequency channels.Red points:
26–31 GHz;blue points: 31–36 GHz. The points have been offset horizontally inl for clarity. The four
panels show total intensity power spectrumTT , curl-free polarization mode power spectrumEE, curl
polarization mode power spectrumBB, and cross-spectrumTE. The fiducial model curve is the same
as in Fig. 6.

28


